
Improving EECluster to optimize the carbon
footprint and operating costs of HPC clusters

Alberto Cocaña-Fernández
Departamento de Informática

Universidad de Oviedo
Gijón, Spain

Email: cocanaalberto@gmail.com

Emilio San José Guiote
Departamento de Informática

Universidad de Oviedo
Gijón, Spain

Email: emilio.sanjose
@outlook.com

José Ranilla
Departamento de Informática

Universidad de Oviedo
Gijón, Spain

Email: ranilla@uniovi.es

Luciano Sánchez
Departamento de Informática

Universidad de Oviedo
Gijón, Spain

Email: luciano@uniovi.es

Abstract—High Performance Computing Clusters (HPCCs) are
essential platforms for solving up-to-date challenges through
parallel and distributed applications. Nevertheless, HPCCs have
an important economic and environmental impact owing to the
large amounts of energy required for their operation. In this
work, an improved version of our EECluster software focused
on reducing the operating costs and emissions of HPCCs is pre-
sented. Multicriteria learning algoritms are leveraged to jointly
optimize cluster performance, direct and indirect operating
costs both from an economic and an environmental standpoint.
EECluster is a mature software that can be integrated with the
resource management systems OGE/SGE and PBS/TORQUE.

Index Terms—Energy-efficient cluster computing, Multi-
criteria decision making, Evolutionary algorithms

I. INTRODUCTION

High Performance Computing Clusters (HPCCs) are the
core of today’s supercomputers (see Top5001 and The
Green5002) owing to their price, performance and the avail-
ability of variety of tools for parallel and distributed com-
puting. The economic impact of HPCCs in IT companies is
high. First, there are the direct costs, mainly electricity [1], [2].
Second, there are indirect costs, including life-cycle related
events, such as replacing deteriorated or obsolete computing
nodes and secondary equipment. Third, there are environment-
related costs that can be directly attributed to a centre, such as
greenhouse gas emissions. Greenhouse emissions depend, in
turn, on the proportion of renewable generation at the points
where the electricity is being produced; these can and are
easily monetized. Fourth, there are also indirect environment-
related costs, such as the cost of disposing of and recycling
e-waste, or the cost of the energy devoted to the manufacture
of replacement parts, minus the savings in reuse and the
second life of equipment. With all these factors considered, the
impact of HPCCs is comparable to that of aviation industry.
In particular, HPCCs are responsible for the emission of 100
million metric tons of CO2 every year [3].

These figures show accurately the magnitude of the problem
at hand, which itself is the bottleneck restraining the expansion
of HPCCs. Hence, maximizing the efficiency of HPCCs to
reduce operation costs, carbon footprint and to improve their

1http://www.top500.org/
2http://www.top500.org/green500

reliability is an overriding need. In recent years, many efforts
have been made to achieve a energy-efficient cluster com-
puting, following both static and dynamic approaches. Static
approaches focus on the development of hardware to maximize
the FLOPS/watt ratio, while the dynamic ones seek to adapt
the cluster to the current workload by turning off/on some
components, or reducing/increasing their speed (see [4] for a
more detailed introduction).

This work focuses on adaptive resource clusters, a method
consisting of the automatic reconfiguration of the cluster
resources to fit the workload at every moment by switch-
ing on/off its compute nodes, thus saving energy whenever
these are idle. This technique already has been applied to
Load-Balancing clusters (e.g., [5], [6]), and in commercial
hypervisors such as VMware vSphere3. Recently, software
tools implementing this technique in HPCCs have also been
developed [7]–[9].

Notwithstanding this, the dependence of this software tools
of closed sets of operational rules following a “one size fits
all” approach inherently includes a compromise between the
different working modes for each cluster environment. This
fundamentally limits their applicability to real world clusters
which require sufficient flexibility to find an optimal balance
between service quality, energy savings and node thrashing
within the cluster administrator tolerances. Consequently, we
introduced in [10] the software tool EECluster to improve
the efficiency of HPCCs while complying with administrator
preferences. EECluster achieves this due to the Hybrid Genetic
Fuzzy System (HGFS) that uses as decision-making mech-
anism, combining expert-defined knowledge with computer-
generated rules elicited from past workload records from the
cluster.

