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Abstract

Ordinal classification is a special case of multiclass classification in which there

exists a natural order on the set of class labels. Due to the nature of the problem,

datasets for ordinal classification are typically rather small, having a negative

impact on performance. A possible way out is to look for additional information.

In this paper, firstly, we make use of order relations for unlabeled examples to

generate relative information. Secondly, we incorporate this relative information

into the method of k nearest neighbors, thus exploiting absolute and relative

information at the same time. More specifically, we bring together notions

from the fields of information fusion and machine learning to integrate both

types of information. Finally, we test the proposed method on some classical

machine learning datasets. The experimental results show the effectiveness of

our approach.
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1. Introduction

A classical approach for addressing ordinal classification problems begins

with a data collection step, where a large number of examples are described

by their feature vectors and are associated with a class label. The information

provided by these datasets formed by examples with an explicitly given class5

label is usually referred to as absolute information. Unfortunately, in real life,

it might be a difficult task to collect such datasets because, typically, it is

a time-consuming and costly process. Moreover, for a dataset with a small

amount of absolute information, the performance of an ordinal classifier could

be very low. In order to improve the performance, it might be useful to consider10

additional side information, which is commonly used in recommender systems,

marketing services and bioinformatics [1]. For example, De Bie et al. [2] used side

information to learn a suitable distance metric and proposed an algorithm for

related clustering tasks. Jonschkowski et al. [3] also validated the importance

of side information and proposed many approaches that could solve different15

machine learning tasks, such as multi-task learning, multi-view learning and

learning using privileged information.

In food science and more specifically in sensory analysis studies, some typical

examples of side information are the number of storage days of the food samples,

related chemical analysis and sensory evaluation tests [4, 5]. A prominent type of20

side information is that of relative information, in which examples are compared

one to another and then ordered. Fortunately, gathering a large amount of

relative information is an easy task that can be performed by inviting some

novices and gathering their preferences over some examples (such as pairwise

orders among samples based on the freshness of food). The new challenge that25

arises is how to use a small amount of absolute information and a large amount

of relative information at the same time for ordinal classification.

The method of k nearest neighbors (k-NN) is one of the most fundamental

and well-known machine learning methods and has been widely used for clas-

sification [6], clustering [7] and regression [8] in various domains of application30
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such as financial modelling [9], image interpolation [10] and bioinformatics [11].

It is a non-parametric method [12] that assigns to a test example the most fre-

quent class label among its k nearest neighbors. The first formulation of k-NN

is usually attributed to Fix and Hodges [13], although the work of Cover and

Hart [14] also contributed to the popularity of the method.35

Recently, some efforts have been made to improve the traditional k-NN. For

instance, it is now widely known that the classical Euclidean distance metric,

which is oftentimes considered the standard distance metric for determining the

nearest neighbors, might not be adequate for dealing with some given datasets.

Thus it might be necessary to learn a more appropriate distance metric. It seems40

natural for the learned distance metric to assign small distances to examples

with the same class label and large distances to examples with different class

labels [15]. Nguyen et al. [16] considered the Mahalanobis distance metric in

the context of distance metric learning. The experimental results show a higher

performance when compared to other distance metric learning methods. As45

another example of recent interest in k-NN, Datta et al. [17] defined a penalty-

based dissimilarity metric and incorporated it into k-NN. This approach not

only improves the performance, but also allows to directly process data with

missing information.

As a special case of multiclass classification, ordinal classification [18] has50

become a popular research topic that has been considered in, for instance, eco-

nomical modelling [19], social sciences [20] and computer vision [21]. Com-

mon approaches for addressing ordinal classification problems could be divided

into naive methods, ordinal binary decomposition methods and threshold meth-

ods [22]. Naive methods simply address ordinal classification problems as if they55

were standard classification problems. The order between class labels is simply

ignored, thus possibly compromising the performance of the method. Ordi-

nal binary decomposition methods decompose the ordinal variables into several

binary ones, and subsequently address different independent tasks, ultimately

combining all binary outputs into one class label. Threshold methods assume60

that there exists an underlying one-dimensional space and learn thresholds that
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partition the real line into several intervals. Each interval is ultimately identified

with a class label.

Notably, most current contributions only use absolute information and ne-

glect the fact that there is usually a lot of relative information available. Also,65

learning from absolute information and learning from relative information [23,

24] are usually considered as two separate problems. Several works [25, 26] have

recommended the fusion of both absolute and relative information to achieve a

complete understanding of datasets and give accurate evaluations of examples.

Therefore, it is necessary to develop some strategies to fuse different types of70

information into a single ordinal classification model. To the best of our knowl-

edge, there are only few related works discussing this problem. For example,

Sader et al. [27] proposed an ordinal regression model for combining absolute

evaluations from experts and relative evaluations from novices in order to pre-

dict the class label of test examples. This proposal solves a constrained convex75

optimization problem that contains many parameters to learn, which makes the

model complex and hard to explain. Therefore, there is a need to come up with

some novel and simpler approaches that incorporate relative information, are

easy to explain and have a good classification performance.

In this paper, we propose a new method for ordinal classification based on80

k-NN that fuses absolute and relative information. More specifically, we bring

together notions from the fields of information fusion and machine learning to

integrate both types of information. We test our method on some classical ma-

chine learning datasets. The experimental performance shows the importance of

considering absolute and relative information and the usefulness of our method.85

The remainder of this paper is structured as follows. Section 2 recalls the clas-

sical method of k-NN for multiclass classification. Section 3 discusses k-NN

within the context of ordinal classification. In Section 4, we provide a method

of k-NN for ordinal classification with absolute and relative information. Ex-

perimental results and a corresponding analysis of these results are presented90

in Section 5. We end with some conclusions and open problems in Section 6.
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Figure 1: An example of multiclass classification using k-NN. Each color indicates a different
class label. The class label of the black point is unknown. The solid black lines are connecting
the black point with its five nearest neighbors.

