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a b s t r a c t

Temperature evolution in supercapacitors (SCs) when they are charged or discharged at a constant
current is a well-known process. However, it does not exist any mathematical equation for the calcu-
lation of the instantaneous temperature of the SC when it is charged or discharged at constant power. In
this work, a new mathematical formulation is presented, which allows for the analytical calculation of
temperature as a function of time (or alternatively, as a function of the current or the internal or the
external voltage), considering the electrical and thermal properties provided by the manufacturer of the
SC or obtained through laboratory tests. Highly accurate equations for the calculation of instantaneous
current, power losses and other significant variables are also obtained. The validity of the proposal is
demonstrated by comparing the results obtained with the new method with those yielded from the
classical iterative, numerical resolution of the differential equations. The high accuracy of the proposed
approach makes it useful to be used in the task of sizing the cooling systems of SC applications.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Recent advances in manufacturing have made supercapacitors
(SCs) a feasible alternative to other electrical energy storage devices
[1]. Their main advantage, in comparison to batteries, is their
capability to handle high charge and discharge currents thanks to
drayes).

Ltd. This is an open access article u
their low internal resistance and large specific power [2]. Moreover,
the life cycle of SCs is several orders of magnitude higher than the
one of batteries, even for the case of battery cells manufactured
with the most resistant chemical compositions [3].

Hybrid sets, where SCs and batteries work together, are
becoming a prominent solution for applications requiring energy
storage [4e9]. In these cases, SCs are used to provide or absorb
peaks of power which, despite their low internal resistance, can
lead to a remarkable internal heating. Thus, the temperature
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Discharge of a SC at constant power.
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reached by the SC cells in a particular application should be taken
into account during the design stage, as this fact determines the
cooling system to be used and the electrical behaviour of the
device.

The values of the internal parameters of a SC depend on tem-
perature, although their variability is different according to the
temperature span within which they are used. The usual range of
temperature that ensures cell integrity and durability goes from
20 �C to 65 �C. Within this range, the variation of cell parameters
can be considered negligible. For this reason, internal resistance
and capacity will be considered as constant values in this study,
thus assuming that the operation of the SC takes place within
normal operational limits. It is interesting to highlight that, beyond
this temperature span, the electrical values of these parameters
strongly change and the performance of the device deteriorates to
the point that internal degradation may appear. Specifically, below
0 �C the viscosity of the electrolyte increases yielding a drastic
reduction in electrical conductivity. Moreover, the solubility of
conductive salts decreases, and hence the internal resistance rises
up. On the other hand, if the temperature is too high, Helmholtz
layer enlarges over the surface of the electrolyte producing a
reduction in the capacity of the cell of up to 2% of its rated value
[10]. In addition to the effects of the temperature over the electrical
parameters of SCs, operation out of the range �40 �C to 65 �C leads
to the degradation of the electrolyte. The service life of the SC
mostly depends on the operation voltage range and mean tem-
perature [11e17]. Thus, a proper estimation and control of the
temperature in SC banks is critical to get a successful operation and
a long lifespan of the system [18]. The calculation of the tempera-
ture of the SC is essential to design the cooling system, to size the
cells and their capacity for facing a specific power profile, and to
foresee their service life.

Therefore, the design stage should foresee the temperature that
the SC can reach when subjected to a succession of charge/
discharge processes. Some studies have been conducted to analyse
the thermal behaviour of SCs operating at constant charge or
discharge currents [19,20]. However, no equation exists to describe
the evolution of the instantaneous temperature of the cell when it
operates at constant charge or discharge power. Such kind of
equation can highly improve the process of selecting the optimum
cooling system for a particular application using SCs operated at
constant power.

In Ref. [21], a smartly simplified approach to constant power
operation is presented. In this study, the analytical solution for the
temperature as a function of time turns out to be an exponential or
single pole response, which is the same case arising at constant
current operation. Although the study is comprehensively pre-
sented and cleverly simplified, the results are not completely able
to track the instantaneous temperature of the SC in an actual
application where the SCs banks are operated at constant power.

