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Abstract: This paper analyzes control strategies for induction motors in railway applications. The
paper will focus on drives operating with a low switching to fundamental frequency ratio and in the
overmodulation region or six-step operation, as these are the most challenging cases. Modulation
methods, efficient modes of operation of the drive and the implications for its dynamic performance,
and machine design will also be discussed. Extensive simulation results, as well as experimental
results, obtained from a railway traction drive, are provided.

Keywords: railway traction drives; induction motor drives; high-speed drives; maximum torque per
ampere; overmodulation and six-step operation

1. Introduction

Despite being one of the most energy-efficient means for mass transportation (see Figure 1) [1],
there is pressure to develop a more efficient, reliable, cheap, and compact railway traction system,
which should be achieved without compromising customer satisfaction.
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Three-phase induction motors (IMs) were adopted in the 1990s for traction systems in railways 
replacing DC machines [2] due to their increased robustness and reduced cost and maintenance 
requirements. In addition, precise control of the IM torque/speed is perfectly possible thanks to the 
development of new power devices and digital signal processors, combined with the advances in 
AC-driven control methods. Furthermore, the inherent slip of IM allows multiple motors to be fed 

Figure 1. Emissions per passenger per km from different modes of transport. From the UK Department
for Business, Energy and Industrial Strategy 2019 Government Greenhouse Gas Conversion Factors [1].

Three-phase induction motors (IMs) were adopted in the 1990s for traction systems in railways
replacing DC machines [2] due to their increased robustness and reduced cost and maintenance
requirements. In addition, precise control of the IM torque/speed is perfectly possible thanks to the
development of new power devices and digital signal processors, combined with the advances in
AC-driven control methods. Furthermore, the inherent slip of IM allows multiple motors to be fed
from a single inverter, even if they rotate at different speeds due to differences in wheel diameters. As a
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result, the voltage-source inverter-fed IM drive (VSI-IM) is currently the preferred option in traction
systems for railways [3]. While Permanent Magnet Synchronous Machines (PMSM) have also been
considered and can be found in several traction systems, cost and reliability concerns intrinsic to this
type of machine, mainly due to magnets, have so far prevented their widespread use [4].

Rolling stock can be classified according to the power level of the traction system, ranging from
several tens of kW for Light Rail systems, to several MW for High-Speed Trains (HST) and Heavy Rail
Locomotives [5]. Traction systems can be concentrated or distributed. In concentrated systems, one or
more locomotives pull unmotorized coaches. On the contrary, distributed traction systems use Electric
Multiple Units (EMU), i.e., self-propelled carriages. Both options have advantages and disadvantages.
EMUs can provide a superior performance in terms of the acceleration and deceleration times, adhesion
effort, and transport capacity. However, passenger comfort, maintenance, and pantograph operation
can be compromised in this case [6,7]. For the case of HST, European manufacturers have predominantly
adopted the concentrated traction option, while the distributed option has been preferred by Japanese
manufacturers [8].

The two main elements in a traction system are the electric motor and the inverter. The development
of a cost-effective traction system for a given application involves a complex, iterative process to
decide the number of traction motors, motor size, inverter rated power, cooling system, etc. Once the
physical elements of the traction system have been defined, the control and modulation strategies need
to be defined. Additionally, in this case, a complex iterative process can be required as the traction
system must comply with a number of requirements. These include those imposed by the desired train
performance (e.g., torque-speed characteristic, maximum torque and speed, acceleration/deceleration
times, etc.), electric drive performance (e.g., machine and inverter efficiency, temperature limits,
maximum torque ripple, etc.), existing standards (e.g., electromagnetic interference, acoustic noise,
etc.), and so on. However, these targets will often be in conflict. The reduction of inverter losses
requires low switching frequencies, which in turn result in higher losses and large torque pulsations in
the motor, and can also compromise the dynamic response or even the stability of the drive. Especially
challenging is the operation of the traction drive at high speeds. The large back-electromotive force,
in this case, forces the inverter to operate in the overmodulation region, including square-wave modes.
The control operates in this case with a reduced (or even no) voltage margin and large distortions in
the currents, which can further deteriorate the drive performance.

Figure 2 shows a schematic representation of the main blocks involved in the operation of a
traction drive. The drive will normally receive a torque command coming from outer control loops
(e.g., the train driver or speed control loop). From the torque command and in the operating condition
of the machine, a flux command is derived; different criteria can be followed for this purpose, as shown
in Figure 2. Torque and flux are controlled by the inner control loops; a number of solutions are
available for this purpose. Inner control loops will provide the voltage command to the Voltage
Source Inverter (VSI) feeding the machine, with selection of the modulation method being of the
highest importance.
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This paper presents a review of the different aspects involved in the control of IM motor drives
for railway applications. Section 2 reviews the IM motor model, including a discussion on the machine
characteristics. Section 3 discusses control strategies, with a special focus on their suitability for use
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at high speed and low switching frequencies, as this is the most frequent and challenging mode of
operation for traction drives. Modulation is discussed in Section 4. Section 5 discusses efficient modes
of operation and remagnetization strategies. Sections 6 and 7 provide simulation and experimental
results, respectively. Section 8 summarizes the conclusions.