2. k nearest neighbors for multiclass classification

The main principle of k-NN is that similar examples are distributed closely

in the feature space. Thus the class label of a test example can be simply

determined as the most frequent class label among those assigned to its k nearest95

neighbors [14, 28]. This process can be described by mapping the dataset onto

a metric space. Typical distance metrics used are the Euclidean and Manhattan

distance metrics [29].

Consider a set of input examplesD = {x1,x2, ...,xn}, where xi = (xi1, ..., xid)

belongs to the input space X ⊆ Rd. The absolute information is denoted as

A = {(x1, y1), (x2, y2), ..., (xn, yn)}, where the class labels yi belong to the out-

put space Y = {C1, C2, ..., Cr}. We use the Euclidean distance metric to deter-

mine the nearest neighbors of a test example x∗. We recall that the Euclidean

distance d(u,v) between two examples u and v is computed as

d(u,v) =

√√√√ d∑
i=1

(ui − vi)2 . (1)
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For the test example x∗, its nearest neighbor xi1 within the given set D is

determined by

arg min
xi∈D

d(x∗,xi) . (2)

The second nearest neighbor xi2 is the one that minimizes d(x∗,xi) aside of xi1 ,

and so on. By repeating this process, we find the k nearest neighbors gathered

in a set Dk = {xij}kj=1. We introduce the notation y∗ = (yi1 , yi2 , ..., yik) for

referring to the class labels associated with the k nearest neighbors. After

finding all these neighbors, we need to aggregate their class labels by means of

a function f : Yk → Y that transforms y∗ into a unique class label. A popular

choice of such function is the mode. More precisely, the class label y∗ for x∗ is

typically determined by computing the mode as follows:

y∗ = f(y∗) = arg min
y∈Y

k∑
j=1

δ(y 6= yij ) , (3)

where δ(y 6= yij ) is the indicator function, which takes the value one if y 6= yij

and zero if y = yij . If there is more than one minimizer, we choose the class100

label yij of the neighbor xij that is associated with the smallest value of j among

those verifying that yij is a minimizer.

Example 1. Consider the multiclass classification problem in Figure 1. We

set k = 5 and compute the five nearest neighbors of the test example x∗. The

number of examples with the class label green (three) is greater than the number105

of examples with any other class label (zero or one). Thus, the class label green

is assigned to the test example x∗.

From the example above, we can see that the value of k is very important

since it might determine the performance of k-NN [30]. For example, if we would

set k = 1 in Figure 1, the class label yellow would be assigned to x∗ and we

would get a totally different result. The choice of a good value of k depends on

the data. In general, a large value of k can deal with noisy datasets, whereas

a small value of k can avoid relying too strongly on far neighbors. The latter
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mentioned problem could be avoided by considering a distance-weighted version

of k-NN, originally proposed by Dudani [31]. The main idea of this distance-

weighted method is to assign a larger weight to closer neighbors and a smaller

weight to more distant neighbors. The weight wj for the j-th nearest neighbor

of x∗ is defined as follows:

wj =


d(x∗,xik

)−d(x∗,xij
)

d(x∗,xik
)−d(x∗,xi1

) , if d(x∗,xik) 6= d(x∗,xi1) ,

1 , otherwise .
(4)

The weight is inversely proportional to the distance between the test example

and the corresponding example. The nearest neighbor is assigned the largest

weight, w1 = 1, while the farthest neighbor is assigned the smallest weight,

wk = 0. The weights for the other neighbors are scaled linearly. Finally, the

class label y∗ is determined using a weighted version of the mode:

y∗ = f(y∗) = arg min
y∈Y

k∑
j=1

wj δ(y 6= yij ) . (5)

Other methods for selecting the weights have been proposed. For instance,

Hechenbichler et al. [32] used a large variety of possible kernel functions to get

different weighting schemes according to the distances to the nearest neighbors.110

3. k nearest neighbors for ordinal classification

In real life, many classification problems actually come with a natural order

on the set of class labels. For example, the freshness of food samples is usually

evaluated as spoiled ≺ marginal ≺ satisfactory ≺ fresh ≺ very fresh, in which

≺ represents that the former class label is less preferred than the latter class115

label. In the case in which there is an underlying order on the set of class labels,

the classical multiclass classification problem becomes an ordinal classification

problem. Although the weighted mode probably is the most natural choice when

there is no order associated with the considered set of class labels, when dealing

with an ordinal classification problem, new meaningful families of aggregation120
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Figure 2: An example of ordinal classification using k-NN. Each color indicates a different
class label. The following order is given: red ≺ blue ≺ yellow ≺ green. The class label of
the black point is unknown. The solid black lines are connecting the black point with its five
nearest neighbors.

functions should be considered, as will be explained next.

Assume that the underlying order on Y = {C1, C2, ..., Cr} is C1 ≺ C2 ≺

... ≺ Cr. Given a set of k nearest neighbors Dk = {xij}kj=1 and associated

class labels y∗ = (yi1 , yi2 , ..., yik) with y∗ ∈ Yk, we need to select the class

label y∗ ∈ Y to be assigned to the test example x∗. There is a large litera-125

ture on how to solve such problem centered on the notion of an aggregation

function. Aggregation functions have many applications in fuzzy systems, pat-

tern recognition, information retrieval, to name just a few [33, 34]. Common

aggregation functions for the case in which Y is a set of real numbers include

weighted quasi-arithmetic means, ordered weighted averaging (OWA) operators130

and many others [35, 36, 37]. The literature is sparser in the setting in which

an ordinal (linguistic) scale is considered and usually builds upon the notion of

a median. Some interesting works by Garćıa-Lapresta et al. [38, 39] follow a

different direction by introducing the notion of an ordinal proximity measure,

which assigns an ordinal degree of proximity to each couple of class labels of the135
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ordinal scale.

In this paper, we consider the penalty-based aggregation approach proposed

by Calvo and Beliakov [40]. We recall that, if minimal conditions are required

for the penalty, penalty-based aggregation amounts to idempotent aggregation.

