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1 Introduction

Physics and geometry are connected in an intriguing way. Perhaps the most prominent

example is the intimate relation between general relativity and Riemannian geometry.

There is a large variety of other examples ranging from gauge theories to condensed matter

systems. In this paper we want to provide additional evidence for this paradigm by present-

ing a link between para-Hermitian geometry and Poisson-Lie σ-models. The latter were

first studied because they admit Poisson-Lie T-duality [1, 2], a generalization of abelian

T-duality.

Since this duality is not as well known as its abelian counterpart and comes with

some additional subtleties, let us start by explaining its historical origins. Gauging the

σ-model of a closed string moving in a target space with abelian isometries gives rise to

– 1 –



J
H
E
P
1
0
(
2
0
1
9
)
1
6
0

a dual σ-model after applying a procedure due to Buscher [3, 4]. Classically, and even

after quantization, the dynamics of both models is indistinguishable. This is remarkable

because the dual target space looks in general quite different compared to the original

one. Abelian T-duality has become an indispensable tool in studying string theory and

therefore it is desirable to look for generalizations. The original Buscher procedure relies

on abelian isometries, but in general isometry groups are non-abelian. Thus, extending it

to non-abelian isometries results in in non-abelian T-duality [5]. There are however some

additional challenges one has to cope with in this approach [6–8]. Most striking is that the

dual target space lacks some of the isometries which would be required to go back to the

original one [9]. Hence, non-abelian T-duality looks asymmetric and not symmetric like a

duality should.

Poisson-Lie T-duality was introduced in [1, 2] to solve this problem. It embeds the

physical target space into a higher dimensional Drinfeld double (a Lie group with special

properties) and describes dual σ-models as different consistent embeddings. This way it

considerably extends the class of target spaces which can be related by duality transfor-

mations. Poisson-Lie T-duality includes abelian and non-abelian T-duality as special cases

but also goes beyond it. In particular it allows to connect certain target spaces which lack

any isometries. However, it still only applies to a very restricted class of geometries which

are called Poisson-Lie symmetric [10]. There is a crucial difference between between abelian

and Poisson-Lie T-duality though. While the former is a genuinely symmetry of string the-

ory and holds to all orders in α′ and gs [11], the latter is in general restricted to the classical

regime. This problem already applies for non-abelian T-duality [6]. Whether it is possible

to overcome it and eventually include at least some stringy corrections is an open question.

However, Poisson-Lie T-duality preserve conformal invariance at the one-loop level [12–14]

after imposing a mild unimodularity constraint and is therefore a powerful solution gen-

erating technique in supergravity.1 Applications include using non-abelian T-duality to

generates new examples of holographic backgrounds [16–20].

More recently, Poisson-Lie symmetry gained a lot of interest after its connection to

integrable two-dimensional σ-models was discovered. This development started with the

pioneering work by Klimč́ık on the Yang-Baxter σ-model [21, 22] and attracted more atten-

tion after it was generalized to symmetric spaces and applied successfully to AdS5×S5 [23].

The undeformed version of this background represents the standard example for another

important duality in string theory: the AdS/CFT correspondence [24]. It relates closed

strings in a D-dimensional anti de Sitter (AdS) spacetime with a conformal field theory

(CFT) in D-1 dimensions. Studying both sides of this duality simultaneously is hard be-

cause one side is always strongly coupled and not accessible with perturbative techniques.

However because AdS5×S5 is integrable [25], it is still possible to make further progress

in exploring the underlying principles of the AdS/CFT correspondence. A comprehensive

review of this beautiful topic is given in [26]. Considering this success, a natural question

is if there are any other integrable σ-models for holographic backgrounds. This question

1The non-unimodular case is governed by the generalized supergravity equations of motion [15]. While

for making contact with full string theory the distinction between unimodular and non-unimodular is

important, it is not relevant for the results presented in this paper.
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is much harder to answer than one might initially think and triggered a lot of activity

recently. The standard approach is to start with one of the few known integrable models

and deform them such that their classical integrability2 is preserved [27]. The resulting

integrable deformations fall into two distinct classes: the η-deformation [21] deforms a

principal chiral model and the λ-deformation [28] originates from a Wess-Zumino-Witten

(WZW) model. Subsequently, both were shown to be connected to each other by applying

Poisson-Lie T-duality and an analytic continuation [29–31]. Based on them, several multi-

parameter deformations were introduced, for example the bi-Yang-Baxter model [32, 33]

or the Yang-Baxter Wess-Zumino (YB WZ) model [34–39]. All of them are captured by a

Poisson-Lie σ-model.

There are different hints that these physical systems should have a natural relation

to almost para-Hermitian geometry. Roughly speaking, para-Hermitian geometry is the

real version of the more familiar concepts of complex, Hermitian and Kähler geometry. An

almost para-complex structure K on a 2d-dimensional manifold is an endomorphism of the

tangent bundle which squares to plus one, K2 = +1. It splits the tangent bundle into

two eigenbundles of equal rank d. When in addition it is compatible with a metric η of

signature (d, d), we have an almost para-Hermitian manifold. Together K and η give rise

to the fundamental two-form ω. If it is closed, dω = 0, we have an almost para-Kähler

manifold. When the almost para-complex structure K is integrable (i.e. its Nijenhuis tensor

vanishes), we can drop the “almost” and are dealing with para-Hermitian or para-Kähler

geometry.

The relation of this mathematical framework to physical systems can be seen in Double

Field Theory (DFT) [40–44]. This is a T-duality covariant effective target space theory

of closed strings which requires a para-Hermitian structure or the slightly weaker half-

integrable structure on the doubled space for consistency [45–49]. A sketchy but short

argument why this is the case goes as follows: recall that a complex structure on an

even-dimensional real manifold allows us to introduce holomorphic and anti-holomorphic

coordinates on this manifold. A para-Hermitian structure has a similar property, it allows

for a splitting of the coordinates into what we will call physical and unphysical coordinates.

In DFT all fields and parameters of gauge transformations are just allowed to depend on

the physical coordinates. Only this way a necessary constraint (the section condition) is

solved and the theory consistently reduces to normal supergravity.

Historically DFT was derived in the context of abelian T-duality. This allows for the

interpretation of its doubled space as being formed from directions which are conjugated

to momentum and winding modes of the closed string [42]. But it can also be adapted

so that it captures full Poisson-Lie T-duality [50–53]. In this case the doubled space has

rather the interpretation of a phase space for the underlying closed string theory. The same

interpretation motivated metastring theory [54, 55] where para-Hermitian and Born geom-

etry are crucial. By Born geometry one understands the addition of a Riemannian metric

H to a para-Hermitian manifold which is compatible with the para-Hermitian structures

2In this paper two notions of integrability are relevant. First there is integrability of a physical the-

ory which requires an appropriate number of integrals of motion. Second there is also integrability for

distributions in a mathematical sense.
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(K, η, ω). Thus it seems to be that para-Hermitian geometry and Poisson-Lie symmetry are

closely related. Additional weight to this conjecture is given by [56] where Drinfeld doubles,

which play a central role in Poisson-Lie T-duality, are directly related to para-Hermitian

geometry.

We work out this connection in the present paper by constructing a para-Hermitian

geometry with explicit expressions for η and ω for every Poisson-Lie σ-model. Furthermore,

we show that if the target space does not have H-flux this geometry becomes a Born geom-

etry. The precise relation we establish between para-Hermitian and Born geometry, gen-

eralized geometry, DFT on group manifolds and the E-model is of mutual benefit. From a

physics point of view the underlying mathematical structure allows for a unified description

of dual backgrounds. In general T-duality does not only connect two distinct target spaces

but is a plurality identifying complete families of them. We will explain how deformation

theory of the para-Hermitian structure provides a powerful tool to explore the resulting

moduli space of dual backgrounds. On the other hand Poisson-Lie σ-models provide a

rich class of examples for para-Hermitian geometries which can be explicitly constructed

on group manifolds. We use them to prove that certain constraints imposed in the recent

works on para-Hermitian structures and their connection to generalized geometry [57, 58]

and DFT [47–49, 56] can be relaxed. In particular, we find that only the distribution L̃

associated to the unphysical coordinates has to be integrable to permit the construction of

a Courant algebroid over the physical target space. Finally, we study the doubled geometry

of gauged Wess-Zumino-Witten models related to the dressing coset construction [59–61].