2. Induction Motor Model and Machine Characteristics

2.1. Induction Motor Model

Complex vectors allow a compact, insightful dynamic representation of the physical effects
occurring in AC machines, i.e., the relationships among electromagnetic variables (voltages, currents,
and fluxes) and shaft variables (torque and speed) [9]. Equations (1)–(4) show the electromagnetic
complex vector equations describing the squirrel cage induction machine in a synchronous reference
frame rotating at the flux angular frequency ωe, where vdqs denotes the stator voltage; idqs and idqr
are the stator and rotor currents, respectively; λdqs and λdqr represent the stator and rotor fluxes,
respectively; Rs and Rr are the stator and rotor resistances, respectively; Ls, Lr, and Lm are the stator,
rotor, and mutual inductances, respectively; ωr is the rotor angular speed in electrical units; and p is
the derivative operator.

vdqs = Rsidqs + pλdqs + jωeλdqs (1)

0 = Rridqr + pλdqr + j(ωe −ωr)λdqr (2)

λdqs = Lsidqs + Lmidqr (3)

λdqr = Lmidqs + Lridqr (4)

The electromagnetic torque Te can be expressed as the cross product of stator and rotor
currents (5). P is the number of pole-pairs, and “Im” and “‡” denote the imaginary part and
complex conjugate, respectively.

Te =
3
2

PLmIm
{
idqsi

‡

dqr

}
(5)

Equations (1)–(4) can be particularized for the case when the d-axis is aligned with the rotor
flux, i.e., λdqr = λdr = λr, which is the base of rotor field-oriented control (RFOC). The stator voltage
equation in scalar form is, in this case (6), the rotor flux dynamics being given by (7), where τr is the
rotor time constant and σ is the leakage factor.

vds = Rsids + σLspids −ωeσLsiqs +
Lm
Lr

pλr

vqs = Rsiqs + σLspiqs +ωeσLsids +ωe
Lm
Lr
λr

 (6)

τr
dλr

dt
+ λr = Lmids ; τr =

Lr

Rr
; σ = 1−

L2
m

LsLr
(7)

The torque Equation (5) can be rewritten as (8) in this case. Other forms of the torque equation
can be obtained by combining (2)–(4) and (5) and will be the basis of different control strategies, as will
be discussed in further sections.

Te =
3
2

P
Lm

Lr
λriqs (8)
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2.2. Machine Characteristics

Traction drives commonly receive a torque command from an outer control loop, which is
responsible for speed control. The maximum torque that can be produced at a given speed will
essentially depend on the current limits of the machine and power converter (due to losses) and on
the maximum flux, which is limited by saturation and the available DC link voltage. For most IM
designs, the maximum voltage and field weakening occur at the same speed, i.e., field weakening is a
direct consequence of reaching the voltage limit. This is shown schematically in Figure 3 (continuous
line case). For rotor speeds ωr < ω1, the machine operates with a rated flux and current, with the
voltage increasing proportionally to the rotor speed, mainly due to the back-emf. If ωr > ω1, the flux,
and consequently torque, must be decreased. The current (Figure 3b) can still be maintained at its
rated value until the machine enters field-weakening region II (not shown in the figure) [10]. Therefore,
for the machine denoted as conventional in Figure 3, region 1O corresponds to a constant torque
operation, while regions 2O+ 3O have constant power.
Energies 2020, 13, x FOR PEER REVIEW 5 of 22 

 

 

Figure 3. Conventional (−) and extended full flux range (--) induction motor (IM) design behavior: (a) 
Stator voltage magnitude; (b) Stator current magnitude; (c) Flux density; (d) Electromagnetic torque 
(rated&pull-out). Both machines are designed to provide the same torque vs. speed characteristic and 
have the same voltage limit. 

However, the design with an extended full flux range offers other possibilities. The torque of an 
IM can be written as (9), where 𝑉  is the active volume of the rotor, 𝐽 is the stator surface current 
density, 𝐵  is the air gap flux density, ∅  is the angle between 𝐽  and 𝐵  vectors, and 𝑘  is a 
constant which depends on the machine winding design [11]. 𝑇 = 𝑘 ∙ 𝑉 ∙ 𝐽 ∙ 𝐵 ∙ 𝑐𝑜𝑠 ∅  (9) 

As the extended full flux range design provides higher flux densities at high speeds and the 
current density 𝐽 remains constant, it is possible to reduce the volume of the rotor, and consequently 
the size of the machine, without affecting the torque production capability, i.e., the extended full flux 
design in Figure 3 will be smaller. 

It must be noted, however, that redesigning the machine brings drawbacks that must also be 
considered. First, the size of the inverter is increased, as the current that the semiconductors must 
handle is increased by a factor of 𝑁 /𝑁 , while the voltage and power remain unaffected. However, 
this penalty is not so relevant nowadays thanks to the latest developments in power devices [10]. 
Second, the pull-out torque in the low-speed region is significantly decreased, as shown in Figure 3d 
[11], which must be considered to guarantee that the machine meets the application requirements. 