Formally, a penalty-based function is defined by

f(y∗) = arg min
y∈Y

P (y∗, y) , (6)

where P : Yk×Y → R+ is a penalty function satisfying some desirable properties

(see, e.g., [41, 42]).

Since they form the most prominent family of penalty functions, we restrict

our attention to faithful penalty functions, i.e., functions P defined by

P (y∗, y) =

k∑
j=1

wj p(yij , y) , (7)

where the weights wj could be defined as in the previous section and p : Y×Y →

R+ is a (dissimilarity) function with the properties:140

(1) p(C, s) = 0 if and only if C = s and

(2) p(C1, s) ≥ p(C2, s) whenever C1 ≥ C2 ≥ s or C1 ≤ C2 ≤ s.

A prominent example of faithful penalty function is given by the sum of the

L1-distances, where the L1-distance d⊥ between two class labels Ci and Cj is

defined as d⊥(Ci, Cj) = |i−j|. Note that the L1-distance metric treats all labels

of the ordinal scale as if they were equidistant, something that is not always

advisable depending on the nature of Y. The final aggregation function becomes

y∗ = f(y∗) = arg min
y∈Y

k∑
j=1

wj d⊥(yij , y) . (8)

The process above is equivalent to computing the median when identical weights

w1 = ... = wk are considered. A weighted version of the median arises when the

weights proposed by Dudani (discussed in Section 2) are considered.145

Example 2. Consider the ordinal classification problem in Figure 2. We find
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Figure 3: An example of ordinal classification with absolute and relative information. Each
color indicates a different class label. The white examples connected by solid lines with an
arrow only have relative information without a class label. The arrow represents that the
example to which the arrow points is preferred to the example from which the arrow starts.
The aim is to give a correct class label to the black example x∗.

the five nearest neighbors of the test example. The median of the class labels of

the five nearest neighbors is blue. Note that the minimizer of Eq.(8) in case the

weights proposed by Dudani are considered is also blue for this test example.

Note that the method in this section is different from that presented in150

Section 2. In order to avoid any potential misunderstanding, we will refer to

the method used in Section 2 in which Eq. (5) is considered as weighted-mode-

based k-NN, and to the method used in Section 3 in which Eq. (8) is considered

as weighted-median-based k-NN. It must be remarked that weighted-mode-based

k-NN is the only possibility in case we are dealing with non-ordinal classification,155

whereas the use of weighted-median-based k-NN is encouraged in case we are

dealing with ordinal classification.
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4. k nearest neighbors for ordinal classification with absolute and

relative information

4.1. Motivation and problem formulation160

Classical ordinal classification problems only contain absolute information

where the data includes examples with input features and associated ordinal

class labels. However, in real-life datasets, there often exists relative information

concerning the data without explicitly expressing a class label for all examples.

An example of such combined setting arises in the field of sensory analy-165

sis in food science, where experts typically describe the freshness of different

food samples on an ordinal scale. However, because the number of experts is

typically small and it is usually expensive to train additional experts on how

to identify some spoilage indicators (and thus on how to properly use a given

ordinal scale), only a small number of labeled examples (absolute information)170

is usually available. Fortunately, more data with relative information can be

provided by untrained novices. This relative information can make up for the

limitation regarding the few available absolute evaluations.

In order to make the motivation more clear, we use a toy example to illustrate

our problem setting. In Figure 3, there are just a few labeled examples. The four175

classes of colored examples have been identified with four different class labels

with the order red ≺ blue ≺ yellow ≺ green. The white examples connected by

solid lines with arrows represent relative information concerning two unlabeled

examples and express that the example to which the arrow points is preferred

to the example from which the arrow starts. The aim is to assign a class label180

to the test example by also considering this latter type of information.

Formally, the data includes two different types of information: absolute

information and relative information. The first type of information (absolute

information) is collected in a set A = {(x1, y1), (x2, y2), ..., (xn, yn)} with a set of

input examples D = {x1,x2, ...,xn}, where the input examples xi = (xi1, ..., xid)185

belong to the input space X ⊆ Rd and the class labels yi belong to the output

space Y = {C1, C2, ..., Cr}. The class labels are assumed to be ordered as

11



follows: C1 ≺ C2 ≺ ... ≺ Cr.

We denote by C = {(a1,b1), (a2,b2), ..., (am,bm)} the set of couples of X 2

for which there is relative information available. For reasons that will become190

clear later on, it is assumed that if a couple (a,b) belongs to C, then also the

couple (b,a) belongs to C. In addition, there is a pairwise order for each couple

representing whether the first example in the couple is preferred to the second

one or vice versa. Then, the second type of information (relative information)

is collected in a set R = {((a1,b1), R1), ..., ((am,bm), Rm)}, where an order195

relation Rp = ≺ indicates that bp is preferred to ap and an order relation

Rp = � indicates that ap is preferred to bp, for any p ∈ {1, ...,m}. Note that

here we do not consider the case in which both ap and bp are equally preferred.

It is assumed that whenever ((a,b), R) ∈ R, it also holds that ((b,a), RT ) ∈ R,

where RT represents the transpose of R. The main characteristic of our problem200

is that the size of the absolute information is typically smaller than the size of

the relative information, i.e., n� m.

4.2. Justification

In this subsection, we test how the intuition behind k-NN translates to the

setting where datasets only include relative information. We construct this kind205

of dataset by comparing one-to-one all examples from a fully labeled dataset,

thus generating a large amount of relative information. The intensity of a couple

of examples is defined as the difference of the indices associated with the class

labels of the examples of the couple. For instance, if the examples of the couple

(xi,xj) are labeled as yi = C1 and yj = C3, then the intensity of this couple is210

−2, and, similarly, the intensity of the couple (xj ,xi) is 2. If the dataset has

N examples, we generate N · (N − 1) couples. For each couple, we obtain the

corresponding intensity.

