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P. Mart́ınez-Camblora and S. Pérez-Fernándezb and S. Dı́az-Cotob

a Geisel School of Medicine at Dartmouth, Hanover (NH); USA bUniversidad de Oviedo,
Asturies, Spain

ARTICLE HISTORY

Compiled October 14, 2019

ABSTRACT
Modern science frequently involves the analysis of large amount of quantitative
information and the simultaneously testing of thousands or even hundreds of thou-
sands null hypotheses. In this context, sometimes, naive deductions derived from
the statistical reports substitute the rational thinking. The reproducibility crisis is
a direct consequence of the misleading statistical conclusions. In this paper, the
authors revisit some of the controversies on the implications derived from the sta-
tistical hypothesis testing. They focus on the role of the p-values on the massive
multitesting problem and the loss of its standard probabilistic interpretation. The
analogy between the hypothesis tests and the usual diagnostic process (both involve
a decision-making) is used to point out some limitations in the probabilistic p-value
interpretation and to introduce the receiver-operating characteristic, ROC, curve as
a useful tool in the large-scale multitesting context. The analysis of the well-known
Hedenfalk data illustrates the problem.

KEYWORDS
(Bio)markers; False-Discovery Rate; Hypothesis testing; Multitesting problem;
p-value; Receiver-operating characteristic (ROC) curve.

1. Introduction

In a world dominated by uncertainty, statistical and probabilistic arguments are be-
hind most of the scientific findings. For instance, they are crucial in the design of
the experiment which led to the Bosson Higgs detection [32]. Both statistics and
probability are also valuable tools for modern astronomers [17]. Moreover, the so-
called probabilistic method [1] has been widely used by authors such as Paul Erdős
(https://en.wikipedia.org/wiki/Paul_Erd\%C5\%91s). In medicine, the impact of
the patient history on the observed measure makes that the conclusions of an over-
whelming number of studies are based on statistical results. Beyond a corporativist
claim, the presence of statistical professionals in most of the research projects is be-
coming a reality. However, probabilistic laws are frequently different to the logical
ones; for instance, the assumptions i) P(A > B) > 1/2 and ii) P(B > C) > 1/2 do
not imply that P(A > C) > 1/2 (probability does not satisfy the transitivity prop-
erty). Correct statistical results are sometimes misunderstood and therefore the con-
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clusions derived from these misconceptions are wrong as well. Biomedical researchers
frequently simplify their findings and translate them in a yes/no response. This sim-
plification is especially dangerous when it is based on statistical hypothesis tests and
on the omnipresent significance level α = 0.05. Moreover, in the last decades, techno-
logical advances have drastically increased the available information. Modern science
frequently produces data on thousands of different characteristics (variables). The -
omic technologies (genomics, transcriptomics, proteomics, etc.) stand for the most
relevant examples although other fields like brain imaging or spatial epidemiology
have also increased substantially the size of the collected data. A usual practice is to
measure all this information in two or more groups of individuals (sample units) and,
by using one particular statistical test, determining whether, in those groups, the be-
havior of the collected variables is different or not. In this context, individual p-values
lose any probabilistic interpretation and classical multitesting correction procedures
(the Bonferroni is the most popular) lead to drastic increments in the Type II error.
In order to deal with this problem, more liberal criteria have been proposed in the
specialized literature (see, for instance, Farcomeni [16] and references therein), being
the False-Discovery Rate (FDR) [26] the most popular.