In our previous works, trade-offs were sought between
the quality of service, the amount of time that nodes are
powered off, and the number of power-on/off cycles. Different
approximations were used for converting power-on/off times
to money, but indirect environment-related costs were disre-
garded. To be specific, in Reference [11], a model was used
to assess the impact of EECluster on the eco-efficiency of the

3https://labs.vmware.com/vmtj/vmware-distributed-resource-
management-design-implementation-and-lessons-learned

cluster. The present work extends reference [11]: we leverage a
more sophisticated and exhaustive model that covers a wider
range of environmental aspects and balances service quality
and power consumption with all indirect costs, including
hardware failures and subsequent replacements, measured in
both monetary units and carbon emissions.

The remainder of the paper is as follows. Section II explains
the architecture of the EECluster tool and its decision-making
mechanism. Section III details how the learning process is
conducted. Section IV explains how EECluster can be installed
and used. Section V discusses use cases and shows some
experimental results. Section VI concludes the paper.

II. ARCHITECTURE

EECluster is a software to convert HPCCs running a Re-
source Management System (RMS) into adaptive resource
clusters that automatically reshape its compute nodes to suit
the current workload in order to improve their eco-efficency.
EECluster is comprised of a service (eeclusterd) and an ad-
ministration dashboard, having the former periodically retrieve
information regarding the cluster status and then using the
decision-making mechanism to reconfigure the compute nodes
by issuing a set of power-on or shutdown commands. The
administration dashboard is a web application deployed on
an application server that allows the cluster administrator to
remotely access the information of the cluster status, nodes,
job records, et cetera. Figure 1 provides a high-level overview
of the system components. A detailed description of the
EECluster components and the working cycle of eeclusterd
can be seen in [10].

Master node

Resource Management System

OGE/SGE

EEClusterd

DBMS

Java EE Application

Server

EECluster

dashboard

Host Information

Retrieval

Decision-making

mechanism

RMS Connector

Coordinator

PBS/TORQUE

Power

Management

Learning

algorithm
Simulator

qhost

qconf

qstat

qacct

pbsnodes

Accounting

records
qstat

Compute node

nvidia-smi

micinfo

/proc/cpuinfo

/proc/meminfo

arp

Fig. 1. EECluster: High-level overview of the system components

EECluster decision-making mechanism is implemented us-
ing Genetic Fuzzy Systems (GFS) to combine human expertise
and computer-generated rules. The first Knowledge Base (KB)
consists of a set of human-generated rules (adapted from

Reference [8]) and is aimed at increasing the number of
compute nodes in the cluster when average waiting time or
number of queued jobs are too high, and reducing in the
opposite case, while maintaining a minimum number of nodes
to run the queued jobs. The linguistic definition of these rules
can be found in Reference [4].

The second KB consists of a set of fuzzy rules learnt
from past data, in the form of a zero-order Takagi-Sugeno-
Kang (TSK) model [12], [13] and are based on a set of
fuzzy thresholds defining the maximum waiting time for each
node. The intuitive idea under this design is that each rule
defines the degree of truth of the assert “the i-th node must
be switched off”, having the degrees of truth of each rule
combined with the total number of active nodes determined
from this aggregated value. The linguistic description of this
KB applied to each compute node is as follows:

if t is T̃1 then off = w1

if t is T̃2 then off = w2

if · · · then · · ·
if t is T̃N then off = wN

where the fuzzy sets T̃1, . . . , T̃N have a triangular membership
function and define a uniform fuzzy partition of the input
variable t [12], and the defuzzified output of this model is

off(t) =

∑N
r=1 T̃r(t) · wr∑N

r=1 T̃r(t)
. (1)

Lastly, the number of nodes that are powered off at a certain
time is given by the sum of the outputs of the fuzzy model for
all values of idlei, where idlei is the time that the i-th node
has been at idle state:

Powered off nodes =

⌊
c∑

h=1

off(idleh)

⌋
. (2)