In order to illustrate how these intensities are distributed, we subdivide

all couples according to their intensity. Next, for each possible intensity, we215
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Figure 4: Illustration of how the intensities of the nearest neighbor couples are distributed,
the lines with different colors represent different intensities. For each intensity of the given
couple, we compute the frequency of intensities of the nearest neighbor couples. (a) For the
Tae dataset, the intensity of the couples ranges from -2 to 2. When the given couple and
the nearest neighbor couples have the same intensity, the frequency is highest; (b) For the
Abalone5 dataset, the intensity of the couples ranges from -4 to 4. When the given couple
and the nearest neighbor couples have the same intensity, the frequency is highest.

iterate over the couples, respectively finding their ` nearest neighbor couples3

and obtaining their corresponding intensities. We compute the frequency of

each category of intensities for the associated neighbor couples. We select two

datasets Tae and Abalone5 (more information on these datasets can be found in

Table 1) and show how the intensities are distributed in Figure 4. For the Tae220

dataset, the intensity of the couples ranges from -2 to 2. For the cases in which

the intensity of the couples is -2, the most frequent intensity among their nearest

neighbor couples is -2. Similarly, for the cases in which the intensity of the

couples is -1, the most frequent intensity among their nearest neighbor couples

is -1. This phenomenon can also be observed for all other intensities. Note that225

the frequencies with which the intensities appear in the nearest neighbor couples

decrease when moving away from the intensity of the selected couple. For the

Abalone5 dataset, we randomly sample 100 examples from the original dataset

and then generate all possible couples based on these examples. Repeating the

process above, we observe a similar phenomenon. We conclude that nearest230

3More details on how to compute nearest neighbor couples will be given in the upcoming
subsection.
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neighbor couples tend to have similar intensities as that of the couple of which

they are neighbors. It thus seems natural to apply k-NN within this context.

4.3. Proposed method

Here, we propose a non-parametric method for ordinal classification that

incorporates relative information and that can be understood and explained235

easily. Firstly, we find the k nearest neighbor examples Dk = {xij}kj=1 of the

test example x∗. In order to exploit the relative information R in a simple

manner, for every j ∈ {1, ..., k}, we see each couple (x∗,xij ) as a new object.

Subsequently, we use the same idea behind k-NN to look for the ` nearest

neighbor couples Rj
` = {(aj

q,b
j
q)}`q=1 of this new object (x∗,xij ). Note that we240

have an order relation ≺ or � for each (aj
q,b

j
q).

For this process, we need to provide some technical details. When searching

for the k nearest neighbor examples of x∗, we use the Euclidean distance metric d

(see Section 2). During the process of finding the ` nearest neighbor couples

of (x∗,xij ), we compute the distance between couples according to the product

metric (see [43], page 83, with p = 1), which is defined as

d∗((u,v), (w, t)) = d(u,w) + d(v, t) . (9)

In detail, the formula for computing the first nearest neighbor couple (aj
1,b

j
1)

of (x∗,xij ) is as follows:

arg min
(a,b)∈C

d∗((x
∗,xij ), (a,b)) . (10)

The second nearest neighbor couple is the one that minimizes d∗((x
∗,xij ), (a,b))

aside of (aj
1,b

j
1), and so on. Note that both (a,b) and (b,a) could be among

the nearest neighbor couples and this is precisely why we made the technical

assumption earlier that both always belong to C. However, this is quite unlikely245

if a and b are distant from each other. By repeating this process ` times, we

find the ` nearest neighbor couples Rj
` of (x∗,xij ).
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Figure 5: An example of the weighted-median-based method. (a) Find the nearest neighbor
example xi1 of x∗; (b) Find the first nearest neighbor couple (a1

1,b
1
1) of (x∗,xi1 ); (c) Find

the two nearest neighbor couples (a1
1,b

1
1) and (a1

2,b
1
2) of (x∗,xi1 ); (d) Find the three nearest

neighbor couples of (x∗,xi1 ).
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Secondly, similar relations are assumed for a couple and its nearest neighbor

couples, which is justified by the result of Subsection 4.2. We thus get ` relations

between x∗ and xij based on the ` nearest neighbor couples of (x∗,xij ). More250

specifically, if the given relation for the nearest neighbor couple (aj
q,b

j
q) is aj

q ≺

bj
q, then the relation for the corresponding couple (x∗,xij ) is expected to be

x∗ ≺ xij . Similarly, if the given relation for the nearest neighbor couple (aj
q,b

j
q)

is aj
q � bj

q, then the relation for the corresponding couple (x∗,xij ) is expected

to be x∗ � xij . For example, in Figure 5(b), we obtain that the nearest neighbor255

couple of (x∗,xi1) is (a1
1,b

1
1). Because the given relation for (a1

1,b
1
1) is a1

1 � b1
1,

the relation for (x∗,xi1) is expected to be x∗ � xi1 .

For each relation among these ` relations, we get an interval Ijq of potential

class labels for x∗. We define the interval Ijq, with j ∈ {1, ..., k} and q ∈

{1, ..., `}, to assign the possible values of y∗ for the q-th nearest neighbor couple260

of (x∗,xij ). If the given class label of xij is Cc and we get that the relation for

the couple (x∗,xij ) is x∗ ≺ xij according to its q-th nearest neighbor couple,

the possible values of y∗ would be Ijq = [C1, Cc]. Note that the possible values

of y∗ also include Cc because the fact that an example is preferred (resp. not

preferred) to another example does not imply that it should be classified with265

a greater (resp. smaller) class label. Obviously, it does imply that it should be

classified with a greater (resp. smaller) or equal class label. Similarly, if the

relation is x∗ � xij , then the possible values of y∗ would be Ijq = [Cc, Cr]. We

finally gather all the intervals I = {Ijq}j∈{1,...,k},q∈{1,...,`} according to all the

nearest neighbor examples and all the corresponding nearest couples.270

Thirdly, we consider the penalty-based function associated with the median

for intervals discussed, for instance, by Beliakov et al. [44]:

P (I, y) =

k∑
j=1

∑̀
q=1

(|lIjq − y|+ |rIjq − y|) , (11)

where Ijq = [lIjq , rIjq ]. We introduce a distance-based weight for different cou-
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Figure 6: An example of the weighted-median-based method. (a) Find the second nearest
neighbor example xi2 of x∗; (b) Find the third nearest neighbor example xi3 of x∗; (c) Find
the three nearest neighbor couples of (x∗,xi2 ); (d) Find the three nearest neighbor couples
of (x∗,xi3 ).
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ples similarly to Eq. (4):

sjq =


d∗((x

∗,xij
),(aj

q,b
j
q))−d∗((x

∗,xij
),(aj

1,b
j
1))

d∗((x∗,xij
),(aj

` ,b
j
`))−d∗((x∗,xij

),(aj
1,b

j
1))

, if d∗((x
∗,xij ), (aj

` ,b
j
`))

6= d∗((x
∗,xij ), (aj

1,b
j
1)) ,

1 , otherwise .

(12)

The class label y∗ of x∗ is then determined using an appropriate aggregation

function:

y∗ = f(y∗) = arg min
y∈Y

k∑
j=1

wj

∑̀
q=1

sjq(|lIjq − y|+ |rIjq − y|) , (13)

where the weights wj are defined as in Eq. (4). Here, if we get more than one

minimizer, we do not get a unique class label for the test sample. It seems

natural to consider the frequency of class labels from the absolute information

as a possible tie-breaker and, thus, assign the most frequent class label (among

those that are minimizers of Eq. (13)) to the test example. However, such case275

is not likely to occur in our setting.

To summarize, our proposed method can be described in the following algo-

rithm.

Algorithm 1 The proposed algorithm

Input: The absolute information A, the relative informationR, the parameters
k, ` and the test example x∗

for j = 1 : k do
Find the nearest neighbor example xij of x∗ and compute the weight wj ;
for q = 1 : ` do
Find the nearest neighbor couple (aj

q,b
j
q) of (x∗,xij );

Compute the interval Ijq and the weight sjq;
end for

end for
Compute the class label y∗

Output: The class label y∗

Example 3. Consider the problem of ordinal classification with absolute and

relative information in Figure 3. We set both k and ` equal to three. Firstly, in280
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Figure 5, for the test example x∗, we find the first nearest neighbor example xi1

and compute the weight w1. For the couple (x∗,xi1), we find the correspond-

ing three nearest neighbor couples (a1
1,b

1
1), (a1

2,b
1
2), (a1

3,b
1
3), and compute the

corresponding weights s11, s12, s13. From the example in Figure 5(b), we get

that the order relation for the couple (x∗,xi1) is expected to be x∗ � xi1 . From285

this figure, we can see that the class label of xi1 is C1 (here C1 is red, C2 is

blue, C3 is yellow and C4 is green), and we get the interval I11 = [C1, C4] for

y∗. Subsequently, we repeat the process to get I12 and I13 for the other two

nearest neighbor couples (a1
2,b

1
2) and (a1

3,b
1
3) of (x∗,xi1). Specifically, the or-

der relation for the second neighbor couple (a1
2,b

1
2) is a1

2 ≺ b1
2, thus the order290

relation for the couple (x∗,xi1) is expected to be x∗ ≺ xi1 . We get the interval

I12 = {C1}. Similarly, we get the interval I13 = [C1, C4]. Secondly, in Figure 6,

for the second and third neighbors xij , we repeat the same process to find all the

corresponding nearest neighbor couples (aj
q,b

j
q) and compute all the correspond-

ing weights. If the given class label of xij is Cc and we get the order relation295

x∗ ≺ xij , then we assign Ijq = [C1, Cc]. Otherwise if we get the order relation

x∗ � xij , then we assign Ijq = [Cc, Cr]. Finally, by computing Eq. (13) and

assuming all weights are set to one, we obtain the class label y∗ = C1.

5. Experiments

In this section, we describe the datasets, introduce the performance measures300

and analyze the performance.

5.1. Datasets

We perform our experiments on some datasets from real ordinal classification

problems and other datasets from discretized regression problems. The first

kind of datasets are from some open repositories, i.e. the UCI machine learning305

repository [45] and mldata.org [46]. The second kind of datasets are collected

by Chu [47]. In real-life ordinal classification problems, data usually needs to

be collected by experts, so here the size of the datasets of the first type is small.
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Table 1: Description of the benchmark datasets.

Dataset #Examples #Features #Classes

Real ordinal classification datasets
Tae (TA) 151 54 3

Automobile (AU) 205 26 6

Balance-scale (BS) 625 4 3

Eucalyptus (EU) 736 91 5

Red-wine (RW ) 1599 12 6

Car (CA) 1728 21 4

Discretized regression datasets
Housing5 (HO5) 506 14 5

Abalone5 (AB5) 4177 11 5

Bank1-5 (BA1-5) 8192 8 5

Bank2-5 (BA2-5) 8192 32 5

Computer1-5 (CO1-5) 8192 12 5

Computer2-5 (CO2-5) 8192 21 5

Housing10 (HO10) 506 14 10

Abalone10 (AB10) 4177 11 10

Bank1-10 (BA1-10) 8192 8 10

Bank2-10 (BA2-10) 8192 32 10

Computer1-10 (CO1-10) 8192 12 10

Computer2-10 (CO2-10) 8192 21 10

The datasets from discretized regression problems are larger, they are collected

by discretizing the examples into ordinal classes with equal frequency. Table 1310

describes the characteristics of these datasets, including the number of examples,

features and classes. All the features have been properly standardized to avoid

the impact of the scale of features. We use ten-fold cross-validation to obtain

the performance of our methods.