In this manuscript, the authors ponder on the role of the p-values in the multiple
hypothesis testing context. Some of the interpretations and limitations of the usual
multitesting procedures are pointed out. We try to avoid excessively technical expres-
sions in order to bring this discussion near to statistical practitioners although we
realize that for a full understanding of the manuscript, some statistical background in
multitesting problems is required; notice that most of the references dealing with the
multitesting problem are published in strongly theoretical journals. The remainder of
the paper is structured as follows. Although it is not the main focus of the manuscript,
the concept and implications of individual p-values are discussed in Section 2. Section
3 is devoted to the controversy over whether p-values should be adjusted or not in
the multitesting context. The well-known False-Discovery Rate (FDR) and some of
its main competitors are considered in Section 4. In Section 5, we introduce the main
idea of this paper; in the multitesting context, we propose to interpret the p-value as a
marker of the null hypothesis being true. That is, for each subject (read hypothesis),
small p-values would be associated, and just associated, with larger likelihood of be-
ing positive (null hypothesis untrue). This interpretation allows to point out some of
the limitations of the multitesting procedures and helps us to a better understanding
of the obtained results. In addition, the well-known receiver-operating characteristic
(ROC) curve [19] appears as an useful tool to be considered in the multitesting prob-
lem. A study of the well-known Hedenfalk [20] data is displayed in Section 6. Finally,
in Section 7 we present our main conclusions.

2. The elusive concept of p-value

From a mathematical point of view, let H0 : Θ = 0 (H1 : Θ 6= 0) be a usual

generic statistical hypothesis testing and Θ̂X the evidence resulting from the sample
realization, X. The p-value is defined by p = 1 − P(Θ ∈ (−|Θ̂X |, |Θ̂X |) |H0) i.e., the
probability that the obtained result, or one more divergent from the null, was observed
given that the null hypothesis is true. Since the nominal level α (= 0.05, usually) is
fixed, the null rejection (p < α) can imply not only that H0 is false but also that the
sample belongs to an unlikely family (subset) under the null. That is, the common
conclusion derived of rejecting the null based on a low p-value contains the risk of
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rejecting a true null: this possibility is known as Type I error and its probability is
controlled by α.

Criticisms on the real implication of the p-value are not new (see, for instance, Cohen
[11]) but this controversy still produces references (see, for instance, Wellek [36] and
the subsequent comments to this paper). In 2015, the journal Basic and Applied Social
Psychology published an Editorial banning the use of p-values [31]. Polemic continued
in the Editorial of the journal Significance [30]. In 2016, The American Statistical
Association published a statement [35] with six principles regarding the p-values use
which tries to improve the conduct and interpretation of quantitative science.

Another negative feature of the p-values is that they strongly depend on the sample
size. They decrease when the sample size increases. Demidenko [13] suggested using
an effect size measure, as many statisticians already do, but expressed on the proba-
bility scale. Particularly, he proposed to use the so-called D-value which, for the two
sample-problem and if X and Y stand for the random variables from which the two
independent samples were drawn, is defined by P(X < Y ). Perhaps, the lack of the
transitivity property is its most relevant handicap.

3. The multitesting problem: to adjust or not to adjust, that’s the
question

The multitesting problem appears when two or more hypotheses tests are considered
simultaneously, i.e. we have H0,i : Θi = 0 (H1,i : Θi 6= 0) with 1 ≤ i ≤ N . In
this context, considering the nominal level as in the single hypothesis setting, the
probability of committing any (false positives) increases. Adjusting the significance
level allows to control the probability of Type I error at the original fixed level. There
exist several procedures for adjusting the p-values, among all of them, the Bonferroni
method [7] is the most popular. In biomedicine, the use of these adjustments -however-
is still controversial.

Averse arguments to the multiplicity adjustment are mainly that i) when one ad-
justs, the null hypothesis actually contrasted is the intersection of the N originally
involved nulls; this (new) null is, in general, lack of interest [24], ii) adjustment implies
an unnecessary increment in the probability of committing a Type II error and iii) it
is not clear what number of tests should be considered in the adjustment: number of
tests done, number of tests included in the document, other studies which deal with
the same research question, etc. The implication of this last point is particularly inter-
esting. Because the obtained p-value should be modified if, in the future, new studies
dealing with the same research question were conducted (or just published?); the study
conclusion would be submitted to constant potential changes [23]. From a technical
point of view, it is clear that if N true-null tests are simultaneously performed at a
fixed nominal level α, the probability that some of the (N) obtained p-values were
significant (below α) is greater than α (in fact, assuming independence among the N
tests, it is 1 − (1 − α)N , almost 1 for N ≥ 100). Bender and Lange [3] argued that
the multiplicity adjustment is not just related with the intersection hypothesis but
allows to derive more plausible conclusions regarding to all the hypotheses considered
in the study. There is not an easy answer to the question of when the adjustments for
multiple tests are necessary [4]. In confirmatory studies with pre-fixed goals such as
clinical trials, in which the hypothesis testing is used as a tool for determining the final
decision, the multiplicity adjustment is mandatory [25]. In observational exploratory
studies, the adjustment is not a requirement [34] although obtained results should be
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carefully interpreted.
The multitesting problem changes in the massive data context. In these analyses,