III. TUNING THE FUZZY RULE SET AND THE PARAMETERS
OF THE EXPERT-DEFINED RULES

The Hybrid GFS described in the preceeding section com-
bines the performance achieved by Fuzzy Ruled-Based Sys-
tems with the robustness of expert systems when it comes
to changes in workload patterns, thus avoiding the potential
overtrain of the former in unforeseen scenarios while attaining
great adaptability to the workload demand and flexibility to
meet the preferences of the cluster administrators. However,
in order for the Hybrid GFS to perform as required, both the
fuzzy rule set and the parameters of the expert-defined rules
must be tuned. An EECluster policy is defined by 2 ·N + 4
parameters [4]:

(tmin, tmax, nmin, nmax, T̃1, . . . , T̃N , w1, . . . , wN) (3)

These parameters are tuned through multiobjective evolu-
tionary algorithms (MOEAs) in a distal supervised learn-
ing approach (Fig. 2). Specifically, EECluster uses the
MOEAFramework implementation of these evolutionary al-
gorithms (NSGA-II, SPEA2, SMPSO, etc.) [14].

Learning

algorithm
Simulator

(tmin, tmax, nmin, nmax,

w1, ... ,wN)

(QoS, Direct cost/carbon footprint,

Indirect cost/carbon footprint)

(c nodes, s slots, n jobs)

Fig. 2. EECluster learning process

Every individual in the population is expressed as a chain
of parameters (recall Eq. 3), whose fitness is computed by
running a cluster simulation, as shown in Fig. 2. Cluster
simulations play the role of the training set in conventional
learning algorithms, and depend on n jobs and c computing
nodes each. The goal of the algorithm is to optimize a fitness
function consisting of three conflicting criteria: the quality of
service, the direct operating cost and the indirect operating
cost due to hardware failures and replacements. It must be
noted that in our previous works (see [10]) the direct and
indirect costs where hinted by hardware-agnostic metrics such
as the amount of time that a node is powered off or the
number of node starts/stops cycles. Nevertheless, these metrics
vaguely picture the effect for the cluster, as they lack a direct
translation to energy consumed, monetary costs or carbon
footprints, and this lack of information makes difficult for the
cluster administrators to choose their preferred configuration.
To improve the representativity of the metrics used in the
fitness criteria, in this paper we measure the direct operating
cost as the amount of energy consumed by the compute nodes
measured in Kilowatts-hour (kWh) along with equivalent
figures in terms of carbon footprint (Kg CO2) and monetary
cost (EUR). On the other hand, indirect costs are measured
in terms of manufacturing costs of hardware replacements
according to estimated failures rates under simulated stress
conditions and power on/off cycles, as these are known to be
the main factors affecting servers and disks reliability [15],
[16]. In order to estimate the effective failure rates of both
the computes nodes as a whole along with their hard disk
drives, the models described in [15], [17], [18] are used to
approximate the effect of temperature rise and thermal cycling
in processors, and increased disks start/stop frequencies.

We will assume that the Quality of Service (QoS) in a
HPCC depends only on the waiting time of the jobs before
their requested resources are assigned (i.e. jobs cannot be
interrupted). The waiting time is not directly measured in
seconds but it is divided by the job execution time. Let us
suppose that there are n jobs and the j-th job (j = 1 . . . n)
is scheduled to start at time tschj but it actually starts at tonj

and stops at time toffj . QoS is defined as follows [10]:

QoS = min

{
p : ||{j ∈ 1 . . . n :

tonj − tschj

toffj − tonj
≤ p}|| >

9n

10

}
(4)

where ||A|| is the cardinality of the set A. It is remarked that
the 90 percentile is used instead of average, because outliers

are possible.
Let c be the number of nodes, let state(i, t) be 1 if the i-th

node (i = 1 . . . c) is powered on at time t and 0 otherwise,
let power(i, t) be the power consumption of the i-th node
at time t. Lastly, let the time scale be the lapse between
tini=minj{schj} and tend= maxj{toffj}, then the overall
cluster power consumption is measured by adding the power
consumption of every compute node:

Power consumption =

c∑
i=1

∫ tend

tini

power(i, t)

1000
· state(i, t)dt.