3. Overview of Control Methods for Three-Phase Induction Machines 

This section discusses control strategies for IMs in railway applications. The drives must be able 
to perform properly from zero to relatively high rotational frequencies. On the other hand, the 
switching frequencies are often limited to several hundred Hz due to the switching losses of high-
power semiconductor devices. At low rotational frequencies, the switching to fundamental frequency 
ratio is still relatively large and the inverter will operate far from its voltage limit. On the contrary, 
operation at high speeds is characterized by a reduced switching to fundamental frequency ratio and 
a reduced (or even inexistent) voltage margin in the inverter. Due to this, both control and 

Figure 3. Conventional (−) and extended full flux range (- -) induction motor (IM) design behavior: (a)
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have the same voltage limit.

IM designs for railway traction are often aimed at reducing the size of the machine, which can be
desirable or even imperative due to room constraints. For this purpose, the voltage characteristic of the
conventional design in Figure 3 can be modified by rewinding the stator, varying the number of turns,
and gauging the wire [10,11]. If the modification is made such that N2 < N1, with N1 and N2 being the
number of turns for the conventional and modified designs, respectively, and the active conductor
area in each stator slot remaining unchanged, i.e., N1·S1 = N2·S2, and S1 and S2 being the area of the
conductor for the conventional and modified designs, respectively, both machines should be able to
produce the same amount of torque, as the total current circulating within the stator slots and the rest
of the machine dimensions are the same in both cases [11]. Since the number of turns has been reduced,
the voltage vs. speed characteristic is also modified. As seen in Figure 3a (dashed line), for ωr = ω1,
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the machine is far from its voltage limit. It can also be observed that for ωr < ω1, the current of the
modified machine design is N1/N2 larger than for the conventional design. This does not imply an
increase of joule losses, as the wire in the modified design is thicker, and the current density is the same
in both cases. Since, at ωr = ω1, the modified machine operates well below its voltage limit, there is no
need to decrease the flux at this point; instead, the nominal air gap flux density can be maintained until
ωr = ω2 (region 2O in Figure 3), i.e., the full flux range is extended. The fact that the flux weakening
region is reduced while the torque characteristic remains unchanged enables a reduction of the stator
current for ωr > ω1, as can be readily deduced from (8). Consequently, assuming that the dimensions
of the machine do not change, the extended full flux range design in Figure 3 would allow a significant
decrease of the current density in regions 2O and 3O (i.e., at high train speeds) and consequently of Joule
losses, i.e., would be more efficient compared to the conventional design.

However, the design with an extended full flux range offers other possibilities. The torque of an
IM can be written as (9), where Vrotor is the active volume of the rotor, J is the stator surface current
density, B is the air gap flux density, ∅ is the angle between J and B vectors, and k1 is a constant which
depends on the machine winding design [11].

Te = k1·Vrotor·J·B·cos(∅) (9)

As the extended full flux range design provides higher flux densities at high speeds and the
current density J remains constant, it is possible to reduce the volume of the rotor, and consequently
the size of the machine, without affecting the torque production capability, i.e., the extended full flux
design in Figure 3 will be smaller.

It must be noted, however, that redesigning the machine brings drawbacks that must also be
considered. First, the size of the inverter is increased, as the current that the semiconductors must
handle is increased by a factor of N1/N2, while the voltage and power remain unaffected. However, this
penalty is not so relevant nowadays thanks to the latest developments in power devices [10]. Second,
the pull-out torque in the low-speed region is significantly decreased, as shown in Figure 3d [11],
which must be considered to guarantee that the machine meets the application requirements.

3. Overview of Control Methods for Three-Phase Induction Machines

This section discusses control strategies for IMs in railway applications. The drives must be
able to perform properly from zero to relatively high rotational frequencies. On the other hand,
the switching frequencies are often limited to several hundred Hz due to the switching losses of
high-power semiconductor devices. At low rotational frequencies, the switching to fundamental
frequency ratio is still relatively large and the inverter will operate far from its voltage limit. On the
contrary, operation at high speeds is characterized by a reduced switching to fundamental frequency
ratio and a reduced (or even inexistent) voltage margin in the inverter. Due to this, both control and
modulation strategies are often dynamically modified, depending on the IM speed. The following
discussion will primarily focus on the most challenging high-speed case.