The latter provides the most general class of target spaces with Poisson-Lie symmetry. For

example the above mentioned deformations of AdS5×S5 arise from this construction. All

para-Hermitian geometries we construct come automatically with a generalized frame field

which can be used to find new, consistent generalized Scherk-Schwarz reductions [62–64].

The paper is organized as follows: in section 2 we will briefly review the settings

of (almost) para-Hermitian geometry and Born geometry including the important notion

of a D-structure. In section 3 we will discuss how these objects arise very naturally on

certain group manifolds. Here we will comment on the relation to Poisson-Lie σ-models,

generalized geometry and start looking at Poisson-Lie symmetry and its relevance for the

integrability of a σ-model. From there we move on to dressing cosets and their doubled

geometry in section 4. Finally, we will explore how to deform these setups by keeping the

required half-integrable structure in section 5 and present the YB WZ model as an explicit

example in section 6. We conclude in the last section.

2 Para-Hermitian and Born geometry

This section presents the mathematical background which we apply in the next section

to the Poisson-Lie σ-model. We summarize the key ideas of para-Hermitian geometry

together with the concept of a D-structure and suitably generalized notions of torsion

and integrability. This forms the basis to define Born geometry and has been established

in [47–49], for an executive summary see [65].
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2.1 Para-Hermitian geometry

We start with an almost para-complex manifold (P,K) where P is a 2d-dimensional differ-

entiable manifold and K an endomorphism on the tangent bundle TP such that K2 = +1.

The +1 and −1-eigenbundles of K have the same rank and will be denoted by L and L̃

respectively. The associated projection operators are

P =
1

2
(1 +K) and P̃ =

1

2
(1−K) . (2.1)

The integrability of the para-complex structure K can be expressed in terms of the Nijen-

huis tensor analogous to the complex case

NK(X,Y ) :=
1

4

(
[X,Y ] + [KX,KY ]−K([KX,Y ] + [X,KY ])

)
= P [P̃X, P̃Y ] + P̃ [PX,PY ]

(2.2)

where [ , ] is the Lie bracket on TP. The para-complex structure K is integrable if and

only if NK vanishes. Then the eigenbundles are integrable distributions and we say (P,K)

is a para-complex manifold.

An important difference from almost complex manifolds is that the integrability of L

is independent from the integrability of L̃: L can be integrable while L̃ is not and vice

versa. This can be seen clearly in the second line of the Nijenhuis tensor above where

the two terms can vanish independently. This leads to the notion of half-integrability: we

say an almost para-complex manifold (P,K) is L-integrable (L̃-integrable) if only L (L̃)

is an integrable distribution. This feature of half-integrability will be crucial later on. We

will also see that T-duality and some B-field transformation may not preserve integrability

integrability of both subspaces. Furthermore, the appearance of fluxes can be related to

obstruction to the integrability of L.

Next we add a pseudo-Riemannian metric η compatible with the almost para-complex

structure K to our setup to obtain an almost para-Hermitian manifold (P, η,K). The

compatibility of the two structures is expressed by the skew-orthogonality of K with respect

to η,

η(KX,KY ) = −η(X,Y ) . (2.3)

Due to this skewness of K and the fact that its eigenbundles have the same rank, the

metric η is of split signature (d, d). Together the two structures define the tensor ω := ηK

which is skew and non-degenerate. Therefore ω is an almost symplectic form which is

anti-compatible with K,

ω(KX,KY ) = −ω(X,Y ) . (2.4)

It follows that the eigenbundles L and L̃ are isotropic subspaces with respect to η and ω.

They are null and Lagrangian respectively.

2.2 D-structure

The next step is to consider a generalized differentiable structure for para-Hermitian ge-

ometry whose corresponding bracket is the analogue of the Lie bracket [45–47, 49, 66].
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To this end, we start with a metric-compatible bracket defined on any pseudo-Riemannian

manifold (P, η). This is a bilinear operation [[ , ]] : Γ(TP)×Γ(TP)→ Γ(TP) on the algebra

of vector fields which is compatible with the metric and satisfies a normalization condition

X[η(Y,Z)] = η([[X,Y ]], Z) + η(Y, [[X,Z]]), (2.5)

[[X,X]] =
1

2
D[η(X,X)] . (2.6)

To any function f , we associate a vector field D[f ] defined by η(D[f ], X) = X[f ]. Note

that the bracket is not skew-symmetric so the Leibniz property takes the form

[[X, fY ]] = f [[X,Y ]] +X[f ]Y, (2.7)

[[fX, Y ]] = f [[X,Y ]]− Y [f ]X + η(X,Y )D[f ] . (2.8)

One can construct a metric-compatible bracket for any metric-compatible connection ∇
(one which satisfies ∇Xη = 0) via

η([[X,Y ]]∇, Z) = η(∇XY −∇YX,Z) + η(∇ZX,Y ) . (2.9)

This metric-compatible bracket can be used to define a generalized notion of integrability

for any endomorphism C on TP which satisfies C2 = ±1 and η(CX, Y ) = −η(X,CY ),

like our almost para-complex structure K. The generalized Nijenhuis tensor associated to

such an object C is defined by

NC(X,Y ) :=
1

4

(
C2[[X,Y ]] + [[CX,CY ]]− C

(
[[CX, Y ]] + [[X,CY ]]

))
. (2.10)

One can show that this indeed defines a skew-symmetric tensor. This is a non-trivial result

since the bracket is not skew-symmetric itself (unlike for the usual Nijenhuis tensor (2.2)

in terms of the Lie bracket) [48]. It depends on the above sign choice for the orthogonality

of C with respect to η.

With a notion of generalized integrability in place we can further refine our bracket. A

D-bracket on an almost para-Hermitian manifold (P, η,K) is a metric-compatible bracket

[[ , ]] such that K is integrable in the generalized sense (NK = 0). When this is the case,

the data (P, η,K, [[ , ]]) has been called a D-structure [48]. If we have a D-structure, the

subbundles L and L̃ are Dirac structures with respect to the D-bracket ([[L,L]] ⊂ L and

[[L̃, L̃]] ⊂ L̃). In other words, they are individually integrable in the generalized sense

NK(PX,PY ) = P̃ ([[PX,PY ]]) = 0,

NK(P̃X, P̃Y ) = P ([[P̃X, P̃Y ]]) = 0 .
(2.11)

If in addition to all the properties mentioned so far a D-bracket also satisfies

[[PX,PY ]] = P ([PX,PY ]),

[[P̃X, P̃Y ]] = P̃ ([P̃X, P̃Y ]) ,
(2.12)

it is said to be canonical. In this case when it is restricted to L (respectively L̃), it reduces

to the projection of the Lie bracket onto L (respectively L̃). It turns out that there is a

– 6 –
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unique canonical D-bracket [48]. This canonical D-bracket is the D-bracket that appears

in the DFT literature and is closely related to the Dorfman bracket of Courant algebroids

in generalized geometry [67–70].

The D-bracket can also be seen as a generalized Lie derivative acting on a vector which

we will denote by L
[[X,Y ]] = LXY . (2.13)

As for the Lie derivative, its action can easily be extended to arbitrary tensors by using

the Leibniz property it inherits from the D-bracket.

2.3 Born geometry

The (almost) para-Hermitian geometry we have discussed so far together with a D-structure

provides the kinematical structure of the doubled geometry. In a final step we now introduce

a generalized metric H which contains the dynamical degrees of freedom. Under particular

circumstances which we explain now, the triple (η, ω,H) on the manifold P forms what

has been named a Born geometry. Whereas in (almost) para-Hermitian geometry we could

make some global statements and considered integrability conditions such as NK = 0, in

Born geometry we will only consider (η, ω,H) on local patches.