The direct operating costs measured in both monetary units
and carbon footprint are computed by multiplying the overall
cluster power consumption by a translation factor according
to the energy mix of the cluster power supply. Let ρCO2 be
the amount of Kg of CO2 emitted per kWh generated, and
ρe the electricity charge measured in euros per kWh, then the
direct cost are calculated as:

Direct monetary cost = Power consumption · ρe. (5)

Direct carbon footprint = Power consumption · ρCO2 . (6)

The indirect operating costs for each compute node are
approximated by multiplying the probability of failure for the
node and its disks during the simulation time lapse (tini, tend)
by their manufacturing cost (monetary and carbon footprint),
and by the remaining useful life of the device. These partial
results are then added to estimate the costs for the whole
cluster:

Ind. monetary cost =

c∑
i=1

(1 − ulifei) · (SFRi
srv · msrvi

e

+SFRi
HDD · numi

HDD · mHDDi
e).

(7)

Ind. carbon footp. =

c∑
i=1

(1 − ulifei) · (SFRi
srv · msrvi

CO2

+SFRi
HDD · numi

HDD · mHDDi
CO2

).

(8)

where (1 − ulifei) is the remaining percentage of useful life
for the i-th node before it would be replaced anyway due
to its obsolescence. SFRi

srv and SFRi
HDD are the Simulation

Failure Rates for the i-th node and for one of its disks,
and represent the estimated probability of failure of these
devices during the simulation time lapse. msrvi

e/msrvi
CO2

and mHDDi
e/mHDDi

CO2
are, respectively, the manufacturing

costs in euros and carbon footprint for the i-th node and for
one of its disks. numi

HDD is the number of disks of the i-th
node.

The effective failure rates during the simulation for the i-th
compute node as a whole are approximated by:

SFRi
srv =

hours(i, tini, tend)

MTTFi
srv

.

MTTFi
srv =

1

on(i, tini, tend)

∫ tend

tini

([MTTFi
base · (1 − hload(i, t))

+
MTTFi

base

AFi
· hload(i, t)] · state(i, t)dt) − ∆MTTFi

tc.

∆MTTFi
tc = nd(i) ·

[(
Tavg a − Tamb

Tavg b − Tamb

)q

− 1

]
·MTTFi

base.

where hours(i, tini, tend) is the number of hours the i-th
node has been powered on during the simulation, MTTFi

srv is
the effective Mean Time To Failure of the node representing
the estimated number of hours until failure, MTTFi

base the
baseline Mean Time To Failure reported by the hardware
manufacturer prior to the simulation, on(i, tini, tend) is the
amount of time the i-th node is powered on during the
simulation, hload(i, t) is 1 if the i-th node is at high load at
time t and 0 otherwise. AFi is the acceleration factor for CPU
degradation between the higher CPU temperature when the
server is at high load (Thload) compared with the CPU temp
when is at idle (Tidle), as described in [15], [17] and based on
the time-to-fail model of the Arrhenius equation. ∆MTTFi

tc is
the reduction in the Mean Time To Failure due to node power-
on/off cycles (thermal cycling) and is calculated as decribed
in [15], [17] where Tavg b and Tavg a are the average CPU
temperatures before and after the power-on/off cycle, Tamb is
the ambient temperature and q is the Coffin-Mason exponent
taking the value 2.35 [17].

The effective disk failure rates for the i-th node are esti-
mated as:

SFRi
HDD =

hours(i, tini, tend)

MTTFi
HDD −∆MTTFi

HDD

.

∆MTTFi
HDD =

H

AFRHDD(f i)
− H

AFRHDD(f i + ∆f i)
.

∆f i = f i +
nd(i)

months(i, tini, tend)
.

AFRHDD(f) = 1.51e−5f2 − 1.09e−4f + 1.39e−4.

where MTTFi
HDD is the effective Mean Time To Failure of the

disk representing the estimated number of hours until failure,
H is the number of hours in a year (8, 760), ∆MTTFi

HDD

is the reduction in the Mean Time To Failure of the disk
due to node power-on/off cycles, AFRHDD(f) is a function
that empirically quantifies the disk Annualized Failure Rate
(AFR) based on its spindle start/stop frequency [18], f i is the
baseline disk spindle start/stop frequency (in times per month)
prior to any node reconfiguration, ∆f i is the increment in the
disk start/stop frequency due to node reconfigurations, nd(i)
is the number of discontinuities of the function state(i, t) in
the time interval t ∈ (tini, tend), and months(i, tini, tend)
is the number of months the i-th node has been powered on
during the simulation.

