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1 Motivation

Gauged supergravities in lower dimensions that descend consistently from string or M-

theory, and whose scalar potentials possess anti-de Sitter (AdS) vacua, prove to be ex-

tremely helpful venues to study aspects of large-N realisations of the AdS/CFT corre-

spondence [1]. Out of these, the handful of gauged supergravities with a maximal amount

of supersymmetry and specific gauge groups enjoy an even more distinguished status, as

they are related to the AdS/CFT correspondences associated with the standard half-BPS

conformal branes. This is the case for the maximal supergravities in D = 7, D = 5 and

D = 4 with gauge groups SO(5) [2], SO(6) [3] and SO(8) [4]: they are respectively re-

lated holographically to the superconformal field theories, and mass deformations thereof,

defined on the M5, the D3 [1] and the M2 [5] branes.

Recently, D = 4 N = 8 supergravity with gauge group ISO(7) = SO(7) nR7, has also

been shown to be a member of the select club of maximal supergravities with a holographic

interpretation [6], at least when ISO(7) is gauged dyonically in the sense of [7–9]. The purely

electric ISO(7) supergravity [10] descends consistently [11] from type IIA [12], but it lacks

AdS (or dS) vacua [13]. Similarly, the dyonically-gauged version [7–9] of ISO(7) supergrav-

ity [14] descends consistently [6, 15] (see also [16–18]) from mass-deformed type IIA super-

gravity [19] but, in contrast to its purely electric counterpart [10], its scalar potential does
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attain AdS extrema [13, 14, 20, 21]. These vacua preserve different fractionsN < 8 of super-

symmetry and uplift to fully-fledged AdS4 solutions of massive type IIA supergravity [6, 22–

24]. The latter are dual [6] to three-dimensional superconformal field theories of the simple

class discussed in [25, 26], and arise as infrared Chern-Simons phases of the D2-brane field

theory [27]. The field theory spectra have been partially determined holographically [28,

29], and solutions of various types have been constructed in the gauged supergravity. These

include domain-walls [27, 30], defects [31] or black holes, both the full asymptotically-AdS

geometries [32, 33] and their near-horizon regions [34]. These solutions are all in perfect

agreement with the corresponding field theory predictions. For example, the entropy of

those black holes has been succesfully matched from the field theory [33, 35–37]. Further

aspects of these AdS4/CFT3 dualities have been explored in [38–40].

Other than the fact that dyonic ISO(7) supergravity pertains to the D2-brane and

the latter does not support a maximally supersymmetric conformal field theory on its

worldvolume, everything else works as for the maximal supergravities [2–4] relevant for the

usual AdS/CFT descriptions of the superconformal, M5, D3 and M2, branes. In fact, as

for the latter, better-known superconformal cases, there are aspects that make these new

AdS4/CFT3 dualities rather unique, both from the supergravity and from the field theory

sides. On the one hand, it is now established that D = 4 N = 8 gauged supergravities

tend to come in families whose members have the same gauge group but different elec-

tric/magnetic duality frames prior to introducing the gauging [7–9]. For ISO(7) supergrav-

ity, this electric/magnetic deformation is still compatible with a higher-dimensional origin,

the feature which ultimately renders it relevant for top-down holography. In contrast, the

analogue deformation of the SO(8) gauging [7] cannot be consistently uplifted [41, 42] to

conventional D = 11 supergravity [43] unlike, as is well-known [44], the purely electric

representative [4] in that class. On the other hand, one may envisage large classes of three-

dimensional superconformal field theories in the simple class considered in [25, 26] that

differ in their matter couplings and flavour symmetries. However, weakly coupled AdS4

gravity duals are ruled out for most of those, as their spectra tend to exhibit light opera-

tors with unbounded spin and expotential growth [45]. The handful of cases not ruled out

by [45] turn out to be the ones relevant for the AdS4/CFT3 dualities of [6].

For these reasons, it is interesting to investigate further aspects of D = 4 N = 8

dyonic ISO(7) supergravity from an intrinsically four-dimensional perspective. A useful

way to do this is to truncate the theory to a more manageable sector with fewer fields,

where a concrete parameterisation for the scalar manifold can be introduced. This allows

one to obtain explicit expressions for the scalar potential and therefore study its vacuum

structure. It also allows one to obtain concrete expressions for the tensor [46, 47] and

duality hierarchies [48], which eventually play a significant role in the type IIA uplift [15].

In this spirit, further N = 1 or N = 2 subsectors of the full N = 8 ISO(7) theory have

already been presented in [14, 49].

In this work, we focus on half-maximal, N = 4, sectors of ISO(7) supergravity. We find

that N = 4 sectors provide an excellent compromise between particularity and generality.

On the one hand, N = 4 sectors are small enough to admit a tractable parameterisa-

tion in terms of explicit scalar fields, unlike the full N = 8 theory. On the other hand,
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N = 4 sectors are large enough to contain relevant features of ISO(7) supergravity in

a unified way, which is still simplified with respect to their description within the full

N = 8 theory. For example, the SU(3) and SO(3)d × SO(3)R invariant subsectors con-

structed in [14] respectively contain, and mutually exclude, the N = 2 [6] and N = 3 [21]

AdS vacua of ISO(7) supergravity. Moreover, the latter manifests itself as N = 0 within

the SO(3)d × SO(3)R sector and only when embedded in the full N = 8 theory becomes its

actual N = 3 supersymmetry apparent. The reason for this awkward, yet perfectly reason-

able, feature is that the N = 3 gravitini that remain massless at that vacuum transform as

a triplet of the residual R-symmetry group, SO(3)d, and are thus truncated out from the

SO(3)d × SO(3)R-singlet sector.

More concretely, we explicitly construct, in section 2, the explicit Lagrangian of a

subsector of N = 8 ISO(7) supergravity that corresponds to N = 4 supergravity coupled

to three vector multiplets. This sector is invariant under a certain SU(2) ∼ SO(3) subgroup

of SO(7) ⊂ ISO(7). This SU(2) is the subgroup of the SU(3) residual symmetry group of

the N = 2 point such that 3 → 2 + 1. It also coincides with the SO(3)R factor of the

SO(3)d × SO(3)R invariance group of the N = 3 point. The SO(3)R-invariant sector thus

contains, by construction, both N = 2 and N = 3 vacua. Moreover, these critical points

exhibit their full N = 2 and N = 3 supersymmetry within the N = 4 SO(3)R-invariant

sector, as an explicit construction of the N = 4 gravitino mass matrix confirms. In section 3

we perform checks on our formalism. Firstly, the SO(3)R-invariant sector is embedded,

following [50], into the largest N = 4 model contained within the N = 8 ISO(7) theory.

Secondly, the model is cast into the canonical N = 4 embedding tensor formalism of [51].

This is interesting in its own right, as the resulting gauging is new from the point of view of

half-maximal supergravity. In section 4 the SU(3) and SO(3)d × SO(3)R invariant sectors

of [14] are recovered. In section 5 a thorough numerical scan for new SO(3)R-invariant

vacua is performed. Section 6 concludes and two appendices contain further details on

group theory and the duality hierarchy.

2 SO(3)R-invariant sector of ISO(7) maximal supergravity

Our starting point is the dyonic ISO(7)-gauged maximal supergravity as presented in sec-

tion 2 of [14] using the standard SL(8) symplectic frame of N = 8 supergravity. We will

perform a truncation of this theory to its SO(3)R-invariant sector.

2.1 Field content

In order to determine the field content of the SO(3)R-invariant sector of the dyonic ISO(7)-

gauged maximal supergravity, one needs to know how the SO(3)R subgroup is embedded

into ISO(7). This group-theoretical embedding is given by

G2 ⊃ SU(3)

ISO(7) ⊃ SO(7) ⊃ ⊃ SO(3)R ∼ SU(2)R

SO(3)′ × SO(4) ⊃ SO(3)d × SO(3)R

(2.1)

where SO(4) ∼ SO(3)L × SO(3)R, and SO(3)d is the diagonal subgroup inside the product

SO(3)′×SO(3)L. The eight gravitini of the maximal supergravity multiplet transforming in
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the 8̄ of the R-symmetry group SU(8) decompose under SU(2)R as 8̄→ 4×1+ 2×2. This

decomposition features four singlets thus reflecting the N = 4 structure of the SO(3)R-

invariant sector. The canonical N = 4 formulation of this sector will be presented in

section 3.3 following the general framework of [51].

For the 21+7 vector fields spanning the ISO(7) = SO(7)nR7 gauging of the maximal

theory it will be instructive to look at the branching rules

SO(7) ⊃ SO(3)′×SO(3)L×SO(3)R ⊃ SO(3)d×SO(3)R

21 (3,1,1)+(1,3,1)+(1,1,3)+(3,2,2) 2×(3,1)+(1,3)+(2+4,2)

7 (3,1,1)+(1,2,2) (3,1)+(2,2)

(2.2)

The electric and magnetic SO(3)R-invariant vectors are denoted

AΛ = (A′i , A(L)a , A(t)i) and ÃΛ = (Ã′i , Ã
(L)
a , Ã

(t)
i ) , (2.3)

with i = 1, 2, 3 and a = 1, 2, 3. The vectors (A′i , Ã′i) ≡ (3,1) ⊂ 21 and (A(t)i , Ã
(t)
i ) ≡

(3,1) ⊂ 7 are associated with ISO(3)′ ⊂ ISO(7) whereas (A(L)a , Ã
(L)
a ) ≡ (3,1) ⊂ 21

are associated with SO(3)L ⊂ ISO(7). Together they specify a truncated gauge group of

the form

G = ISO(3)′ × SO(3)L , (2.4)

which, in N = 4 terms, corresponds to the supergravity multiplet being coupled to three

vector multiplets. More details about the group-theoretical embedding of the vector fields

into maximal supergravity are presented in appendix A.