The additional Riemannian metric H has to be compatible with η and ω by satisfying

η−1H = H−1η and ω−1H = −H−1ω. (2.14)

Note that here we view (η, ω,H) as maps TP → T ∗P. One can now define two more

endomorphisms on the tangent bundle TP. Together with the almost symplectic form ω,

the generalized metric H forms an almost Hermitian structure (ω,H, I)

ω(IX, Y ) = −H(X,Y ), I2 = −1 (2.15)

where I is an almost complex structure. One also finds that the two metrics η and H form

a chiral structure J with

η(JX, Y ) = H(X,Y ), J2 = +1 . (2.16)

The data (η,H, J) is familiar from DFT. We call it a chiral structure since J relates the

left- and right-moving sector of the closed string. From section 2.1 above we already have

the almost para-Hermitian structure (η, ω,K) with

ω(KX,Y ) = η(X,Y ), K2 = +1 . (2.17)

The three endomorphisms (I, J,K) on TP all anti-commute with each other and addition-

ally satisfy

IJK = −1 (2.18)

so that they form an almost para-quaternionic structure. The key relations between the

structures of Born geometry are summarized in table 1. Another interesting and important

property of Born geometry is the following: the triple (η, ω,H) is a Born structure on P if

– 7 –
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I = H−1ω = −ω−1H J = η−1H = H−1η K = η−1ω = ω−1η

−I2 = J2 = K2 = 1 {I, J} = {J,K} = {K, I} = 0 IJK = −1

H(IX, IY ) = H(X,Y ) η(IX, IY ) = −η(X,Y ) ω(IX, IY ) = ω(X,Y )

H(JX, JY ) = H(X,Y ) η(JX, JY ) = η(X,Y ) ω(JX, JY ) = −ω(X,Y )

H(KX,KY ) = H(X,Y ) η(KX,KY ) = −η(X,Y ) ω(KX,KY ) = −ω(X,Y )

Table 1. Summary of structures in Born geometry. Here { , } is the anti-commutator.

and only if there exists a frame E ∈ GL(2d) such that one can write η = ETη̄E, ω = ETω̄E

and H = ETH̄E with

η̄ =

(
0 1

1 0

)
, ω̄ =

(
0 −1
1 0

)
, H̄ =

(
1 0

0 1

)
, (2.19)

in the case of Euclidean signature [48]. η̄ and ω̄ are important constituents of the action

for σ-model on a doubled target space [71–74]. We come back to this point in section 3.2.

3 Group manifolds and para-Hermitian geometry

We now show that certain group manifolds provide explicit examples of the structures

introduced in the previous section. Furthermore, we relate them to σ-models whose target

space admit Poisson-Lie T-duality [1, 2]. There is an intriguing interplay between the

mathematical structure in para-Hermitian geometry and the physical properties of the σ-

models. For example we will show that the D-bracket captures their global symmetries and

that the generalized metric encodes the metric and two-form field on their target space.

Finally, we discuss the conditions on a target space to permit Poisson-Lie T-duality in

which case it is said to be Poisson-Lie symmetric [10]. It is in general hard to check for

this symmetry directly at the target space level. But if we apply the framework of para-

Hermitian geometry, we find that Poisson-Lie symmetry is equivalent to isometries of the

generalized metric H.

3.1 L̃-integrable para-Hermitian Lie groups

We start with a 2d-dimensional Lie group P with group elements p. Instead of working

directly with the tangent bundle of P, we use the globally defined left-invariant Maurer-

Cartan form E,

TAE
A(X) = p−1dp (X) . (3.1)

The group P is generated by the Lie algebra p with the 2d generators TA. They satisfy the

commutation relation

[TA, TB] = FAB
CTC (3.2)

– 8 –
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and all the relevant local data is encoded in the structure coefficients FAB
C . The Maurer-

Cartan form E is a bundle isomorphism E : TP → adP whose inverse is E−1. To make

contact with a para-Hermitian structure, we need to define the projectors P and P̃ intro-

duced in (2.1) which project onto the subspaces L and L̃ of TP. Here P̃ is chosen such

that the image of EP̃ is restricted to a d-dimensional subalgebra l of p.

The pseudo-Riemannian metric η is now given in terms of an ad-invariant, non-

degenerate, symmetric pairing 〈 , 〉 on p for which l is maximally isotropic:

η(X,Y ) = 〈EX,EY 〉 . (3.3)

To split the coordinates of P in a physical and an unphysical part, we decompose the group

element p according to

p = `m ` ∈ L , m ∈M = L\P (3.4)

where ` is an element of the maximally isotropic subgroup L and m is a coset representative.

In terms of this splitting we define the symplectic form ω on P as

ω(X,Y ) = 〈dmm−1(X)∧, `−1d`(Y )〉+Bwzw(X,Y ) , (3.5)

where the 2-form Bwzw is chosen such that locally

dBwzw =
1

6
〈[dmm−1, dmm−1], dmm−1〉 = Hwzw (3.6)

holds. The notation 〈 ∧, 〉 denotes the antisymmetrization of the pairing 〈 , 〉. Our choice

for η and ω might seem a bit artificial, but we will see in the next subsection that it is well

motivated when studying the Poisson-Lie σ-model.

First though, we have to verify that we indeed describe a half-integral para-Hermitian

structure. There are two constraints. We have to calculate K = η−1ω and check that it

is an involution. Furthermore, the Nijenhuis tensor has to vanish, at least for one of the

distributions L or L̃. The left action of L on P is transitive. Thus M is a homogeneous

space and we understand P as a L-principal bundle over M . In each patch we use the

local trivialization to split the coordinates XI = (xi x̃ĩ) on P into a base contribution xi

(physical) and a fiber part x̃i (unphysical). Expressing ω and η explicitly in terms of these

coordinates gives rise to

ηIJ =

(
ηij ηij̃
ηĩj 0

)
, ωIJ =

(
Bwzwij ηij̃
−ηĩj 0

)
and KI

J =

(
−δij 0

ηĩk(Bwzwkj + ηkj) δ
ĩ
j̃

)
(3.7)

with

ηij = 〈∂imm−1, ∂jmm
−1〉 , ηij̃ = 〈∂imm−1, `−1∂j̃`〉 where ηik̃η

jk̃ = δji . (3.8)

It is now straightforward to verify K2 = 1 or equally the compatibility of η and ω with each

other (and K) in (2.3) and (2.4). One is also able to calculate the Nijenhuis tensor (2.2)

and observe that its only non-vanishing contribution is

(NK)ĩjk = 2K l
[j∂lK

ĩ
k] + 2K l̃

[j∂l̃K
ĩ
k] − 2K ĩ

l̃∂[jK
l̃
k] . (3.9)
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In particular, the Nijenhuis tensor is annihilated by P . As a consequence P [P̃X, P̃Y ] = 0

holds, while in general P̃ [PX,PY ] = 0 is violated. In this case we are dealing with a

half-integrable structure. Half-integrable structures were studied recently [48, 56]. But in

those references, integrability with respect to L instead of L̃ is required. Here we find the

opposite situation. In the next section we will see that there is still no problem in making

contact with the physics of Poisson-Lie σ-models. Eventually, we are even able to construct

a canonical Courant algebroid just based on L̃-integrability.

There are two special cases where we can choose a coset representative m such that

ηij = 0 (3.10)

holds:

• Drinfeld doubles are Lie groups with two maximally isotropic subgroups. In this case,

P/L is a Lie group and m is just an element of this Lie group.

• Pseudo Riemannian symmetric spaces arise for P/L if the Lie algebra l and its

complement m form a symmetric pair

[m,m] = l [l,m] = m [l, l] = l . (3.11)

In this case, m arises from applying the exponential map to m:

m = exp(m) . (3.12)

Only in the first case Bwzw vanishes as well as ηij . In this case, which was also studied

in [56], both L and L̃ are integrable and we obtain a para-Hermitian structure. We conclude

that the obstruction of L to be integrable is measure by Hwzw in (3.6). As we show in the

next subsection, this three-form represents the WZ-term of the worldsheet two-dimensional

σ-model. It is classified by the third de Rham cohomology H3(P/L).

3.2 Poisson-Lie σ-model

Intriguingly, the structures presented in the last subsection appear also in a class of string

theory worldsheet models. They are called Poisson-Lie σ-models and were introduced by

Klimč́ık and Severa in [1, 2, 75]. Their dynamics is governed by the action

S =
1

2

∫
dσ dτ

(
η(Xσ, Xτ ) + ω(Xσ, Xτ )−H(Xσ, Xσ)

)
(3.13)

with

Xσ = E−1(p−1∂σp) and Xτ = E−1(p−1∂τp) , (3.14)

and H denoting the generalized metric introduced in section 2.3. An action of this form

is typical for a σ-model on a doubled target space [71, 72] (the topological term was later

considered by [73, 74]).

