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A UHF-RFID gate control system based on a
Recurrent Neural Network

Guillermo Alvarez-Narciandi, Andrea Motroni, Marcos R. Pino, Alice Buffi and Paolo Nepa

Abstract—This paper presents a novel, cost-effective and easy-
to-deploy solution to discriminate the direction of goods crossing
a UHF-RFID gate in warehouse scenario. The system is based on
a grid of UHF-RFID tags deployed on the floor underneath the
gate equipped with a single reader antenna. When a transpallet
crosses the gate, it shadows the tags of the deployed grid
differently, according to the specific direction, namely incoming
or outgoing. Such distinguishable signature is employed as input
of a recurrent neural network. In particular, the number of
readings for each tag is aggregated within short time-windows
and a sequence of binary read/missed tag data over the time
is extracted. Such temporal sequences are used to train a Long
Short-Term Memory neural network. Classification performance
of the proposed method is shown through a set of measurements
in indoor scenario.

Index Terms—UHF-RFID Gate; RFID machine learning;
RFID neural network; Recurrent neural network.

I. INTRODUCTION

THE use and development of Radio Frequency IDentifi-
cation (RFID) technology led to a growing number of

applications based on it. In 2018 more than 15 billion of RFID
tags were sold (a 23% increase with respect to 2017) [1],
showing the technology growth. In particular, the RFID tech-
nology was successfully used in the context of access control,
warehouse management and logistics. One specific problem
in warehouse scenario is the correct discrimination of goods
or pallets transiting through a gate or between two warehouse
areas. For such purpose, a UHF-RFID gate can be installed at
the points of interest. To correctly discriminate if the pallet is
incoming, outgoing or not-crossing the gate, several systems
were proposed in the state of the art. Since a warehouse is
a harsh environment due to multipath propagation and the
presence of a large number of RFID tags, several setups were
proposed apart from conventional localization systems [2].
Some solutions rely on creating shielded reading zones using
tunnel gates [3] or using additional hardware such as light or

This work has been supported by the Gobierno del Principado de Asturias
(PCTI)/FEDER under project IDI/2018/000191; the Ministerio de Educación
y Formación Profesional of Spain under the FPU grant FPU15/06431 and
EST17/00813, and by the Ministerio de Ciencia, Innovación y Universidades
under project ARTEINE (TEC2017-86619-R). This work has also been sup-
ported by Region of Tuscany - Regional Government (POR FESR 2014-2020-
Line 1-Research and Development Strategic Projects) through the Project
IREAD4.0 under Grant CUP 7165.24052017.112000028.

Guillermo Alvarez-Narciandi and Marcos R. Pino are with the Depar-
tamento de Ingeniería Eléctrica, Universidad de Oviedo, Spain (e-mail:
alvareznguillermo@uniovi.es; mpino@uniovi.es); Andrea Motroni and Paolo
Nepa are with the Department of Information Engineering, University of
Pisa, Italy (e-mail: andrea.motroni@ing.unipi.it; paolo.nepa@unipi.it); Alice
Buffi is with the Department of Energy, Systems, Territory and Constructions
Engineering, University of Pisa, Italy (e-mail: alice.buffi@unipi.it).

motion sensors [4] or cameras [5] to determine the movement
direction of goods, at the expense of higher complexity and
cost of the system. Moreover, the use of cameras may raise
privacy issues. Other solutions employ more than one antenna
to estimate the motion direction of the goods by comparing
the signature of tagged items measured from each antenna [6]
or creating different interrogation zones [7]. Keller et al. [8]
suggest to use various aggregated features based on the low-
level reader data (Electronic Product Code, Received Signal
Strength Indicator - RSSI, timestamp, reading antenna) to
discriminate moving tags in forklift truck applications, with
multiple antennas. Other solutions exploited the phase of the
tag backscattered signal to discriminate tags carried out by a
forklift [9] or moving along a conveyor belt [10].