Control methods for IMs can be classified into scalar and vector types, as shown in Figure 4.
Scalar methods are derived from the machine equivalent circuit in a steady-state. Consequently, they
can operate properly in applications in which fast changes in the operating conditions of the machine
(torque, speed, flux, . . . ) are not required. On the contrary, vector control methods are based on the
dynamic equations of the machine, which, combined with proper control loops, allow the machine’s
torque capabilities to be fully exploited, without surpassing machine or power converter limits. Both
types of methods are briefly discussed in the following. It must be noted, however, that the borderline
between scalar- and vector-based methods is sometimes blurred, as there have been several proposals
to enhance the dynamic response of scalar methods by adding control loops based on dynamic models.
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3.1. Scalar-Based Control

3.1.1. Open-loop V/F

Open-loop V/F varies the stator voltage magnitude proportional to the frequency. This results in
an (almost) constant flux. While simple, V/F control has some relevant limitations. The rotor speed
is not precisely controlled due to slip. Additionally, an incorrect voltage to frequency ratio, voltage
drop in the stator resistance, variations of the DC link voltage feeding the inverter, etc., will result in
incorrect flux levels, eventually modifying the operating point of the machine from the desired value.

3.1.2. V/F with Feedback Control

Closed-loop speed control with slip regulation (Figure 5) has been widely used in IM traction
drives [12]. Speed error generates the slip command ω∗sl through a Proportional-Integrator (PI)
controller, which, when added to the measured speed, provides the angular frequency of the stator
voltage ω∗e.
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Flux and torque control loops can be used instead of the V/F ratio to obtain the desired stator
voltage magnitude and angle (Figure 6). Torque and flux can be estimated from the (commanded)
stator voltages and the (measured) stator currents using the voltage model (10); “ˆ” indicates estimated
variables/parameters. The pure integrator in (10) is replaced in practice by a first-order system to
avoid the drift problems derived from the integrator infinite gain at DC [13]. The torque is obtained
using (11).

λ̂αβs =

∫ (
V∗αβs − R̂siαβs

)
dt (10)

T̂e =
3
2

P
(
λ̂αsiβs − λ̂βsiαs

)
(11)
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The methods in Figures 5 and 6 are relatively simple to implement, with the second enabling
precise control of the machine’s operating point in a steady-state. A further advantage of scalar
methods is that operation near or at the inverter voltage limit is relatively easy to achieve. However,
the fact that coupling between flux and torque is not considered for the control design requires a very
slow dynamic response to avoid over currents and torque pulsations.

3.1.3. Torque/Flux Scalar Control with Feedforward

The dynamic response of the closed-loop V/F control scheme in Figure 6 can be enhanced by
adding two feedforward terms, as can be seen in Figure 7. The first uses the desired V/F characteristic
to provide the base value of the stator voltage magnitude V∗s_v f , with the rotor flux regulator providing
the incremental voltage required to track the desired rotor flux with no error. The second provides the
base value for the slip ω∗sl_ f f , which is obtained from the desired torque and the estimated rotor flux
using (12). The torque regulator corrects the slip so that the desired torque is followed with no error.

ω∗sl_ f f =
2
3

1
P

R̂r∣∣∣λ̂r
∣∣∣2 T∗e (12)
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Due to the fact that the voltage command magnitude and phase angle are independently controlled,
flux and torque controllers must be tuned for relatively low bandwidths. A dynamic response eventually
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relies on the accuracy of the feedforward terms. As for the scheme in Figure 6, the scheme in Figure 7
can easily operate in the field-weakening region, including that of six-step.

An alternative approach for the implementation of the feedforward action is to use the machine
d-q model in the rotor flux reference frame. The desired d- and q-axis currents are first obtained from
the commanded torque and rotor flux using (7) and (8) (see Figure 8). The d- and q-axis stator voltages
required to achieve the desired currents are the middle terms in (13), which are obtained from (6).

v∗ds_ f f = R̂si∗ds + σ̂L̂spi∗ds −ω
∗
eσ̂L̂si∗qs +

L̂m
L̂r

pλ∗dr � −ω
∗
eσ̂L̂si∗qs

v∗qs_ f f = R̂si∗qs + σ̂L̂spi∗qs +ω∗eσ̂L̂si∗ds +ω∗e
L̂m
L̂r
λ∗dr � ω

∗
eσ̂L̂si∗ds +ω∗e

L̂m
L̂r
λ∗dr

 (13)
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Ideally, (13) will produce the voltage needed to obtain the desired torque and rotor flux with
no error. However, there are a number of issues to consider. Mismatch between model and actual
parameters must be expected and will produce errors in the feedforward voltages. In addition, (13)
includes derivatives which are problematic in practice. It is noted, however, that the signals affected by
the derivative (13) are (clean) commanded variables, i.e., do not involve (noisy) measured variables.
Furthermore, the torque derivative will be limited by the application, meaning that the derivative
of q-axis current and flux commands will be limited too. Finally, the terms depending on the stator
resistance will have a reduced weight considering that the control is only intended to operate at a high
speed. Based on the previous considerations, the feedforward voltage can be safely simplified to form
the right hand of (13). The resulting block diagram is shown in Figure 8, with the feedforward term
being either the complete or simplified voltage equation in (13).