There is an alternative way of writing this action in terms of a WZW-model on P
combined with an additional contribution from an involution E . The latter captures the
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geometry of the target space and is in one-to-one correspondence with the generalized

metric

H(X,Y ) = 〈EX, EEY 〉 . (3.15)

It plays the same role as the chiral structure J in Born geometry (see (2.16)). The corre-

sponding σ-model goes also under the name E-model [2, 31, 75]. It is either captured by

the action

S =
1

2

∫
Σ

dσ dτ〈p−1∂σp, p
−1∂τp〉+

1

12

∫
M3

〈[p−1dp, p−1dp], p−1dp〉 −
∫

dτHam (3.16)

or alternatively by the Hamiltonian

Ham =
1

2

∮
dσ〈j(σ), Ej(σ)〉 (3.17)

where the currents j(σ) = p−1∂σp are governed by the Poisson-bracket

{jA(σ), jB(σ′)} = FAB
CjC(σ)δ(σ − σ′) + ηABδ

′(σ − σ′) (3.18)

with jA(σ) = 〈TA, j(σ)〉 and ηAB = 〈TA, TB〉. The action involves a WZ-term which is

evaluated on a three dimensional extension M3 of the world sheet Σ (∂M3 = Σ).3

In order to identify the two actions (3.13) and (3.16), we introduce the closed three-form

F (X,Y, Z) = 〈[EX,EY ], EZ〉 =
1

6
〈[p−1dp(X), p−1dp(Y )], p−1dp(Z)〉 (3.19)

and notice that the exterior derivative of ω gives rise to

dω = F . (3.20)

In deriving this relation, we took into account that ` is an element of a maximally isotropic

subgroup. It allows us to write the WZ-term in (3.13) locally as

1

2

∫
M3

X∗F =
1

2

∫
Σ
X∗ω =

1

2

∫
Σ

dσ dτ ω(Xσ, Xτ ) . (3.21)

Here X∗ω is the pullback of ω to the worldsheet with X being the usual embedding map

into the target space. The crucial property of the E-model is that not all its degrees of

freedom are dynamical. Against the first intuition, it does not describe strings propagating

in the target space P, but only in the coset M = L\P . For this reduction to take place,

P has to admit an almost para-Hermitian structure. Let us take a closer look at the sum

η(Xσ, Xτ ) + ω(Xσ, Xτ ) to see how this works. If we use the splitting into a coset and a

subgroup part in (3.4), this sum expands to

〈∂σmm−1 + Λ, ∂τmm
−1〉+(((((((((

〈∂σmm−1, `−1∂τ `〉︸ ︷︷ ︸
η(Xσ, Xτ )

+ 〈Λ, ∂τmm−1〉 −(((((((((
〈∂σmm−1, `−1∂τ `〉︸ ︷︷ ︸

ω(Xσ, Xτ )
(3.22)

3This extension is in general not unique. Different extensions are labeled by elements of π3(P), the third

homotopy group of P [76]. The actions S(X) and S’(X) for different embeddings just differ by a constant.

Thus the classical dynamics of the closed string does not depend on the particular choice of the extension.
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with Λ = `−1∂σ`. The two terms which cancel each other are the only ones in the action

with a τ derivative action on `. Since there are no additional derivatives acting on Λ it can

be integrated out from the action [75] to obtain a σ-model with target space M .

E-models make Poisson-Lie symmetry and T-duality manifest at the level of the world-

sheet theory. They also admit to describe integrable deformations of principal chiral models

and WZW models in a unified way. Before we discuss these applications, we relate their

global symmetries to the unique D-structure of section 2.2.

3.3 D-structure

A para-Hermitian structure on group manifolds admits a unique D-structure which can be

constructed in the following way. First we fix an η-compatible connection

η(∇XY,Z) = η(DXY,Z)− 1

3
F (X,Y, Z) . (3.23)

There are many other η-compatible connections on P. Why do we choose this one? The

short answer is because it eventually gives rise to the unique D-structure described in

section 2.2. It is also motivated by DFT on group manifolds [50] where this particular

connection appeared for the first time. More recently it was described in the context

of DFT in the supermanifold formulation [77]. While this connection has curvature and

torsion, D is an η-compatible, flat connection on P. Thus, its curvature vanishes and its

torsion given by

η(TD(X,Y ), Z) = η(DXY −DYX − [X,Y ], Z) = F (X,Y, Z) , (3.24)

where F is the three-form in (3.19) which captures the structure constants of P. Using (2.9),

the resulting metric-compatible bracket reads

η([[X,Y ]]∇, Z) = η([X,Y ], Z) + η(DZX,Y ) (3.25)

with [X,Y ] denoting the ordinary Lie bracket on TP.

These definitions permit to calculate the generalized Nijenhuis tensor (2.10). Taking

into account that it is skew-symmetric, its two contributions simplify to

η(P̃ [[PX,PY ]], Z) = P̃NK(X,Y ) +
1

2
F (PX,PY, PZ) (3.26)

and

η(P [[P̃X, P̃Y ]], Z) = PNK(X,Y ) +
1

2
F (P̃X, P̃Y, P̃Z) = 0 . (3.27)

The term PNK(X,Y ) vanishes since K is L̃-integrable in the ordinary sense (cf. (2.2)). At

the same time

F (P̃X, P̃Y, P̃Z) = 0 (3.28)

does not contribute because we require L to be a maximally isotropic subgroup of P.

However the second part (3.26) of the generalized Nijenhuis tensor does not vanish in

general. Therefore, the D-structure is only L̃-integrable. A notable exception are Drinfeld
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doubles where L and L\P are both maximally isotropic subgroups. Their H-flux is trivial

in de Rham cohomology and their σ-model does not posses a WZ-term. The general lack

of L-integrability does not pose a problem because — as we will show next — the D-

bracket (3.25) still reduces to the canonical Dorfman bracket on generalized tangent space

TM ⊕ T ∗M of the target space M = L\P .

Generalized geometry on TM⊕T ∗M . In order to connect the D-bracket (3.25) with

the canonical Dorfman bracket in generalized geometry [57, 58], it is instructive to study

maps4 Ê from TM⊕ TM∗ to TP. Following [47], M denotes the partition M =
∐

[`]M`

of P as a set of leafs M` ∈ L\P where the index space is the Lie group L. If we view the

foliationM as a d-dimensional manifold, we can define its tangent and co-tangent bundle.

The restriction of TM ⊕ T ∗M to any leaf M` is equivalent to the generalized tangent

bundle of the target space M .

On TM⊕ T ∗M we introduce the canonical pairing

η̂(x+ φ, y + ξ) = φ(y) + ξ(x) , x, y ∈ TM , φ, ξ ∈ T ∗M . (3.29)

We define Ê such that the two relations

Êx = x and η
(
Ê(x+ φ), Ê(y + ξ)

)
= η̂(x+ φ, y + ξ) (3.30)

hold. However, they do not fix Ê completely. To do so, we further impose

ω
(
Ê(x+ φ), Ê(y + ξ)

)
= ω̂(x+ φ, y + ξ) with ω̂(x+ φ, y + ξ) = φ(y)− ξ(x) . (3.31)

Under this map, the D-bracket [[ , ]]∇ reduces on each leaf of M to the canonical Dorfman-

bracket

[[Ê(x+ φ), Ê(y + ξ)]]∇Ê−1 = [[x+ φ, y + ξ]] = [x, y] + Lxξ − ιydφ (3.32)

where Lx is the ordinary Lie derivative on M . This proves the claim that (3.25) is a unique

D-bracket. The full calculation is straightforward but cumbersome. If both L and L̃ are

integrable, it follows directly the proof of proposition 1 in [47]. Instead of presenting the

details here, we rather note that this relation is equivalent to

η̂
(

[[ιAÊ
−1, ιBÊ

−1]]∇, ιCÊ
−1(Z)

)
= η([[E−1TA, E

−1TB]], E−1TC) = ιCιBιAF

= η̂
(
ιAdιBÊ

−1, ιCÊ
−1
)

+ cycl.
(3.33)

with ιA as an abbreviation for ιE−1TA . This relation is essential for generalized Scherk-

Schwarz [62–64] reductions in DFT. There ιAÊ
−1 is called twist matrix or generalized

frame field. Before we further explore this connection in the next subsection, we first prove

the frame algebra (3.33):