the previous hypotheses are frequently related to the existence of a number of effects
(variables behaving different between positive and negative subjects) among a huge
number of potential ones. The effects are often selected among those with the smallest
p-values. In this context, to control the so-called family wise error rate (FWER), that
is, to control the probability of committing any Type I error (one non-effect declared
as effect) is too restrictive because it provokes a drastically increment in the Type II
error probability. Besides, most of those procedures assume independence among the
hypotheses to test making them even more conservative. Conversely, making no control
on the fixed nominal level supposes a non-assumable number of spurious (erroneous)
rejections. In order to deal with this question, more liberal criteria have been proposed.
In the next section we revise some of them.

4. The False-Discovery Rate and its competitors

The FDR was studied, popularized and formally defined by Benjamini and Hochberg
[5] in one of the most cited statistical papers in the history. Previously, Seeger [26] elab-
orate and discussed a stepwise multiple testing procedure for controlling the proportion
of false discoveries among all discoveries and the same algorithm was considered by
Simes [28] who proved that it controls FWER when all hypotheses are true. FDR s
defined as the expected proportion of (false) spurious effects declared i.e., the expected
value for the false-discovery proportion, FDP, that is,

FDR =E[V/(R ∨ 1)]

=E [V/R |R > 0] · P(R > 0), (1)

where V is the random variable modelling the number of true nulls (erroneously)
rejected and (R ∨ 1) stands for the maximum between the total number of rejections,
R, and 1, according to some significance rule. Notice that, with this notation, the
FWER tries to control P(V > 0). The FDR is a frequentist well established definition
for the multiple hypothesis testing errors. Besides, it has some interesting properties:
it is equivalent to the FWER when all the null hypotheses tested, N , are true and is
more liberal than the FWER criterion otherwise. The second point is that it allows
to increase considerably the number of rejections and, likely, the number of detected
effects. Notice that, in a number of large-scale experiments (for instance in microarray
genome-wide scans), it is usually supposed that most of the nulls are true. The usual
goal of these studies is to identify a subset of interesting factors for future confirmatory
experiments and the relative role of Type I and Type II errors can change with respect
to the (single) hypothesis testing framework.

Figure 1 depicts, visually, the different philosophy of both the FWER and the FDR
criteria. While the FWER tries to commit no Type I error and, in fact, just a small
percentage of the studies should contain rejected true-nulls, the FDR assumes some
percentage of false discoveries in each study.

Other criteria have been proposed in the specialized literature including the positive
false discovery rate (pFDR) suggested by Storey [29]. Most recent works deal with the
problem of controlling the tail probability of false positive discoveries. For instance,
Genovese and Wasserman [18] proposed to control the tail probability of the false dis-
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covery proportion (FDP) by the so-called false discovery exceedance (FDX); that is, to
control P(V/(R∨1) > α). Similarly, Dudoit et al. [14] suggested controlling the gener-
alized family-wise error rate (gFWER) defined as the probability of committing more
than k Type I errors i.e., P(V > k). Carvajal-Rodŕıguez et al. [8] proposed the sequen-
tial goodness of fit (SGoF) strategy which rejects the number of null hypotheses equal
to the difference between the observed and the expected amounts of p-values below
a given threshold under the assumption that all nulls are true. The SGoF procedure
have been extended by Castro-Conde et al. [9]. In general, new references studying,
extending and proposing new multitesting procedures are continuously published in
the specialized literature.