3.2. Vector-Based Control

Vector control methods are aimed at directly manipulating the IM fields and torque. These
methods are based on well-known d-q models. Field-Oriented Control (FOC) represents flux and
torque as a function of stator currents in a synchronous reference frame, with high-bandwidth current
regulators being used to provide the voltage command to the inverter. Alternatively, Direct Torque
Control (DTC) methods implement torque and flux controllers which directly provide the IGBT gate
signals for the inverter, i.e., without the explicit control of stator currents.
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3.2.1. Rotor Field-Oriented Control (RFOC)

RFOC (see Figure 9) is one of the most popular options for the high-performance control of IM
drives [14,15], although its discussion is beyond the scope of this paper. RFOC is often used in HST at
relatively low speeds, the inverter operates in the linear region and with an adequate switching to
fundamental frequency ratio. However, its use at high speeds presents multiple problems, including
the lack of a voltage margin in the inverter for proper operation of the current regulator, distortions
in the currents due to overmodulation, and delays intrinsic to the reduced switching frequency. The
modification of RFOC to enable operation at the voltage limit was discussed in [16].
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3.2.2. Direct Flux Vector Control (DFVC)

DFVC [17] is a stator-flux-oriented control approach. By writing the voltage Equation (1) in stator
flux, reference frame (14) can be obtained. It can be observed from (14) that the stator flux variation can
be regulated through the d-axis voltage, and the torque is then controlled through the q-axis current
(15), with a current regulator being used for this purpose. The DFVC scheme is shown in Figure 10.

vds = R̂sids + pλ̂ds
vqs = R̂siqs + ω̂s f λ̂ds

}
(14)

Te =
3
2

Pλ̂dsiqs (15)

Stator flux αβ-components are estimated from the voltage-model-based flux estimator. The
synchronous frequency can be obtained from the estimated stator flux and back-emf (16) [18], avoiding
the use of stator flux angle derivative and time-consuming trigonometric functions.

ω̂s f = pθ̂s f =
d
dt

tan−1

 λ̂βs

λ̂αs

 = λ̂αs · êβs − λ̂βs · êαs∣∣∣λ̂s
∣∣∣2 (16)

At low speeds, DFVC can operate either with rated stator flux or a maximum torque per ampere
(MTPA) strategy to improve the efficiency. Above the base speed, flux is reduced according to (17),
where Vmax is the maximum output voltage of the inverter, which depends on the available DC-link
voltage and the modulation method. Operation in overmodulation is feasible, but a voltage margin
must be preserved for proper operation of the q-axis current regulator, meaning that operation with a
maximum output voltage (i.e., six-step) is not possible. Furthermore, operation in overmodulation
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forces a reduction of the current regulator bandwidth to mitigate the effects of the resulting current
harmonics in this case. Therefore, current regulator gains may need to be adapted with machine speeds.

λ∗s ≤
Vmax − R̂siqs∣∣∣ω̂s f

∣∣∣ (17)

It is finally noted that Figure 10 includes a mechanism to limit the torque angle δ between the stator
and rotor fluxes so that it is smaller than the pull-out torque angle of δ = 45 electrical degrees [17].
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3.2.3. Direct Torque Control (DTC)

IM torque can be expressed as (18), with δ being the torque angle. DTC methods control
torque by controlling the stator flux magnitude and angle with respect to rotor flux. Stator flux is
controlled through the stator voltage (19) (stator resistance neglected), with Vs being the inverter
output voltage vector.

Te =
Lm

σLsLr
λsλrsin(δ) (18)

λs =

∫
Vsdt (19)

Switching-Table-Based (ST-DTC) was introduced by Takahashi and Noguchi [19] in the mid-1980s.
Two hysteresis controllers are used to control the stator flux and torque directly. The hysteresis control
signals are sent to a look-up table to select the voltage vectors required to achieve high dynamics
(see Figure 11). The fact that the switching frequency is not defined and operation in overmodulation
and six-step is not straightforward makes this method inadequate for high-power railway drives [20].

Direct-Self Control (DSC) was proposed by Depenbrock [21] for high-power drives. Three
hysteresis controllers determine the voltage applied to the machine by comparing a flux magnitude
command with the estimated flux for each phase, and a two-level hysteresis torque controller determines
the amount of zero voltage (see Figure 12). DSC produces a hexagonal stator flux trajectory, which
enables a smooth transition into overmodulation and eventually six-step. However, hexagonal flux
trajectories make DSC problematic below ≈30% of the base speed, and remedial actions can be found
in [22,23].
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Figure 12. Direct-Self Control (DSC) scheme.

Several modifications have been proposed to overcome the limitations of DTC methods [24]. DTC
with a constant switching frequency calculates the required stator voltage vector over a sampling period
to achieve the desired torque and stator flux. The voltage vector is synthesized using Space-Vector
Modulation (SVM), and these methods are often referred to as DTC-SVM. In the implementation in
Figure 13, a PI controls the torque through the torque angle [25]. The stator flux angle is obtained from
the estimated rotor flux angle and the commanded torque angle. The stator voltage vector command
V∗αβs employed to cancel the stator flux error ∆λ∗αβs at the end of the next sampling period ∆t is
obtained as:

V∗αβs =
∆λ∗αβs

∆t
+ R̂siαβs. (20)
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The scheme in Figure 13 is easy to implement and retains the fast dynamics of DTC if the inverter
operates in the linear region. However, voltage distortions intrinsic to overmodulation can result
in magnitude and phase deviations of the actual stator flux vector, leading to instability problems.
Furthermore, (20) effectively cancels the flux error for relatively small values of ∆t, but can result in
large steady-state errors in the case of low switching frequencies. DTC-SVM suffers from the same
limitation as ST-DTC when operating in overmodulation and six-step, which raises concerns on their
use for high-power, high-speed railway traction drives. A predictive term for mitigating the stator flux
delay and extending the operation to six-step was proposed in [26]. However, this was at the price of a
significant complexity increase.