Note that these datasets do not contain relative information. In the exper-315

iments, we generate relative information from absolute information. The gen-

eration process is described in Figure 7. Specifically, for each dataset, firstly,

we subdivide it into ten folds. One of the folds (the red part in the figure) is

used for testing. The remaining folds (the yellow and blue parts) are used for

collecting absolute and relative information. Secondly, we use a parameter to320

adjust the percentage of absolute information. We randomly select a part (the

yellow part) corresponding to this fixed percentage and keep it unchanged as

absolute information. We use the other part (the blue part) for generating rela-

tive information (the green part) by transforming the labels into order relations
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…

Testing Training Training Training
Absolute information Relative information

10 parts

Dataset 1 Dataset 2 Dataset 3

Figure 7: Process of generating relative information from absolute information. The top part
of the figure shows the process of generating relative information from the original data. We
divide the original dataset into ten folds (marked as ten different rows). One of these folds
is used for testing (colored in red) and the other nine folds are used for training. Next, we
divide each of the folds into two parts (one part colored in yellow and another one in blue).
The part colored in yellow is kept as absolute information whereas the part colored in blue is
transformed into relative information. This is done by dividing the part colored in blue into
ten parts of equal size and comparing every two examples row by row. The bottom part of
the figure describes three new datasets used for validating our method. The red part used for
testing and the yellow part used for training remain the same in all three datasets. Additional
information for training is considered in Dataset 1 in the form of absolute information and in
Dataset 2 in the form of relative information.
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between examples. More specifically, we randomly divide the blue part into ten325

parts of equal length (the ten orange parts in the top part of the figure). For

every row, we compare the class labels of every two examples of the ten parts to

obtain the corresponding order relations. For instance, if there are two training

examples and their class labels are y1 = C1 and y2 = C2 with the order relation

C1 ≺ C2, then we will generate two couples (x1
1,x

1
2) with x1

1 ≺ x1
2 and (x1

2,x
1
1)330

with x1
2 � x1

1. Note that if two examples have the same class label, no cou-

ples are generated. Note that every example is involved in at most nine order

relations. Due to this way of generating relative information, many of the gener-

ated couples are chained, meaning that they share one of their examples. Note

that, this approach reduces the complexity of generating relative information –335

something that is especially important when dealing with large datasets.

Ultimately, in order to validate our method, for each original dataset, we

construct three different datasets, as shown in Figure 7. The test data (the red

part) is the same for the three datasets. The remaining 90% is used for cre-

ating different training datasets. Dataset 1 keeps all the absolute information340

(the yellow and blue parts), whereas Dataset 3 only keeps a small part of the

absolute information (the yellow part). Dataset 2 not only includes the abso-

lute information of Dataset 3 (the yellow part), but also contains the relative

information (the green part). By comparing the performance on Dataset 1 and

Dataset 3, we test the difference of using different amounts of absolute infor-345

mation. By comparing the performance on Dataset 2 and Dataset 3, we test

the impact of incorporating relative information. We expect the performance

on Dataset 1 to be the best and the performance on Dataset 3 to be the worst,

whereas the performance on Dataset 2 is expected to be placed in between the

performances on Dataset 1 and Dataset 3.350

5.2. Performance measures

There are many performance measures used for evaluating ordinal classifi-

cation models [48, 49]. Here, we choose the three most common performance

measures, the Mean Zero-one Error (MZE), the Mean Absolute Error (MAE)
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and the C-index. The MZE describes the error rate of the classifier computed

as:

MZE =
1

T

T∑
i=1

δ(y∗i 6= yi) = 1−Acc , (14)

where T is the number of test examples, yi is the observed class label and y∗i

is the predicted class label. Acc is the accuracy of the classifier. The value of

MZE ranges from 0 to 1. It describes the global performance, but it neglects

the relations among the class labels.355

The MAE is the average absolute error between the observed class label and

the predicted class label. If the class labels are represented by numbers, the

MAE is computed as:

MAE =
1

T

T∑
i=1

|yi − y∗i | . (15)

The value of MAE ranges from 0 to r − 1 (maximum absolute error between

classes). Because the real distances among the class labels are unknown, the

numerical representation of the class labels has a strong impact on the MAE

performance.

In order to avoid the above-mentioned impact, a more suitable approach is

to consider the relation between the observed class label and the predicted class

label. Here we use the concordance index or C-index to represent these relations.

The C-index is computed as the proportion of the number of concordant pairs

to the number of comparable pairs (see [50], page 50):

C-index =
1∑

Cp≺Cq
TCpTCq

∑
yi≺yj

(δ(y∗i ≺ y∗j ) +
1

2
δ(y∗i = y∗j )) , (16)

where TCp
and TCq

are the numbers of test examples with the class label Cp360

and Cq, respectively, yi and y∗i are the observed and predicted class label of xi

and yj and y∗j are the observed and predicted class label of xj . When there

are only two different class labels, the C-index amounts to the area under the

Receiver Operating Characteristic (ROC) curve [51] and ranges from 0 to 1.

A lower MZE or MAE, or a higher C-index indicates a better performance.365
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Table 2: Performances of the weighted-mode-based (Majority) method and the weighted-
median-based (Median) method on the benchmark datasets. The best results are highlighted
in boldface.

Id
MZE MAE 1 − C-index

Majority Median Majority Median Majority Median

TA 0.4268 0.4189 0.5368 0.5210 0.2817 0.2807

AU 0.2847 0.2876 0.4123 0.4113 0.1421 0.1393

BS 0.1593 0.1849 0.1967 0.2111 0.0808 0.0964

EU 0.4842 0.4820 0.6385 0.6273 0.1823 0.1814

RW 0.3472 0.3430 0.4074 0.3993 0.2291 0.2629

CA 0.1608 0.1552 0.2168 0.1906 0.0882 0.1485

HO5 0.3755 0.3624 0.4442 0.4201 0.1144 0.1091

AB5 0.5823 0.5761 0.8514 0.8113 0.2404 0.2298

BA1-5 0.6279 0.6276 0.8972 0.8549 0.2493 0.2408

BA2-5 0.7582 0.7580 1.4072 1.3430 0.4378 0.4337

CO1-5 0.3577 0.3519 0.4029 0.3919 0.1010 0.0981

CO2-5 0.3146 0.3074 0.3443 0.3331 0.0849 0.0823

HO10 0.6209 0.5925 0.9706 0.9089 0.1212 0.1145

AB10 0.7693 0.7611 1.8192 1.7043 0.2529 0.2391

BA1-10 0.7961 0.7987 1.887 1.7678 0.2625 0.2482

BA2-10 0.8744 0.8757 2.9375 2.7712 0.4469 0.4394

CO1-10 0.5683 0.5563 0.8605 0.8148 0.1063 0.1002

CO2-10 0.5293 0.5139 0.7440 0.6978 0.0896 0.0835

p-value 0.01762 5.35672e-4 0.05264

For ease of presentation, we replace C-index by (1 − C-index). In this way, a

lower MZE, MAE or 1− C-index represents a better performance.