Assuming independence among the N involved tests, the p-values cumulative dis-
tribution function is given by the mixture

G(t) = P(p ≤ t) = (1− π) · F0(t) + π · F1(t) t ∈ [0, 1], (2)

where F0 stands for the distribution function of the p-values when the null hypothesis
is true (we assume here that F0(t) = t with t ∈ [0, 1], i.e., we assume that, under the
null, each single p-value is uniformly distributed on [0, 1]). This is a reasonable proviso,
although it is only true if the null is simple and the distribution, under the null, of
the used test statistic is continuous and known; the true p-value distribution is only
stochastically dominated by the uniform if its distribution is discrete or the p-value is
estimated by a resampling method [16], F1 is the CDF for the p-values when the null
is false and π is the proportion of false nulls (effects) in the N considered tests; i.e.,
π = N1/N with N1 the number of false nulls. That is, π is the prevalence of effects on
the set of consider hypotheses. Hence, fixed a threshold, t (the null is rejected if the
p-value is below t), the false discovery proportion (FDP) is defined by,

FDP(t) =

∑
i∈I0 I(pi < t)∑N

i=1 I(pi < t) ∨ 1
= vt /(rt ∨ 1) t ∈ [0, 1], (3)
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Figure 1. Blue-dots stand the true-nulls, red-dots the false-nulls. Dots outside the gray region are rejected.
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with I0 the set of indices for the true nulls (#I0 = N − N1) and I(A) the standard
indicator function (takes a value of 1 if A is true and 0 otherwise). Conditioning
to the number of rejected hypothesis is rt, under the mixture model, vt follows a
binomial distribution with number of repetitions rt and success probability (1 − π) ·
t /G(t). Besides rt follows a binomial distribution with N the number of repetitions
and probability of success G(t). Then

FDR(t) =E[FDP(t)]

=E[E[vt/(rt ∨ 1)|rt]]

=

N∑
rt=1

1

rt

rt(1− π)t

G(t)

(
N

rt

)
G(t)rt(1−G(t))N−rt

=
(1− π)t

G(t)
(1− (1−G(t))N ) =

(1− π)t

G(t)
+O((1−G(t))N ). (4)

Due to the current state-of-the-art (N is usually a really big number), the error term
can be removed. Therefore, given a sorted sample of p-values, {p(1), p(2), · · · , p(N)}, a
simple plug-in method determines that, for each i ∈ {1, · · · , N},

F̂DR(p(i)) =
(1− π) · p(i)

ĜN (p(i))
≤
N · p(i)

i
.

where ĜN is the empirical cumulative distribution function of G. For a fixed nominal
level, α, Benjamini and Hochberg [5] (BH) proposed to select the threshold by tBH =
max{p(j) : p(j) ≤ j · α/N, 1 ≤ j ≤ N}, and then

F̂DR(tBH) =
(1− π) · tBH
ĜN (tBH)

≤ α,

so, the expected value of false discovery proportion is controlled at the desired level
α. Notice that i) the properties of the p-value are used for controlling the FDR but
the FDR has not these properties, ii) a less conservative approximation could be
developed by making any previous estimation of the parameter π (see, for instance,
Dalmasso, Broët and Moreau [12]) and iii) although the proof of the previous results
has been extended to certain types of dependencies among the hypotheses tested [6],
it is strongly dependent on the relationships among them.