The SO(3)R-invariant (pseudo-)scalars can be identified by performing the group-

theoretical decomposition

SO(7) ⊃ SO(3)d × SO(3)R

1 (1,1)

7 (3,1) + (2,2)

27 (5 + 1,1) + (3,3) + (4 + 2,2)

35 (pseudo-scalars) (1,1) + (5 + 3 + 1,1) + (3,3) + (2,2) + (4 + 2,2)

(2.5)

The two fields denoted χ ≡ (1,1) ⊂ 35 and ϕ ≡ (1,1) ⊂ 1 correspond to the (complex)

axion-dilaton τ = χ+ ie−ϕ of N = 4 supergravity parameterising a scalar matrix

Mαβ =
1

Imτ

(
1 χ

χ |τ |2

)
∈ SL(2)

SO(2)
, (2.6)

with α = +,− being a fundamental index of SL(2). The rest of the scalars serve as

coordinates in a coset space

MMN = VT
6,3 V6,3 ∈

SO(6, 3)

SO(6)× SO(3)
, (2.7)
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where M,N are fundamental indices of SO(6, 3). These scalars are assembled into 3 × 3

matrices ν ≡ (5 + 1,1) ⊂ 27, a ≡ (3,1) ⊂ 7 and b ≡ (5 + 3 + 1,1) ⊂ 35 so that

V6,3 =

 ν−T 0 0

0 I3 0

0 0 ν


 I3 0 a

0 I3 0

0 0 I3


 I3 bT 1

2 b
Tb

0 I3 b

0 0 I3

 . (2.8)

The matrix ν is in turn a coset element ν ∈ GL(3)′/SO(3) which can be parameterised

using scalars φi and hij as

ν ≡


e
− 1√

2
φ1 e

− 1√
2
φ1 h1

2 e
− 1√

2
φ1(h1

3 + 1
2h

1
2 h

2
3

)
0 e

− 1√
2
φ2 e

− 1√
2
φ2 h2

3

0 0 e
− 1√

2
φ3

 , (2.9)

and determine a scalar matrix m ≡ νTν. The matrices m, a and b have components

mij = mji, aij = −aji and baj in order to fit the appropriate representations. More details

about the group-theoretical embedding of the (pseudo-) scalars into maximal supergravity

are presented in appendix A.

The 21+ 27+ 7 two-form fields entering the restricted tensor hierarchy in the ISO(7)

maximal supergravity have a group-theoretical decomposition of the form

SO(7) ⊃ SO(3)′ × SO(3)L × SO(3)R ⊃ SO(3)d × SO(3)R

21 (3,1,1) + (1,3,1) + (1,1,3) + (3,2,2) 2× (3,1) + (1,3) + (2 + 4,2)

27 (5,1,1) + (1,1,1) + (1,3,3) + (3,2,2) (5,1) + (1,1) + (3,3) + (2 + 4,2)

7 (3,1,1) + (1,2,2) (3,1) + (2,2)

(2.10)

which implies a total of fifteen two-forms in the SO(3)R-invariant sector. More concretely

they sit in the representations

B(A)
i
j ≡ (3,1) ⊂ 21 , Ba ≡ (3,1) ⊂ 21,

B(S)
i
j ≡ (5,1) + (1,1) ⊂ 27 , Bi ≡ (3,1) ⊂ 7.

(2.11)

Only the tensor fields Bi enter the Lagrangian of the SO(3)R-invariant sector. However,

and despite not carrying independent dynamics, all the tensor fields in (2.11) enter the

truncated tensor hierarchy as discussed in appendix B.

Lastly, the group-theoretical decomposition of the 1 + 27 three-form potentials dual

to electric components of the embedding tensor in the ISO(7) maximal theory is given by

SO(7) ⊃ SO(3)′ × SO(3)L × SO(3)R ⊃ SO(3)d × SO(3)R

1 (1,1,1) (1,1)

27 (5,1,1) + (1,1,1) + (1,3,3) + (3,2,2) (5,1) + (1,1) + (3,3) + (2 + 4,2)

(2.12)

thus yielding a total of seven three-forms in the SO(3)R-invariant sector

C0 ≡ (1,1) ⊂ 1 , Cij ≡ (5,1) + (1,1) ⊂ 27 . (2.13)
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2.2 Lagrangian and equations of motion

The bosonic Lagrangian of the SO(3)R-invariant sector of ISO(7) maximal supergravity

can be obtained by direct truncation of the one in [14]. The result is given by

L = (R− V ) ∗ 1 + huvDq
u ∧ ∗Dqv +

1

2
IΛΣH

Λ
(2) ∧ ∗HΣ

(2) +
1

2
RΛΣH

Λ
(2) ∧HΣ

(2)

+
1

4
mεijk Ã

(t)
i ∧ Ã

(t)
j ∧ dA

′k +
1

8
gm Ã

(t)
i ∧ Ã

(t)
j ∧A

′i ∧A′j

+
1

2
gmδijB

i ∧Bj −mBi ∧ H̃(t)
(2)i ,

(2.14)

where g is the gauge coupling constant and m is the magnetic charge in the theory. We

have denoted the scalar kinetic terms collectively as

huvDq
u ∧ ∗Dqv = −1

4
DMαβ ∧ ∗DMαβ − 1

8
DMMN ∧ ∗DMMN . (2.15)

The kinetic terms for the scalars in the SL(2)/SO(2) coset read

− 1

4
DMαβ ∧ ∗DMαβ =

1

2
(dϕ)2 +

1

2
e2ϕ (dχ)2 , (2.16)

where (dϕ)2 ≡ dϕ ∧ ∗dϕ, etc. Those for the scalars in the SO(6, 3)/(SO(6)× SO(3)) coset

are given by

−1

8
DMMN ∧ ∗DMMN = −1

4
tr
(
DmDm−1

)
+

1

2
tr
(
m−1DbTDb

)
(2.17)

+
1

4
e
√

2(φ1+φ2+φ3)
(

2 tr
(
mff

)
− tr(m) tr (ff)

)
,

where the matrix f has components fij of the form

fij = Daij + δab b
a

[iDb
b
j] . (2.18)

As usual in supergravity theories, the scalar fields couple both minimally and non-

minimally to the vectors. The minimal couplings are governed by covariant derivatives of

the form

Dmij = dmij + 2 g A′h εh(i
kmj)k ,

Daij = daij + 2 g A′h εh[j
kai]k + εkij

(
g A(t)k −mδkhÃ

(t)
h

)
,

Dbai = dbai + g A′h εhi
k bak − g A(L)c εcb

a bbi .

(2.19)

The non-minimal couplings occur via the scalar-dependent gauge kinetic matrix in (2.14)

NΛΣ = RΛΣ + i IΛΣ , (2.20)

and involve the electric field strengths

H ′i(2) = dA′i +
1

2
g εijk A

′j ∧A′k ,

H
(L)a
(2) = dA(L)a +

1

2
g εabcA

(L)b ∧A(L)c ,

H
(t)i
(2) = dA(t)i + g εijk A

′j ∧A(t)k − 1

2
mεij

k A′j ∧ Ã(t)
k +mBi .

(2.21)
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Note the presence of the tensor fields Bi in the field strengths H
(t)i
(2) as a consequence of

the magnetic charge m in the theory [52]. In the basis of (2.3), the matrix NΛΣ in (2.20)

takes the form

N = NT =

N1 N2 N3

NT
2 N4 N5

NT
3 NT

5 N6

 , (2.22)

in terms of the following 3× 3 blocks

N1 = −ieϕm−
(
ieϕχm− 1

2
bTb− a

)
N−1

(
ieϕχm− 1

2
bTb+ a

)
,

N2 =
1√
2
bT − 1√

2

(
−χ+ ie−ϕ

)(
ieϕχm− 1

2
bTb− a

)
N−1bT ,

N3 =

(
ieϕχm− 1

2
bTb− a

)
N−1 ,

N4 = −1

2

(
−χ+ ie−ϕ

)
I3 −

1

2

(
−χ+ ie−ϕ

)2
bN−1bT ,

N5 =
1√
2

(
−χ+ ie−ϕ

)
bN−1 ,

N6 = −N−1 , (2.23)

with N being the matrix

N ≡ −ie−ϕ
(
1 + e2ϕχ2

)
m−

(
y − χ+ ie−ϕ

)
bTb . (2.24)

In N = 4 terms, the gauging of (2.4) is turned on in the vector multiplet sector only,

as can be seen from the covariant derivative Dτ = dτ . In particular, the scalars aij are

charged under the SO(3)′ factor and correspond to Stückelberg fields for the R3 shifts

gauged by the electric gauge fields A(t)i and their magnetic duals Ã
(t)
i . Accordingly, the

scalars aij do not enter the scalar potential V of the theory which reads

V = g2

[
−4eϕ−4e

1√
2

(φ1+φ2+φ3)
tr

(
m+

1

2
bTb

)
+

1

2
e−ϕ+

√
2(φ1+φ2+φ3)

(
1+e2ϕχ2

)(
2tr

(
mm+

1

2
bTbm

)
−(trm)2+

1

4

(
tr
(
bTb

))2)
+

1

2
eϕ
(
tr
(
bTbm−1

))2− 1

2
eϕ tr

(
bTbm−1bTbm−1

)
+eϕ+

√
2(φ1+φ2+φ3) (detb)2

−
√

2χeϕ+
√

2(φ1+φ2+φ3) (detb) tr

(
m+

1

2
bTb

)]
+gmeϕ+

√
2(φ1+φ2+φ3)

(√
2 detb− 1

2
χtr

(
bTb

))
+

1

2
m2 eϕ+

√
2(φ1+φ2+φ3) . (2.25)

As we will show in section 4, the scalar potential in (2.25) contains all the known AdS4

vacua for the ISO(7) maximal supergravity up to date, and five new non-supersymmetric

AdS4 vacua.
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Equations of motion. It is useful to write the equations of motion that derive from

the SO(3)R-invariant Lagrangian in (2.14). The variations under the scalars, the electric

vectors, and the metric, yield

D
(
huv ∗Dqv

)
− 1

2
(∂uhvw)Dqv ∧ ∗Dqw +

1

2
∂uV vol4

−1

4
(∂uIΛΣ

)
HΛ

(2) ∧ ∗HΣ
(2) −

1

4
(∂uRΛΣ

)
HΛ

(2) ∧HΣ
(2) = 0,

DH̃(2)Λ + 2huv k
u
Λ ∗Dqv = 0,

huvDµq
uDνq

v +
1

2
V gµν −

1

2
IΛΣ

(
HΛ
µλH

Σ
ν
λ − 1

4
gµνH

Λ
ρσH

Σ ρσ

)
= Rµν .