IV. USING EECLUSTER

EECluster is publicly accesible via web4. This website
displays all information regarding the tool, including a brief
description of the software, quick start guide, distribution
tarballs, contact address, and acknowledgments. Once the pre-
requirements are met (a compatible RMS, MySQL, Java EE

4http://sourceforge.net/projects/eecluster/

Fig. 3. HGFS configuration in the EECluster dashboard.

application server and Java Runtime Engine), EECluster can
be deployed in a cluster by downloading the tarball and
extracting its content into a local directory of the master
node. Then, the configuration script configure.sh is run to
automatically check all pre-requirements, configure and in-
stall the eeclusterd service, and deploy the administration
dashboard. Once installed and running, the eeclusterd will
start collecting information from the cluster status (nodes,
jobs, queues, etc.) via the RMS records and displaying it in
the dashboard. More detailed information on the installation
of EECluster and its basic use can be found in [10]. After
EECluster is deployed and running, the Hybrid GFS must be
configured to start reshaping the cluster. This is done using
the tuning algorithm detailed in Section III, which is launched
to find a set of non-dominated configurations (Pareto Efficient
Frontier) by running the HGFS tuning.sh script located in the
EECluster installation directory and passing it as parameters
the name of the target queue, the dates interval for the
training and the validation set, the MOEA algorithm [14], the
maximum number of fitness evaluations, and the number of
seeds for the algorithm. The results are stored in a CSV file
indicating for every learned HGFS configuration the fitness
values for the training and validation datasets, allowing the
cluster administrator to choose the preferred one according
with his or her subjective preferences, and then configuring it
in the dashboard (see Figure 3).

In this newer version, EECluster also includes a more
accurate and detailed reporting on its reconfiguration decisions
made by the HGFS and its effect on the cluster status over
time, as can be seen in Figure 4. Moreover, in regard to
the eco-efficiency and the operating costs of the cluster,

Fig. 4. Cluster status over time.

another new section was included to represent the cumulative
monetary costs, energy consumption and carbon footprints
since EECluster was deployed, as well as their evolution over
time (Figure 5). To compute these figures, the same formulae
described for the fitness in Section III were used. The hardware
parameters used as inputs in these formulae (ulife, MTTFbase,
etc.) are configured in the “Node Classes” section of the
EECluster dashboard.

V. EMPIRICAL ANALYSIS

The EECluster tool has been tested in various cluster envi-
ronments with different applications. This includes the Scien-
tific Modelling Cluster of the University of Oviedo (CMS)5

composed of three clusters and five transversal queues using
PBS as RMS, a 5-node research cluster with heterogeneous
hardware (3 Dell PowerEgde servers for OpenMP jobs, one
ASUS server with 2 NVIDIA Tesla for CUDA jobs, and one
Supermicro server with 3 Intel Xeon Phi coprocessors) using
OGE/SGE as RMS and supporting research in the field of al-
gorithm and chemical computational modelling, and a 34-node
OGE/SGE academic cluster used for educational purposes,
allowing students to learn and experiment with multicore, dis-
tributed and GPU computing. Is it also noteworthy that another
GFS-based mechanism following EECluster’s approach has
been successfully used to optimize virtual machine allocation
and server consolidation in Virtual Data Centers [19].

5Further information on the CMS can be found in its web site
(http://cms.uniovi.es)

Fig. 5. Direct and indirect costs and carbon footprint of the cluster.