4In [47] this map is denoted by ρ : L⊕L∗ → TP. Here we use Ê because on a group manifold this map

is closely related to the twist matrix of generalized Scherk-Schwarz reductions [62–64].
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Proof. We start with the identity

dω =
1

2
dω̂(Ê−1∧, Ê−1) = ω̂(dÊ−1∧, Ê−1) = F . (3.34)

We are allowed to pull d into ω̂ because according to (3.31) it does not have any intrinsic

coordinate dependence. Furthermore, Ê−1 is just the identity on TM and therefore the

image of dÊ−1 is restricted to T ∗M. Thus, (η̂+ ω̂)(dÊ−1∧, Ê−1) = 0 and we can also write

− η̂(dÊ−1∧, Ê−1) = F . (3.35)

Finally, we apply ιCιBιA to both sides of this equation, resulting in

ιXAιXB ιXC η̂(dÊ−1∧, Ê−1) = η̂(ιXAιXBdÊ−1, ιXC Ê
−1) + cycl. = ιCιBιAF . (3.36)

Now we are almost there, the only thing we have to do is to swap the exterior derivative d

and the interior product ιB in front of Ê−1. For this purpose the Lie derivative

LXAÊ
−1 = ιXAd(ιXB Ê

−1) ∧ EB − FABCEBιXC Ê
−1 (3.37)

is helpful (EA is TAE
A = p−1dp). Using this identity, we finally find

η̂(ιAd(ιBÊ
−1), ιCÊ

−1) + cycl. = ιCιBιAF . (3.38)

This proves (3.33).

Physically, the D-structure captures the global symmetries of the worldsheet theory.

A way to prove this claim is to apply Ê to the σ-model in (3.13). In particular, we define

xσ + φσ = Ê−1Xσ and xτ + φτ = Ê−1Xτ (3.39)

and obtain

S =

∫
dσ dτ

(
p(xτ )− 1

2
Ĥ(xσ + p, xσ + p)

)
(3.40)

after the identification p = φσ. The most interesting part of this equation is the generalized

metric Ĥ. It is defined in the same way as η̂ and ω̂,

H
(
Ê(x+ φ), Ê(y + ξ)

)
= Ĥ(x+ φ, y + ξ) . (3.41)

A convenient parameterization for this symmetric, rank-two tensor is

Ĥ(x+ φ, y + ξ) =
(
xi φi

)(Gij −BikGklBlj BikGkj
−GikBkj Gij

)(
yj

ξj

)
. (3.42)

Plugging it into the action (3.40) and furthermore assuming that it just depends on the

physical coordinates m but not on `, we are able to integrate out p to find

pi = Gijx
i
τ +Bijx

j
σ . (3.43)
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η-metric ηAB = 〈TA, TB〉

generalized metric HAB = 〈TA, ETB〉

structure coefficients FABC = 〈[TA, TB], TC〉

flat derivative DA = ιAD

covariant derivative ∇A = ιA∇

generalized Lie derivative LξVA = ιA[[XBξ
B, XCV

C ]]∇

section condition NK(X,Y ) = 0

generalized frame field ÊA
Î
(
φi x

i
)

= (x+ φ)ιAÊ
−1

Table 2. Relation between the crucial ingredients for the half-integrable structure on group mani-

folds and DFTWZW. To simplify the notation for the generalized Lie derivative, we use the vector

fields XA = E−1TA which generate right translations on P.

This gives rise to the canonical σ-model action

S =
1

2

∫
dσ dτ

(
G(xτ , xτ )−G(xσ, xσ) + 2B(xτ , xσ)

)
. (3.44)

Its global symmetries are encompassed by diffeomorphisms and B-field gauge transforma-

tions on the target space. Both can be combined into generalized diffeomorphisms whose

infinitesimal version is mediated by the generalized Lie derivative which is related to the

D-bracket via (2.13). Applying it to the generalized metric gives rise to

δĤ = Lx+φĤ ↔ δG = LxG and δB = LxB + dφ (3.45)

if we use the parameterization (3.42) and the canonical D-bracket in (3.32). From this

discussion, we see that the Poisson-Lie σ-model and the corresponding para-Hermitian

structure are connected in an intriguing way.

Double Field Theory on group manifolds. The low energy effective target space

theory of the E-model (3.40) is supergravity. However, in supergravity some of its features,

like Poisson-Lie T-duality, are obscured. An equivalent description which makes them

manifest is Double Field Theory on group manifolds [50–52], or DFTWZW for short.5 Since

the almost para-Hermitian structure is essential for the σ-model, it should also appear

there. The map in table 2 presents the explicit relations. Calculating ιAÊ explicitly, we

obtain

ιAÊ
−1 = xA + 〈m−1dm,TA〉 −

1

2
〈m−1dm, ιxAm

−1dm〉︸ ︷︷ ︸
ϕA

−1

2
ιxABwzw , (3.46)

where the contribution ϕA is significant for the discussion in section 4.2. Here xA denotes

the push forward xA = π∗E−1TA where π projects from P to M (π : P → M). If we

5For a recent review see [78].
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additionally impose the constraint (3.10) the second term of ϕA vanishes and the frame

field is equivalent to the one discussed by [79] in the context of DFTWZW.

Let us finally rewrite the frame algebra (3.33) that we proved above in the language

of DFT. Applying the dictionary in table 2 we obtain

3Ê[A
Î∂ÎÊB

Ĵ ÊC]Ĵ = FABC , (3.47)

where the generalized frame field has the two additional properties:

• It just depends to the physical directions m.

• It transforms ηAB to the canonical form

ÊAÎηABÊ
B
Ĵ = η̂Î Ĵ =

(
0 δij
δji 0

)
(3.48)

which is also used to lower hatted indices.

Hence it is equivalent to the twist matrix used for generalized Scherk-Schwarz reduc-

tions [62–64]. They automatically give rise to consistent truncations.

3.4 Born geometry

The generalized frame field Ê is also a well suited tool to eventually make the connection

with Born geometry introduced in section 2.3. A Born structure on P relies on the algebraic

constraints in table 1 which have to be imposed on η, ω and H. However there are

no derivatives involved. Thus, these constraints are invariant under arbitrary, in general

coordinate depended, GL(2d) transformations. To solve them, it is convenient to find a

transformation which brings η and ω into the canonical form in equation (2.19). But as

we see from (3.29) and (3.31), the generalized frame field Ê takes by construction care of

this task. Thus, we conclude that the generalized metric Ĥ, defined in (3.42), should have

a vanishing B-field in order to give rise to a Born geometry. If we have a background with

a B-field that is pure gauge and therefore satisfies dB = 0, we can adsorb it into Bwzw in

the definition of ω (3.5). Hence we conclude that Born geometries on P just arise if there

is no H-flux on the target space.

3.5 Poisson-Lie symmetry, integrability and T-duality

There are four tensors on the group manifold P which are essential to our discussion in

this section, η, ω, H and F . We have seen that they are the building blocks of Poisson-

Lie σ-models. Now we want to have a closer look at their isometries. Isometries are

generated by Killing vectors. The maximal isometry group on P is PL × PR. The first

factor captures translations by left action of a group element and the second one by right

action. Infinitesimally those translations are generated by the killing vectors

ξL
A = V −1(TA) and ξR

A = E−1(TA) . (3.49)
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E−1 and TA we already know, while V −1 is the inverse of the right-invariant Maurer-

Cartan form

V (X) = dpp−1(X) . (3.50)

The Lie algebra corresponding to the maximal isometry group is generated by

LξLA
E(X) = 0 LξRA

E(X) = −[TA, E(X)] (3.51)

LξLA
V (X) = [TA, V (X)] LξRA

V (X) = 0 . (3.52)

Using these relations it is not hard to show that

LξLA
η = LξRA

η = 0 and LξLA
F = LξRA

F = 0 (3.53)

hold. Thus, both η and F are bi-invariant. The generalized metric can in general break

all the isometries. But most interesting are cases where it preserves some of them. If they

are freely acting (without any fixed point), and the isometry group has all the properties

we discussed for P, H admits Poisson-Lie symmetry. In the following, we assume without

loss of generality this isometry group to be PL.