5. p-Value as marker. The prevalence matters

It seems clear that, in the massive-data context, individual p-values lose their prob-
abilistic interpretation. Therefore, and due to the p-values stochastic nature, it can
be assumed that we have a measure which has different behavior in those subjects
(hypotheses) belonging to the positive group (false-null) and in those which belong to
the negative group (true-null). Hence, p-values can be seen as a marker of the likeli-
hood that a subject is or is not positive. Of course, smallest p-values are associated
with highest probabilities of being within the positive group. Left panel of Figure 2
represents the probability density functions (PDF) of the z-values (Φ−1(p) with p the
p-value and Φ the cumulative distribution function (CDF) of the standard normal
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distribution) under both the null (blue line) and the alternative (red line) hypotheses.
Each null hypothesis, H0,i : µ1,i = µ2,i (1 ≤ i ≤ N), was checked using the Student
T-test. We consider standard normal distributed samples and alternatives detected
with a statistical power of 0.8 (at α = 0.05). The first lesson to learn is that, as it is
well-known in the diagnostic context, the prevalence is a crucial parameter in order
to determine that a subject, H, with an abnormal marker value is really a positive
subject. Notice that, if the marker value for the subject H is τ , then

P(H ∈ H1|T ≤ τ) =
π · P(T ≤ τ |H ∈ H1)

(1− π) · P(T ≤ τ |H ∈ H0) + π · P(T ≤ τ |H ∈ H1)

=
π · Se(τ)

(1− π) · (1− Sp(τ)) + π · Se(τ)
,

where H1 and H0 stand for the positive and negative groups, respectively, T models
the marker behavior, π is the prevalence of the studied characteristic in the popu-
lation, Se the sensitivity (that is, the probability that a positive subject is correctly
classified as positive) and Sp the specificity (the probability that a negative subject is
correctly classified as negative). Even using a classification rule with both sensitivity
and specificity of 0.95, if the prevalence is 0.003, the probability that a random selected
subject classified as positive was really a positive is 0.05 (from the above equation,
0.003 ·0.95/(0.997 ·0.95+0.003 ·0.95)). At right, Figure 2 depicts the above-mentioned
probability against the real proportion of false-null for diagnostic procedures with dif-
ferent sensitivities/specificities. Notice that, when the proportion of false-null, called
here prevalence (N1/N) is zero, the probability of success in the positive group is
mandatorily zero. Besides, since in practice the number of effects in the set are ex-
pected to be small [15], we report the prevalence in log-scale for highlighting the
smaller values.

The point is that, given a random vector modelling the p-values behavior for the
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Figure 2. Left, probability density functions (PDF) of the z-values (Φ−1(p) with p the p-values and Φ the
cumulative distribution function (CDF) of the standard normal distribution) under both the null (blue line) and

the alternative (red line) hypotheses. Right, probability that a subject classified as positive was really positive
against the prevalence (in log-scale) for diagnostic procedures with different sensitivity (Se) and specificity

(Sp) values.
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false-null (positive) group, ξ = {ξ1, · · · , ξN1
}, the distribution of the k-th sorted statis-

tic is,

P{ξ(k) ≤ t} = Fξ(k)
(t) =

N1∑
j=k

(
N1

j

)
F1(t)j(1− F1(t))N1−j .

We simultaneously check these hypotheses joint with another N0 true-nulls. Let χ =
{χ1, · · · , χN0

} be the random vector modelling the p-values behavior for the true-null
group. In this case, the distribution of the l-th sorted statistics is,

P{χ(l) ≤ t} = Fχ(l)
(t) =

N0∑
i=l

(
N0

i

)
ti(1− t)N0−i.

Rejecting k false-null hypotheses implies rejecting as well those true-null with p-values
below ξ(k) and we know that,

P{χ(l) ≤ ξ(k)} =

∫
Fξ(k)

(t)dFχ(l)
(t).

This implies that the threshold required for detecting a particular percentage of false-
null is strongly affected by the number of true-null hypotheses which are included
and simultaneously tested. We consider a fixed number of false-null, N1 = 100, with
Type II error probability of 0.2 for a Type I error probability of 0.05. Figure 3, at left,
depicts the FDR required for detecting 10, 25, 50, and 80 effects (false-null) against the
prevalence in log-scale (π = N1/(N0 + N1)). For the smallest considered prevalence,
we really do not have the ability to detect most of the effects and the probability of
rejecting a true-null is larger than the probability of rejecting a false-null. At right,
Figure 3 shows the FDR against the threshold (in log-scale) for different prevalence.
The FDR has a clear inflexion point which strongly depends on the prevalence. Besides,
the FDR has a rapid increment with the threshold for lowest prevalence.