To carry out the present study, the thermal model of the SC
described by Grbovic [22], as well as the characterization of the
behaviour of the SC operated at a constant power developed by
Miller [21], are taking as accepted basis. Following the methodol-
ogy of previous research studies [23‒28], the assessment of the
accuracy of the proposed formulation is carried out by comparing
its results with those yielded by the numerical solution, free of any
approximation, of the differential equation thatmodels the process.

This work is organized according to the following structure. In
section 2, the evolution of the current, power losses and energy
losses, when the SC operates at a constant power, is presented. Both
the classical formulation and the new equations are derived in this
section. Section 3 shows a case study in which the exact value of
intermediate variables of a cell providing a constant power, needed
in the process of temperature calculation, are compared with those
estimations attained from the classical and new equations in order
to assess the accuracy of the proposal. Section 4 introduces a new
expression for the calculation of the instantaneous temperature of
the cell as function of time, internal and external voltages and
current. Section 5 shows two case studies in which the accuracy of
the estimation of the temperature of the cell through the new
mathematical modelling is assessed and demonstrated. Finally,
section 6 summarizes the most important results of this study.
2. Analysis of SCs operated at constant power

The model of a SC bank discharged at a constant power value, P,
is shown in Fig. 1. This model is characterized through the equiv-
alent resistance, R, capacitance, C, internal voltage, u, and external
voltage, uC0.

In the following and for the sake of simplicity, time functions in
the form f ðtÞ are represented as f and their derivatives, df ðtÞdt , as f 0.
Capital letters are used to refer to constants. According to the said
model

PþR$i2 ¼ u$i: (1)

According to Kirchhoff's Voltage Law, the internal voltage of the
SC bank can be expressed as

u¼uco þ R$i; (2)

where i stands for the current flowing out of the cell. Considering
the state equation of the capacitance,

u0 ¼ � i
C
: (3)

By deriving (1) and combining it with (3), the following differ-
ential equation is obtained,

0¼ � i3 þ C$
�
P � R$i2

�
$i0: (4)

The mathematical statement in (4) comprises a separated vari-
ables differential equationwhich allows the calculation of time as a
function of current. However (4), does not allow a straightforward
calculation of current as a function of time. In order to enable
obtaining the current, it can be assumed that losses in the internal
resistance, R, are negligible as compared to the total power, i.e.

P[R$i2 /
yields

R$i2z0: (5)

Under the assumption in (4), (5) can be rewritten as

i3 zC$P$i0: (6)

Equation (6) can be solved by considering, as an initial condition,
that the internal and external voltages of the cell are equal at time
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zero. Let us use uo to stand for this initial voltage value. Thus,
current can be expressed as a function of time as

iz P$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

CDu20 � 2$P$t

s
: (7)

Once current is known, losses caused by the internal resistance,
R, can be directly calculated as

Plosses ¼R$i2z
C$R$P2

C$u20 � 2$P$t
: (8)

Therefore, the energy transformed into heat can be calculated as

Wlosses¼
ðt
0

Plosses$dtz� R$P$C
2

$ln

 
1� 2$P$t

Co$u20

!
: (9)

The above equations yield accurate results at moderate current
levels. However, when the depth of discharge (DoD) of the cell is
large or at high power levels the error increases, since the afore-
mentioned assumption stated in (5) is no longer valid, i.e. power
losses cannot be neglected at those operating conditions. In order
to improve accuracy in the calculation of current, an alternative
method of analysis is introduced in this work. This new method
requires an earlier calculation of the internal voltage, u, as a func-
tion of time. Thus, by combining (1) and (3), the following relation
is attained

R $C2$u
02 þ C$u$u0 þ P ¼ 0: (10)

If (10) is divided by R$C2, then

u02 þ u
R$C

$u0 þ P
R$C2 ¼ 0; (11)

where P > 0 for a discharge and P < 0 for a charge. Solving (11) for u0

yields

u0 ¼ �u
2$R$C

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4$P$R

p

2$R$C
: (12)

Thus, the time, t, needed by the internal voltage to reach each
current value, u, from the initial one, u0, can be obtain from (12) as

t¼ C
4$P

$

2
4u20 þ u0$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u20 � 4$P$R

q
� u2 � u$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4$P$R

p

� 4$P$R$ln

0
@u0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u20 � 4$P$R

q
uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4$P$R

p
1
A
3
5: (13)