Poisson-Lie symmetry is governed by a “non-commutative conservation law” [1]. To

see how this is connected to the isometry group PL of the generalized metric, we vary the σ-

model action (3.13) with respect to a small change of the coordinates δX = E−1TAδε
A(τ, σ)

and require the variation to vanish,

δS = −1

2

∫
dσ dτδεAL∇

ξLA
H(Xσ, Xσ)−

∫
δεAdJA = 0 . (3.54)

This is the standard Noether procedure to identify conserved currents. Since left invariant

vector fields are covariant constant under the flat derivative D (DXξ
L
A = 0), a generalized

metric with P as left isometry group transforms as

L∇
ξLA
H(Xσ, Xσ) = 2F (ξL

A, EXσ, Xσ) (3.55)

under the generalized Lie derivative. This allows us to constraint the current JA by im-

posing that the variation of the action in (3.54) vanishes:

dJ = −[EXσ, Xσ] dτ ∧ dσ . (3.56)

In this equation we use E instead of the generalized metric H. They are related by (3.15).

To obtain J , we have to integrate this relation. In general this is not possible unless J is

a flat P-connection on the worldsheet. Flatness requires it to satisfy the Maurer-Cartan

equation

dJ +
1

2
J ∧ J = 0 , (3.57)

in this context also called non-commutative conservation law [1]. One can bring the cur-

rent that solves this equation (and also arises from the variation of the action) in a very

suggestive form. The worldsheet coordinates τ and σ are obstructing its structure a bit.

Hence, it is better to use light-cone coordinates instead,

ξ± = τ ± σ , ∂τ =
1

2
(∂+ + ∂−) and ∂σ =

1

2
(∂+ − ∂−) . (3.58)
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With this notation the current reads

J = (E + 1)Xσdξ+ + (E − 1)Xσdξ− = J+dξ+ + J−dξ− (3.59)

and one can easily check that it satisfies the equations (3.56) and (3.57) . Restricting to just

the current components which capture small changes of the physical coordinates, we find

JÊ(va) = va
i(Gij +Bij)∂+x

jdξ+ − vai(Gij −Bij)∂−xjdξ− (3.60)

after expressing E in terms of the generalized metric (3.42) and substitution (3.43). This

expression is equivalent to the current presented in [1] assuming that the target space M

is a group manifold and that va denotes its left-invariant vector fields.

For a particular class of E-models, the current J admits a decomposition into two

contributions R and J valued in the d-dimensional real Lie algebra g. For them the

conservation law (3.56) takes the simple form

∂τR = ∂σJ + [J ,R]g

∂τJ = ∂σR
(3.61)

where [ , ]g denotes the Lie bracket of g. These are the Zakharov-Mikhailov field equations

for the principal chiral model [80]. They can be rewritten in terms of a family of flat

connections labeled by the spectral parameter λ ∈ C/{±1}

A±(λ) =
J ±R
1± λ

satisfying ∂+A−(λ)− ∂−A+(λ) + [A−(λ),A+(λ)] = 0 . (3.62)

It allows us to derive an infinite number of conserved charges and thus showing that the

σ-model is integrable.

4 Dressing cosets

In the first part of this paper we connected a mathematical structure to its physical applica-

tions. Now we follow the opposite approach and instead use the dressing coset construction

for Poisson-Lie σ-models to explore a vast class of new examples of para-Hermitian geome-

tries.

4.1 Gauged Poisson-Lie σ-model

From a physical point of view, the isometries discussed in section 3.5 represent global

symmetries of the worldsheet σ-model. If there are no obstructions, one can promote them

to local symmetries by gauging. Since the action (3.13) contains a WZ-term, the gauged

action does not just involve minimal coupling, but one has to be a bit more careful. In

general not every subgroup of PL × PR is suitable to be gauged. Hull and Spence show

in [81, 82] (see also [83]) the constraints it has to satisfy to permit gauging.

Before we discuss these conditions, let us fix the notation for this section. The isome-

tries we want to gauge are specified by a set of Killing vectors ξα where the index α (a

subset of the index A) labels the isometries. They form a subgroup F with generators Tα
and structure constants fαβ

γ . Now the constraints from [82] can be stated as follows:
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• First, there has to be a set of globally defined one-forms Aα fulfilling

ιαF = −dAα , (4.1)

where we use the abbreviation ια = ιξα . This constraint is equivalent to F , the

closed three-form in (3.19) or the structure coefficients of P, being invariant under

the action of ξα.

• Second, the Aα obtained in this way has to give rise to the Lie algebra of the gauge

group

LαAβ = fαβ
γAγ . (4.2)

• Finally, the combination ιαAβ has to be skew-symmetric.

We want to keep the Poisson-Lie symmetry of the σ-model intact. Thus, we do not touch

the left isometry group and only consider subgroups of PR for gauging. In this case, (4.1)

gives rise to

ιαF = −dAα = −d〈Tα, p−1dp〉 . (4.3)

While the second constraint (4.2) is automatically fulfilled, the third one requires

ιαAβ = 〈Tα, Tβ〉 = 0 (4.4)

and therefore tells us that the subgroup F of PR we gauge has to be isotropic. Otherwise

ιαAβ would have a non-trivial symmetric contribution. Intriguingly this is exactly the same

restriction which arises in the dressing coset construction presented in [59].

The idea for the remainder of this section is to use the physical guidance from the

gauged WZW-model to obtain a large family of examples for the mathematical structures

presented above. To gauge the action, we introduce the worldsheet connection Âαµ where

xµ = (τ, σ) are the worldsheet coordinates. In two dimensions gauge fields are not dy-

namical. Therefore we can integrate them out. For WZW-models based on a compact Lie

group with a negative definite pairing 〈 , 〉, the action is quadratic in Âαµ and integrating it

out results in a particular gauge fixing. But for the E-model the pairing is indefinite and

in connection with F being restricted to an isotropic subgroup of P, the gauged action is

just linear in Âαµ. Thus the worldsheet connection plays the role of a Lagrange multiplier

and restricts the dynamical fields by

η(ξR
α , Xµ) = 〈Tα, Xµ〉 = 0 , (4.5)

where Xµ = (Xτ , Xσ) are the two vectors in (3.14) which specify the embedding of the

worldsheet in TP and ξR
α are the Killing vectors generating PR. They are defined in (3.49).

The constraint states that only embeddings orthogonal to the isometry vectors ξR
α are to

be considered. Not surprisingly, this is the same constraint which was imposed in [59] to

obtain the dressing cosets.
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4.2 Horizontal almost para-Hermitian structure

From the target space perspective, this constraint can be conveniently implemented by

restricting to the horizontal subspace defined by the connection one-form

Aα(X) = η(ETα, X) . (4.6)

Note that this is a connection on P, with Aα = AαAE
A, as opposed to the connection on

the worldsheet Âαµ. Here Tα is chosen such that it is dual to Tα with respect to η which

implies

〈Tα, T β〉 = 0 and 〈Tα, Tβ〉 = δαβ . (4.7)

Thus the generators Tα are isotropic as well. Still they are not on the same footing as

Tα because they do not close into a Lie algebra. For later convenience we will combine

them into TA =
(
Tα T

α
)

. Now we are ready to define the projectors onto the vertical and

horizontal subspaces

Πv(X) := ξR
αA

α(X) + ξRαAα(X) = ξRAAA(X) and Πh(X) := X −Πv(X) . (4.8)

From the definition (4.8) one can show that η(Πv(X), Y ) = η(X,Πv(Y )) which further

implies η(Πh(X), Y ) = η(X,Πh(Y )) or simply ΠT
h η = ηΠh.