5.1. Dependency structures

As we already have mentioned, the validity of most of the adjusting procedures, are
proved assuming the independence among the N considered tests, the so-called inde-
pendence assumption. Although this assumption is reasonable in a number of practical
situations (see Clarke and Hall [10]), it may be a source of serious drawbacks. The
effect of the potential relationship between the obtained p-values has been previously
considered in the literature and there exists a number of papers dealing with it (see,
for instance, Martinez-Camblor [22] and references therein). However, many of them
assume hypotheses which are only reasonable for particular settings. In some fields,
for instance in epigenomic or in mRNA analysis, it is known the strong relationship
among the considered tests. This relationship frequently provokes asymmetry in the
distribution of the observed number of rejections under the null. This asymmetry im-
plies that to control a expected value of false discoveries (FDR) does not imply to have
a good control of the number of false discoveries in a particular sample realization.
Besides, the idea of having N subjects disappears, and we return to the undesired
scenario in which we have a N -dimensional random sample with size 1. Figure 4 de-
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Figure 3. Left, FDR for detecting a fixed number of false-null hypotheses (10, 25, 50 and 80 are considered)

against prevalence (log-scale) for a problem in whichN1 = 100 and power is 0.8 at α = 0.05. Normal samples and

T-tests are considered. Right, FDR against threshold (log-scale) for the same problem and different prevalence.

picts the PDF of the observed number of rejections (α = 0.05, 0.10) for simulated
situations in which all null hypotheses tested are true. Correlation structures are ex-
tracted from two real-world studies: the Hedenfalk data [20] (3226 genes directly down-
loaded from http://faculty.washington.edu/~jstorey/qvalues/results.html)
and the Shen data [27] (the dataset are publicly available at the Gene Expression Om-
nibus (GEO) page, with accession number GSE37988, http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE37988. A total of 24977 autosomal CpG sites are
considered). The asymmetry increases the probability of having an abnormal large
number of observed rejections.

Although it was proved that, for some correlation structures, the BH procedure
still controls the FDR [6], it is worth remarking that the FDR is an expected value
and then, it is not the most appropriate summary measure for strongly asymmetric
distributions. In these cases, to control the FDR does not avoid that the probability of
observing large values of FDPs is still high even when all tested hypotheses are true.

6. Real-world application: the Hedenfalk data

The Hedenfalk data [20] stands for an illustrative and well-known example which, in
the present framework, has been previously considered by several authors. One of the
goals of this microarray study was to find genes differentially expressed in breast cancer
patients with mutations in the BRCA1 gene relative to those with BRCA2 mutation.
A total of 3226 (= N) genes were studied on 7 patients with BRCA1- and on 8 with
BRCA2-mutation. The mean±standard deviation for the p- and z-values obtained from
the 3226 two-side Student tests (one for each gene) on the Hedenfalk data (without
any data pre-processing), were 0.372± 0.30 and −0.471± 1.15, respectively. Figure 5
depicts the histogram for the 3226 p-values (top-left) and the kernel density estimation
for the respective z-values (top-right). At level α = 0.10, the BH procedure declares
124 effects, those below 0.00385 (= τ0).

