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Abstract

Most of the distances used in case of fuzzy data are based on the well-known
Euclidean distance. In detail, a fuzzy number can be characterized by cen-
ters and spreads and the most common distances between fuzzy numbers
are essentially defined as a weighted sum of the squared Euclidean distances
between the centers and the spreads. In the multivariate case the Euclidean
distance does not take into account the correlation structure between vari-
ables. For this reason, the Mahalanobis distance has been introduced which
involves the corresponding covariance matrix between the variables. A gener-
alization of that distance to the fuzzy framework is proposed. It is shown to
be useful in different contexts and, in particular, in a clustering approach. As
a result, non-spherical clusters, that generally are not recognized by means of
Euclidean-type distances, can be recognized by means of the suggested dis-
tance. Clustering applications are reported in order to check the adequacy
of the proposed approach.

Keywords: Fuzzy k-Means method, Gustafson-Kessel approach,
Mahalanobis distance, Fuzzy data.

1. Introduction

Most of the statistical developments addressed in the literature refer to the
analysis of real-valued data. Nevertheless, in the real world we can find differ-
ent types of information regarding valuations, perceptions, ratings, imprecise
descriptions of precise measurements or observations, etc., that lead to data
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which cannot be appropriately expressed by using real/vectorial values. This
kind of imprecise data may be described by means of fuzzy numbers (see, for
instance, [2, 11, 32, 33]).

On the other hand, fuzziness may also appear at any stage of the data
analysis process [7]. In particular, concerning the cluster analysis of precise
information some fuzzy methodologies have been proposed in the literature
(see, for instance, [1, 4, 10, 12, 18, 20, 22, 24, 25]). For a deeper overview
on fuzzy clustering in a real framework see, e.g., [17]. In the case of interval-
valued data some fuzzy clustering approaches have been studied in [9, 14, 15],
to mention a few. Besides, some fuzzy clustering methods have been also
developed for dealing with fuzzy information (see, for instance, [8, 13, 16, 19,
28, 29], to name some of the most recent ones).

Those approaches for the fuzzy clustering of fuzzy numbers are extensions
of the classical fuzzy k-means clustering procedure [4] and they are based
on the renowned Euclidean distance. Here, the Euclidean distance between
two fuzzy numbers is essentially defined as a weighted sum of the squared
Euclidean distances among the so-called centers (or midpoints) and radii (or
spreads) of the fuzzy sets. A main drawback of the Euclidean distance is
that it does not take into account the existing interrelationships between the
fuzzy numbers. Then, when a fuzzy k-means method based on the Euclidean
distance is applied, it is only able to recognize clusters having spherical shape.

To overcome this drawback, Gustafson and Kessel [18] presented a more
flexible fuzzy clustering algorithm in the real framework based on a version
of the classical Mahalanobis distance, which involves the covariance matrix.
This quadratic distance is defined by means of a positive definite symmetric
matrix that must be inverted to make possible the updating of the distance in
the clustering algorithm. Nonetheless, sometimes the matrix may be singular
and its inversion is not possible. In this kind of situations an improved
approach for estimating the covariance matrix proposed in [3] can be applied.

As an extension of the Gustafson-Kessel clustering algorithm to the field
of symbolic data analysis, a partitioning fuzzy k-means clustering model for
interval-valued data based on the Mahalanobis distance has been provided
in [9]. Here, intervals are a particular kind of symbolic data (including sets
of categories, interval histograms, etc.).

The aim of this work is to join the ideas provided in [8] about a fuzzy
clustering methodology for fuzzy numbers using an Euclidean distance and
the ideas in [18] about a fuzzy clustering methodology for crisp information
using the Mahalanobis distance to develop a new fuzzy clustering approach
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for the case of fuzzy numbers.
The new approach is based on an extension of the Mahalanobis distance

to the fuzzy framework with the intention of avoiding the drawbacks of the
Euclidean distance described above. Thus, this extension attempts to detect
non-spherical clusters having, for example, ellipsoidal shapes and that are
not normally recognized by means of Euclidean-type distances. Then, the
suggested approach is compared with the analogous Euclidean distance-based
fuzzy k-means algorithm for fuzzy numbers developed by Coppi et al. in [8].
The behaviour of both approaches is observed and contrasted whenever either
spherical or non-spherical shaped clusters are provided.

The rest of the paper is organized as follows. In Section 2 some prelim-
inaries concerning the fuzzy numbers framework are presented as well as a
brief summary of the Euclidean distance-based fuzzy k-means clustering for
fuzzy data. Section 3 contains a motivating example. The generalization
of the classical Mahalanobis framework is introduced in Section 4. Section
5 is devoted to the development of the fuzzy clustering algorithm for fuzzy
data based on the suggested generalized distance. In Section 6 the empir-
ical performance and the practical applicability of the algorithm is shown
and compared with Euclidean distance-based fuzzy k-means clustering for
fuzzy data. A real-life application is provided in Section 7. Finally, Section
8 includes some conclusions and future directions.

2. Preliminary concepts

In the following subsections, some preliminaries about the space of fuzzy
numbers are briefly summarized. In addition, the Euclidean distance-based
fuzzy k-means clustering procedure for fuzzy numbers is also recalled.

2.1. Fuzzy numbers

In many real-life situations there are measurements that may be imprecise
and some observations which are vaguely defined. In such contexts it is
appropriate to represent the information by means of either interval data or
fuzzy data instead of considering crisp values.

The space of fuzzy numbers, denoted by Fc(R), is composed by the map-
pings U : R→ [0, 1] such that for each α ∈ (0, 1] the so-called α-level set (or
α-cut) Uα = {x ∈ R|U(x) ≥ α} belongs to the class of nonempty compact
intervals in R (denoted by Kc(R)). The 0-level, U0, is the closure of the
support of U .
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To be more concrete, the so-called class of LR-fuzzy numbers is considered
since it is the most common one in practice. An LR-fuzzy number U is
determined by four parameters, U = (c1, c2, r, l), so that c1 and c2 are the
left and the right centers of the 1-level of U , and r and l are the right and left
spreads of U (that is, the distances between the suprema and the infima of the
0-level and 1-level of U , respectively). The centers c1 and c2 are associated
not only with the location of the fuzzy number but also with the imprecision
of its 1-level whenever the size of the interval defined by [c1, c2] is considered.
On the other hand, the spreads r and l inform us about the imprecision of
the fuzzy number too.

The membership degree of x to U is defined as

µU(x) =


L

(
c1 − x
l

)
x ≤ c1

1 c1 ≤ x ≤ c2

R

(
x− c2
r

)
x ≥ c2

, (1)

where L : R → [0, 1] (and R) is a convex upper semi-continuous function so
that L(0) = 1 and L(x) = 0, for all x ∈ R \ [0, 1] (see [33]). An example of
an LR fuzzy number is shown in Figure 1.