Let us define the function hðu0Þ as follows

hðu0Þ¼u20 þ u0$
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u20 � 4$P$R

q
: (14)

Equation (13) is formed by five addends. The fifth one is affected
by a logarithmic fraction that makes this term negligible when
compared to the values of the other four. Taking this fact into ac-
count, the following equation can be obtained

u2 þu$
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4$P$R

p
zhðu0Þ �

4$P$t
C

: (15)

A change of variable is now needed to calculate the SC internal
voltage, u. The new variable, z, is defined as
z¼ � uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4$P$R

p
: (16)

Operating on (16), two terms appearing in (15) can now be
expressed as a function of the newly defined intermediate variable,
z,

u¼�z
2

� 2$R$P
z

; (17)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4$P$R

p
¼ z
2
� 2$R$P

z
: (18)

Replacing (17) and (18) in (15) leads to

z¼±2$R$P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

f ðu0Þ � 4$P$t
C

s
; (19)

where f ðu0Þ is defined

f ðu0Þ¼hðu0Þ � 2$R$P: (20)

Since the internal voltage, u, is always positive in real SC ap-
plications, only the solution preceded by the minus sign in (19)
must be considered. Thus, by replacing z in (17) the internal
voltage can be expressed as a function of time as

uz
R$P
g

þ g; (21)

where g is defined as

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
$f ðu0Þ �

2$P$t
C

r
: (22)

Once u is known, i can also be calculated. In order to do so,
noticed that the derivative of the internal voltage can be obtained
from (21) as

u0 ¼du
dg

$
dg
dt

¼ �R$P$g
0

g2
þ g

0
: (23)

Furthermore, the derivative of the newly defined function g, as
expressed in (22), can be obtained as

g
0 ¼ dg

dt
¼ �P

C$
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2$f ðu0Þ � 2$P$t

C

q ¼ �P
C$g

: (24)

Using the state equation of the capacitance (3), together with
(23) and (24), i can be obtained as a function of g as

iz
P
g
$

�
1� R$P

g2

�
: (25)

Practical SC values fulfill the following condition

1[
R$P
g2

: (26)

Thus, the current, i, can be approximately expressed as

iz
P
g
: (27)

By replacing the value of g in (27) as defined in (22), a new
expression for the current is finally obtained,



Fig. 2. SCs bank discharge current when using numerical methods (blue plot), the
classical approximation (red plot), and the proposed analytical equation (green plot).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

Classical Eq.
Proposed Eq.

Fig. 3. Discharge current error when using the classical approximation (red plot), and
the proposed analytical equation (green plot). (For interpretation of the references to
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iz P$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

C
2$f ðu0Þ � 2$P$t

s
: (28)

This new equation is apparently similar to the classical formu-
lation presented in (7). Notice that the term u20 used in (7) is
replaced in (28) by 0:5$f ðu0Þ. However, in spite of this resemblance,
the results yielded by (28) present an extremely low error level as it
is demonstrated in section 3.

From (27), the power losses in the SC cell can be easily assessed
as

Plosses ¼R$i2z
R$P2

g2
: (29)

By definition, power losses are the derivative of energy losses
with respect to time. Thus, they can be expressed as

Plosses ¼Wlosses
0 ¼ dWlosses

dg
$g

0
: (30)

If the derivative of function g, as given in (24), is replaced in (30),
the integration of the resulting expression leads to

Wlosses zR$C$P$Ln
�
g0
g

�
; (31)

where g0 stands for the value of function g at time zero. Finally, by
replacing the values of g and g0 in (31), an improved equation for
the calculation of energy losses is attained,

Wlosses z � R$C$P
2

$Ln
�
1� 4$P$t

C$f ðu0Þ
�
: (32)
colour in this figure legend, the reader is referred to the Web version of this article.)
3. Assessment of proposed equations

To assess the accuracy of the proposed analytical equations (28)
and (32), their results are compared to those yielded when solving
differential equation (4) by using numerical methods, which pro-
vide the exact solution, or by utilizing the classical approximations
given by equations (7) and (9). This comparison proves the errors
arising from the application of the proposed analytical approach to
be lower than those occurred when using the classical approxi-
mations. Since the proposed analytical equations are much simpler
than the numerical-method-based ones, the computational effort is
reduced when the former are applied.