(2.26)

In the electric-vector equation, H̃(2)Λ stands for the magnetic field strength,

H̃(2)Λ = RΛΣH
Σ
(2) + IΛΣ ∗HΣ

(2) , (2.27)

and kΛ are the SO(6, 3) isometries along which the gauging is turned on. These can be

read off from the covariant derivatives (2.19).

Two other fields enter the Lagrangian (2.14): the magnetic vectors Ã
(t)
i and the two-

forms Bi. These carry dynamical degrees of freedom but not independent ones, in the

sense that their equations of motion give duality equations that relate them to the scalars,

the electric vectors and the metric. Indeed, the variation of (2.14) with respect to Ã
(t)
i

reproduces the last three components, in the basis (2.3), of the vector-vector duality rela-

tions (2.27). The variation under Bi gives the duality relation

H i
(3) = huv k

ui ∗Dqv , (2.28)

with ki = εijk ∂ajk . More generally, dualisation conditions can be written for all the fields

in the tensor hierarchy introduced in section 2.1. Please refer to appendix B for the details.

3 N = 4 canonical formulation: new gaugings of half-maximal super-

gravity

In this section we investigate two different half-maximal truncations of the ISO(7) maximal

supergravity giving rise to new gaugings of half-maximal supergravity. We present them

in a canonical N = 4 fashion using the embedding tensor formalism in the standard

symplectic frame of N = 4 gauged supergravity [51]. The first truncation is obtained

by modding out the ISO(7) theory by a discrete Z2 element along the lines of [50]. The

second truncation recovers the SO(3)R-invariant sector presented in the previous section

but in N = 4 language.

3.1 Brief review of N = 4 supergravity with G ⊂ SO(6, nv)

We start with a quick review of the gauged N = 4 supergravities in four dimensions con-

structed in [51].1 The field content of these theories consists of the supergravity multiplet

coupled to an arbitrary number nv ∈ N of vector multiplets.

1We parameterise the SL(2) matrix Mαβ as in (2.6) which slightly differs from the conventions adopted

in [51].

– 8 –



J
H
E
P
1
1
(
2
0
1
9
)
1
4
3

The supergravity multiplet contains, as bosonic degrees of freedom, the metric gµν , six

vector fields Aµ
m̃ with m̃ = 1, . . . , 6 and a complex scalar τ = χ + ie−ϕ parameterising a

scalar matrix

Mαβ = Re
(
Vα V∗β

)
∈ SL(2)

SO(2)
with Vα = − 1√

Imτ
(1 , τ) , (3.1)

where α = +,− is a fundamental SL(2) index. The scalar matrix in (3.1) can in turn be

constructed from a coset representative V2 (see (3.29)) as Mαβ = δαβ (V2)αα (V2)ββ , where

the local index of the coset representative has been underlined. The vector multiplets

contain vector fields Aµ
ã with ã = 1, . . . , nv and 6nv scalars parameterising a coset element

MMN ∈
SO(6, nv)

SO(6)× SO(nv)
, (3.2)

with M = (m̃, ã) being a fundamental index of SO(6, nv) in a time-like coordinate basis.

The scalar matrix in (3.2) can also be constructed from a coset representative V6,nv as

MMN = δMN (V6,nv)
M
N (V6,nv)

N
N , where again we have underlined the local index of the

coset representative.

In its ungauged version the theory possesses a global SL(2) × SO(6, nv) symmetry,

known as the duality group, which is a subgroup of the electromagnetic transformations

Sp(12 + 2nv,R). The electric vector fields and their magnetic duals transform in the fun-

damental representation of the duality group, namely Aµ
αM ∈ (2,6 + nv), and span an

abelian G = U(1)6 ×U(1)nv gauge symmetry under which the scalars are not charged. Af-

ter performing a gauging of a (non-)abelian subgroup G ⊂ SL(2) × SO(6, nv), a gauged

supergravity is obtained with the scalar fields being now charged under G. In addition, a

non-trivial scalar potential V is generated.

The Lagrangian. The Lagrangian of the N = 4 gauged supergravities becomes totally

specified by a constant tensor XαMβNγP that determines the embedding of the gauge

connection into the Sp(12 + 2nv,R) group of electromagnetic transformations [51]. This

embedding tensor takes the form

XαMβNγP = ΘαM
A [tA]βNγP = −εβγ fαMNP − εβγ ηM [N ξαP ] − εα(β ξγ)M ηNP , (3.3)

where the index A runs over the generators [tA]βNγP of G ⊂ SL(2) × SO(6, nv) that have

been gauged and where ηMN and εαβ are the bilinear invariant tensors of SO(6, nv) and

SL(2) respectively.2 The embedding tensor in (3.3) contains two irreducible representations

of the duality group given by

fαMNP = fα[MNP ] and ξαM . (3.5)

2We use conventions where ε+− = ε+− = 1 so that εαβ ε
αγ = δγβ . The generators of the SL(2)× SO(6, nv)

duality group take the form

[tαMβN ]γPδQ = εαβ εγδ [tMN ]PQ + ηMN ηPQ [tαβ ]γδ , (3.4)

with [tMN ]PQ = δ
[P
M δ

Q]
N and [tαβ ]γδ = δ

(γ
α δ

δ)
β being the SO(6, nv) and SL(2) generators in the fundamental

representation.
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Consistency of the gauge algebra requires a set of quadratic constraints on the parameters

fαMNP and ξαM specifying the gaugings of the theory (see eq. (2.20) in [51]).

In this work we will concentrate on a class of gaugings of the form G ⊂ SO(6, nv).

Keeping the SL(2) factor of the duality group ungauged requires

ξαM = 0 ⇒ XαMβNγP = ΘαM
QR [tQR]βNγP = −εβγ fαMNP , (3.6)

which drastically simplifies the Lagrangian constructed in [51]. The bosonic part consists

of three pieces

Lbos = Lkin − V + Ltop . (3.7)

The kinetic terms, together with the generalised theta-angle, for the various supergravity

fields are given by

e−1 Lkin = R+
1

4
DµMαβ D

µMαβ +
1

8
DµMMN D

µMMN

− 1

4
Imτ MMN Hµν+M Hµν+N − 1

8e
Reτ ηMN ε

µνρσHµν+M Hρσ+N ,

(3.8)

where MMN is positive definite. The electric vector field strengths and the scalar covariant

derivatives take the form

Hµν+M = 2 ∂[µAν]
+M − ηMM ′ fγM ′NP A[µ

γN Aν]
+P + ηMM ′ f−M ′NP Bµν

NP , (3.9)

and

DµMαβ = ∂µMαβ ,

DµMMN = ∂µMMN − 2Aµ
γP fγPQ(M MN)Q′ η

QQ′ .
(3.10)

The presence of non-trivial magnetic charges f−MNP in the theory requires to introduce

a set of auxiliary tensor fields Bµν
MN = Bµν

[MN ].3 These tensor fields enter the vector

field strengths in (3.9) and come along with their own tensor gauge transformations [52].

The gauging procedure also generates a non-trivial scalar potential that is quadratic in the

gauging parameters and takes the form

V =
1

4
fαMNP fβQRSM

αβ

[
1

3
MMQMNRMPS +

(
2

3
ηMQ −MMQ

)
ηNR ηPS

]
− 1

9
fαMNP fβQRS ε

αβMMNPQRS ,

(3.11)

with

MMNPQRS ≡ εm̃ñp̃q̃r̃s̃ Vm̃M V ñN V p̃P V q̃Q V r̃R V s̃S . (3.12)

Local (underlined) indices in (3.12) are in a time-like coordinate basis for SO(6, nv), namely,

ηtime-like = diag(−I6, Inv). These are related to light-like coordinates by the orthogonal

3We define the tensor fields as Bµν
(here) = 1

2
Bµν

[51].
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transformation

i) O =


− 1√

2
Inv 0 1√

2
Inv

0 −I6−nv 0

1√
2
Inv 0 1√

2
Inv

 for nv ≤ 6 ,

ii) O =


− 1√

2
I6 1√

2
I6 0

1√
2
I6 1√

2
I6 0

0 0 Inv−6

 for nv ≥ 6 ,

(3.13)

so that ηlight-like = O ηtime-likeO
t. Lastly, whenever there are non-trivial magnetic charges

in the theory, there is a topological term involving the vector fields as well as the auxiliary

tensor fields

Ltop =−1

2
εµνρλ

[
−f−MNP Aµ

−M Aν
+N ∂ρAλ

−P

− 1

4
fαMNR fβPQR′ η

RR′Aµ
αM Aν

+N Aρ
βP Aλ

−Q

+
1

4
f+MNP f−M ′QR η

MM ′Bµν
NP Bρλ

QR

− 1

2
f−MNP Bµν

NP
(

2∂ρAλ
−M−fαQRM ′ ηMM ′Aρ

αQAλ
−R
)]

.

(3.14)

This concludes our review of the main features of the N = 4 gauged supergravities con-

structed in [51] when the gauging belongs to the class G ⊂ SO(6, nv). In the following we

will restrict to the case with nv ≤ 6. This is a necessary condition for an N = 4 (half-

maximal) gauged supergravity to be embeddable into an N = 8 (maximal) theory as the

E7(7) duality group of the latter contains SL(2) × SO(6, 6) as a maximal subgroup.

3.2 Halving ISO(7) maximal supergravity

Let us consider the ISO(7) ⊂ E7(7) gauging of maximal supergravity put forward in [14].