The idea is now to restrict all quantities which we have discussed in the context of

para-Hermitian and Born geometry to the horizontal subspace by applying Πh. We do not

really care about the vertical contributions because they just capture the gauge symmetry

of the model. For η and ω this idea gives rise to

ηh(X,Y ) = η(ΠhX,ΠhY ) , (4.9)

ωh(X,Y ) = ω(ΠhX,ΠhY ) . (4.10)

On the horizontal subspace ηh is invertible, its inverse is given by η−1
h = Πhη

−1ΠT
h and

satisfies η−1
h ηh = Πh where Πh acts as the “identity” on the horizontal subspace. The same

statement holds for ωh. Thus, we are able to construct

Kh = η−1
h ωh with K2

h = Πh (4.11)

and the projectors

Ph =
1

2
(Πh +Kh) = ΠhPΠh , (4.12)

P̃h =
1

2
(Πh −Kh) = ΠhP̃Πh . (4.13)

They add up to Πh and implement an almost para-Hermitian structure on the horizontal

subspace.
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Generalized geometry on TM ⊕ T ∗M . As for the plain group manifold case in the

last section, we want to make contact with the generalized geometry of the σ-model’s target

space. To this end, we again use the map Ê and its inverse Ê−1. Like for η and ω, we are

only interested in the restriction to the horizontal subspace

Ê−1
h = Ê−1Πh and Êh = ΠhÊ . (4.14)

Furthermore, we have to introduce the projected versions of η̂ and ω̂ which we defined

in (3.29) and (3.31). The natural generalization of these two quantities is

η̂h(Ê
−1
h X, Ê−1

h Y ) = ηh(X,Y ) ,

ω̂h(Ê
−1
h X, Ê−1

h Y ) = ωh(X,Y ) .
(4.15)

In contrast to the non-degenerate case in section 3.3, these relations do not fix η̂h and ω̂h
completely. Thus, we impose additionally that both vanish in the directions corresponding

to the gauge symmetry transformations of the gauged σ-model

η̂h(xα, y + ξ) = 0 and ω̂h(xα, y + ξ) = 0 ∀ y ∈ TM , ξ ∈ T ∗M . (4.16)

The Killing vector xα generates these transformations which we discussed above in details.

It is defined on each leaf of the foliation M by the pullback of ξα and is also an important

part of the generalized frame field Ê−1 in (3.46). However this particular choice is in

general not compatible with (4.15). It requires additionally

ιαÊ
−1 = xα (4.17)

to hold. According to (3.46) this constraint is equivalent to

ιαBwzw = 2ϕα . (4.18)

We will discuss the intriguing consequences it implies later. For the moment we rather

establish a frame algebra analogous to (3.33), namely

η̂h

(
ιĀdιB̄Ê

−1
h , ιC̄Ê

−1
h

)
+ cycl. = ιC̄ιB̄ιĀF . (4.19)

The overbarred indices Ā, B̄, . . . are the complement to the underbarred indices A,B, . . .

and exclude the generators TA which generate translations along the vertical subspace. We

therefore have TA = (TA, T Ā).

Proof. We start with the analog to (3.34)

dωh|h = Fh + 2ϕα ∧ dAα = ω̂h(dÊ
−1
h , Ê−1

h )
∣∣∣
h
. (4.20)

Here |h denotes the restriction of a differential form to the horizontal subspace and

Fh(X,Y, Z) = F (ΠhX,ΠhY,ΠhZ). Next we evaluate

(η̂h + ω̂h)(dÊ
−1
h , Ê−1

h )
∣∣∣
h

= −2ϕα ∧ dAα . (4.21)

All remaining steps are the same as for the group manifolds case discussed in section 2.2.
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Using (4.19), we can show that the canonical D-bracket arises after applying Êh and

Ê−1
h to the D-structure on P,

[[Êh(x+ φ), Êh(y + ξ)]]∇Ê−1
h = [[Π̂h(x+ φ), Π̂h(y + ξ)]]Π̂T

h . (4.22)

[[ , ]] denotes the Dorfman bracket defined in (3.32) and Π̂h is the projector to the horizontal

subspace on the generalized tangent bundle

Π̂h = Ê−1ΠhÊ . (4.23)

This bracket does not close in general and we have to additionally impose

[[Π̂h(x+ φ), Π̂h(y + ξ)]]Π̂T
v = 0 with Π̂v = 1− Π̂h (4.24)

for its closure. Due to (4.17), this condition is equivalent to

[[xα, Π̂h(y + ξ)]]Π̂T
h = 0 (4.25)

which tells us that the generalized vector y + ξ has to be invariant under the symmetry

generated by xα. But this was exactly our starting point. In the dressing coset construction,

we imposed from the beginning that this transformations leaves all quantities in the σ-model

invariant. Otherwise it would not have been possible to carry out the gauging. Respecting

this condition, we eventually can restrict the discussion to the dressing coset N = L\P/F .

An explicit parametrization of the coset representative m is

M 3 m = nf f ∈ F and n ∈ N , (4.26)

where F denotes the subgroup we gauge. It gives rise to two maps π and σ:

M N
π

σ
with π(n, f) = n and σ(n) = nf0, f0 ∈ F . (4.27)

Here f0 is an arbitrary but constant element in F , meaning it should not change with n. A

canonical choice is the identity e. The projector P̂h becomes the identity once pulled back

to the generalized tangent space of N ,

(π∗ + σ∗)P̂h(π∗ + σ∗) = 1 . (4.28)

Hence, (4.22) becomes eventually the Dorfman bracket on TN ⊕ T ∗N .

Let us now come back to the constraint (4.18). Bwzw is a two-form on the coset

L\P . We will decompose it into a horizontal part Bwzwh and a vertical contribution in the

directions of the Killing vectors xα. While ϕα is already a differential form on L\P , Aα

has to be restricted accordingly. Its restriction is denoted as aα and reads

aα = 〈Tα,m−1dm〉 . (4.29)

It is not hard to see that it is dual to the killing vector xα, because ιxαa
β = δβα holds. In

terms of this new quantity the of Bwzw reads

Bwzw = Bwzwh − 2ϕα ∧ aα . (4.30)
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This relation implies a similar decomposition for Hwzw,

Hwzw = Hwzwh − 2dϕα ∧ aα − fβγαϕα ∧ aβ ∧ aγ (4.31)

with

Hwzwh = dBwzwh + 2ϕα ∧ fα and fα = daα +
1

2
fβγ

αaβ ∧ aγ . (4.32)

While Hwzw is closed by definition, this property does not carry over to its horizontal part.

Instead we obtain

dHwzwh = 2
(

dϕα + fαβ
γaβ ∧ ϕγ

)
∧ fα . (4.33)

It is instructive to rewrite this result in terms of doubled quantities. To this end, we

introduce

AA =
(

2ϕα a
α
)

(4.34)

and the corresponding field strength

FA = dAA +
1

2
AB ∧ ACFBCA . (4.35)

The structure coefficients FABC are totally antisymmetric. They are just constructed

from fαβ
γ , thus they generate a semi-abelian Drinfeld double. Hence, F is not just the

restriction of the full structure coefficients F of P to the vertical generators. Using these

new quantities (4.33) can be written as

dHwzwh = Fa ∧ Fa =
1

2
〈F ,F〉 . (4.36)

This topological constraint appears also in the reduction of exact Courant algebroids on a

principal bundle [84, 85].

For heterotic string theory in flat spacetime, we find the similar expression

dH =
1

30
TrF ∧ F (4.37)

where F denotes the field strength corresponding to the SO(32) or E8×E8 gauge symmetry

of the heterotic string. If we just consider a SU(2) subgroup and further restrict the field

strength F to a four-dimensional, euclidean subspace of the ten-dimensional Minkowski

spacetime, we can construct instanton solutions for F . In this case the right hand side

of (4.37) does not vanish. After taking into account the gravitational backreaction a NS5-

brane solution arises in supergravity [86]. It would be interesting to see if NS5-branes arise

in a similar fashion from (4.36).

5 Deformation theory

In section 3.5 we highlighted the close connection between para-Hermitian structures and

Poisson-Lie symmetry. But how does T-duality arise in this picture? It is implemented by

fixing η and ω on P in different ways. A natural question which arises in this context is

how many dual backgrounds one can find for a given Lie group P. Equivalently, one might
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ask how many consistent choices there are for η and ω? This question can be partially

approached by looking at small deformations. For all the examples discussed in this paper,

these deformations can be studied at the level of the Lie algebra. In general there can be

also different viable choices for η and ω which are not connected by small deformations.

These have to be treated separately.

Assume that K0 describes the action of K at the identity of the Lie group P. It is an

involutive (squares to one) homomorphism of the Lie algebra p. We want to study small

deformations of this map, denoted as δK0. The first order deformation gives rise to the

linear constraint

δK0K0 +K0δK0 = 0 , (5.1)

since K = K0 + δK0 should still be an involution. This is sufficient for obtaining an almost

para-Hermitian structure. But we also require the distribution L̃ to be integrable. Give

that K0 is L̃-integrable (P0[P̃0X, P̃0Y ] = 0), we find

δK0[P̃0TA, P̃0TB]− P0[δK0TA, P̃0TB]− P0[P̃0TA, δK0TB] = 0 ∀TA, TB ∈ p , (5.2)

where P0 = 1
2(1+K0), P̃0 = 1

2(1−K0) and [ , ] denotes the Lie bracket of p which is kept

undeformed.