A case study comprising the discharge of a SCs bank is simulated
according to the parameters shown in Table 1.

Fig. 2 shows the evolution of the discharge current obtained by
using numerical methods (blue plot, exact solution), the classical
approximation (red plot), and the proposed analytical equation
(28), (green plot). Only the last 20 s of the discharge have been
plotted to better observe the differences among the three
approaches.

Fig. 3 shows the percentage error occurred in calculating the
discharge current when using the classical or the proposed
approximations,
Table 1
Parameters of the SCs bank.

C (F) R (mU) u0 (V) P(W) tdischarge (s)

150 40 135 3000 140
Errorð%Þ¼ jiexact � iestimatedj
iexact

$100: (33)

As shown in Figs. 2 and 3, both the absolute value of the current
and the error increase as the discharge progresses; however, the
error arisen from using the proposed approximation is always
lower than that occurredwhen utilizing the classical one. The initial
error when using the proposed equation is null because u ¼ u0 at
t¼ 0 s and, therefore, the Napierian logarithm in (13) equals 0. Fig. 4
Fig. 4. Energy dissipated during the discharge by using numerical methods (blue plot),
the classical approximation (red plot), and the proposed analytical equation (green
plot). (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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Fig. 5. Dissipated energy error when using the classical approximation (red plot) and
the proposed analytical equation (green plot). (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)
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shows the evolution of the energy dissipated during the discharge
process. Only the last 10 s of the discharge have been plotted to
better observe the differences among the three approaches. Fig. 5
shows the corresponding error arisen from using the classical or
the proposed approximation. As can be seen in both figures, the
proposed analytical equation, (32), is more accurate than the clas-
sical one.

Once the equations proposed to calculate the discharge current
and the dissipated energy have been obtained and validated, the
evolution of the temperature of a SCs bank as a function of time, the
current, and the internal and external voltages is obtained for a
constant-power charge/discharge process.

4. Thermal model

The thermal model of the SC is based on the classical analogy
with the electric circuit in Fig. 6, where Plosses represents the power
losses at the internal resistance of the cell, Pamb stands for the heat
power losses, Tamb is the ambient temperature, T is the temperature
of the cell, Pinternal is the rate of change of stored heat energy in the
SC, and RTH and CTH are, respectively, the thermal resistance and
capacitance of the cell. Both RTH and CTH are usually provided by the
manufacturer or can be calculated by conducting simple experi-
mental tests.

The differential equation that determines the thermal behaviour
of the cell is

Plosses ¼CTH$q
0 þ q

RTH
; (34)

q being the thermal jump between the temperature of the cell and
the ambient temperature,
Fig. 6. Thermal model.
q¼ T � Tamb: (35)

Equation (34) can be expressed as a function of time as an in-
dependent variable by using equation (8) or equations (22) and
(29), the utilization of (22) and (29) being more accurate. However,
the resulting differential equation cannot be solved via analytical
methods; therefore, a change of variables is needed, which can be
obtained through variable g by relating equations (29) and (34),

R$P2

g2
¼CTH$

dq
dg

$g0 þ q

RTH
: (36)

The derivative of qwith respect to g can be calculated by relating
(24) and (36),

dq
dg

¼
�

C
CTH$RTH$P

�
$g$q�

�
R$C$P
CTH

�
$
1
g
: (37)

By defining constants a and b,

a ¼ C
CTH$RTH$P

; (38)

b¼ � R$C$P
CTH

; (39)

equation (37) can be expressed in a much simpler way,

dq
dg

¼ a$g$qþ b$
1
g
: (40)

The general solution of (40) can be obtained as

qðgÞ¼ k$exp
�
a$g2

2

�
þ 1
2
$b$exp

�
a$g2

2

�
$Ei
�
� a$g2

2

�
; (41)

where k is the constant of integration and Ei is the so-called
exponential integral function,

EiðxÞ ¼

8>>><
>>>:

ðx
�∞

ev

v
$dv x<0

lim
ε/0

� ð�ε

�∞

ev

v
$dvþ

ðx
ε

ev

v
$dv
�

x>0:

(42)