5.3. Performance analysis

In this subsection, we analyze the performance of the different methods

discussed in this paper. All the experimental results are obtained by applying370

ten-fold cross validation.

5.3.1. Comparing the weighted-mode-based and the weighted-median-based meth-

ods

We set the number k of nearest neighbor examples as 5 and carry out exper-

iments on all datasets from real ordinal classification problems and discretized375

regression problems. Table 2 shows the performances of the weighted-mode-based

k-NN (see Eq. (5)) and the weighted-median-based k-NN (see Eq. (8)). It is clear
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that the weighted-median-based k-NN performs better on almost all datasets. In

order to test whether there is a significant difference in performance between the

two methods, we perform the Wilcoxon signed-rank test [52] at a significance380

level of α = 0.05. If the p-value is smaller than the fixed significance level of α,

then it means that there exists a statistically significant difference between these

two methods. From Table 2, we can see that the p-values for MZE and MAE

are smaller than α. The results show that the weighted-median-based k-NN out-

performs the weighted-mode-based k-NN for these two performance measures.385

Note that the p-value for 1− C-index is almost equal to α.
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Figure 8: MZE, MAE and 1 − C-index of the weighted-mode-based and weighted-median-
based methods with different numbers of nearest neighbor examples k on the Computer1-5
and Computer1-10 datasets.

In addition, we compare the performance of the weighted-median-based k-

NN and that of the weighted-mode-based k-NN when the number k of nearest

neighbor examples increases. Figure 8 shows the MZE, MAE and 1 − C-index

performances of these two methods with a varying number of nearest neighbor390

examples on the Computer1-5 and Computer1-10 datasets. When the number

k of nearest neighbor examples increases, the gap between the performances

increases as well. Besides, when the number of class labels is larger, which

means that there is a richer ordinal scale, the gap between the performances of

these two methods also becomes larger. This is due to the fact that the weighted-395
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median-based k-NN takes advantage of the information within an ordinal scale,

whereas the weighted-mode-based k-NN ignores this useful information.

5.3.2. Influence of using absolute and relative information

In order to demonstrate the importance of absolute information and rel-

ative information and show the impact of using different percentages of this400

information, for each dataset, we create three different new datasets (as shown

in Figure 7 and described in Subsection 5.1) with different amounts of abso-

lute information and relative information to test our proposed method. We fix

the number k of nearest neighbor examples at 5 and the number ` of nearest

neighbor couples at 5. We initially set the percentage of absolute information405

as 5%.

Table 3 shows the experimental results on all datasets. For each original

dataset, we test our method on the three different new datasets: Dataset 1,

Dataset 2 and Dataset 3. It can be seen that for Dataset 1 we have the best

performance and for Dataset 3 we have the worst performance, which shows that410

using a large amount of absolute information leads to a better performance than

using a small amount of absolute information. Importantly, from the table, we

get an order of the performances on these three datasets: Dataset 1 > Dataset 2

> Dataset 3. For the three different performance measures, the performances

on almost all the datasets respect this ordering, which corresponds to our initial415

intuition. This validates the importance of incorporating relative information.

In order to test whether there is a significant difference in performance on

the three different datasets, we perform the Friedman test [53] and the Wilcoxon

signed-rank test at a significance level of α = 0.05, shown in Table 4. The results

show that all p-values are smaller than α, which means that there exists a statis-420

tically significant difference between the performance on the three constructed

datasets obtained from all original datasets.

Besides, we change the percentage of absolute information and range it from

5% to 50%. The performances on the Bank1-5 and Bank1-10 datasets are

used for illustrative purposes and shown in Figure 9. For lower percentages,425
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Table 4: p-values according to the Friedman test and the Wilcoxon test over all datasets based
on the three different performance measures.

Test Method MZE MAE 1 − C-index

Friedman Dataset 1, Dataset 2 and Dataset 3 3.9277e-08 5.6028e-08 3.9277e-08

Wilcoxon

Dataset 1 and Dataset 2 2.5022e-04 1.3183e-04 1.5510e-04

Dataset 2 and Dataset 3 1.5510e-04 1.3183e-04 1.1383e-04

Dataset 1 and Dataset 3 1.3183e-04 1.3183e-04 1.8218e-04
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Figure 9: MZE, MAE and 1−C-index of three constructed datasets with different percentages
of absolute information on the Bank1-5 and Bank1-10 datasets.

the MZE, MAE and 1 − C-index performances are worse. Obviously, this is

because the amount of absolute information is reduced. The performance on

Dataset 2 is always better than the performance on Dataset 3, which means that

using relative information is meaningful. Besides, there is also an interesting

finding that when the percentage of absolute information is high (close to 50%),430

the performance on Dataset 2 is better than the performance on Dataset 1,

which means that using a small amount of absolute information and relative

information together outperforms only using absolute information. This shows

that relative information could replace absolute information to some extent.

5.3.3. Sensitivity to noisy relative information435

In the above experiments, we have generated relative information from ab-

solute information assuming that relative information is as reliable as absolute
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information. However, in real life, relative information is usually less reliable,

because it is provided by novices who are not as proficient as experts. Here,

in order to evaluate the sensitivity to noisy relative information, we artificially440

introduce different types of noise (for a given noise percentage) to the relative

information and analyze the impact on the performance of our method. For

this purpose, based on the process for generating Dataset 2 in Subsection 5.1,

we generate four datasets.