Figure 1: Example of an LR fuzzy number

2.2. Arithmetics and random fuzzy numbers

The usual arithmetic between fuzzy numbers is a level-wise extension of
the standard arithmetic for intervals paying attention to the fuzzy meaning

4



([26, 32]). Given U, V ∈ Fc(R) and λ ∈ R, the sum and the product by a
scalar can be defined so that for each α ∈ [0, 1] it is fulfilled that

(U + λV )α = Uα + λVα = {u+ λv : u ∈ Uα, v ∈ Vα} . (2)

It should be noticed that the arithmetic is non-linear due to the lack
of symmetric element w.r.t. the Minkowski addition although (Fc(R),+, ·)
has a semilinear-conical structure since the addition extends level-wise the
Minkowski sum of intervals. An example of the arithmetic is shown in Figure
2.

Figure 2: Example of addition and product by a scalar of fuzzy numbers

When the fuzzy numbers generation involves randomness, the sample is
presumed to be obtained as a realization of a random fuzzy number. Let
(Ω,A, P ) be a probability space. An Fc(R)-valued random fuzzy number
(RFN for short, also called fuzzy random number) in Puri and Ralescu’s
sense [27] is a mapping X : Ω → Fc(R) so that the α-level mappings
Xα : Ω → Kc(R) (s.t. Xα(w) = (X (w))α) are random intervals for all
α ∈ [0, 1] (or, equivalently, inf Xα and supXα are real-valued random vari-
ables). In addition, it can be shown that a RFN is a Borel measurable map-
ping with respect to the metric presented below. One of the most important
advantages of considering Borel measurable metric-space-valued mappings is
that concepts such as induced distribution, independence, etc., can be stated
as usual (see [5]).

Let’s introduce now some notation which will be useful in the next de-
velopments. From now on, an LR fuzzy variable will be an RFN taking
LR fuzzy numbers as outcomes. In the multidimensional framework, when-
ever p LR fuzzy variables are observed on a set of n objects, then a fuzzy
data matrix can be defined as X = {Xij = (c1ij, c2ij, lij, rij)} for i = 1, . . . , n
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and j = 1, . . . , p, where Xij is the LR fuzzy variable j observed on the i-
th unit with left center c1ij, right center c2ij, and left and right spreads
lij and rij, respectively. The matrix X can be equivalently expressed as
X = (C1,C2,L,R)LR. In addition, Xi ≡ (c1i, c2i, li, ri)LR denotes the fuzzy
vector of length p for object i, where Xi, c1i, c2i, li and ri are the i-th rows
of X , C1, C2, L and R, respectively.

2.3. Distance for fuzzy data

In order to develop clustering methods for LR fuzzy numbers a suitable
dissimilarity measure is required. In the literature, several metrics for fuzzy
data have been proposed. For instance, an L2 type metric for fuzzy sets
in terms of centers and spreads is provided in [31]. In this case, a weighted
dissimilarity measure for fuzzy data firstly introduced in [8] is adopted. Thus,
the distance is defined as a weighted sum of the (squared) Euclidean distances
between centers and spreads. In detail, given two LR fuzzy observations, x̃i
and x̃i′ , the distance between them is defined as

d2w(x̃i, x̃i′) = w2
C [d2 (c1i, c1i′) + d2 (c2i, c2i′)]

+ w2
S[d2 (li, li′) + d2 (ri, ri′)],

(3)

where d(·, ·) is the standard Euclidean distance (for non-fuzzy data), and wC
and wS are weights for the center component and the spread component,
respectively, depending on the importance given to the centers and to the
spreads of the corresponding fuzzy numbers. By means of d2w(x̃i, x̃i′) we
compute the dissimilarity between two LR fuzzy observations. In general, the
weights given to the center component are larger to the ones corresponding
to the spread one, since the membership function of a fuzzy number takes
the maximum value in the centers. Therefore, the coherence condition wC ≥
wS ≥ 0 is adopted. In addition, the normalization condition wC + wS = 1 is
taken into account, so following both conditions we have that 0.5 ≤ wC ≤ 1.

2.4. Euclidean distance-based fuzzy k-means for fuzzy data

The formalization of the fuzzy k-means clustering model for fuzzy data (FkM-
F, for short) proposed by Coppi et al. in [8] is briefly summarized below.
Thus, in order to cluster n observations described by p LR fuzzy variables,
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the FkM-F optimization problem can be written as

min
U,H̃,w

JFkM-F =
n∑
i=1

k∑
g=1

umigd
2
w

(
x̃i, h̃g

)
,

s.t. uig ≥ 0, i = 1, . . . , n, g = 1, . . . , k,
k∑
g=1

uig = 1, i = 1, . . . , n,

w ∈ [0.5, 1],

(4)

where uig is the membership degree of observation i to cluster g, stored in
the matrix U of order (n× k), and

H̃ =
{
H̃gj ≡

(
hC1
gj , h

C2
gj , h

L
gj, h

R
gj

)
LR
, g = 1, ..., k, j = 1, ..., p

}
. (5)

In (5), H̃gj ≡
(
hC1
gj , h

C2
gj , h

L
gj, h

R
gj

)
LR

represents the j-th LR fuzzy variable

of the g-th centroid with left center hC1
gj , right center hC2

gj , left spread hLgj
and right spread hRgj. In order to facilitate the understanding of the adopted
notation, we can define the centroid matrices of the left centers (HC1), of
the right centers (HC2), of the left spreads (HL) and of the right spreads
(HR) of order (k × p) with generic elements hC1

gj , hC2
gj , hLgj and hRgj, respec-

tively. Therefore, h̃g ≡ (hC1
g ,h

C2
g ,h

L
g ,h

R
g )LR is the fuzzy vector of length p

for centroid g, where h̃g, h
C1
g , hC2

g , hLg and hRg are the g-th rows of H̃, HC1 ,
HC2 , HL and HR, respectively. Thus, the centroids are assumed to have
a complex structure inherited from the observed data. In other words, the
imprecision of the observed data is propagated to the centroids that are of

fuzzy nature. Moreover, the squared dissimilarity d2w

(
x̃i, h̃g

)
recalled in (3)

is used for comparing the observation i with centroid g. Finally, m > 1 is
the fuzziness parameter. The membership degrees of the observations to the
clusters are such that they are inversely related to the relative dissimilarities
between the observations and the centroids. For this reason, the membership
degrees can be interpreted as degrees of sharing (of the observations to the
clusters).

The iterative solution is obtained by solving the constrained quadratic
minimization problem in (4) through the Lagrangian multiplier method with
respect to uig and by setting the first derivatives of JFkM-F with respect to
hC1
g , hC2

g , hLg , hRg and wC equal to zero [8].
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3. Motivating example

As we have noticed in the introductory section, since the FkM-F involves
Euclidean distances, then it is only able to detect clusters having spherical
shapes. This drawback is shown in the example below.