In order to measure the savings achieved with EECluster
in terms of monetary cost and carbon footprint in a real
world environment, an experiment was done simulating a 33-
node cluster with each node characterized by the hardware
parameters detailed in Table I, and running actual workloads
of the aforementioned Scientific Modelling Cluster of the
University of Oviedo spanning 22 months with a total of
2907 jobs. To assess the results of EECluster under different
set of tradeoffs between QoS, direct and indirect costs, three
configurations were machine-learned and validated using the
holdout method with a 70-30% split in training and test. The
first (labelled as “HGFS QoS 0.0”) priorities QoS above all
other criteria, the second (labelled as “HGFS QoS 0.1”) seeks
the lowest direct costs long the QoS value is below or equal to
0.1, and the last one (labelled as “HGFS QoS 0.5”) rises the
QoS threshold to 0.5. In all cases, indirect costs are used to
break ties between direct costs. To serve as reference, a fourth
configuration labelled “None” represents the fitness values if
no controller is used.

As shown in Table II, EECluster is capable of optimizing
overall cluster operating expenses and carbon footprints by
suiting the preferred tradeoff between service quality, direct
and indirect costs, and enabling an informed decision-making
for the cluster administrator by translating the results achieved
to representative metrics.

VI. CONCLUDING REMARKS

It is well known that a substantial reduction of the carbon
footprint of High Performance Computing Clusters (HPCCs)

TABLE I
HARDWARE PARAMETERS OF THE COMPUTE NODES USED IN THE

SIMULATION.

Parameter Value Unit

ρe 0.15 /kWh
ρCO2

0.37 Kg CO2/kWh
Power at idle 150 Watts
Power at high load 350 Watts
ulife 60 %
msrve 4,200
msrvCO2

9,536 Kg CO2

mHDDe 150
mHDDCO2 238.41 Kg CO2

MTTFbase 219,000 hours
Tamb 22 °C
Tavg a 24 °C
Tavg b 50 °C
Thload 65 °C
Tidle 50 °C
numHDD 4 HDDs
MTTFHDD 146,000 hours
f 350 times/month

TABLE II
EXPERIMENT RESULTS FOR THE TEST SET.

Test set

QoS Direct cost Indirect cost Carbon footpr.
(EUR) (EUR) (Mt CO2)

None 0.00 3,950.21 1,517.49 13.03
HGFS QoS 0.0 0.00 2,437.28 893.25 7.96
HGFS QoS 0.1 0.07 1,747.44 664.10 5.76
HGFS QoS 0.5 0.19 1,516.09 650.54 5.17

can be achieved just by software. As such, there is a number
of packages that improve the energy efficiency of HPCCs.
Furthermore, energy savings are multiplied by the cascade
effect: each watt that is saved by an efficient management of
the compute nodes propagates reductions in the power supply,
UPS, cooling and transmission lines.

EECluster is a tool that transforms OGE/SGE and
PBS/TORQUE-based HPCCs into energy-efficient adaptive
resource clusters by combining human experience with rules
learnt from data in a system that is tailored to each specific
cluster. In this paper the package EECluster is improved to
optimize direct and indirect operating costs and environmental
impacts, taking into account the power use of the underlying
hardware and the effect of the cluster reconfigurations on the
hardware reliability and its subsequent replacements whenever
failures occur. As a result of this, the tool is now better
suited to improve the eco-effiency of the HPCCs by explicitly
balancing service quality with direct and indirect costs from
both an economic and an environmental standpoint. The tool
has been tested at the Scientific Modelling Cluster of Oviedo
University and deployed at different clusters for research
tasks in algorithm parallelization and chemical computational
modelling.

ACKNOWLEDGEMENTS

This work has been partially supported by the Ministry
of Economy, Industry and Competitiveness (“Ministerio de
Economı́a, Industria y Competitividad”) from Spain/FEDER
under grants MTM2017-83506-C2-2-P, TIN2017-84804-R and
by the Regional Ministry of the Principality of Asturias
(“Consejerı́a de Empleo, Industria y Turismo del Principado
de Asturias”) under grant GRUPIN18-226.

REFERENCES

[1] M. Ebbers, Mike Archibald, C. F. F. da Fonseca, M. Griffel, V. Para,
and M. Searcy, “Smarter Data Centers: Achieving Greater Efficiency,”
IBM Redpaper, Tech. Rep., 2011.