Recently, machine learning techniques were employed in
RFID systems for localization purposes [11], [12] and for
classification of tag actions in UHF-RFID gates [13]. This
paper presents a novel solution to discriminate the crossing
goods from the not-crossing throughout a UHF-RFID gate
in a warehouse scenario. Furthermore, the crossing goods
are distinguished between incoming or outgoing. The system
employs a Recurrent Neural Network (RNN) exploiting data
acquired by a single reader antenna and a grid of UHF-RFID
reference tags.

RFID antenna

Grid of RFID tags

Figure 1. Basic scheme of the UHF-RFID gate control system with a single
reader antenna and a grid of reference tags.

II. CLASSIFICATION METHOD DESCRIPTION

The proposed system for the UHF-RFID gate is based on
a grid of reference tags deployed on the floor underneath the
gate and a single reader antenna (Figure 1). Therefore, when a
transpallet moves over the grid, tags are shadowed due to the
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Figure 2. Measurement setup of the proposed system for the UHF-RFID gate.

presence of metallic parts and some of them are not detected
by the reader antenna. Thus, the pattern of shadowed tags can
be used as a signature of the transpallet incoming, outgoing
or not-crossing actions. Such principle resembles the solutions
proposed in [14], [15] which are based on the shadowing of
the signal backscattered by a set of RFID tags deployed within
the area of interest for localization purpose.

An important design consideration is the size of the grid
of reference tags. The grid width should be at least similar to
the width of the gate to be monitored. In the other dimension,
the number of grid rows (i.e. the length of the grid) should
be at least three or four, so that the transpallet movement
causes a consecutive shadowing of tag rows, which is a useful
information for direction discrimination. On the other hand,
the number of tags should not grow indefinitely as the reader
must be able to detect all of them within a certain time window.
In this regard, it should also be considered that other tags will
be in the gate surroundings identifying different goods stored
in the warehouse. The distance between the reference tags
should be large enough to reduce the coupling effect, while
ensuring the tag shadowing during the transpallet motion.

A. The Recurrent Neural Network

To perform the transpallet action classification a Recurrent
Neural Network (RNN) was trained. This type of neural net-
work was proven to be very successful in sequence processing
or sequential processing of non-sequence data [16]. The basic
working principle of a RNN is that when there is an input to
the network, xt, it computes the new state, ht, based on the
previous state ht−1 and the input according to an activation
function f :

ht = f(Whhht−1 +Wxhxt). (1)

Then, in sequence-to-one (or sequence labeling) problems
(as the problem discussed in this paper) the output is usually

computed based on the last state. In the proposed system,
we employed a particular kind of RNN, that is the Long
Short-Term Memory (LSTM) network [17]. LSTM networks
solve the problems of vanishing or exploding gradient, and
have shown great performance in speech recognition [18] or
image caption generation [19] applications. They have a block
structure where each cell has an internal cell state, ct and a
hidden state ht. The above parameters are updated based on
the network input xt at time t, and the previous hidden state,
ht−1, as follows:

ct = f ◦ ct−1 + i ◦ g, (2)

ht = o ◦ tanh(ct), (3)

where ◦ denotes the element-wise product. The other param-
eters are the network input gate i and the cell candidate g,
which control the input amount which is written into the
cell; the forget gate f , which controls how much the cell
state of the previous time step is forgotten; the output gate
o, which computes the hidden state of the current time state.
These parameters can be calculated throughout the following
equation: 

i
f
o
g

 =


σ
σ
σ

tanh

W

(
ht−1

xt

)
, (4)

Where W is the weighting matrix; σ is the sigmoid func-
tion, and tanh is the hyperbolic tangent function. The size
of the network input, xt, corresponds to the number of input
features of the network, Nfeat. The size is of the hidden state
vectors, ht, as well as the size of the internal cell state, ct, i, f ,
o and g, is given by the number of hidden units (NHU) of the
cell, which controls the amount of information remembered
between time steps. Finally, the size of the weighting matrix
W is (4 ·NHU)× (Nfeat +NHU).

B. Data Pre-processing

The input features of the neural network should provide
representative and distinguishable signatures of each type of
movement of the transpallet. In addition, they should be chosen
to make the system independent on the application scenario,
and to avoid any calibration step to minimize deployment time.