Example 1. Suppose that a fuzzy 2-dimensional vector of LR fuzzy numbers,
Xi ≡ (c1i, c2i, li, ri)LR for i ∈ {1, . . . , 100}, is generated by considering two
clusters so that:

• for i ∈ {1, . . . , 50}, c1i1 ≡ U(15, 20), c1i2 ≡ c1i1 · 4− 60 +N (2, 1), c2i ≡
c1i + [U(2, 3), U(2, 3)], li ≡ [U(0, 1), U(0, 1)] and ri ≡ [U(0, 1), U(0, 1)];

• for i ∈ {51, . . . , 100}, c1i1 ≡ U(25, 31), c1i2 ≡ c1i1 · 4 − 100 + N (2, 1),
c2i ≡ c1i+[U(2, 3), U(2, 3)], li ≡ [U(0, 1), U(0, 1)] and ri ≡ [U(0, 1), U(0, 1)].

A representation of the two clusters is gathered in the left part of Figure
3. For the sake of the graphical visualization of the sample, each fuzzy vector
Xi = (Xi1,Xi2) is represented as a rectangle whose base and height correspond
to the 0-levels of Xi1 and Xi2, respectively. Besides, as it is shown in the left
part of Figure 3, the shape of both clusters is not spherical but ellipsoidal.
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Figure 3: Example of two non-spherical clusters (on the left) and the corresponding par-
tition when applying the FkM-F algorithm (on the right)

The FkM-F algorithm has been applied to the sample of LR fuzzy num-
bers generated above. In the right part of Figure 3 it can be observed that the
application of the algorithm distinguishes objects having a degree of assign-
ment to the first cluster greater than or equal to 0.5 (solid line) from those
having a membership degree lower than 0.5 (dashed line). The centroids of
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each cluster are also highlighted by using a thicker line. It can be concluded
that there are some situations in which the FkM-F algorithm is not able to
detect clusters having a non-spherical shape.

4. Generalized distance for fuzzy data

The employment of the Euclidean distance in the fuzzy clustering framework
(as, for example, in the fuzzy k-means procedure) leads to the good detection
of the clusters when they are spherical or well separated. So, clusters of other
different geometrical shapes are not well recognized [18] and, to overcome this
problem, it is suitable to consider an adaptive distance norm. Gustafson and
Kessel [18] proposed the use of the Mahalanobis distance, which includes the
covariance matrices corresponding to each one of the clusters.

Thus, we propose to generalize the distance introduced in (3) by taking
into account the Mahalanobis distance. If x̃i and x̃i′ are two fuzzy numbers,
the distance between them is given by

d2M,w(x̃i, x̃i′) = w2
C [d2M (c1i, c1i′) + d2M (c2i, c2i′)]

+ w2
S[d2M (li, li′) + d2M (ri, ri′)],

(6)

where dM(x, y) =
√

(x− y)TM(x− y) is the usual Mahalanobis distance,
and M is a symmetric and definite positive matrix so that M−1 is the co-
variance matrix of x and y.

It is clear that d2M,w is indeed a distance since it is a linear combination
of distances. As for the distance in (3), the role played by the distance for
the centers is supposed to be more relevant than that played by the distance
for the spreads. It is the usual choice in a fuzzy context.

5. Fuzzy k-Means for fuzzy data based on a generalized distance

In this section a new clustering approach for fuzzy data based on the gen-
eralized distance introduced in Section 4 is proposed. It will be denoted by
FkMgk-F method and it can be formalized as follows:

min
U,H̃,M1,··· ,Mk,w

JFkMgk-F =
n∑
i=1

k∑
g=1

umigd
2
M,w

(
x̃i, h̃g

)
, (7)
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subject to uig ≥ 0, i = 1, . . . , n, g = 1, . . . , k,
k∑
g=1

uig = 1, i = 1, . . . , n,

|MC1
g | = ρC1

g > 0, |MC2
g | = ρC2

g > 0, g = 1, . . . , k,

|ML
g | = ρLg > 0, |MR

g | = ρRg > 0, g = 1, . . . , k,
w ∈ [0.5, 1],

(8)

where H̃ ≡
(
HC1 ,HC2 ,HL,HR

)
LR

is the prototype matrix, dM,w is the gen-

eralized distance in (6), MC1
g , MC2

g , ML
g , MR

g are symmetric and definite
positive matrices and ρC1

g , ρC2
g , ρLg , ρRg are the volume parameters (usually

equal to 1).
The optimal solution of FkMgk-F can be found by minimizing the con-

strained optimization problem in (7) with respect to every group of param-
eters. For the sake of clarity, the computation of the parameter updates are
reported in the Appendix.

At every update the loss function to minimize decreases and all the pa-
rameter entities are also renewed. Then, the updates are repeated until the
value of the loss function decreases less than a specified threshold (as, for
instance, 10−5) from the previous function value. The steps of the algorithm
are provided below.

Algorithm FkMgk-F (X̃, m, k)

Inizialization. Generate randomly a feasible membership degree matrix
U(0) subject to (8).

Step 1. Compute the centroid matrix H̃
(t)

according to (14)-(15) using
U(t−1).

Step 2. Update the matrix M(t)
g according to (16)-(19), keeping fixed U(t−1)

and H̃
(t)

.

Step 3. Update the weight w
(t)
C according to (20), keeping fixed U(t−1), H̃

(t)

and M(t)
g . If w

(t)
C < 0.5, then w

(t)
C = 0.5 (w

(t)
S =1-w

(t)
C ).

Step 4. Update the fuzzy membership degree matrix U(t) according to (13),

keeping fixed H̃
(t)

, M(t)
g , w

(t)
C and w

(t)
S .
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Step 5. Check convergence. If the convergence condition is not satisfied, go
to Step 1.

Remark 1. As in case of non-fuzzy data, the cluster covariance matrices
may be singular, and hence the inverse matrices cannot be calculated. This
may occur when the number of objects in a cluster is small or when the
data within a cluster are linearly correlated. In these situations, a proper
estimation of the fuzzy covariance matrices can be obtained by adopting the
approach proposed in [3]. It consists in fixing the ratio between the maximal
and minimal eigenvalue of each matrix. Furthermore, in order to avoid local
optima due to a poor initialization, different random starts can be considered.

6. Simulation study

In this section the results of a simulation study are reported in order to
evaluate the performance of the FkMgk-F procedure in comparison with
the closest competitor, FkM-F, proposed by Coppi et al. in [8]. Different
scenarios have been considered. In detail, samples of LR fuzzy numbers have
been randomly generated from two-dimensional LR fuzzy variables. In case
of 2 clusters, the sample size n is in {60, 120, 180, 240}, whilst for k = 3
n ∈ {90, 180, 270, 360}. Clusters of equal sizes have been generated in all the
cases. In order to take into account the shape of the clusters, two different
situations have been accounted for: spherical shape (s-shape) or elongated
shape (e-shape). Finally, we have distinguished two levels of overlapping of
the clusters, depending on the shape of the clusters. For spherical clusters the
levels are overlapped clusters (o-clusters) and partially overlapped clusters
(po-clusters). In case of spherical shape separated clusters are well recognized
by both the algorithms. For elongated clusters the considered levels are
separated clusters (s-clusters) and overlapped clusters (o-clusters). In case of
3 clusters there are two types of overlapping: two separated clusters and one
ovelapped with respect the other ones (2s1o-clusters) and three overlapped
clusters (o-clusters).