This gauging is of dyonic type as a gauging of maximal supergravity.4 From the general

anaysis of [50], it can be consistently truncated to an N = 4 gauging of the type discussed

in the previous section with nv = 6 by means of a discrete (orientifold) Z2 projection5

Z2 : E7(7) → SL(2)× SO(6, 6) . (3.15)

The ISO(7) gauging of the maximal theory consistently truncates to a gauging of the

half-maximal theory. It is identified as

G = ISO(3)′ × SO(4) = ISO(3)′ × SO(3)L × SO(3)R , (3.16)

4By dyonic here we mean dyonic in the standard SL(8) symplectic frame of N = 8 supergravity, which

differs from the one of N = 4 supergravity as we will see in a moment.
5As discussed in section 4.1 of [9], the Z2 projection in (3.15) halving maximal supergravity in the

standard SL(8) symplectic frame yields an N = 4 Lagrangian which is not yet invariant under the full

duality group of half-maximal supergravity. To achieve such an invariance one must perform a further

dualisation of six vectors: three in the supergravity multiplet and three in the vector multiplets.
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and its embedding into the SO(6, 6) factor of the duality group reads

ISO(3)′ × SO(4) ⊂ SO(3, 3)′ × SO(3, 3) ⊂ SO(6, 6) , (3.17)

with ISO(3)′ = SO(3)′ n R3 ⊂ SO(3, 3)′ and SO(4) ∼ SO(3)L × SO(3)R ⊂ SO(3, 3).

Under the chain of embeddings in (3.17), the vector fields Aµ
αM ∈ (2,12) in the theory

decompose as

SL(2)× SO(6, 6) ⊃ SO(1, 1)× SO(6, 6) ⊃ SO(1, 1)× SO(3)′ × SO(3)L × SO(3)R

(2,12) 12+ 2× (3,1,1)+ + (1,3,1)+ + (1,1,3)+

12− 2× (3,1,1)− + (1,3,1)− + (1,1,3)−

(3.18)

where the representations 2× (3,1,1)± correspond to electric (+) and magnetic (−) vector

fields spanning the ISO(3)′ factor of G. The group-theoretical decomposition in (3.18)

translates into a splitting of the vector fields of the form

Aµ
αM =

(
Aµ

+M

Aµ
−M

)
=

(
Aµ

M

Ãµ
M

)
=

(
Aµ

i

Ãµ
i

)
⊕

(
Aµ

a

Ãµ
a

)
⊕

(
Aµ

ī

Ãµ
ī

)
⊕

(
Aµ

ā

Ãµ
ā

)
, (3.19)

where the index M decomposes in a light-like coordinate basis as M = (i, a, ī, ā) with

i = 1, 2, 3 and a = 1, 2, 3. In this basis one has ηij̄ = δij̄ and ηab̄ = δab̄ so that

ηMN =

(
0 I6

I6 0

)
. (3.20)

Gaugings of half-maximal supergravity of the form G ⊂ SO(3, 3)′ × SO(3, 3) have

been extensively studied in the literature [53–57], and further connected to non-geometric

backgrounds in type II orientifold reductions [58, 59]. In these works, a non-trivial

de Roo-Wagemans angle [53] necessary to stabilise the SL(2) dilaton Imτ is generated

by gauging one of the SO(3, 3) factors in (3.17) electrically and the other one magnetically,

namely, G = SO(3, 3)′+ × SO(3, 3)−. However this is not the case for the half-maximal

supergravity we are discussing here where the gauge factor inside SO(3, 3)′ is gauged dy-

onically. This can be seen as follows. Using light-like coordinates, the theory is specified in

terms of an embedding tensor fαMNP with non-vanishing components of the form [58, 60]

ISO(3)′ : f+īj̄k = f+ījk̄ = f+ij̄k̄ = g , f−īj̄k̄ = m,

SO(4) : f−abc̄ = f−ab̄c = f−ābc = −
√

2 g , f−āb̄c̄ = −
√

2 g .
(3.21)

It is worth noticing that the combination of vectors g Aµ
i + mÃµ

ī serves as a gauge con-

nection for R3 ⊂ ISO(3)′ ⊂ SO(3, 3)′. In other words, an electric-magnetic deformation

in maximal supergravity becomes the composition of an SL(2) (electric-magnetic) and a

time/space-like deformation in half-maximal supergravity.

We will refrain from particularising the general Lagrangian of section 3.1 to the case

nv = 6 with an embedding tensor of the form (3.21). Instead, we will perform a further

truncation to a smaller SO(3)R-invariant sector retaining only three vector multiplets.
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3.3 Truncation to the SO(3)R-invariant sector

We perform a further truncation to the SO(3)R-invariant sector of the theory by projecting

out the three vector multiplets transforming as (1,1,3)± in (3.18). The resulting N = 4

theory therefore has nv = 3 and

G = ISO(3)′ × SO(3)L ⊂ SO(6, 3) , (3.22)

in agreement with the gauge group in (2.4). Using light-like coordinates M = (i, a, ī) for

which ηij̄ = δij̄ and ηab = −δab, namely,

ηMN =


0 0 I3

0 −I3 0

I3 0 0

 , (3.23)

the full N = 4 Lagrangian is specified in terms of an embedding tensor fαMNP with

non-vanishing components of the form

ISO(3)′ : f+īj̄k = f+ījk̄ = f+ij̄k̄ = g , f−īj̄k̄ = m,

SO(3)L : f−abc = −
√

2 g .
(3.24)

The gauge group G = ISO(3)′×SO(3)L is associated with generators [tMN ]PQ = 2 δP[MηN ]Q

in SO(6, 3) given by

G′i = εi
jk
(
δj
j̄ tj̄k + δk

k̄ tjk̄

)
, T ′i =

1

2
εi
jk tjk , La =

1

2
εa
bc tbc , (3.25)

which satisfy commutation relations of the form

[G′i, G
′
j ] = −εijkG′k , [G′i, T

′
j ] = −εijk T ′k , [La, Lb] = εab

c Lc . (3.26)

Combining the relation in (3.6) with the embedding tensor components in (3.24) and the

generators in (3.25) yields

Θ+i
MN tMN = g T ′i , Θ+ī

MN tMN = g δī
iG′i,

Θ−a
MN tMN = −

√
2 g La , Θ−ī

MN tMN = mδī
i T ′i .

(3.27)

The Lagrangian of this N = 4 sector can be obtained from the general results of

section 3.1 by imposing nv = 3 and using the non-vanishing embedding tensor in (3.24).

In this way we provide the canonical N = 4 formulation of the SO(3)R-invariant sector

presented in section 2.

Lagrangian, duality relations and symplectic frames. Together with the Einstein-

Hilbert term, the Lagrangian of N = 4 supergravity consists on two pieces: a scalar sector

and a vector-tensor sector. We discuss them separately here for the SO(3)R-invariant sector

of the ISO(3)′ × SO(4) half-maximal supergravity.
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Scalar sector. There are 2+3×6 = 20 scalar fields in the theory parameterising two coset

elements

V2 ∈
SL(2)

SO(2)
and V6,3 ∈

SO(6, 3)

SO(6)× SO(3)
. (3.28)

The first one is obtained upon exponentiation of the Cartan generator H and the positive

root E+ of the SL(2) algebra, and takes the form

V2 = e
1
2
ϕH eχE+ =

 e
1
2
ϕ e

1
2
ϕ χ

0 e−
1
2
ϕ

 , (3.29)

so that Mαβ = δαβ (V2)αα (V2)ββ is given by (2.6). The second one is obtained upon

exponentiation of the Cartan generators H i =
√

2 tīi and the positive roots Ei
j = δi

ī δjk t̄ik
(i < j), V ij = δik δjl tkl and Ua

j = δjk tak of the SO(6, 3) algebra in the light-like basis. It

takes the form

V6,3 = e
1
2
φiH

i
eh

i
j Ei

j
e

1
2
aij V

ij
eb
a
j Ua

j
, (3.30)

and recovers the result in (2.8). The scalars φi and hij parameterise the coset element

ν ∈ GL(3)′/SO(3) as in (2.9) and determine the scalar matrix m ≡ νTν. The addition

of the scalars aij extends the coset GL(3)′/SO(3) to SO(3, 3)′/SO(3)2 ∼ SL(4)′/SO(4),

whereas adding the scalars baj extends the latter to the full V6,3 coset in (3.28) with MMN =

δMN (V6,3)MN (V6,3)NN . This symmetric matrix MMN has independent block components

Mij = m−1 ,

Mib = m−1 bT ,

Mij̄ = m−1

(
1

2
bTb+ a

)
,

Mab = I3 + bm−1 bT ,

Maj̄ = b+ bm−1

(
1

2
bTb+ a

)
,

Mīj̄ = m+ bTb+

(
1

2
bTb− a

)
m−1

(
1

2
bTb+ a

)
.

(3.31)

Using differential form notation, the Einstein-Hilbert term and the scalar sector of the

theory are given by

LEH-s = (R− V ) ∗ 1− 1

4
DMαβ ∧ ∗DMαβ − 1

8
DMMN ∧ ∗DMMN . (3.32)

The kinetic terms for the scalar fields are the same as in (2.16) and (2.17). The covariant

derivatives for the various scalars can be extracted from (3.10) and read

Dmij = dmij + 2 g Ak̄ εk̄(j
kmi)k,

Daij = daij + 2 g Ak̄ εk̄[j
k ai]k −

(
g Ak εkij +mÃk̄ εk̄ij

)
,

Dbai = dbai + g Ak̄ εk̄i
k bak −

√
2 g Ãc εcb

a bbi.

(3.33)

Notice the combination of vectors g Ak +mÃk̄ entering the gauge connection in Daij .
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It is also worth emphasising here that the scalars baj are charged under both SO(3, 3)′

and SO(3)L ⊂ SO(3, 3) in (3.17), thus rendering this N = 4 model different from the

ones investigated in [53–59] where only scalars transforming separately under each of the

SO(3, 3) factors were retained. Lastly, using the embedding tensor in (3.24) and the scalar

matrix components in (3.31), we have verified that the scalar potential (3.11) gives perfect

agreement with the expression in (2.25).