First, it should be noted that, as the existence of moving
goods and their direction discrimination are based on the
information collected from a set of reference RFID tags,
an appropriate acquisition time must be defined. The latter,
denoted as twin, must be long enough to query all reference
tags. The duration of the time windows should be adjusted so
that the transpallet movements can be captured. This means
that, if the time window is too long with respect to the
transpallet moving speed, some movements could be filtered
out. On the other hand, if the time window is too short the
reader may not be able to read all the reference tags within
the same time window, and the system can misinterpret that
phenomenon as a shadowing effect.
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Figure 3. Number of readings of each grid tag during a sample incoming movement of the metallic cart. Consecutive time windows of duration of 200ms
were shown from (a) to (d). Missed tags are depicted in red. A schematic representation of the metallic cart position within the setup corresponding to the
snapshots presented from (a) to (d) is shown from (e) to (h), respectively.

The RFID reader is configured to perform continuous in-
ventories and, as explained before, in order to introduce mean-
ingful information to the neural network, the measured data
is aggregated within time windows of a predefined duration.
As a consequence, when the system is activated (for example
when a tagged transpallet is detected in the surroundings of
the gate) a set of features are extracted from the measured data
in a Nfeat×M matrix form. Then, such set feeds the network,
where Nfeat is the number of features and M is the number
of time windows within the total acquisition time. Among the
potential features, the two parameters described below were
considered:

• The number of times each reference tag was read during
each time window: in the absence of a moving transpallet
the number of readings within each time window should
be approximately constant depending on the number
of RFID tags present on the surroundings of the gate.
However, when a transpallet moves over the grid of
reference tags, it shadows the tags underneath and, hence,
the number of successful readings decreases. Therefore,
a pattern can be extracted from the fluctuations on the
number of readings during time windows of each refer-
ence tag.

• Whether each reference tag was read or was missed dur-
ing each time window: this provides a binary information
for each tag in each time window. If during a certain time
window the tag was detected at least once, then the binary
data is set to "read". In a similar fashion to the previously
explained feature, if a tag is shadowed by a transpallet, it
would not be read in that time window, so being classified
as "missed".

Both parameters provide analogous information, as it was
observed during the experimental analysis of the system.
However, since the number of readings depends on the amount
of detected tags in the surroundings of the gate (i.e. tagged
stocked goods waiting to be delivered), it was decided to use
the binary read/missed tag data, for each tag in a specific time
window. The binary data is equal to 1 if the tag is read or

equal to 0 if it is undetected.
The use of RSSI values of the signals backscattered by the

tags of the grid was discarded as this parameter depends on
the distance from the reader antenna to the grid, the material
of the floor under the gate grid, and on the multipath effect
typical of an indoor scenario.

Thus, the input of the neural network consists of one se-
quence, i.e. one feature, per reference tag with the read/missed,
whose length depends on the duration of the time window and
on the transpallet speed during the specific action.

III. EXPERIMENTAL ANALYSIS

In order to validate the proposed system, laboratory tests
were conducted at the research facilities of the Department
of Information Engineering of the University of Pisa. The
measurement setup is depicted in Figure 2. A total of 24
EasyRFID Dogbone tags were arranged in a 4 × 6 grid with
a 30 cm separation between them. The size of the grid was
selected so that it could be used to monitor the transpallet
motion throughout a gate of width less than 2m, a typical
size for many warehouse and docking area doors. The reader
antenna was fixed at the ceiling above the grid at a height of
2.6m, and a 38 cm wide metallic cart was employed to emulate
a transpallet. Then, a total of 159 trajectories were performed
while recording data from the tags: 50 incoming, 49 outgoing
and 60 passing nearby the grid without crossing the gate. For
each test, the reference tags were queried continuously, thus
before, during and after the metallic cart moved over the grid.
This resembles the practical operation of the proposed system,
ensuring that fluctuations in the tag readings are recorded.
Each acquisition was around T = 10 s long, so the value
M = bT/twinc ranged from M = 50 when twin = 200 ms
to M = 12 when twin = 800 ms. The obtained results
were used to build a data set to train and test the neural
network. The train and test data sets were built using 60%
and 40% of the data respectively. The different measurements
were randomly assigned to each group, but keeping the class
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balance, i.e. similar proportion of incoming, outgoing or not-
crossing trajectories.
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Figure 4. Number of missed tags clustered in groups of 2×2 tags, for (a) an
incoming trajectory of the metallic cart and (b) a not-crossing trajectory. The
R. r1 - r2 indicates the rows of the clustered tags. The C. c1 - c2 indicates
the columns of the clustered tags.