6.1. Case k = 2 clusters

Table 1 summarizes the details about the random generation process for
the centers and the spreads of the LR random variables under the different
conditions proposed above for k = 2 clusters.
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Table 1: Set-up of the simulation study (2 clusters, 2 dimensions, X = (C1,C2,L,R))

Case Cluster Dim C1 C2 L R

s-shape 1 1 U(0,1) U(0,1)+1 U(0,1) U(0,1)
po-clusters 2 U(0,1) U(0,1)+1 U(0,1) U(0,1)

2 1 U(0,1)+.5 U(0,1)+1.5 U(0,1) U(0,1)
2 U(0,1)+.5 U(0,1)+1.5 U(0,1) U(0,1)

s-shape 1 1 U(0,1) U(0,1)+1 U(0,1) U(0,1)
o-clusters 2 U(0,1) U(0,1)+1 U(0,1) U(0,1)

2 1 U(0,1) U(0,1)+1 U(0,1) U(0,1)
2 U(0,1) U(0,1)+1 U(0,1) U(0,1)

e-shape 1 1 U(1,6) c111+U(2,3) U(0,1) U(0,1)
s-clusters 2 4c111-N (5, 1) c112+U(2,3) U(0,1) U(0,1)

2 1 U(7,12) c121+U(2,3) U(0,1) U(0,1)
2 4c121-N (30, 1) c122+U(2,3) U(0,1) U(0,1)

e-shape 1 1 U(1,6) c111+U(2,3) U(0,1) U(0,1)
o-clusters 2 4c111-N (15, 1) c112+U(2,3) U(0,1) U(0,1)

2 1 U(3,8) c121+U(2,3) U(0,1) U(0,1)
2 −4c121+N (15, 1) c122+U(2,3) U(0,1) U(0,1)

The value of the parameter of fuzziness m has been chosen to be equal
to 1.5 (it is the most used value in most of the fuzzy clustering procedures).
Finally, for every level of every design variable (number of statistical units,
cluster shape, cluster separation), 1000 random samples have been generated.

To evaluate the performance of the clustering methods, we observe their
ability to recover the true centroids by using the REC measure:

REC=
k∑
g=1

[
d2
(
hC1
g , h

C1
g

∗)
+d2

(
hC2
g , h

C2
g

∗)
+d2

(
hLg , h

L
g

∗)
+d2

(
hRg , h

R
g

∗)]
, (9)

where the superscript ‘∗’ refers to the matrices of the centers and the spreads
of the true centroids. In addition, we take into account the percentage of
the objects properly assigned to the clusters (POPA) and their membership
degrees (MD), and the adjusted rand index (ARI) (see [21]).

6.1.1. Case s-shape po-clusters

We start with the simplest case: spherical and partially overlapped clusters.
An example of this case as well as the application of the FkM-F and FkMgk-F
algorithms are shown in Figure 4.
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Figure 4: Example of two spherical shaped and partially overlapped clusters (left part)
and application of the the FkM-F and FkMgk-F algorithms (upper and lower right parts)

The mean and median values of REC, POPA, MD of the objects prop-
erly assigned to the clusters and ARI, for both FkM-F and FkMgk-F, are
reported in Table 2. As we may expect in case of spherical and partially over-
lapped clusters, both FkM-F and FkMgk-F work well in practice, in terms
of recovery (values close to 0), proper assignment of the objects to the the
clusters (high values of percentage and corresponding membership degree)
and validity index, for the different sample sizes.

6.1.2. Case s-shape o-clusters

We consider now spherical shaped and overlapped clusters. An example of
this case and the application of the FkM-F and FkMgk-F algorithms are
shown in Figure 5. The values of the evaluating measures are reported in
Table 3. As one may expect, the mean and median values of the REC are
very close to 0 for both the methods in case of spherical clusters, and are
lower as the sample size increases. Since the clusters are overlapped, the
mean and median values of the POPA are, for both FkM-F and FkMgk-F, a
little bit greater than 50% and the MDs are close to 0.5. In this case is very
difficult to distinguish the two clusters. Finally, the values of ARI (in mean
and median) are all close to 0, due to the overlapping.
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Table 2: Evaluating measures of clustering results corresponding to the case of two spher-
ical shaped and partially overlapped clusters (k = 2)

Measure n Mean FkM-F Mean FkMgk-F Median FkM-F Median FkMgk-F
REC 60 .0061 .0104 .0055 .0087

120 .0042 .0089 .0038 .0083
180 .0035 .0082 .0034 .0072
240 .0031 .0081 .0028 .0074

POPA 60 .953 .9412 .95 .95
120 .9567 .9533 .9583 .9583
180 .9544 .9501 .9556 .95
240 .9578 .956 .9583 .9542

MD 60 .8231 .8048 .8235 .8098
120 .8204 .7948 .8207 .7952
180 .8182 .7905 .8188 .7908
240 .818 .7885 .8181 .7865

ARI 60 .8208 .7795 .8068 .8067
120 .8347 .8228 .8389 .8389
180 .826 .8102 .8292 .8089
240 .8384 .8315 .8396 .8243

Figure 5: Example of two spherical shaped and overlapped clusters (left part) and appli-
cation of the the FkM-F and FkMgk-F algorithms (upper and lower right parts)
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Table 3: Evaluating measures of clustering results corresponding to the case of two spher-
ical shaped and overlapped clusters (k = 2)

Measure n Mean FkM-F Mean FkMgk-F Median FkM-F Median FkMgk-F
REC 60 .0557 .0759 .0529 .0729

120 .0198 .0318 .0160 .0281
180 .0091 .0128 .0079 .01
240 .0062 .0074 .0061 .0064

POPA 60 .5595 .5668 .55 .5667
120 .5417 .5456 .5333 .5417
180 .5351 .5415 .5278 .5444
240 .5334 .5312 .5292 .525

MD 60 .52 .5257 .5155 .5203
120 .5056 .5087 .5047 .5069
180 .5016 .5039 .5002 .5025
240 .5003 .501 .5001 .5001

ARI 60 .0008 .001 -.0125 -.007
120 .0001 -.002 -.0059 -.0059
180 .0003 .0002 -.0025 -.0036
240 .0009 -.0009 -.0017 -.0025

6.1.3. Case e-shape s-clusters

We take into account now the case of elongated clusters and we start with
the well-separated ones. An example as well as the application of the FkM-F
and FkMgk-F algorithms are shown in Figure 6.