The first dataset D1 is the same as Dataset 2. The second dataset D2445

includes the same relative information as Dataset 2 and additional noisy couples

generated from examples with identical class labels, which had been ignored for

generating Dataset 2. For instance, for a noise percentage of 10%, 10% of

the couples that would have been generated from examples with identical class

labels are assigned a random order. The third dataset D3 includes the same450

generated relative information as Dataset 2, however, the order relations of some

couples are changed when these couples had been generated from examples with

neighboring class labels. For instance, for a noise percentage of 10%, 10% of the

couples that had been generated from examples with neighboring class labels

are randomly chosen to change their order relations. The fourth dataset D4455

includes the same relative information as dataset D3 with the addition of the

noisy couples generated for dataset D2.

We perform the same experiment on the four datasets as in the previous

subsection by fixing the percentage of absolute information at 50%. We set

the percentage of noise for the relative information as 10%, 20%, 30%, 40%460

or 50%. The corresponding noisy couples for D2, D3 and D4 are generated

by incrementally adding more noisy couples according to the aforementioned

percentages of noise. We repeat the experiments 10 times. The average perfor-

mances on the four newly constructed datasets for Tae, for example, are shown

in Figure 10. The performance on D1 obviously does not change while varying465

the percentage of noise. The performances on D2, D3 and D4 are worse than

the performance on D1, and continue to get worse when increasing the percent-

age of noise. Obviously, this is because the relative information becomes less
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reliable as the noise percentage increases. The performance on D2 is better and

worsens less quickly than the performances on D3 and D4. This shows that our470

method is less sensitive to the first type of noise (introduced for examples with

identical class labels) and more sensitive to the second type of noise (introduced

for examples with neighboring class labels), which perfectly makes sense.
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Figure 10: MZE, MAE and 1 − C-index of the four constructed datasets with different types
of noisy relative information for different percentages of noise for Tae.

5.3.4. Influence of the values k and `

In order to analyze the influence of the number k of nearest neighbor exam-475

ples and the number ` of nearest neighbor couples, we perform experiments on

datasets with varying k and `. We set the percentage of absolute information

as 5%.
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Figure 11: 1 − C-index of Dataset 2 for different values of k and ` on the Housing5 and
Housing10 datasets.

First, we vary k and `, ranging from 1 to 20. In Figure 11, we plot the

heatmap of performances on the Dataset 2 of the Housing5 and Housing10480

datasets. It can be seen that, while increasing the number k of nearest neigh-
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bor examples and the number ` of nearest neighbor couples, the performance

becomes better because of considering more neighborhood information.
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Figure 12: 1 − C-index of three constructed datasets with a different number k of nearest
neighbor examples on the Housing5 and Housing10 datasets.

Second, we fix the number ` of nearest neighbor couples at 5 and vary the

number k of nearest neighbor examples, ranging from 1 to 20. The perfor-485

mances on the Housing5 and Housing10 datasets are shown in Figure 12. It

can be seen that, while increasing k, the performance remains relatively sta-

ble to some extent for Dataset 1, probably because there is a large amount

of absolute information that provides enough class labels in the neighborhood.

Moreover, the performance decreases as k increases for Dataset 3, probably be-490

cause there is only a small amount of absolute information and the number k

of nearest neighbor examples has a big impact for this dataset. Increasing k for

Dataset 2 initially results in an increasing performance. Once the number k of

nearest neighbor examples is sufficiently large, the performance becomes stable,

which confirms that considering a local neighborhood allows to obtain a good495

performance.

Third, we fix the number k of nearest neighbor examples at 5 and vary the

number ` of nearest neighbor couples, ranging from 1 to 20. The performances

on the Housing5 and Housing10 datasets are shown in Figure 13. While varying

the number ` of nearest neighbor couples, it can be seen that the performances500

for Dataset 1 and Dataset 3 remain constant. This is obvious since we use

the classical k-NN on these two datasets without taking relative information

into account. For Dataset 2, increasing the number of nearest neighbor couples
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Figure 13: 1 − C-index of three constructed datasets with a different number ` of nearest
neighbor couples on the Housing5 and Housing10 datasets.

initially leads to an increasing performance. Once the number ` of nearest

neighbor couples is sufficiently large, the performance becomes relatively stable,505

which means that a small number of nearest neighbor couples allows to get a

good performance.

5.4. Discussion on the computational complexity

We analyze the computational complexity of our proposed method (in Algo-

rithm 1). The search for nearest neighbor examples can be performed in O(kn2)510

using linear nearest neighbor search. Similarly, the search for nearest neighbor

couples can be performed in O(`m2). Thus, the whole computational complex-

ity is O(kn2`m2). One should note that, although this complexity might seem

too high, our problem setting requires that the size of absolute information is

very small and n � m. Loosely speaking, this implies that the computational515

complexity of this method is O(m2), approximately. In order to speed up the

search for nearest neighbor couples, k-d-trees and other tree structures [54] can

be used.

6. Conclusions and future work

We have proposed a new method for ordinal classification with absolute520

and relative information. Specifically, we have combined absolute information

and relative information and improved the classical machine learning method of
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k-NN for ordinal classification. To test our method, we have performed experi-

ments on some datasets from real ordinal classification problems and discretized

regression problems. The experimental results show that the performance im-525

proves when more relative information is used, which demonstrates the effec-

tiveness of incorporating relative information.

Our proposed method is a first attempt to extend an instance-based method

to the framework in which we consider absolute and relative information. In

future work, we will incorporate some ideas from the field of distance metric530

learning and try to learn a distance metric that is more appropriate than the

(product) Euclidean distance metric. Moreover, we will explore how to incor-

porate both absolute and relative information in model-based machine learning

methods.
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