Vector-tensor sector. Using differential form notation, the vector part of the La-

grangian (3.8) depends on the electric field strengths

H+M
(2) =

(
Hi(2) , Ha(2) , Hī(2)

)
, (3.34)

and reads

Lvec = −1

2
Imτ MMN H+M

(2) ∧ ∗H+N
(2) −

1

2
Reτ ηMN H+M

(2) ∧H+N
(2) , (3.35)

with scalar-dependent generalised gauge couplings given by (3.31) and field strengths of

the form

Hi(2) = dAi − g εij̄k Aj̄ ∧Ak −
1

2
mεij̄k̄ Ã

j̄ ∧Ak̄ +mεij̄k̄ B
j̄k̄ ,

Ha(2) = dAa − 1√
2
g εabc Ã

b ∧Ac +
√

2 g εabcB
bc ,

Hī(2) = dAī − 1

2
g εī j̄k̄ A

j̄ ∧Ak̄ .

(3.36)

Note that the electric vectors Aa are ungauged, namely, they do not enter the gauge

connection in (3.33). Still they will propagate unlike the magnetic vectors (Ãc , Ãk̄) and the

tensor fields (Bab , B īj̄) which do not carry independent dynamics. Finally the topological

term in (3.14) reduces to an expression of the form

Ltop = − 1√
2
g εabc Ã

a ∧Ab ∧ dÃc +
1

2
m ε̄ij̄k̄ Ã

ī ∧Aj̄ ∧ dÃk̄

+
1

8
g2 ε̄ij̄k εm̄n

k
(
Aī ∧Aj̄ ∧Am̄ ∧ Ãn +Am̄ ∧An ∧Aī ∧ Ãj̄

)
+

1

8
g2 ε̄ij̄k εmn̄

k
(
Aī ∧Aj̄ ∧Am ∧ Ãn̄ +Am ∧An̄ ∧Aī ∧ Ãj̄

)
+

1

8
gm ε̄ij̄k εm̄n̄

k
(
Aī ∧Aj̄ ∧ Ãm̄ ∧ Ãn̄ + Ãm̄ ∧An̄ ∧Aī ∧ Ãj̄

)
− 1

4
g2 εabe εcd

e Ãa ∧Ab ∧ Ãc ∧ Ãd − 1

2
gm εī j̄k̄ ε̄im̄n̄B

j̄k̄ ∧Bm̄n̄

−
√

2 g εabcB
bc ∧

(
dÃa − 1√

2
g εade Ã

d ∧ Ãe
)

+ m ε̄ij̄k̄ B
j̄k̄ ∧

(
dÃī − 1

2
g εīm̄n̄A

m̄ ∧ Ãn̄
)
.

(3.37)

The above topological term (3.37) takes a lengthy form compared to the one in (2.14) due

to the symplectic frame used in the N = 4 Lagrangian of [51] and our choice of light-like
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coordinates for SO(6, 3). Note that the symplectic invariant matrix that results upon the

SO(3)R-invariant truncation of the N = 8 theory is given by

ΩSp(56,R) =

(
0 I28

−I28 0

)
−→ ΩSp(18,R) =

(
0 I9

−I9 0

)
, (3.38)

whereas the canonical formulation of N = 4 supergravity uses6 [50, 51]

Ω′Sp(18,R) = εαβ ⊗ ηMN =

(
0 η

−η 0

)
, (3.39)

with η given in (3.23). We will come back to this issue by the end of the section when

discussing symplectic frames.

Duality relations. Let us discuss the duality relations in the SO(3)R-invariant sector.

Similarly as for the electric vectors in (3.34), one can introduce field strengths for the

magnetic vectors

H−M(2) = (H̃i(2) , H̃a(2) , H̃ī(2)) . (3.40)

The magnetic vector field strengths will enter the equations of motion that follow from the

SO(3)R-invariant Lagrangian. More concretely, the equation of motion of the tensor fields

yields a set of vector-vector duality relations between electric and magnetic field strengths

H̃(2)
i = − Imτ δīi

(
Mīk ∗ H(2)

k +Mīc ∗ H(2)
c +Mīk̄ ∗ H(2)

k̄
)

+ Reτ H(2)
i,

H̃(2)
a = Imτ δab

(
Mbk ∗ H(2)

k +Mbc ∗ H(2)
c +Mbk̄ ∗ H(2)

k̄
)

+ Reτ H(2)
a,

H̃(2)
ī = − Imτ δīi

(
Mik ∗ H(2)

k +Mic ∗ H(2)
c +Mik̄ ∗ H(2)

k̄
)

+ Reτ H(2)
ī,

(3.41)

with scalar-dependent matrices given in (3.31). On the other hand, the equation of motion

of the magnetic vectors gives the tensor-scalar duality relations

H(3)
īj̄ = δīi

(
Mik ∗DMkj̄ +Mic ∗DM cj̄ +Mik̄ ∗DM k̄j̄

)
,

H(3)
ab = −δad

(
Mdk ∗DMkb +Mdc ∗DM cb +Mdk̄ ∗DM k̄b

)
.

(3.42)

As a result of the duality relations in (3.41) and (3.42), the magnetic vectors and the tensor

fields entering the SO(3)R-invariant Lagrangian do not carry independent dynamics.

Symplectic frames. Let us combine the generalised theta-angle and the gauge kinetic

matrix for the electric vectors A+M in (3.35) into a matrix N ′ of the form

N ′ = −χη − ie−ϕM , (3.43)

where MMN was built from the coset representative in (3.30) using SO(6, 3) generators in

the light-like basis. This matrix is different from the counterpart matrix N given in (2.22)

6The matrices ΩSp(18,R) and Ω′Sp(18,R) in (3.38) and (3.39) are related by an SO(18) rotation.
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and (2.23) which appears upon direct truncation of the ISO(7) maximal supergravity of [14]

to its SO(3)R-invariant sector.

Following the general discussion of [52], two Lagrangians with matrices N and N ′

being related by a non-linear transformation

N ′ =
(
C +DN

)(
A+BN

)−1
, (3.44)

defined in terms of a matrix

S =

(
A B

C D

)
∈ Sp(18,R) , (3.45)

are equivalent by electromagnetic duality. It is then straightforward to check that, firstly,

the matrix S in (3.45) with

A = − 1√
2

 0 0 0

0 I3 0

0 0 0

 , B = −C =

 I3 0 0

0 0 0

0 0 −I3

 , D = −
√

2

 0 0 0

0 I3 0

0 0 0

 , (3.46)

leaves invariant ΩSp(18,R) in (3.38) and, secondly, it acts non-linearly on the matrix N
in (2.22) and (2.23) and brings it to the matrix N ′ in (3.43). This change of symplectic

frame, combined with our choice of coordinates for SO(6, 3), are responsible for the lengthy

topological term in (3.37) compared to that of (2.14). Note also that, while only three

magnetic vectors enter the gauge connection in (2.19), six of them do it in the covariant

derivatives of (3.33). As a result, a larger number of tensor fields are required in the

canonical (and equivalent) N = 4 formulation of the SO(3)R-invariant sector of the ISO(7)

maximal supergravity.

4 Further truncations and N ≥ 2 supersymmetric vacua

The SO(3)R-invariant sector we have just discussed contains, as further subtruncations,

the SU(3) and SO(4)d×R invariant sectors of the ISO(7) maximal supergravity constructed

in [14].7 It also contains all known AdS4 vacua of the maximal theory (see table 1 of [14] for

a summary), in particular the N = 2 [6] and N = 3 [21] vacua. The distinctive feature of

the SO(3)R-invariant sector is that supersymmetric AdS4 vacua, especially the N = 2 and

N = 3 ones, exhibit all their supersymmetries within this half-maximal sector of the ISO(7)

maximal supergravity. This will be verified by locating their scalar and vector mass spectra

within this sector into the multiplet structure of the corresponding OSp(4|N ) supergroup.

4.1 SU(3)-invariant sector

The SU(3)-invariant sector of the ISO(7) maximal supergravity describes an N = 2 gauged

supergravity coupled to a vector multiplet and the universal hypermultiplet, with an abelian

G = R×U(1) gauging of the universal hypermultiplet [14]. The 2 + 4 scalars in this sector

7The subgroup SO(4)d×R was simply denoted SO(4) in [14]. Here we attach the label d×R in order to

avoid confusion with the SO(4) subgroup appearing in (3.17).
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were denoted (ϕ , χ) and (φ , a , ζ , ζ̃) in [14], and are recovered from the SO(3)R-invariant

sector upon identifying (ϕ , χ) with the SL(2) axion-dilaton in (2.6) and furthermore

ν =


e−φ 0 0

0 e−φ 0

0 0 e−ϕ

 , a =


0 −a 0

a 0 0

0 0 0

 , b = − 1√
2


ζ −ζ̃ 0

ζ̃ ζ 0

0 0 2χ

 . (4.1)

The electric and magnetic vector fields were denoted (A0 , A1 , Ã0 , Ã1) in [14], and are

identified as

A′i =

 0

0

A1

 , A(L)a =

 0

0

−2A1

 , A(t)i =

 0

0

−A0

 , (4.2)

together with

Ã′i =

 0

0
1
3 Ã1

 , Ã(L)
a =

 0

0

−1
3 Ã1

 , Ã
(t)
i =

 0

0

−Ã0

 . (4.3)

With these identifications, the N = 4 supergravity here reduces to the N = 2 model

presented in section 3 of [14]. Therefore, all the AdS4 vacua in the SU(3)-invariant sector

(see table 3 in [14]) are also vacua in the SO(3)R-invariant sector.