Besides, by looking at the values in Table 4, we can observe that FkM-
F fails in terms of REC (very high differences between estimated and true
prototypes), the corresponding values of POPA and their MDs are low and
the mean and median values of the ARI, for all the sample sizes, are close
to 0. On the other hand, in this case, the median values corresponding to
FkMgk-F are the optimal ones for all the evaluating measures. The mean
values are a little bit worse because there are some anomalous values on 1000
random replications.
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Figure 6: Example of two elongated shaped and separated clusters (left part) and appli-
cation of the the FkM-F and FkMgk-F algorithms (upper and lower right parts)

Table 4: Evaluating measures of clustering results corresponding to the case of two elon-
gated shaped and separated clusters (k = 2)

Measure n Mean FkM-F Mean FkMgk-F Median FkM-F Median FkMgk-F
REC 60 117.7322 1.0144 119.0116 0

120 125.2554 11.4096 125.6293 0
180 131.6623 0 132.5226 0
240 130.1286 5.3727 131.3544 0

POPA 60 .5843 .9963 .575 1
120 .5635 .9468 .5583 1
180 .5454 1 .5389 1
240 .5447 .9818 .5417 1

MD 60 .5796 .9965 .57 1
120 .5601 .9465 .5554 1
180 .5434 1 .5386 1
240 .5415 .9815 .5381 1

ARI 60 .0153 .9906 -.0066 1
120 .0072 .8736 -.0011 1
180 .0021 1 -.0011 1
240 .0038 .96 -.0008 1
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6.1.4. Case e-shape o-clusters

We consider now the most complicated case for k = 2 clusters: elongated
and overlapped clusters. Figure 7 shows an example of this scenario and the
application of the FkM-F and FkMgk-F algorithms.

Figure 7: Example of two elongated shaped and overlapped clusters (left part) and appli-
cation of the the FkM-F and FkMgk-F algorithms (upper and lower right parts)

As we expected, FkM-F doesn’t work properly in this case. This is shown
by the mean and median values reported in Table 5: the REC values are
very high, the POPA is between 0.55 and 0.59, the MDs of objects prop-
erly assigned to the clusters is close to 0.5 and the ARI values is close to 0.
Conversely, our proposal works very well in this case in terms of REC, assign-
ment and ARI, even if the values are a little bit worse than those obtained
in case of well-separated clusters, since the overlapped objects are difficult
to be assigned properly.
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Table 5: Evaluating measures of clustering results corresponding to the case of two elon-
gated shaped and overlapped clusters (k = 2)

Measure n Mean FkM-F Mean FkMgk-F Median FkM-F Median FkMgk-F
REC 60 90.1828 1.5819 90.2644 .2113

120 89.5314 .327 88.9886 .194
180 91.408 .2397 88.984 .1593
240 88.5092 1.3067 88.8014 .1806

POPA 60 .5818 .9478 .5833 .95
120 .5582 .9523 .55 .9583
180 .544 .9548 .5472 .9556
240 .5457 .9505 .5458 .95

MD 60 .5771 .9362 .5678 .9416
120 .5555 .9409 .5527 .9425
180 .5423 .9426 .5444 .9428
240 .5438 .9395 .5419 .943

ARI 60 -.001 .8062 -.0118 .8068
120 .0029 .818 -.0015 .8389
180 .0003 .8275 -.0025 .8292
240 .0031 .8145 -.0002 .8092

6.2. Case k = 3 clusters

Table 6 summarizes the details about the random generation process for the
centers and the spreads of the LR random variables under the different con-
ditions proposed for k = 3 clusters. The evaluating measures for clustering
results are the same used in case of k = 2 (with the appropriate modifica-
tions).
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Table 6: Set-up of the simulation study (3 clusters, 2 dimensions, X = (C1,C2,L,R))

Case Cluster Dim C1 C2 L R
s-shape 1 1 U(0,1)+2 U(0,1)+3 U(0,1) U(0,1)
po-clusters 2 U(0,1)+2 U(0,1)+3 U(0,1) U(0,1)

2 1 U(0,1)+3 U(0,1)+4 U(0,1) U(0,1)
2 U(0,1)+3 U(0,1)+4 U(0,1) U(0,1)

3 1 U(0,1)+3 U(0,1)+4 U(0,1) U(0,1)
2 U(0,1)+1.5 U(0,1)+2.5 U(0,1) U(0,1)

s-shape 1 1 U(0,1)+1 U(0,1)+2 U(0,1) U(0,1)
o-clusters 2 U(0,1)+1 U(0,1)+2 U(0,1) U(0,1)

2 1 U(0,1)+1.1 U(0,1)+2.1 U(0,1) U(0,1)
2 U(0,1)+1.1 U(0,1)+2.1 U(0,1) U(0,1)

3 1 U(0,1)+0.9 U(0,1)+1.9 U(0,1) U(0,1)
2 U(0,1)+0.9 U(0,1)+1.9 U(0,1) U(0,1)

e-shape 1 1 U(1,6) c111+U(2,3) U(0,1) U(0,1)
s-clusters 2 4c111-N (5, 1) c112+U(2,3) U(0,1) U(0,1)

2 1 U(7,12) c121+U(2,3) U(0,1) U(0,1)
2 4c121-N (30, 1) c122+U(2,3) U(0,1) U(0,1)

3 1 U(0,1) U(0,1)+1 U(0,1) U(0,1)
2 U(0,1) U(0,1)+1 U(0,1) U(0,1)

e-shape 1 1 U(2,7) c111+U(2,3) U(0,1) U(0,1)
2s1o-clusters 2 4c111-N (20, 1) c112+U(2,3) U(0,1) U(0,1)

2 1 U(12,17) c121+U(2,3) U(0,1) U(0,1)
2 4c121-N (60, 1) c122+U(2,3) U(0,1) U(0,1)

3 1 U(0,25) c131+U(2,3) U(0,1) U(0,1)
2 N (0, 1) c132+U(2,3) U(0,1) U(0,1)

e-shape 1 1 U(2,7) c111+U(2,3) U(0,1) U(0,1)
o-clusters 2 4c111-N (20, 1) c112+U(2,3) U(0,1) U(0,1)

2 1 U(3,8) c121+U(2,3) U(0,1) U(0,1)
2 −4c121+N (25, 1) c122+U(2,3) U(0,1) U(0,1)

3 1 U(0,13) c131+U(2,3) U(0,1) U(0,1)
2 N (0, 1) c132+U(2,3) U(0,1) U(0,1)

6.2.1. Case s-shape po-clusters

In case of k = 3 we start with the simplest scenario: spherical shaped and
partially-overlapped clusters. An example and the application of the FkM-F
and FkMgk-F algorithms in this case are shown in Figure 8.

As one may expect, the mean and the median values of the evaluating
measures, gathered in Table 7, analogously to the case of k = 2, confirm that
both the methods, FkM-F and FkMgk-F, work well with spherical shaped
and partially-overlapped clusters.
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Figure 8: Example of three spherical shaped and partially-overlapped clusters (left part)
and application of the the FkM-F and FkMgk-F algorithms (upper and lower right parts)

Table 7: Evaluating measures of clustering results corresponding to the case of three
spherical shaped and partially-overlapped clusters (k = 3)

Measure n Mean FkM-F Mean FkMgk-F Median FkM-F Median FkMgk-F
REC 90 .0009 .0012 .0008 .0009

180 .0006 .0007 .0005 .0006
270 .0004 .0006 .0004 .0005
360 .0004 .0005 .0004 .0004

POPA 90 .9993 .9986 1 1
180 .9995 .9989 1 1
270 .9991 .9989 1 1
360 .9994 .9992 1 1

MD 90 .9364 .9367 .9363 .9365
180 .935 .9339 .935 .9341
270 .9337 .9312 .9339 .9312
360 .9337 .9314 .9331 .9308

ARI 90 .9987 .9967 1 1
180 .9987 .9973 1 1
270 .9974 .9968 1 1
360 .9987 .9981 1 1
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6.2.2. Case s-shape o-clusters

The second scenario for k = 3 corresponds to spherical shaped and overlapped
clusters. An example of this case and the application of the FkM-F and
FkMgk-F algorithms are shown in Figure 9.