3.3. Control Strategies Summary

Table 1 summarizes the main conclusions for the control methods discussed in this section,
including controlled variables and the easiness of operation at low speeds, overmodulation (high
speed), and the transition to six-step. Regarding the dynamic response, it is important to note that
the torque ramp is normally limited in railway traction. Consequently, not only the maximum
dynamic response (e.g., the minimum time required to respond to a step-like torque command) is
relevant, but also the capability of the drive to meet the maximum torque ramp requested by the
application, especially when the machine operates at a high speed in the field-weakening region.
CLVFC, CLVFVC&FF, DFVC, and DTC-SVM have been selected as a representative subset of the
methods in Table 1, and their behavior will be analyzed by means of simulation in Section 6.

Table 1. Summary of the presented control schemes for traction applications.

Properties/
Performance

V/Hz with Feedback FOC DTC

V/Hz
(Figure 5)

CLVFVC
(Figure 7)

CLVFVC&FF
(Figure 8)

RFOC
(Figure 9)

DFVC
(Figure 10)

DTC
(Figure 11)

DSC
(Figure 12)

DTC-SVM
(Figure 13)

Reference frame λr λr λr λr λs SRF. SRF λr

Controlled variables ωr
† λr; Te λr; Te λr&ids; iqs λs; iqs λs; Te λs; Te λs; Te

Defined
switching frequency Yes Yes Yes Yes Yes No No Yes

Low speed
(linear mod.) 4 4 4 4 4 7 7 4

High speed
(overmodulation) 4 4 4 — — 7 4 7

Six-step operation 4 4 4 7 7 7 4 7

Dynamic response †† 7/7 7/— —/4 4/— 4/— 4/7 4/4 4/7

4: favorable; —: neutral; 7: unfavorable; “SRF” stands for stationary reference frame. †: Implementation of an
outer speed control loop for the rest of the methods is straightforward. ††: (1) maximum torque dynamic response/
(2) capability to provide 3 kNm/s in the overmodulation region.
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4. Modulation Techniques

High-power traction drives usually operate with low switching frequencies (<1 kHz) to reduce
switching losses. This results in significant current and consequently torque ripples, which can
have implications for mechanical transmission stress, train comfort, standards compliance, etc.
Trading-off switching losses and torque pulsations is a challenge for the selection of modulation
methods. Furthermore, modulation and control strategies often change with the output frequency.
Figure 14 shows an example of this [27]. Asynchronous Pulse-Width Modulation (PWM) is used at low
speeds, changing to synchronous modulation with Selective Harmonic Elimination (SHE) and finally
single pulse modes as the speed increases. The three options are briefly described in the following,
and are particularized for a three-level Neutral-Point-Clamped (3L-NPC) scheme [28], as this is the
configuration used in this project.
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4.1. Asynchronous Modulation

Carrier-Based Pulse-Width Modulation (PWM) or Space-Vector Modulation (SVM) can be used at
low speeds. The first compares the reference voltages V∗abc with two carriers, as shown in Figure 15a.
A level-shifted carrier is normally preferred as it results in a lower voltage harmonic content [28].
A common-mode (homopolar) voltage should be added to fully use the available DC link voltage.
Space-Vector Modulation (SVM) for three-level inverters shares the same basic principles as that for
two-level inverters, but 24 active voltage and three zero vectors are available. The implementation of
SVM is shown in Figure 15b. It typically consists of three steps: (1) sector identification, (2) region
identification, and (3) the selection of an appropriate switching sequence. Redundant states are used to
balance DC link capacitor voltages. SVM offers the same DC voltage utilization as the PWM with a
homopolar voltage, and it has a larger computational burden, but makes better use of the redundant
states [29,30].Energies 2020, 13, x FOR PEER REVIEW 14 of 22 
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loads. It is possible in this case to decrease the flux level to reduce the stator current and consequently 
Joule losses, which is commonly termed MTPA [32]. However, operating with reduced flux levels 
will penalize the dynamic response of the drive. If a torque increase is demanded, the machine must 

Figure 15. Asynchronous modulation techniques: (a) Pulse-Width Modulation (PWM) with triple
harmonic injection; (b) Space-Vector Modulation (SVM).
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4.2. Synchronous Modulation—Selective Harmonic Elimination (SHE)