A particularly interesting solution is an AdS4 vacuum preserving N = 2 supersym-

metry and G0 = U(1) residual gauge symmetry within the SU(3)-invariant sector. It has

non-vanishing scalars

e6ϕ =
64

27

( g
m

)2
, χ = −1

2

(
m

g

) 1
3

, e6φ = 8
( g
m

)2
, a = ζ = ζ̃ = 0 . (4.4)

An explicit computation of the N = 4 gravitino mass terms following [51] shows that this

vacuum also preserves N = 2 supersymmetry within the SO(3)R-invariant sector, as an

analysis of the spectrum confirms. The scalar squared masses M2L2, normalised to the

AdS4 radius L, read(
3 +
√

17 , 2 , 2 , 2 , 3−
√

17
)
, (−2 , −2) , 2×

(
−20

9
, −14

9

)
, 2×

(
−14

9

)
, 7×0 . (4.5)

These can be allocated into the following OSp(4|2) multiplets, from left to right: one long

massive vector multiplet, one massless vector multiplet, two hypermultiplets and two short

gravitino multiplets. The zero eigenvalues correspond to the Goldstone bosons eaten up

by vectors that become massive after the symmetry breaking G = ISO(3)′ × SO(3)L →
G0 = U(1)′ ×U(1)L. This is confirmed by the vector squared masses, M2L2,

1× 4 , 2× 28

9
, 4× 4

9
, 2× 0 . (4.6)

The OSp(4|2) multiplet structure of the full N = 8 dyonically-gauged ISO(7) supergravity

at this vacuum can be found in tables 3 and 4 of [29].
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4.2 SO(4)d×R-invariant sector

The SO(4)d×R ∼ SO(3)d × SO(3)R invariant sector of the ISO(7) maximal supergravity,

with SO(3)d being the diagonal subgroup in SO(3)′×SO(3)L, describes N = 1 supergravity

coupled to two chiral multiplets and no vector multiplets [14]. We denote the four scalars in

this sector (φ′ , ρ′) and (ϕ′ , χ′) (no primes were used in [14]) which are recovered from the

SO(3)R-invariant sector upon identification of the SL(2) axion-dilaton in (2.6) as (ϕ , χ) =

(φ′ , ρ′) and

ν =


e−ϕ

′
0 0

0 e−ϕ
′

0

0 0 e−ϕ
′

 , a = 0 , b = −
√

2


χ′ 0 0

0 χ′ 0

0 0 χ′

 . (4.7)

With these identifications, and setting to zero all the vector and tensor fields, the N = 4

supergravity here reduces to the N = 1 model presented in section 5 of [14]. As a result,

all the AdS4 vacua in the SO(4)d×R-invariant sector (see table 4 in [14]) are again vacua

in the SO(3)R-invariant sector.

Within this N = 1 model there is a non-supersymmetric but perturbatively stable

AdS4 vacuum located at

e6φ′ =
4

27

( g
m

)2
, ρ′ = −2−

1
3

(
m

g

) 1
3

, e6ϕ′ =
256

27

( g
m

)2
, χ′ = 2−

4
3

(
m

g

) 1
3

. (4.8)

The importance of this vacuum relies on the fact that it preserves N = 3 supersymmetry

within the SO(3)R-invariant sector. We have verified this by direct computation of the

N = 4 gravitino mass terms following [51], and by analysing the scalar mass spectrum

(normalised to the AdS4 radius)

3 (1 +
√

3) , 6×
(
1 +
√

3
)
, 6×

(
1−
√

3
)
, 3 (1−

√
3) , 6× 0 . (4.9)

The non-zero masses fill out a long gravitino multiplet of OSp(4|3) (see table 2 of [61]

with J0 = 0, E0 =
√

3). The six zero masses correspond to the Goldstone bosons

that are eaten up by the vectors that become massive after the symmetry breaking

G = ISO(3)′ × SO(3)L → G0 = SO(3)d. This is again confirmed by the vector masses (nor-

malised to the AdS4 radius)

3×
(
3±
√

3
)
, 3× 0 . (4.10)

5 New non-supersymmetric vacua

In ref. [14], the vacua of dyonic ISO(7)-gauged maximal supergravity with at least SU(3) or

SO(4)d×R invariance were investigated, giving rise to four different supersymmetric vacua

and six non-supersymmetric ones. Of the latter, two of them are perturbatively unstable in

the sense of displaying normalised scalar masses below the BF bound for stability in AdS4,

and the remaining four are stable. We can extend this classification now by considering

the SO(3)R-invariant potential of (2.25).
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To do this we have performed a numeric procedure involving the minimisation of the

scalar potential, in field space, by a Newton method. To generate the initial values for the

17-dimensional parameter space (recall that there are three Stückelberg scalars aij that do

not enter (2.25)) we considered a uniform distribution consisting of a “hypercube” in 17-

dimensional space with |ϕi| ≤ 1 for each of the 17 fields ϕi, with approximately 50000 initial

points being generated. To extend the search we considered “hypercubes” of increasing

size, and noticed that the Newton method started to be inefficient when |ϕi| ≈ 2. We

produced approximately 20000 initial points in these larger parameter spaces.

The minimisation process gave rise to critical values of the fields, ϕ∗i , that we used to

calculate the normalised mass spectrum of scalar fluctuations around the said minimum

and the N = 4 gravitino (squared) mass matrix. The eigenvalues of the latter, m2
a, deter-

mine the number of supersymmetries preserved by the vacuum by counting the number of

eigenvalues satisfying m2
a = −3V∗/4, with V∗ the value of the potential evaluated at ϕ∗i .

With this method we reproduce all the fixed points listed in [14] and find five new

non-supersymmetric vacua with values of the scalar potential (setting g = c = 1)

V∗ = {−21.867393 , −23.322349 , −23.456053 , −23.456098 , −23.458780} . (5.1)

While the vacuum corresponding to the largest value of the potential is perturbatively

unstable, the remaining four are stable within the SO(3)R-invariant sector. For these

vacua, it would be interesting to perform an analysis of perturbative stability within the

full ISO(7) maximal theory. This is beyond the scope of this work.

We proceed now to list the position in scalar field space, as well as the vector and

scalar normalised mass spectra, of these vacua.

i) Vacuum with V∗ = −21.867393

The position of this vacuum in the scalar manifold is given by

χ = −0.715397, ϕ = 0.0795045, φi =

 0.640745

0.575310

0.0475177

 , (5.2)

hij =

 ∗ −0.0150532 0.193075

∗ ∗ −0.521471

∗ ∗ ∗

 , (i < j) , (5.3)

baj =

−0.451841 −0.226962 −0.0251816

0.0839092 0.0421481 0.00467636

−0.269282 −0.135262 −0.0150074

 . (5.4)

The normalised vector masses read

M2L2 = {5.61795, 3.84978, 3.66158, 0.744392, 0.663310,

0.521957 (×2), 0.274647, 0} , (5.5)
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so there is a massless vector and the gauge group is broken to an abelian U(1). The

normalised scalar masses are given by

M2L2 = {−2.66511, −2.63847, −2.09157, −1.54651, −1.08210 (×2),

0 (×8), 0.732955, 2.63847, 4.17512, 4.18428 (×2), 7.01842} , (5.6)

so that the vacuum is perturbatively unstable. Note the presence of eight massless

scalars being Goldstone bosons eaten up by the massive vectors.

ii) Vacuum with V∗ = −23.322349

The position of this vacuum in the scalar manifold is given by

χ = −0.861587, ϕ = −0.300962, φi =

 0.505757

0.497103

0.556115

 , (5.7)

hij =

 ∗ −0.184685 0.136010

∗ ∗ −0.139564

∗ ∗ ∗

 , (i < j) , (5.8)

baj =

 0.457458 0.304725 −0.160877

−0.127647 −0.0924051 −0.526954

0.278269 −0.440951 −0.0597982

 . (5.9)

The normalised vector masses read

M2L2 = {5.61055, 4.51560 (×2), 1.26025, 1.23284 (×2), 0.0591156 (×2), 0} ,
(5.10)

so there is a massless vector and the gauge group is again broken to U(1). The

normalised scalar masses are given by

M2L2 = {−2.20094, −1.6884 (×2), −0.868452, 0 (×8), 0.885771,

1.98171 (×2), 2.26671, 3.60935 (×2), 4.41937, 8.16298} , (5.11)

so that the vacuum is this time perturbatively stable. Note again the presence of

eight massless scalars being Goldstone bosons eaten up by the massive vectors.

iii) Vacuum with V∗ = −23.456053

The position of this vacuum in the scalar manifold is given by

χ = 0.273189, ϕ = 0.0399038, φi =

 0.461474

0.659100

0.653142

 , (5.12)

hij =

 ∗ 0.0534187 −0.0707990

∗ ∗ −0.0149067

∗ ∗ ∗

 , (i < j) , (5.13)
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baj =

 −0.516908 −0.154388 −0.249397

−0.0485321 −0.470547 0.209088

0.462023 −0.114350 −0.400746

 . (5.14)

The normalised vector masses read

M2L2 = {4.29451, 3.62600 (×2), 2.66757 (×2), 2.29373, 0.0883439 (×2), 0} ,
(5.15)

so there is a massless vector and the gauge group is also broken to U(1). The nor-

malised scalar masses are given by

M2L2 = {−1.58248,−1.36606 (×2),−0.987543,−0.920226 (×2),−0.145118,

− 0.0277198 (×2), 0 (×8), 1.14647, 5.78023, 6.29251} , (5.16)

so that the vacuum is perturbatively stable. Note also the presence of eight massless

scalars being Goldstone bosons eaten up by the massive vectors.

iv) Vacuum with V∗ = −23.456098

The position of this vacuum in the scalar manifold is given by

χ = 0.267119, ϕ = 0.0383881, φi =

 0.500397

0.649735

0.623964

 , (5.17)

hij =

 ∗ 0.0622572 −0.108150

∗ ∗ −0.0330283

∗ ∗ ∗

 , (i < j) , (5.18)

baj =

−0.238203 −0.0134332 0.553237

−0.584557 −0.259510 −0.0347291

−0.197645 0.446453 −0.0379982

 . (5.19)

The normalised vector masses read

M2L2 = {4.26513, 3.70813, 3.59326, 2.67942, 2.63558,

2.30724, 0.0948198, 0.0753444, 0.00171607} , (5.20)

so all vectors become massive and the gauge group is fully broken at this vacuum.