The constant of integration can be obtained from (41) as

k¼ q0$exp

 
� a$g20

2

!
� 1
2
$b$Ei

 
� a$g20

2

!
: (43)

where q0 ¼ T0 � Tamb, T0 being the temperature of the cell in t¼ 0
and assumed to be known. By combining (41) and (43), the value of
q as a function of g can be calculated as

qðgÞ¼ q0$exp

 
a$
	
g2 � g20



2

!
þ b
2
$exp

�
a$g2

2

�
$

 
Ei
�
� a$g2

2

�

� Ei

 
� a$g20

2

!!
:

(44)

The temperature of the cell as a function of g can be obtained by
relating (35) and (44),



Table 2
Electrical and thermal parameters of the SCS bank.

u0 (V) P(W) C (F) R (U) CTH (J/�C) RTH (�C/W) T0 (�C) Tamb (�C)

135 2800 60 0.02 10 2 20 20
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TðgÞ¼ Tamb þ ðT0 � TambÞ$exp
 
a$
	
g2 � g20



2

!

þ b
2
$exp

�
a$g2

2

�
$

 
Ei
�
� a$g2

2

�
� Ei

 
� a$g20

2

!!
: (45)

Equation (45) is valid within the typical SC operation range from
0 �C to 65 �C because the electric parameters of the cell, R and C,
barely change over that range.

By relating (22) and (45), the temperature of the cell as a
function of time can be obtained as

TðtÞ¼ Tamb þ
�
kc þ kb $ Ei

�
t

tTH
� ka

��
$exp

�
� t
tTH

�
; (46)

where tth is the thermal constant of the cell, which can be obtained
as the product of RTH and CTH . Constants ka, kb and kc can be
calculated as

ka ¼
a$g20
2

¼ C$f ðu0Þ
4$CTH$RTH$P

¼ 1
4
$a$f ðu0Þ; (47)

kb ¼
1
2
$b$expðkaÞ; (48)

kc ¼ T0 � Tamb � kb$Eið� kaÞ: (49)

Notice that the evolution of the temperature when the SC
operates at constant current is similar to that given by (46) without
the exponential integral function. Therefore, typical constant-
current single-pole temperature responses are not valid to anal-
yse the behaviour of an actual SCs bank, whose usual operation is
based on cyclic constant-power charge and discharge processes.

From (45), not only can the temperature be expressed as a
function of time, as seen in (46), but also as a function of the in-
ternal voltage, the external voltage and the current. From (21), g2

can be calculated as function of the internal voltage, u,

g2ðuÞ¼u
2
$
�
uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4$P$R

p �
� R$P: (50)

By combining (45) and (50), the temperature as a function of the
internal voltage is obtained,

TðuÞ¼ Tamb þ ðT0 � TambÞ$expðmðuÞ �m0Þ

� R$C$P
2$CTH

$expðmðuÞÞ$ðEið�mðuÞÞ � Eið�m0ÞÞ; (51)

mðuÞ and m0 depending on u and u0, respectively,

mðuÞ¼ C
4$CTH$RTH$P

$
�
u2 þ u$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4$P$R

p �
� 1
2
$
t

tTH
; (52)

m0 ¼
C

4$CTH$RTH$P
$

�
u20 þ u0$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u20 � 4$P$R

q �
� 1
2
$
t

tTH
; (53)

where t is the electrical time constant, i.e. R$C.
From (27), g2ðiÞ can be calculated as

g2ðiÞ¼ P2

i2
$ (54)

Therefore, the relationship between the temperature and the
current can be easily obtained by relating equations (45) and (54).
TðiÞ¼ Tamb þ ðT0 � TambÞ$exp
�
kd
i2

� ka

�
þ b
2
$exp

�
kd
i2

�
$

�
Ei
�

� kd
i2

�
� Eið�kaÞ

�
:

(55)

Constants kd can be calculated as

kd ¼ P$C
2$CTH$RTH

: (56)

Electrical power can be expressed as the product of the external
voltage and the current,

P¼uC0$i: (57)

By combining (54) and (57), the relationship between the
external voltage and g can be obtained as

uC0 ¼ g: (58)

According to (58), the relationship between the temperature
and the external voltage is identical to that between the tempera-
ture and g given by (45).