[2] The Economist Intelligence Unit, “IT and the environment A new item
on the CIOs agenda?” The Economist, Tech. Rep., 2007.

[3] Gartner, “Gartner Estimates ICT Industry Accounts for 2 Percent of
Global CO2 Emissions,” STAMFORD, 2007.

[4] A. Cocaña-Fernández, J. Ranilla, and L. Sánchez, “Energy-efficient
allocation of computing node slots in HPC clusters through parameter
learning and hybrid genetic fuzzy system modeling,” The Journal of
Supercomputing, vol. 71, no. 3, pp. 1163–1174, oct 2014.

[5] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath, “Load balancing
and unbalancing for power and performance in cluster-based systems,”
in Workshop on compilers and operating systems for low power, vol.
180. Barcelona, Spain, 2001, pp. 182–195.

[6] R. Das, J. O. Kephart, C. Lefurgy, G. Tesauro, D. W. Levine, and
H. Chan, “Autonomic multi-agent management of power and perfor-
mance in data centers,” pp. 107–114, May 2008.

[7] F. Alvarruiz, C. de Alfonso, M. Caballer, and V. Hernández, “An Energy
Manager for High Performance Computer Clusters,” in 2012 IEEE 10th
International Symposium on Parallel and Distributed Processing with
Applications. IEEE, Jul. 2012, pp. 231–238.

[8] M. F. Dolz, J. C. Fernández, S. Iserte, R. Mayo, E. S. Quintana-Ortı́,
M. E. Cotallo, and G. Dı́az, “EnergySaving Cluster experience in CETA-
CIEMAT,” in 5th Iberian GRID Infrastructure conference, Santander,
2011.

[9] S. Kiertscher, J. Zinke, S. Gasterstadt, and B. Schnor, “Cherub: Power
consumption aware cluster resource management,” in 2010 IEEE/ACM
Int’l Conference on Green Computing and Communications Int’l Confer-
ence on Cyber, Physical and Social Computing, Dec 2010, pp. 325–331.

[10] A. Cocaña-Fernández, L. Sánchez, and J. Ranilla, “A software tool to
efficiently manage the energy consumption of HPC clusters,” in 2015
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE,
aug 2015, pp. 1–8.

[11] ——, “Improving the eco-efficiency of high performance computing
clusters using eecluster,” Energies, vol. 9, no. 3, 2016. [Online].
Available: http://www.mdpi.com/1996-1073/9/3/197

[12] H. Ishibuchi, T. Nakashima, and M. Nii, “Classification and Modeling
with Linguistic Information Granules: Advanced Approaches to Linguis-
tic Data Mining (Advanced Information Processing),” Nov. 2004.

[13] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its
applications to modeling and control,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. SMC-15, no. 1, pp. 116–132, Jan. 1985.

[14] “MOEA Framework, a Java library for multiobjective evolutionary
algorithms.”

[15] W. Deng, F. Liu, H. Jin, X. Liao, H. Liu, and L. Chen, “Lifetime or
energy: Consolidating servers with reliability control in virtualized cloud
datacenters,” in 4th IEEE International Conference on Cloud Computing
Technology and Science Proceedings, Dec 2012, pp. 18–25.

[16] B. Guenter, N. Jain, and C. Williams, “Managing cost, performance,
and reliability tradeoffs for energy-aware server provisioning,” in 2011
Proceedings IEEE INFOCOM, April 2011, pp. 1332–1340.

[17] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “Lifetime reliability:
toward an architectural solution,” IEEE Micro, vol. 25, no. 3, pp. 70–80,
May 2005.

[18] T. Xie and Y. Sun, “Sacrificing reliability for energy saving: Is it
worthwhile for disk arrays?” in 2008 IEEE International Symposium
on Parallel and Distributed Processing, April 2008, pp. 1–12.

[19] A. Cocaña-Fernández, J. Rodrı́guez-Soares, L. Sánchez, and J. Ranilla,
“Improving the energy efficiency of virtual data centers in an it
service provider through proactive fuzzy rules-based multicriteria
decision making,” The Journal of Supercomputing, Mar 2018. [Online].
Available: https://doi.org/10.1007/s11227-018-2301-1