The normalised scalar masses are given by

M2L2 = {−1.58451, −1.35168, −1.34552, −0.977451, −0.96062, −0.874352,

− 0.214610, 0 (×9), 0.0395421, 1.14238, 5.77263, 6.29845} (5.21)

so that the vacuum is perturbatively stable. Note this time the presence of nine

massless scalars being Goldstone bosons eaten up by the massive vectors.
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v) Vacuum with V∗ = −23.458780

The position of this vacuum in the scalar manifold is given by

χ = 0.373634, ϕ = 0.0963292, φi =

 0.560889

0.489926

0.692913

 , (5.22)

hij =

 ∗ 0.261188 −0.0655070

∗ ∗ −0.0769042

∗ ∗ ∗

 , (i < j) , (5.23)

baj =

−0.331197 −0.378733 −0.264801

0.427584 0.105189 −0.346559

−0.126002 0.476769 −0.226711

 . (5.24)

The normalised vector masses read

M2L2 = {4.59692, 3.26745 (×2), 2.82061 (×2), 2.16737, 0.132118 (×2), 0} ,
(5.25)

so there is a massless vector and the gauge group is again broken to U(1). The

normalised scalar masses are given by

M2L2 = {−1.59719 (×2), −1.58649, −1.22285, −0.935656 (×2),

− 0.480612 (×2), 0 (×8), 0.0852111, 1.16111, 5.8955, 6.22349} , (5.26)

so that the vacuum is also perturbatively stable. Note the presence of eight massless

scalars being Goldstone bosons eaten up by the massive vectors.

6 Discussion

We have truncated D = 4 and N = 8 dyonic ISO(7) supergravity [14] to its SO(3)R-

invariant sector. This corresponds to D = 4 and N = 4 supergravity coupled to three

vector multiplets with an ISO(3)′ × SO(3)L gauge group. We have also cast this model

in canonical N = 4 form [51], and have shown that the resulting gauging is new from

the N = 4 perspective in that it contains matter that is charged under both factors of

the gauge group. Since SO(3)R is contained both in the SU(3) and the SO(3)d × SO(3)R

subgroups of SO(7) ⊂ ISO(7), our model encompasses those sectors, constructed in [14],

that are invariant under the latter subgroups. Thus, the N = 4 and SO(3)R-invariant sector

contains all known supersymmetric and non-supersymmetric critical points of the ISO(7)

maximal supergravity and, as we show in section 5, five numerical non-supersymmetric

points that are new. In particular, this sector contains the two points of ISO(7) supergravity

with the largest possible supersymmetry: the N = 2 andN = 3 vacua of [6] and [21]. These

arise as supersymmetric vacua and exhibit their full N = 2 and N = 3 supersymmetries

already within our N = 4 model.
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The N = 2 and N = 3 vacua are dual to superconformal Chern-Simons theories with

the same supersymmetries, that were respectively described in [6] and [26]. These have

adjoint matter in the 3 and the 2 of the corresponding flavour groups, SU(3) and SO(3)R.

It was argued in the latter reference that adding a mass term for one of the 3 adjoint

chirals should cause the former theory to flow into the latter. The low energy flavour

group SO(3)R must be preserved along the flow. For this reason, if this picture is correct,

the SO(3)R-invariant sector that we have constructed in this paper must not only contain

the N = 2 and N = 3 endpoints of the flow, but also a full SO(3)R-invariant domain-

wall solution interpolating between both of them. We have verified that this is indeed the

case, in agreement with the argument put forward in appendix C.3 of [27], by explicitly

constructing the interpolating solution. The details will be reported in [62].

Acknowledgments

AG is partially supported by the Spanish government grant MINECO-16-FPA2015-63667-

P and by the Principado de Asturias through the grant FC-GRUPIN-IDI/2018/000174.

JT is supported by the European Research Council, grant no. 725369. OV is supported by

the NSF grant PHY-1720364 and, partially, by grants SEV-2016-0597, FPA2015-65480-P

and PGC2018-095976-B-C21 from MCIU/AEI/FEDER, UE. Finally, AG and JT thank
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A Group-theoretical embedding of SO(3)R ⊂ E7(7)

Let us consider the SO(3)R subgroup characterised by the embedding (lower chain) (2.1)

and introduce a set of constant 4×4 matrices Ja± with a = 1, 2, 3. The components of these

matrices (Ja±)αβ with α = (0, a) are given by8

(Ja±)0b = ∓δab , (Ja±)bc = −εabc , (A.1)

so that they are antisymmetric and (anti)-self-dual

(Ja±)αβ = ±1

2
εαβγδ (Ja±)γδ , (A.2)

satisfy the quaternion algebra

(Ja±)αγ(Jb±)γβ = −δabδαβ + εabc(J
c
±)αβ , (A.3)

and the identity

(Ja±)αβ(Ja±)γδ = 2δα[γδδ]β ± εαβγδ . (A.4)

Indices a and α are raised and lowered with δab and δαβ .

Let us now consider the generators tA
B and tABCD of E7(7) in the SL(8) basis9 and

split the fundamental SL(8) index A = 1, . . . , 8 as A = (i, α, 8). The indices i and α refer

8The index α in this appendix should not be confused with the SL(2) index α = ± in the main text.
9We follow the conventions in appendix C of [14].
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to the fundamental representations of SO(3)′ and SO(4) in (2.1), respectively, whereas a

denotes the fundamental representation of SO(3)L and similarly for SO(3)R. Then the

SO(3)′, SO(3)L and SO(3)R subgroups of E7(7) are respectively generated by

G′i = εij
k tk

j , La = −1

2
(Ja−)α

β tβ
α , Ra =

1

2
(Ja+)α

β tβ
α , (A.5)

and have non-vanishing commutation relations of the form

[G′i , G
′
j ] = εij

kG′k , [La , Lb] = εab
cLc , [Ra , Rb] = −εabcRc . (A.6)

The SO(3)d diagonal subgroup inside SO(3)′ × SO(3)L is generated by Di ≡ G′i + δbi Lb.

Scalar sector. The group SO(3)R commutes with SL(2,R) × SO(6, 3) inside E7(7). To

see this, note that the generators Ra in (A.5) commute, on the one hand, with

H0 ≡ tii − tαα + t8
8 , E0 ≡

1

3!
εijk tijk8 , (A.7)

together with the negative root E]0 ≡ 1
4!ε

αβγδtαβγδ associated with E0. They also commute,

on the other hand, with

H1 ≡
1√
2

(
t1

1 − t22 − t33 + t8
8
)
, H2 ≡

1√
2

(
−t11 + t2

2 − t33 + t8
8
)
,

H3 ≡
1√
2

(
−t11 − t22 + t3

3 + t8
8
)
, (A.8)

Ei
j ≡ −δikδjh thk (with i < j) , V ij ≡ εijk t8k , Ua

j ≡ 3
√

2 δjk (Ja−)αβ tkαβ8 ,

along with La defined in (A.5) and the negative roots associated with Ei
j , V ij and Ua

j ,

Ei
j ] ≡ −tij (with i < j) , V ij ] ≡ εijk tk8 , Ua

j ] ≡ − 3√
2
εjkl (Ja−)αβ tklαβ . (A.9)

The generators (A.7) close under commutation as

[H0, E0] = 4E0 . (A.10)

This is well-known to be the commutation relation of the upper triangular, solvable subal-

gebra of SL(2) that exponentiates into the first scalar coset in (3.28). The generators (A.8)

obey commutation relations (no sum over repeated indices) of the form

[Hk, Ei
j ] = bkij Ei

j , [Hk, V ij ] = akij V
ij , [Hk, Ua

j ] = ckj Ua
j ,

[Ei
j , Ek

`] = δjk Ei
` − δ`i Ekj ,

[Ei
j , V k`] = −δki V j` − δ`i V kj , [Ei

j , Ua
k] = −δki Uaj ,

[Ua
i, Ub

j ] = δabV
ij , (A.11)

where we have defined

akij ≡
√

2(δki + δkj ) , bkij ≡
√

2(−δki + δkj ) , cki ≡
√

2 δki . (A.12)
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Commutation relations of the type (A.11) were studied in [63] and shown to correspond to

the solvable Lie algebras that exponentitate into the coset spaces SO(p, q)/(SO(p)×SO(q)).

In the present case (p, q) = (6, 3) and the commutation relations in (A.11) match those in

(3.26) of [63] (with D = 7 there and minor notational changes). As a result the generators

in (A.11) exponentiate into the second scalar coset in (3.28).

The full coset representative on

Mscalar =
SL(2)

SO(2)
× SO(6, 3)

SO(6)× SO(3)
, (A.13)

can therefore be built as

V = e12χE0 e−
1
4
ϕH0 e−b

a
jUa

j
e−

1
2
aijV

ij
e−h

i
jEi

j
e−

1
2
φiH

i
, (A.14)

where the sum on hijEi
j extends only for i < j. The corresponding scalar matrix in

maximal supergravity is constructed as M = V VT. The scalar kinetic terms in (2.16)

and (2.17), as well as the scalar potential (2.25), result from substituting M into the

general expressions for the parent ISO(7) theory given in section 2 of [14]. These in turn

follow from the general N = 8 gauged supergravity expressions of [64]. The kinetic terms

in (2.17) for the scalars in the vector multiplets match (3.20) of [63].

Vector sector. The subgroup SO(3)R commutes with ISO(3)′×SO(3)L inside the ISO(7)

gauge group of the parent N = 8 theory, namely, ISO(7) ⊃ ISO(3)′ × SO(3)L × SO(3)R.

This results into

G = ISO(3)′ × SO(3)L = (SO(3)′ nR3)× SO(3)L , (A.15)

being the gauge group of the N = 4 and SO(3)R-invariant truncation. As a subgroup,

G ⊂ SO(6, 3) is generated by G′1 ≡ −(E2
3 −E2

3 ]), etc., T i ≡ −1
2ε
i
jkV

jk and La, with the

latter and G′i defined in (A.5). The semidirect action of SO(3)′ on R3 is explicitly defined

through the commutation relations

[G′i , Tj ] = εij
kTk . (A.16)

Let us now determine which of the N = 8 vector fields gauge the group G ⊂ ISO(7).