TðucoÞ¼ Tamb þ ðT0 � TambÞ$exp
�
a$u2co
2

� ka

�

þ b
2
$exp

�
a$u2co
2

�
$

�
Ei
�
� a$u2co

2

�
� Eið�kaÞ

�
: (59)

All the obtained equations can also be applied to a constant-
power charge process just by inverting the power sign. The accu-
racy of these simple proposed equations is assessed in Section 5 by
comparing their results to those obtained when calculating the
temperature by using numerical methods to solve differential
equation (34).
5. Results and discussion

In this section, the accuracy of all equations proposed is checked
by means of two SCs case studies: a) Single constant-power
discharge process, and b) a series of constant-power charge/
discharge processes.
5.1. Single constant-power discharge

A SCs bank discharge process starting from a 135-V initial
voltage and at a 2800-W constant power value during 140 s is
studied in this section. The thermal and electrical parameters used
in this case study are those in Table 2.

The evolution of the temperature as a function of different
variables is obtained by using both numerical methods and the
equations proposed in Section 4. The differential equations system
to be solved by using numerical methods is



Numerical.
Proposed Eq.

Fig. 9. Temperature as a function of the current when using numerical methods (blue
plot), and equation (55) (red dots). (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)

Numerical.
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8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

C$
�
P � R$i2

�
$i0 � i3 ¼ 0

CTH$T
0 þ T � Tamb

RTH
� R$i2 ¼ 0

u0 þ i
C
¼ 0

Wlosses
0 � R$i2 ¼ 0:

(60)

which is solved by using a 3rd-order Runge-Kutta method with a 1-
ms step size. Figs. 7e10 show the evolution of the temperature of
the SC as a function of, respectively, time, the internal voltage, the
current and the external voltage when solving (60) by using nu-
merical methods (blue plot) or by using (red dots) equations
(46)e(49) for Fig. 7, (51)e(53) for Fig. 8, (55) for Fig. 9, and (59) for
Fig. 10. Notice that the values of the current in Fig. 9 are negative
because they correspond to a discharge process. As can be seen, the
accuracy of all equations proposed in Section 4 is remarkable.
Proposed Eq.
5.2. Succession of charge/discharge processes at constant power

In this section, a series of constant-power charge/discharge
processes applied to a SCs bank is studied. Results regarding the
internal voltage, the current, the temperature, etc., are obtained by
using both numerical methods and the equations proposed in
sections 3 and 4. The thermal and electrical parameters used in this
Numerical.
Proposed Eq.

Fig. 7. Temperature as a function of time when using numerical methods (blue plot),
and equations (46)e(49) (red dots). (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)

Numerical.
Proposed Eq.

Fig. 8. Temperature as a function of the internal voltage when using numerical
methods (blue plot), and equations (51)-(53) (red dots). (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of
this article.)

Fig. 10. Temperature as a function of the external voltage when using numerical
methods (blue plot), and equation (59) (red dots). (For interpretation of the references
to colour in this figure legend, the reader is referred to the Web version of this article.)
case study are those in Table 2. The duration of the simulation is
600 s to ensure that the thermal steady-state is reached, while both
the charge and the discharge processes both last 100 s. The initial
internal voltage is 135 V. The constant power value for the
discharge processes is set at 2000 W, whereas that for the charge
processes is set at 2019.27W to compensate for the internal
resistance losses and for the initial internal voltage to keep its value
at each cycle. These data are shown in Table 3.

Figs. 11e15 show the evolution over time of, respectively, the
internal voltage, the external voltage, the current, the power losses
at the internal resistance, and the dissipated heat energy at the cell,
by using numerical methods (blue plot) or by using (red dots)
equations (21)-(22) for Fig. 11, (22) and (58) for Fig. 12, (28) for
Fig. 13, (22) and (29) for Fig. 14, and (32) for Fig. 15.

As explained in Section 4 and seen in Fig.12, the external voltage
values and the results yielded by function g(t) are remarkably
similar to each other, which allows for the estimation of the cell
temperature simply by measuring the external voltage and
assuming that its thermal and electrical parameters are known.

Fig. 16 shows the evolution of the SCs bank temperature by
using numerical methods (blue plot) and by using equations
(46)e(49) (red dots). The ambient temperature (i.e. the initial
temperature of the SCs bank) is set to 20 �C to better observe the
thermal transient behaviour.