Figure 9: Example of three spherical shaped and overlapped clusters (left part) and ap-
plication of the the FkM-F and FkMgk-F algorithms (upper and lower right parts)

The recovery values for both FkM-F and FkMgk-F are close to 0 for all
the considered sample sizes (see Table 8). The POPA values are higher as
the sample size increases. The median values for both methods are close to
1 for n ≥ 270. Since the clusters are overlapped, the MDs are close to 0.33
and the ARI values are close to 0.

6.2.3. Case e-shape s-clusters

We take into account now the case of three elongated shaped clusters. In
particular, we start with the separated ones. An example as well as the
application of the FkM-F and FkMgk-F algorithms are shown in Figure 10.

As for k = 2, also for three elongated shaped and separated clusters, as
reported in Table 9, the median values corresponding to FkMgk-F are the
optimal ones. On the contrary, FkM-F works worse, even if the values of the
POPA and of the ARI are higher than those obtained for k = 2.
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Table 8: Evaluating measures of clustering results corresponding to the case of three
spherical shaped and overlapped clusters (k = 3)

Measure n Mean FkM-F Mean FkMgk-F Median FkM-F Median FkMgk-F
REC 90 .1050 .1465 .1051 .1428

180 .0756 .0806 .0747 .0779
270 .0822 .0886 .0832 .0901
360 .0832 .0887 .0841 .0872

POPA 90 .6131 .5471 .6 .5444
180 .8094 .7098 .7444 .6639
270 .914 .9114 1 .9963
360 .9563 .9882 1 1

MD 90 .3699 .3817 .3704 .3808
180 .3468 .3491 .3383 .3467
270 .3384 .3367 .334 .334
360 .3363 .3342 .3338 .3337

ARI 90 .0103 .0161 .0032 .0096
180 .0016 .0028 0 0
270 .0002 .0001 0 0
360 0 0 0 0

Figure 10: Example of three elongated shaped and separated clusters (left part) and
application of the the FkM-F and FkMgk-F algorithms (upper and lower right parts)
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Table 9: Evaluating measures of clustering results corresponding to the case of three
elongated shaped and separated clusters (k = 3)

Measure n Mean FkM-F Mean FkMgk-F Median FkM-F Median FkMgk-F
REC 90 74.0365 13.9067 68.9704 0

180 73.4257 15.1809 70.3438 0
270 76.4597 21.0297 73.9107 0
360 75.7877 32.1718 73.4104 0

POPA 90 .7344 .963 .7333 1
180 .7218 .9588 .7222 1
270 .7138 .9321 .7148 1
360 .7083 .9126 .7083 1

MD 90 .7259 .9625 .7277 1
180 .7134 .9583 .7193 1
270 .7061 .9314 .7085 1
360 .7034 .9119 .7069 1

ARI 90 .4637 .9347 .4584 1
180 .4578 .9305 .4685 1
270 .4389 .8858 .439 1
360 .4395 .8556 .4446 1

6.2.4. Case e-shape 2s1o-clusters

For k = 3 elongated shaped clusters, we consider two kinds of overlapping.
The first one consists in two separated clusters and one overlapped with
respect the other two. An example of this specific case and the application
of the FkM-F and FkMgk-F algorithms are shown in Figure 11.

The mean and median values of the evaluating measures in Table 10
confirm what we expected in this case. The prototypes estimated by means
of FkM-F are very different from the true prototypes (high values of REC),
the POPA is more or less equal to 60% with a MD between 0.61 and 0.65 an
the ARI values are low. Conversely, the values corresponding to FkMgk-F
show that it works very well, even if this is a more complex scenario and the
values are lower than those obtained for the separated clusters.
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Figure 11: Example of three elongated shaped and separated clusters whose two are
separated and one is overlapped (left part) and application of the the FkM-F and FkMgk-
F algorithms (upper and lower right parts)

Table 10: Evaluating measures of clustering results corresponding to the case of three
elongated shaped clusters whose two are separated and one is overlapped (k = 3)

Measure n Mean FkM-F Mean FkMgk-F Median FkM-F Median FkMgk-F
REC 90 162.6707 15.7094 168.2827 2.2571

180 179.036 8.4139 190.7022 1.5249
270 198.3198 3.6163 207.6049 1.435
360 196.7962 3.7305 201.5823 1.4458

POPA 90 .6541 .8993 .6556 .9333
180 .6329 .9157 .6222 .9444
270 .6211 .9385 .6222 .9444
360 .6266 .9367 .6236 .9444

MD 90 .6389 .8928 .6429 .9317
180 .6236 .9084 .6213 .9355
270 .6152 .9302 .6142 .9368
360 .6201 .9284 .6188 .9387

ARI 90 .3094 .7625 .2976 .8137
180 .2922 .7941 .2784 .8419
270 .2776 .8361 .2672 .8432
360 .2865 .8333 .2781 .8434
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6.2.5. Case e-shape o-clusters

We conclude with the more complex case: three elongated and overlapped
clusters. Figure 12 shows an example of this scenario and the application of
both algorithms.

Figure 12: Example of three elongated shaped and overlapped clusters (left part) and
application of the the FkM-F and FkMgk-F algorithms (upper and lower right parts)

Taking into account the values reported in Table 11, the conclusions are
very similar to those of the previous case (three elongated shaped clusters
so that two are separated and one is overlapped with respect the other two),
but the values are a little bit worse.

7. Real-case study

In this section, a real-life application is provided in order to show the appli-
cability of the procedure presented in this work. Thus, a questionnaire of 16
statements has been proposed to a group of students.

On one hand, some statements about the learning style of the students
(independent or dependent style) have been drawn from the so called Grasha-
Riechmann Learning Style Scales (GRLSS, [30]). Those questions are the
following ones:
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Table 11: Evaluating measures of clustering results corresponding to the case of three
elongated shaped and overlapped clusters (k = 3)

Measure n Mean FkM-F Mean FkMgk-F Median FkM-F Median FkMgk-F
REC 90 100.3127 14.4611 101.3849 1.0966

180 96.7781 4.9723 93.672 .7752
270 96.8149 3.5538 96.1229 .6491
360 97.1758 2.8277 97.2105 .603

POPA 90 .6471 .8324 .65 .8889
180 .6405 .8724 .6444 .8944
270 .6411 .887 .6407 .9
360 .6332 .8875 .6306 .8986

MD 90 .6159 .8228 .6193 .8789
180 .6083 .8613 .6094 .8810
270 .6074 .8742 .6086 .8869
360 .6005 .8741 .5994 .8859

ARI 90 .2155 .6064 .2082 .6883
180 .2113 .6750 .2092 .7109
270 .2191 .7043 .2178 .7301
360 .2142 .7046 .2118 .7186

I1. “I prefer to work on my own in the tasks of my subjects than to ask the
teacher or my classmates for help.”