The gauge fields of the N = 8 supergravity in [14] were denoted (AIJ , ÃIJ) and (AI , ÃI)
with I = 1, . . . , 7. The former gauge the SO(7) factor electrically and the latter gauge

the R7 translations dyonically. In order to identify the subset (2.3) of N = 8 gauge fields

that are invariant under SO(3)R, we split the index I = (i, α) so that i and α respec-

tively label the fundamental of SO(3)′ and SO(4) in (2.1), and a labels the fundamental of

SO(3)L ⊂ SO(4). Then one finds the following identifications for the electric vectors

Aij = εijk A
′k , Aiα = 0 , Aαβ = −1

2
(Ja−)αβ A(L)a , Ai = A(t)i , Aα = 0 , (A.17)

and for the magnetic duals

Ãij = εij
k Ã′k , Ãiα = 0 , Ãαβ = −(Ja−)αβ Ã

(L)
a , Ãi = Ã

(t)
i , Ãα = 0 . (A.18)

The vectors A′i, A(t)i and A(L)a are gauge fields for, respectively, each of the factor groups

in the right hand side of (A.15), as the field strengths (2.21) confirm.
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Two-form sector. The restricted tensor hierachy of the ISO(7) maximal supergravity

includes two-form potentials BIJ ≡ 21+27 and BI ≡ 7′ [14]. The tensor fields BIJ split as

Bij = Bi
j , Biα = 0 , Bαi = 0 , Bαβ = Ba (Ja−)α

β , (A.19)

whereas the splitting of BI reads

Bi = Bi , Bα = 0 . (A.20)

Importantly, when the magnetic component of the embedding tensor is dualised into a

three-form potential (see (A.23) below), consistency of the Bianchi identities requires an

additional SO(7)-singlet two-form B ≡ 1 that renders BIJ traceful [14]. Being an SO(7)-

singlet, this additional two-form survives the truncation to the SO(3)R-invariant sector

B = B . (A.21)

Three-form sector. The restricted tensor hierarchy of the ISO(7) maximal supergravity

includes three-form potentials CIJ ≡ 1 + 27 [14]. These have a splitting of the form

Cij = Cij , Ciα = 0 , Cαβ = C0 δαβ . (A.22)

In addition, there is a three-form potential C̃ ≡ 1 dual to the magnetic components of the

embedding tensor in the ISO(7) maximal theory [14] which thus survives the truncation to

the SO(3)R-invariant sector

C̃ = C̃ . (A.23)

The field strengths associated with these three-form potentials can be used to reconstruct

the scalar potential of the truncated theory (see (B.11) of appendix B).

B Tensor hierarchy in the SO(3)R-invariant sector

In the presence of magnetic charges induced by the gauging parameter m, the field strengths

of the electric vectors are subject to Bianchi identities

DH ′i(2) = 0 , DH
(L)a
(2) = 0 , DH

(t)i
(2) = mH i

(3) , (B.1)

where H i
(3) is the three-form field strength of the two-form potential Bi in (2.11). The

covariant derivatives in (B.1) are defined as

DH ′i(2) ≡ dH ′i(2) + g εijk A
′j ∧H ′k(2) ,

DH
(L)a
(2) ≡ dH

(L)a
(2) + g εabcA

(L)b ∧H(L)c
(2) ,

DH
(t)i
(2) ≡ dH

(t)i
(2) + g εijk A

′j ∧H(t)k
(2) + εijk

(
gA(t)j −mδjhÃ

(t)
h

)
∧H(t)k

(2) .

(B.2)

Similarly, even though they do not carry independent dynamics, we can introduce field

strengths for the magnetic vectors of the form

H̃ ′(2)i = dÃ′i+
1

2
g εij

kA′j∧Ã′k+
1

2
g εij

kA(t)j∧Ã(t)
k −

1

2
mεi

jk Ã
(t)
j ∧Ã

(t)
k +g εij

kBk
j ,

H̃
(L)
(2)a = dÃ(L)

a +
1

2
g εab

cA(L)b∧Ã(L)
c +gBa ,

H̃
(t)
(2)i = dÃ

(t)
i +

1

2
g εij

kA′j∧Ã(t)
k +g δijB

j ,

(B.3)
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with Bi
j = B(A)

i
j + B(S)

i
j and Ba being the additional two-form potentials in (2.11). The

magnetic field strengths in (B.3) are also subject to Bianchi identities involving covariant

derivatives defined as

DH̃ ′(2)i ≡ dH̃ ′(2)i + g εij
k A′j ∧ H̃ ′(2)k + εij

k
(
gA(t)j −mδjhÃ

(t)
h

)
∧ H̃(t)

(2)k ,

DH̃
(L)
(2)a ≡ dH̃

(L)
(2)a + g εab

cA(L)b ∧ H̃(L)
(2)c ,

DH̃
(t)
(2)i ≡ dH̃

(t)
(2)i + g εij

k A′j ∧ H̃(t)
(2)k ,

(B.4)

together with the electric charge g and the three-form field strengths H(3)i
j and H(3)a of

the two-form potentials Bi
j and Ba in (2.11).

The various three-form field strengths above are connected with scalar currents via a

set of duality relations. When restricted to the SO(3)R-invariant sector, the tensor-scalar

duality relations of [14] reduce to

H(3)i
j =

1

7
∗
[
4
(
dϕ− e2ϕχdχ

)
− 3
√

2 (dφ1 + dφ2 + dφ3)

− 1

2
e
√

2 (φ1+φ2+φ3)
(
2 tr

(
mfa

)
− tr(m) tr (fa)

)
+ 3 tr

(
m−1 bTDb

)]
δi
j

− ∗(m−1Dm)i
j +

1

2
e
√

2 (φ1+φ2+φ3) ∗
(
2
(
fam

)
i
j − tr (fa)mi

j
)

+
1

4
e
√

2 (φ1+φ2+φ3)εipqεkh`δab b
a
jb
b
pmkq ∗ fh`

− ∗
(
bTDbm−1

)
i
j + 2 δab δ

jh ba[i(m
−1)h]

k ∗Dbbk , (B.5)

H i
(3) =

1

2
e
√

2 (φ1+φ2+φ3)mi
j ε
jkh ∗ fkh , (B.6)

H(3)a = 2 εabc (m−1)ij bbi ∗Dbcj −
1

2
e
√

2 (φ1+φ2+φ3) εabc ε
ijk εh`m bbi b

c
jmkh ∗ f`m . (B.7)

Equation (B.6) is just (2.28) written out explicitly in the parameterisation that we are using.

The dualisation conditions (B.5)–(B.7) further reduce to the expressions given in [14] for the

SU(3)-invariant sector upon the identifications in (4.1)–(4.3), as well as to the expressions

given in [24] for the SO(4)d×R-invariant sector upon the identifications in (4.7). Finally,

the expression for the various three-form field strengths in terms of the corresponding two-

form gauge potentials (and also vector fields) can be obtained by particularising the general

expressions in eq. (2.8) of [14].

The three-form potentials Cij ≡ (5 + 1,1) and C0 ≡ (1,1) in (2.13) dual to electric

embedding tensor deformations have field strengths given by

H(4) = g vol4

[(
4 e

1√
2

(φ1+φ2+φ3)
+
√

2χ eϕ+
√

2(φ1+φ2+φ3) det b
)(
m+

1

2
bTb

)
+ e−ϕ+

√
2(φ1+φ2+φ3)

(
1 + e2ϕχ2

)(
(trm) m− 2mm+

1

2
mbTb+

1

2
bTbm

+
1

4

(
tr
(
bTb

))
bTb

)]
+

1

2
mχeϕ+

√
2(φ1+φ2+φ3) bTb vol4 , (B.8)
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and

H0
(4) = gvol4

[(
2e

1√
2

(φ1+φ2+φ3)
+

1

2
√

2
χeϕ+

√
2(φ1+φ2+φ3) detb

)
tr

(
m+

1

2
bTb

)
− 1

4
eϕ
(
tr
(
bTbm−1

))2
+

1

4
eϕ tr

(
bTbm−1bTbm−1

)
− 1

2
eϕ+

√
2(φ1+φ2+φ3) (detb)2

]
− 1

2
√

2
meϕ+

√
2(φ1+φ2+φ3) detbvol4 . (B.9)

The expression for the various four-form field strengths in terms of the corresponding

three-form gauge potentials (and also two-form and vector fields) can be obtained by par-

ticularising the general expressions in eq. (2.9) of [14].

On the other hand, the three-form potential C̃ ≡ (1,1) in (A.23) dual to the magnetic

embedding tensor deformation has a field strength given by

H̃(4) =

[
1

2
g eϕ+

√
2(φ1+φ2+φ3)

(
χ tr

(
bTb

)
− 2
√

2 det b
)
−meϕ+

√
2(φ1+φ2+φ3)

]
vol4 . (B.10)

Then the consistency of the SO(3)R-invariant sector guarantees that the scalar potential

in (2.25) can be expressed in terms of the field strengths in (B.8)–(B.9) and (B.10). Indeed

one finds that

g
(
δij H

ij
(4) + 4H0

(4)

)
+mH̃(4) = −2V vol4 , (B.11)

in agreement with eqs. (2.28) and (2.29) of [14].

Finally, as discussed in full generality for the ISO(7) theory in [14], substituting the

duality relations into the Bianchi identities for the SO(3)R-invariant hierarchy of fields,

one obtains a projection of the scalar equations of motion. In terms of representations of

SO(3)d × SO(3)R ⊂ SO(7) such scalar equations of motion are given by

(1,1) ⊂ 1 : g
(
δij H

ij
(4) + 4H0

(4)

)
+ 7mH̃(4) = 0 , (B.12)

together with

(5 + 1,1) ⊂ 27 : 7H ij
(4) −

(
δhkH

hk
(4) + 4H0

(4)

)
δij = 0,

δij H
ij
(4) − 3H0

(4) = 0.
(B.13)
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[62] A. Guarino, J. Tarŕıo and O. Varela, Flowing to N = 3 Chern-Simons-matter theory,

arXiv:1910.06866 [INSPIRE].
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