A total of 840 out of 3226 p-values, 26%, are below 0.1. Notice that, based on the left
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panel of Figure 4 (black line) the probability of observing this value when all the null
hypotheses were true is zero. Assuming independence among the hypotheses, and that,
for an specificity of 0.1, the sensitivity of the test is 0.8 (Figure 5, bottom-left, depicts
the resulting ROC curve), we have that F1(τ0) = P{p < τ0|H1} = 0.2935 (computed

similarly to the panel right in Figure 2). Since ĜN (τ0) = 124/3226, in this scenario,
π̂0 = 0.1195. With this prevalence, the expected proportion of false-null hypotheses
detected is 0.291 (112/385). From equation (4), using the prevalence estimation, we can
obtain a new bound for the FDR. Particularly, we detect 147 effects with a threshold
of 0.0051 (= τ1) and expected proportion of false-null hypotheses detected of 0.329
(π̂1 = 0.1243). A new iteration reports 148 declared effects (τ2 = 0.0052) and a
prevalence of 0.1253 (= π̂2) which means a similar expected proportion of false-null
hypotheses detected of 0.329. The fourth iteration reports the same results. Figure 5,
bottom-right, represent the iterative process.

7. Discussion

Statistical procedures are frequently performed routinely and without the previous
checking of the required assumptions. The derived conclusions are sometimes misun-
derstood and are not taken with the appropriate caution. Those actions contribute to
the reproducibility crisis and to the deterioration of the sciences credibility [2]. The
problem gets worse when the studies involves thousands of statistical hypotheses which
cannot be handled individually nor carefully. Such is the case of most of the studies
in the so-called -omic sciences in which, commonly, thousands or even hundreds of
thousands of null hypotheses are simultaneously tested and, once a threshold is com-
puted, a subset of them are considered as effects. But, of course, statistical analysis
cannot replace the rational thinking and the derived conclusions should be carefully
considered [35]. Knowing the real implications of the selected threshold and the risks
(limitations) of the decisions based on statistical hypothesis testing is crucial to get a
good understanding of the observed results.
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In this paper, we revisited some relevant controversies regarding to the interpreta-
tion and the limitations of the statistical hypothesis tests in the multitesting context.
Avoiding the usual (perhaps) excessively probabilistic language, we review the false
discovery rate (FDR) criteria and point out some of its limitations. We include some
simple equations which allow to understand the algorithm popularized by Benjamini
and Hochberg [5]. These are helpful for seeing that, in this procedure, the p-value is just
a mean for getting the objective of controlling the FDR. We also insist in the relevancy
of the ratio of false- and true-null hypotheses in order to know what the real capacity
of our study for detecting the real existing effects is [21]. The analogies between the
massive data testing and the diagnostic problem allow a better understanding of the
prevalence (proportion of false-null hypotheses) relevancy and its crucial role for com-
puting the probability that a rejected null hypothesis is actually an effect. Although,
of course, the contexts are not equal, the clear link allows to take advantage of some
tools used in the diagnostic process context, such as the receiver-operating character-
istic (ROC) curve, for a better depicting and understanding of the considered scenario.
Arguing similarly to the problem of sample size compute, we fix some conditions on
the p-value distribution under the alternative hypotheses to provide prevalence esti-
mations. These estimations help us to know more about the problem we are dealing
with. Important to remark that, due to the stochastic nature of the p-value behavior,
to know the real number of false-null hypotheses does not imply that we can detect ex-
actly which are those false-null hypotheses. Besides, remarkable that smallest p-value
does not imply strongest effects [33].

Our results show clearly how the noise produced by the true-null hypotheses in-
cluded in the analysis provokes a relevant lost in our capacity to detect actual false-null
hypotheses. Therefore, in the large-scale testing context, it is advisable to reduce the
number of tests performed by using previous information about the region in which
the searched effects can be located. In addition, the presence of not negligible corre-
lation between the performed tests complicates the problem. The role of the so-called
independence assumption should be considered in order to interpret the obtained ROC
curves. Simulation studies report additional information on the false-discovery propor-
tion (FDP) which enlighten the complexity of the task we are dealing with.

In short, not each obtained conclusion can be reduced to a simple yes/no answer.
Sometimes, the learning derived from scientific studies can be ambiguous and/or in-
conclusive. To keep this tone in the written sentences can be less attractive but more
realistic about what the real state of the art is. In the massive data analysis con-
text, to provide some information about the effects prevalence in the total setting of
hypotheses performed can help us to settle how realistic the derived conclusions are.
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