Fig. 17 shows both a detail of Fig. 16 once the thermal steady-
state has been reached and the evolution of the corresponding
power losses.

As can be seen, there is a delay between the variables shown in
Fig. 17, i.e. the maximum temperature at each cycle is reached some



Table 3
Parameters of the charge and discharge processes.

Charge Discharge

umin(V) umax(V) P(W) t(s) umin(V) umax(V) P(W) t (s)
107.4 135 2019.27 100 107.4 135 2000 100

Fig. 11. Internal voltage when using numerical methods (blue plot), and equations (21)
and (22) (red dots). (For interpretation of the references to colour in this figure legend,
the reader is referred to the Web version of this article.)

Fig. 12. External voltage when using numerical methods (blue plot), and equations
(22) and (58) (red dots). (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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Numerical. Proposed Eq.

Fig. 13. Current when using numerical methods (blue plot), and equation (28) (red
dots). (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

Fig. 14. Power losses at the internal resistance when using numerical methods (blue
plot), and equations (22) and (29) (red dots). (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)

Numerical.
Proposed Eq.

Fig. 15. Dissipated heat energy when using numerical methods (blue plot), and
equation (32) (red dots). (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

Numerical.
Proposed Eq.

Fig. 16. Temperature when using numerical methods (blue plot), and equations
(46)e(49) (red dots). (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

J.F. Pedrayes et al. / Energy 188 (2019) 1160478



Table 4
Accuracy of proposed equations.

Variable Numerical
methods

Proposed
equations

Absolute
error

Relative
error (%)

External voltage (V) 135.6022 135.6144 0.0122 0.009
Internal voltage (V) 135.3041 135.3165 0.0121 0.0089
Current (A) 14.8911 14.8897 0.0014 0.0094
Power losses (W) 4.43492 4.43411 0.00081 0.018
Energy losses (J) 3305.187 3304.74 0.4476 0.0135
Temperature (�C) 29.6191 29.6178 0.001238 0.0042

Fig. 17. Top plot: Temperature vs time when using numerical methods (blue plot), and
equations (46) e (49) (red dots). Bottom plot: Power losses vs time when using nu-
merical methods (blue plot), and equations (22) and (29) (red dots). (For interpretation
of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)

J.F. Pedrayes et al. / Energy 188 (2019) 116047 9
time after the maximum power is lost. This delay is related to the
thermal constant time, tth; the higher its value, the longer the
delay. Fig. 17 also shows the cell mean temperature, Tmean, which
can be obtained from themean value of the power losses, 5.5W, the
ambient temperature, 20 �C, and the thermal resistance,

Tmean¼ Tamb þ RTH$ðPlossesÞmean ¼ 31�C: (61)

The relationship between the temperature and the internal
voltage, the current or the external voltage can also be obtained as
done for case study I. For instance, Fig. 18 shows the relation be-
tween the temperature and the internal voltage taking only the
values at the thermal steady-state for the sake of clarity, both by
using numerical methods (blue plot) and equations (51) and (53)
(red dots).

Table 4 shows the values of all studied variables when the error
is themaximum, obtained both by numerical methods and by using
the equations proposed in sections 3 and 4. As seen in Table 4, the
proposed approximations yield values remarkably similar to those
obtained when utilizing numerical methods.
Fig. 18. Temperature as a function of the internal voltage when using numerical
methods (blue plot), and equations (51)-(53) (red dots). (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of
this article.)
6. Conclusion

A novel analytical approach to calculate the time evolution of
the temperature of SC banks operating at constant-power charge/
discharge processes has been proposed in this paper. The obtained
equations are noticeable simple, accurate and their use is
straightforward. Equations regarding temperature as a function of
other variables such as the internal voltage, the external voltage or
the current are also obtained. Only the thermal and electrical pa-
rameters of the cell are needed to solve the proposed equations.
Those parameters are usually provided by the manufacturer or can
be easily calculated by means of simple experimental tests. More-
over, new remarkably accurate equations to obtain the evolution of
the current, the power losses or the dissipated energy have also
been proposed. All the proposed equations have proven to be
remarkably accurate and yield results noticeable similar to those
obtained by using numerical methods. Therefore, the approach
proposed in this paper proves to be a reliable and useful means to
design the refrigeration system in SCs banks.
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