SHE performs a predefined number of commutations per quarter of the fundamental cycle.
Commutations are synchronized with the fundamental wave. Commutation angles are pre-calculated
via Fourier analysis [31], with the aim of eliminating specific harmonics of the output voltage.
An example of SHE with three switching angles is shown in Figure 16a. With three angles, it is possible
to cancel two harmonics of the output voltage (typically the 5th and 7th), in addition to controlling
the magnitude of the fundamental voltage. As the speed increases, SHE changes to one pulse mode
(Figure 16b) to reduce switching losses. SHE implementation is schematically shown in Figure 16c.
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5. Operation with Reduced Flux and Remagnetization Strategies

Electric drives in high-speed traction applications can work for certain periods of time with light
loads. It is possible in this case to decrease the flux level to reduce the stator current and consequently
Joule losses, which is commonly termed MTPA [32]. However, operating with reduced flux levels will
penalize the dynamic response of the drive. If a torque increase is demanded, the machine must be
remagnetized first. The remagnetization time is determined by the rotor time constant (7) and applied
magnetizing current. Due to the relatively large values of the rotor time constant, fast torque changes
of torque are not feasible. It must be noted, however, that fast torque changes are not desirable for
traction applications, as they might exert stress on the mechanical transmission, produce wheel slip,
and raise comfort concerns. The maximum torque-allowed gradient will depend on the application.
For the machine considered in this paper, it has a value of 3 kNm/s.

Figure 17 shows two possible remagnetization strategies. RFOC principles are used for the
discussion. It is noted, however, that equivalent strategies can be used with other control methods by
simply transforming d-q axis current commands into other commands, e.g., stator flux and slip.
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The strategy in Figure 14a uses a step-like d-axis current command. While simple, this results in a
slow remagnetization, with the 3 kNm/s target not being achieved. The option in Figure 14b is derived
from the method described in [33] and is aimed at providing a target torque ramp with the smallest
possible current during the remagnetization process. This reduces the stress in the power devices and
the risk of surpassing their current limit. This strategy will be used for the simulation results in the
next section.

6. Simulation Results

Selected control methods from Section 3 have been evaluated by means of simulation using
MATLAB/Simulink. IM parameters for the base speed are given in Table 2. The simulation model
implements asynchronous SVM with a switching frequency of 1 kHz at low speeds and SHE at high
speeds, as shown in Figure 14.

Table 2. Specifications of the induction motor at base speed ωbase (extended full flux range design).

Variable Value Unit

DC-link voltage 3600 V
Rated Power 1084 kW

Rated Voltage (L-L, rms) 2727 V
Pole-pairs (P) 2 Pole

Stator resistance (Rs) 55.38 mΩ
Stator inductance (Ls) 26.45 mH

Torque 3241 Nm
Speed 3194 rpm

Since the main focus of this paper is high-speed operation, only results at high speed using SHE
are provided in this section. Infinite inertia is assumed. Consequently, the rotor speed remained
constant throughout the simulation. This assumption is realistic and has no effect on the conclusions.
Profile 2 in Figure 17b was used during remagnetization. The maximum torque ramp was limited to
3 kNm/s, which was imposed by the application. Simulation results are shown in Figure 18.

The most remarkable difference is the slowest transient response of CLVFC due to dynamic
limitations intrinsic to scalar control. The dynamic response is seen to improve and be comparable to
the other methods when the feedforward defined by (13) is used (CLVFC&FF in Figure 18b).

DFVC and DTC-SVM are seen to provide similar dynamic responses to CLVFC&FF. Regarding
DFVC, it must be noted that to achieve proper operation in the overmodulation region, the q-axis
current regulator bandwidth was reduced in the range of ten times to avoid a current regulator reaction
to low-order current harmonics due to the non-linear operation of the inverter. The need to dynamically
adapt the gains of the current regulator in the high-speed region is an obvious concern.
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It can be observed that DTC-SVM suffers from a steady-state error in the controlled flux due to
the low sampling frequency (∆t) when SHE is used in the inverter. This results in an increase in the
load angle. This could lead to overcurrent or instability if the load angle is not monitored.

Figure 19 summarizes the performance in a steady state for the four control methods, i.e., once the
machine is providing its maximum torque. The steady-state error in the flux for DTC-SVM is seen to
affect the modulation index and slip. This will eventually affect the machine loss distribution, which
is a concern as traction motors can be required to operate close to their thermal limit. CLVFC and
CLVFC&FF are seen to have a higher torque error compared to DFVC, but with little impact on the
modulation index and slip. It is noted that a torque error in the range of 1% is perfectly assumable.
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Figure 18. Simulation results of using (a) CLVFC, (b) CLVFC&FF, (c) DFVC, and (d) DTC-SVM control
methods with SHE. Rotor speed ωr = 1.328ωbase; torque was increased from 10% (i.e., with the machine
operating with reduced flux in MTPA) to 100%. From top to bottom: commanded and actual torque;
d- and q-axis currents; commanded and estimated flux (can be stator or rotor flux, depending on the
method); and output voltage magnitude. All the variables are shown in p.u.
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Figure 19. From left to right: modulation index, slip, torque error, and error in the flux being controlled
for the four control methods being considered, once the machine has reached a steady state, i.e., is its
maximum torque. Torque and slip have been low-pass filtered to eliminate the harmonic content
produced by SHE modulation.