D1. “I trust that the teachers will tell me what is important to study.”

I2. “I learn many of the contents that are given in the classes on my own.”

D2. “I complete assignments exactly the way teachers tell me to do it.”

I3. “I feel confident with my ability to learn on my own.”

D3. “The fact of having to decide what to study or how to perform tasks makes
me feel uncomfortable.

I4. “If I like a topic, I try to find more information about it on my own.”

D4. “I prefer that the classes are very organized.”

Questions Ij, for j ∈ {1, . . . , 4}, correspond to an independent learning
style whereas Dj, for j ∈ {1, . . . , 4}, correspond to a dependent learning
style.

On the other hand, some statements regarding students’ mathematics
related beliefs have been proposed. Those are the following ones:
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M1. “I think it’s interesting what I learn in math class.”

M2. “I like to do math stuff.”

M3. “I hope to do well on math assignments and math tests.”

M4. “Compared with other colleagues I think I’m good at math.”

M5. “I think I’m going to do well in math this year.”

M6. “I understand everything we have done in math this year.”

M7. “Doing the best I can in math I try to show my teacher that I am better than
other classmates.”

M8. “I work hard in math to show the teacher and my classmates how good I
am.”.

A group of 114 students attending the second course of the Degree in
Primary Education of the University of Cantabria (Spain) are asked to reflect
on these 16 statements. The respondents employed trapezoidal fuzzy sets in
a scale ranging from 0 to 10 (where 0 represents totally disagree and 10
represents totally agree). The 0-level of each response is the set of values
that the student considers compatible with his/her opinion at some extent
(that is, the student considers that his/her opinion cannot be outside of
this set). On the other hand, the 1-level of the trapezoidal fuzzy set is the
set of values that the student considers completely compatible with his/her
opinion. Finally, the corresponding limits of the 0-level and 1-level can be
linearly interpolated in order to obtain a trapezoid. In practice we asked
the students to mark only the four vertices of the trapezoid. An example of
answer is shown in Figure 13.

Figure 13: Example of answer of a question

We apply the FkM-F and the FkMgk-F procedures in two different sce-
narios: firstly, to the set of questions Q1 = {I1, D1, I2, D2, I3, D3, I4, D4} , and
later to the questions related to mathematics beliefs, i.e., Q2 = {M1,M2,M3,
M4,M5,M6,M7,M8}.
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In the first case, k = 2 and m = 1.5 has been considered to cluster the
answers of the statements included in Q1. The corresponding centers of the
prototypes obtained by carrying out both procedures are the following ones:

HC1 =

[
6.3634 8.3314 6.6028 7.6 7.062 7.2614 6.9142 5.8514
4.3431 7.6274 5.3966 6.5613 3.6735 6.8554 5.8238 4.6524

]

HC2 =

[
6.6653 8.5596 7.1415 7.8426 7.4112 7.5203 7.1442 6.1401
4.7189 7.8416 5.8823 6.8028 3.917 7.0854 6.126 4.9589

]

HC1
GK =

[
4.8368 9.09 5.6582 8.0035 4.9777 8.0185 5.3324 5.6371
5.6448 7.253 6.1975 6.5586 5.7267 6.4657 6.9844 5.0585

]

HC2
GK =

[
5.1797 9.2476 6.8112 8.2918 5.2193 8.1644 5.6596 5.8678
5.9584 7.5139 6.3976 6.7788 6.0594 6.7731 7.1966 5.3878

]
In the FkMF case, the first cluster corresponds to high values for the

eight statements whereas the second cluster includes low values for the eight
statements. Instead, the FkMgk-F procedure provides two clusters so that
the first one corresponds to higher values for the independent learning style
statements and the second one considers higher values for the dependent
learning style statements. In this scenario it has more sense that a student
having a more dependent learning style gives higher values to the corre-
sponding dependent style statements than to the independent style ones and
vice versa. Therefore, the results obtained using the FkMgk-F procedure
are more coherent and they adapt better to reality. The case k = 3 has not
been contemplated in this first study since it is known in advance that the
statements are associated to two groups of different learning styles.

The second study concerns a clustering of the answers of the statements
included in Q2. In this case, k ∈ {2, 3} and m = 1.5 has been considered.
The results are provided below.

Case k=2:
The corresponing centres of the prototypes are:

HC1 =

[
6.779 6.7554 8.5978 6.5743 7.3768 7.2523 4.8386 4.5758
4.6399 2.5791 7.5614 2.363 5.248 4.3625 2.0809 2.0074

]
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HC2 =

[
6.9306 6.9868 8.7919 6.7872 7.629 7.4169 5.0289 4.6726
4.9549 2.7564 7.7823 2.6335 5.5515 4.6875 2.3018 2.1773

]

HC1
GK =

[
4.9202 4.0956 8.8355 4.0448 6.1356 5.3711 3.6512 3.4002
6.4100 5.3410 7.4778 5.0011 6.5555 6.2914 3.3432 3.259

]

HC2
GK =

[
5.1184 4.3150 8.9856 4.2845 6.4075 5.5874 3.8365 3.4899
6.6668 5.54 7.7337 5.2478 6.8341 6.5632 3.5614 3.4247

]
Again, in the FkM-F case the first cluster corresponds to high values for

the eight statements whereas the second cluster includes low values for the
eight statements. Thus, the FkM-F procedure does not distinguish groups of
statements attending to different aspects concerning students’ mathematics
related beliefs but classifies individuals according to whether the assessments
assigned to all statements have been high or low. Nonetheless, in the FkMgk-
F case the first cluster includes lower values for statements M1, M2, M4, M5

and M6 and the second one comprises lower values for statements M3, M7 and
M8. The first group of statements corresponds to math liking, math interest
and selfconcept about mathematical abilities whereas the statements of the
second group encompasses own expectations in math marks, competitiveness
and insecurity when dealing with math. In other words, the FkMgk-F clas-
sifies on one hand individuals who like mathematics, who are interested in
the subject, who have a more or less high selfconcept concerning their math-
ematics abilities and that, additionally, who are self-confident, not so much
competitive and who don’t have high expectations on their marks (since they
are centered on learning and not only on their marks). On the other hand,
we have individuals who don’t like math so much, who don’t show a lot of
interest in the subject, and who have a low selfconcept about their abilities
but, otherwise, who have high expectations on their marks and are insecure
and competitive (which could mean that this kind of students are centered
on passing the exams rather than on learning the contents of the subject).