First, the two previously explained potential features during
some trajectories of the cart were observed. In particular, the
number of readings of the reference tags acquired during four
meaningful time windows of 200ms for an incoming trajectory
is depicted from Figures 3a to 3d (from the beginning to the
end). In addition, in order to clarify the position of the metallic
cart during the four presented snapshots of the incoming
trajectory, a schematic representation of the metallic cart and
the setup is depicted for each time window from Figures 3e
to 3h. The red blocks represent the missed tag data. As can
be observed, when the transpallet moves forwards, it shadows
mainly the reference tags aligned along columns #3 and #4. In
addition, as the transpallet crosses the gate, moving out from
the grid, the shadowed tags are read again.

Besides, just in order to facilitate the interpretation of
the data, the tags in the grid were clustered in six blocks
by grouping them in 2 × 2 sub-grids and their data were
aggregated. In particular, the number of missed tags within
each block is illustrated in Figure 4a for the same incoming
trajectory summarized in Figure 3. The number of tags that
are missed within each block for each time window ranges
from zero (all tags are read) to four (none of the tags of
the block were read during a given time window). As can
be seen, during the cart movement over the grid (during the
interval between 6 s and 8 s) there is a significant increase in
the number of RFID tags that were missed. Another example
for a not-crossing trajectory is depicted in Fig. 4b.

As previously explained, the data acquired during the labo-
ratory tests were divided into a training data set with 60% of
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Figure 5. Test accuracy as a function of the number of hidden units of the
LSTM network for different duration values of the time windows.

the trajectories and a test data set with the remaining ones. In
addition, the network input consisted of Nfeat = 24 features:
one sequence of read/missed per each reference tag of the grid.
Then, the LSTM network was trained using a different number
of hidden units for different values of the duration of the time
window. The obtained results are depicted in Figure 5 in terms
of Test Accuracy, namely the ratio between the number of
correctly classified actions and the total number of classified
actions. As can be observed, the test accuracy approaches the
value of 1 for 50 hidden units and a time window of 400ms.
The usage of 50 hidden units also provides an accuracy greater
than 0.9 for the other studied values of time window duration.
The test accuracy obtained using more than 50 hidden units
decreases showing that the network might be overfitting.

IV. CONCLUSION

A novel system to discriminate the direction of pallets
crossing a UHF-RFID gate in a warehouse scenario was
presented. The system is based on an easy-to-deploy grid of
reference tags placed underneath the gate and a single reader
antenna placed at the gate top over of the grid, making the
system cost-effective. The transpallet movement causes the
shadowing of the reference tags producing a distinguishable
signature of its trajectory. The architecture of the proposed
system exploits the shadowing effects of the transpallet on
the reference tags close to it, which is predominant with
respect to the multipath phenomena. The number of readings
of each reference tag is aggregated within time windows
using a binary attribute per tag (read or missed) as input
features (one for every reference tag deployed on the grid)
of a Long Short-Time Memory recurrent neural network. The
test accuracy can approach the value of 100% for a proper
time-window duration and number of hidden units. Although
other state-of-the-art systems show similar performance, the
required hardware infrastructure of the proposed system is
cost-effective and easy-to-deploy. In addition, the system is
more robust against multipath and should be adaptable to
other scenarios without the need of retraining the network. The
proposed system can find application also for discriminating
the transit of a forklift through a point of interest. Furthermore,
the proposed system is able to deliver real-time results as,
once the neural network was trained, the transpallet action
classification can be performed in a few milliseconds.
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