It can be concluded that CLVFC&FF is more adequate compared to the simulated schemes at high
speeds due to its high dynamics, and the controllers are not affected by low-order harmonics resulting
from a square-wave operation, i.e., six-step, as in the case of DFVC, and are simple to implement.

7. Experimental Results

A schematic diagram of the high-power traction system test bench is shown in Figure 20a.
It consists of two identical IMs and converters connected back-to-back, which are supplied from a
High-Voltage (HV) DC power supply. The power converter module (see Figure 20b) consists of a
three-phase, three-level Neutral-Point Clamped (NPC) inverter feeding the IMs. Single-phase inverters
feed auxiliary loads, such as cooling systems, control power supply units, etc. A DC-DC chopper is
implemented for dissipative braking and DC bus overvoltage protection. A specially designed traction
transformer is used to filter off catenary harmonics and allow the interconnection of the different
converters. A 100 Hz (2f) filter is included in the DC bus. The overall experimental test rig is shown in
Figure 20c.
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Figure 20. High-power traction test bench: (a) Schematic diagram; (b) power converter module
(INGETRAC); and (c) overall view of the laboratory setup.

Preliminary experimental results for a full-scale HS traction drive are presented in the following.
The control uses RFOC at low speeds and CLVFC at high speeds. The main system parameters are the
same as those used in the simulation shown in Table 2. The torque-flux characteristic of the motor is of
the type named as the extended full flux range in Figure 3.

Figure 21a shows the rotor speed, modulation index, commanded and estimated torques, estimated
rotor flux, and magnitude of the stator current vector during an acceleration (left) and deceleration
(right) process. Figure 21b shows the spectrogram of the stator current vector. For ωr < 0.12 p.u.,
RFOC-SVM with a switching frequency of 850 Hz is used; the switching frequency increases to 1 kHz
for 0.12 < ωr < 0.94 p.u. For ωr > 0.94 p.u., CLVFC combined with SHE with one switching angle is
used. Changes in the modulation method are readily observable in the spectrogram of Figure 21b,
and are aim to trade-off switching losses and torque ripple. The control is seen to precisely follow the
commanded torque and rotor flux in the whole speed range. It is noted that the changes in the estimated
rotor flux observed in the flux-weakening region respond to changes in the corresponding command
(not shown in the figure). Transitions between the different control and modulation strategies can
be a challenge due to the high power and low switching frequencies. However, as can be observed
from Figure 21, such transitions are satisfactory, i.e., the spikes observed in the currents are perfectly
acceptable and do not represent a risk for the power devices. Implementation of the other control
methods and remagnetization strategies discussed in Sections 3 and 6 is ongoing.
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8. Conclusions

In this paper, a comparative analysis of scalar and vector control strategies for railway traction
applications has been presented, with a special focus on their operation at high speeds.

HSTs normally use medium-voltage, high-power IMs. Rotor flux Oriented Control (RFOC) has
been widely adopted at low and medium speeds. However, high fundamental frequencies intrinsic to
high-speed operations, combined with the need to reduce inverter losses, force the inverter to operate
with reduced switching frequencies and a high modulation index or even at the six-step limit. These
limitations seriously compromise the performance of RFOC at high speeds. A common practice is
to use RFOC at low speeds, rather than switch to strategies able to perform properly under severe
voltage constraints at high speeds.

Methods considered for the analysis included different types of Closed-loop Voltage/Frequency
(V/F), Field-Oriented Control (FOC), and Direct-Torque Control (DTC) strategies. Four different
control strategies have been selected and tested by means of simulation, namely, Closed Loop V/F
with flux/torque Control (CLVFC), CLVFC with feedforward (CLVFC&FF), Direct Flux Vector Control
(DFVC), and Direct-Torque Control Space-Vector Modulation (DTC-SVM). The modulation methods
that have been considered are PWM/SVM, SHE, and six-step. Their advantages include the easiness
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of operation with a high modulation index, including six-step; switching frequency; and dynamic
response to both torque change demands and rotor flux change demands during remagntization.

The CLVFC&FF method described in Section 3.1.3 and the remagnetization strategy discussed in
Section 5 are the original contributions of this paper.

It was concluded from the simulation results that CLVFC, CLVFC&FF, and DFVC provide similar
performances. However, DFVC requires a modification of the q-axis current controller gains when
the drive enters the overmodulation region. Specifically, CLVFC&FF proposed in this paper operates
properly with a high modulation index, including six-step, and provides a good dynamic response
during remagnetization.

Preliminary experimental results using CLVFC in a full-scale traction drive have been provided,
which are in good agreement with the simulation results, and confirm the viability of this strategy.
Implementation of the other strategies, including remagnetization, is ongoing.
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