Case k=3:
The corresponing centres of the prototypes are:
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HC1 =

 6.9264 7.3403 8.8379 7.3847 7.7795 7.7881 6.4017 5.8416
6.2601 5.3416 7.9498 4.8388 6.4442 6.0365 2.9041 2.8425
3.9104 1.5313 7.6441 1.5761 4.8296 3.7909 1.6783 1.7412



HC2 =

 7.063 7.5421 9.0588 7.5738 7.9621 7.8879 6.5118 5.9099
6.519 5.6085 8.1327 5.1259 6.8242 6.3714 3.1761 3.0031
4.193 1.6707 7.8644 1.787 5.0571 4.0404 1.8723 1.8856



HC1
GK =

 6.5312 5.4932 8.1294 5.2632 6.7365 6.3884 3.3237 3.2858
4.3411 4.4503 8.7022 4.2154 5.9486 4.9992 3.7519 3.8194
6.0136 4.3089 7.659 4.1491 6.3368 6.0381 3.4945 3.0275



HC2
GK =

 6.8369 5.653 8.3029 5.5734 7.0608 6.7169 3.6204 3.4912
4.5507 4.6212 8.8925 4.3795 6.15 5.1658 3.8874 3.8794
6.1846 4.5966 7.9104 4.3855 6.6249 6.2635 3.6648 3.1435


In this case, by considering the FkM-F procedure, the first cluster cor-

responds to high values for the eight statements, the second one medium
values and the third one low values. Following the same idea as before, the
FkM-F procedure classifies individuals according to whether the assessments
assigned to all statements have been high, medium or low but do not refer to
aspects about students’ mathematics related beliefs. On the other hand, in
the FkMgk-F case we can outline three groups: the first one includes state-
ments M1, M2, M4, M5 and M6 (high values for the first cluster, medium
values for the third cluster and low values for the second one), the second
one comprises statements M3 and M8 (in general high values for the first
cluster, medium values for the third cluster and low values for the second
one, although statements M2 and M4 present similar results associated to
clusters 2 and 3), and the third one comprehends statement M7. The groups
are the same as in the case k = 2 except for statement M7, since it is different
the intention when showing that a student is good at math than the inten-
tion when showing that a student is better than others. To summarize, the
conclusions are similar to the case k=2 except for the statement M7 which
highlights the competitiveness of the students in contrast to their insecurity
and own expectations in math marks.

30



8. Concluding remarks

In this paper we have introduced a generalized distance for fuzzy data, taking
into account the correlation structures among the variables, by means of
the Mahalanobis distance. This is very useful in multivariate analyses, in
particular, in a clustering context. The usual metrics for fuzzy data, based
on the Euclidean one, have a limited use since they work properly only in case
of spherical or well separated clusters. When the clusters have non spherical
shape, and the variables are correlated, the classical fuzzy methods may
fail. For this reason, we have proposed to consider the generalized adaptive
distance in a fuzzy k-means like algorithm. The simulation studies in different
scenarios have confirmed the adequacy of the proposal, in comparison with
the classical fuzzy k-means. In addition, the usefulness of the proposal has
been checked also by means of a very interesting real case study.

As a direction for a further research, we are working on developing robust
versions of the current study in order to be able to detect anomalous data.
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Appendix

In order to obtain the optimal fuzzy membership degree matrix U of the
FkMgk-F method, we consider the following Lagrangian function defined as
L(U, H̃,M1, · · · ,Mk, w, λ, β

C1 , βC2 , βL, βR) which is equal to

n∑
i=1

k∑
g=1

umigd
2
M,w

(
x̃i, h̃g

)
−

n∑
i=1

λi

(
k∑
g=1

uig − 1

)
−

k∑
g=1

βC1
g

(
|MC1

g | − ρC1
g

)
−

k∑
g=1

βC2
g

(
|MC2

g | − ρC2
g

)
−

k∑
g=1

βLg
(
|ML

g | − ρLg
)

−
k∑
g=1

βRg
(
|MR

g | − ρRg
)

(10)
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To find the optimal value of U we compute the partial derivatives of (10)
with respect to uig and λi and we set them equal to 0:

ϑL

ϑuig
= 0⇔ mum−1ig d2M,w

(
x̃i, h̃g

)
− λ = 0, (11)

ϑL

ϑλi
= 0⇔

k∑
g=1

uig − 1 = 0. (12)

Then, by carrying out the usual calculations we get

uig =
1

k∑
g′=1

(
d2M,w(x̃i,h̃g)
d2M,w(x̃i,h̃g′)

) 1
m−1

, i = 1, . . . , n, g = 1, . . . , k. (13)

On the other hand, by considering the partial derivatives of (10) with
respect to hC1

g , hC2
g , hLg and hRg , for g ∈ {1, . . . , k}, and setting them equal

to 0, the centroid matrix components are given by

hC1
g =

n∑
i=1

umigc1i

n∑
i=1

umig

, hC2
g =

n∑
i=1

umigc2i

n∑
i=1

umig

, (14)

hLg =

n∑
i=1

umigli

n∑
i=1

umig

, hRg =

n∑
i=1

umigri

n∑
i=1

umig

. (15)

In order to update MC1
g , we consider the partial derivative of (10) with

respect to MC1
g , taking into account that, for a non-singular matrix A and

any compatible vector x,
ϑ

ϑA
x′Ax = xx′ and

ϑ

ϑA
|A| = |A|A−1. Thus,

setting the partial derivative equal to 0 we get

(MC1
g )−1 =

SC1
g(

det(SC1
g )
)1/p (16)
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where SC1
g =

n∑
i=1

umig(c1i − hC1
g )(c1i − hC1

g )T

n∑
i=1

umig

is the fuzzy covariance matrix of

the left center for the g-th cluster. Analogously, it can be stated that

(MC2
g )−1 =

SC2
g(

det(SC2
g )
)1/p with SC2

g =

n∑
i=1

umig(c2i − hC2
g )(c2i − hC2

g )T

n∑
i=1

umig

, (17)

(ML
g )−1 =

SLg(
det(SLg )

)1/p with SLg =

n∑
i=1

umig(li − hLg )(li − hLg )T

n∑
i=1

umig

, and (18)

(MR
g )−1 =

SRg(
det(SRg )

)1/p with SRg =

n∑
i=1

umig(ri − hRg )(ri − hRg )T

n∑
i=1

umig

. (19)

Finally, to update the value of the weight, first we note that just the
distance involved in (7) depends on wC and, thus, the remaining terms can
be ignored. Setting the partial derivative of (10) with respect to wC equal to
0 and solving it, we obtain

wC =

n∑
i=1

k∑
g=1

umig [d
2
M

(
li,h

L
g

)
+d2M

(
ri,h

R
g

)
]

n∑
i=1

k∑
g=1

umig [d
2
M

(
c1i,h

C1
g

)
+d2M

(
c2i,h

C2
g

)
+d2M

(
li,h

L
g

)
+d2M

(
ri,h

R
g

)
]

, (20)

(wS = 1− wC). If wC < 0.5, then we set wC = 0.5.
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