As η enters the definition of K, it is also deformed and we find that the deformation

δK0 is directly related to the deformations δη and δω of η and ω, respectively. The precise

relation is captured by

δK0 = η−1
0 (δω0 − δη0K0) . (5.3)

Furthermore, δη0 has to be invariant under the adjoint action of Lie algebra p which imposes

additional constraints on it. It is instructive to choose a basis in which K0 is diagonal,

K0
A
B =

(
−δba 0

0 δab

)
. (5.4)

Here we are using TA =
(
T a Ta

)
and TA =

(
Ta T

a
)

as an explicit basis for p. In this

basis, (5.1) restricts δK0 to be of the form

δK0
A
B =

(
0 δK0ab

δK0
ab 0

)
(5.5)

and according to (5.3) the two non-vanishing contributions are equivalent to

δK0ab = δω0ab − δη0ab and δK0
ab = δω0

ab + δη0
ab . (5.6)

The integrability condition (5.2) just constrains δK0
ab but not δK0ab. It gives rise to

3F [ab
dδω0

c]d − F bcdδη0
da = 0 , (5.7)

where F abc denotes the structure coefficients of the maximally isotropic Lie subalgebra l.

This equation has the trivial solution

δω0
ab = F abcξ

c and δη0
ab = 0 , (5.8)
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where ξc is an arbitrary constant vector. They correspond to the adjoint l action which is

just a coordinate change for the unphysical directions. Thus, in finding solutions to (5.7) we

can ignore them. It is interesting to note that solving (5.7) for δη0 = 0 is equivalent to study

the Lie algebra cohomology H2(l,R). This observation is reassuring because cohomology

problems are closely tied to deformation theory. Furthermore, the problem of identifying

different T-dual backgrounds in DFT is also captured by Lie algebra cohomology [87]. T-

dual target spaces only arise from deformations with δη0 = 0. This is because they are

captured by O(D,D) transformations which by definition leave η invariant. In this case and

when δωab0 is invertable, the deformation is governed by the classical Yang-Baxter equation

(CYBE) [88].

An interesting example, which is also relevant for the discussion in the next section,

is SL(2,C). It is a Drinfeld double that admits the decomposition into the two maximally

isotropic subgroups SU(2) and B2 (the Borel subgroup). Its ad-invariant pairing reads

ηAB = 〈TA, TB〉 = Im Tr(TATB) , (5.9)

where TA are six complex, traceless 2×2 matrices which generate SL(2,C). This pairing

permits two continuous deformations: either we scale ηAB by a constant C (this option

always exists) or we rotate the trace by a complex phase ρ. In both cases we find that the

δη0 part of (5.7) vanishes. For B2 all solutions to this equation are of the form (5.8). Thus,

there are no non-trivial deformations for ω.

6 Examples

Let us now discuss a family of integrable deformations of the principal chiral model as an

explicit example of the results we obtained above. Our discussion holds for a larger class

of σ-models, but this particular subclass has a lot of additional structure and applications.

We focus on the Lie group P = SL(2,C) which we already discussed in the last section. As

we figured out there, its Lie algebra admits a two-parameter family of pairings

ηAB = C Im Tr(eiρTATB) . (6.1)

Following [38], we choose a basis for sl(2,C) such that the structure in (3.61) of an integrable

σ-model is manifest. To this end, the generators TA with A = 1, . . . , 6 are decomposed into

Ra and Ja where a runs from 1 to 3. On the other hand SL(2,C) is the complexification

of SU(2). Thus, one is inclined to choose the Lie algebra generators in terms of SU(2)

generators, which we will denote as ta. These two different bases are related by

ta =
cos ρRa + sin ρ sinh pJa

2 cosh p(cosh p cos ρ+ sinh p)

ita = i
(cosh p+ cos ρ sinh p)Ja − sin ρRa

2 cosh p(cosh p cos ρ+ sinh p)
.

(6.2)

The pairing (6.1) for our particular choice of generators becomes

〈ta, tb〉 = C sin ρ(ta, tb) 〈ita, tb〉 = C cos ρ(ta, tb) 〈ita, itb〉 = −C sin ρ(ta, tb) , (6.3)
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where (ta, tb) = Tr(tatb) denotes the Killing form of SU(2). E has a particular simple form

in the basis formed by Ra and Ja, it just swaps them,

Ra = EJ a and J a = ERa . (6.4)

This is all the information we need to completely pin down the E-model. We conclude

that there are three independent parameter: C and ρ in the pairing (6.3) and p which

indirectly affects the generalized metric through (6.4). In the limit ρ→ 0 and p→∞, the

SU(2) principal chiral model (PCM) arises. Its target space is a three-sphere whose radius

is proportional to
√
C. There is no H-flux and we obtain a Born geometry. For any other

values of ρ and p, we obtain a two-parameter integrable deformation of the PCM which

was dubbed Yang-Baxter Wess-Zumino model (YB WZ) [34–36, 38, 39].

To identify a maximally isotropic subalgebra in p = gC, we employ the two Lie algebra

homomorphisms

R± : g→ p with R± = R± i , (6.5)

where R is a map R : g→ g called the R-matrix. As a homomorphism of a Lie algebra, R±
has to satisfy R±[x, y]′ = [R±x,R±y] which gives rise to the modified classical Yang-Baxter

equation (mCYBE)

[Rx,Ry] = R([Rx, y] + [x,Ry]) + [x, y] ∀x, y ∈ g . (6.6)

for the R-matrix. [ , ]′ is a deformed Lie bracket acting on the generators of G. Applying

the mCYBE, we find that it is related to the original bracket by

[x, y]′ = [Rx, y] + [x,Ry] . (6.7)

Furthermore, the R-matrix is skew-symmetric

(Rx, y) = −(x,Ry) (6.8)

with respect to the Killing form of g. With these two properties, it is not hard to see that

a maximally isotropic subgroup of SL(2,C) is generated by

T̃a = (R− − tan
ρ

2
R−R+)ta . (6.9)

This is all data we need in order to construct η, ω, H and Ê introduced in the previous

sections. In order to present explicit expressions, all what remains to do is to choose a

parameterization for the group element ` ∈ L and a coset representative m ∈ L\P .

For the most general case with all three parameters of the deformation being non-zero,

the resulting expressions are quite lengthy. Thus, we rather discuss the special case of

ρ = 0 in more detail. There the generators of L in (6.9) simplify to

T̃a = R−ta . (6.10)

Additionally, the generators Ta := ta form a maximally isotropic subalgebra because 〈ta, tb〉
in (6.3) vanishes for ρ = 0. For our examples g = su(2) is relevant. We identify its

generators ta = iσa with the Pauli matrices σa. The corresponding R-matrix is defined by

Rt1 = t2 , Rt2 = −t1 , Rt3 = 0 (6.11)
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and one can easily check that it indeed solves the mCYBE (6.6). Now we are able to

explicitly obtain the generators for the maximally isotropic subgroup L. They read

T̃1 = σ1 + iσ2 , T̃2 = σ2 − iσ1 , T̃3 = −σ3 (6.12)

and generate the Borel subgroup B2 of SL(2,C). We will show in the next subsection that

this choice for L gives rise to the η-deformation three-sphere. Another choice for a maximal

isotropic subgroup L is SU(2). It gives rise to the λ∗-deformation which is connected to the

λ-deformation by an analytic continuation. We have a closer look at these two backgrounds

in section 6.2. Finally, we come back the η-deformation of S3 and apply the dressing coset

construction to obtain the same deformation of S2.

6.1 η-deformed three-sphere

We now explicitly present the construction of η and ω for the maximally isotropic subgroup

L = B2 of SL(2,C). It is embedded in P = SL(2,C) such that L\P = SU(2). A convenient

parameterization for the group elements is

m =
1√
2

(
ei(φ1+φ2)

√
1 + r ei(φ1−φ2)

√
1− r

−e−i(φ1−φ2)
√

1− r e−i(φ1+φ2)
√

1 + r

)
∈SU(2) and ` =

(
ξ̃ eiφ̃%̃

0 1/ξ̃

)
∈B2 . (6.13)

The former describes the physical target space, a three-sphere. Since L\P is a Lie group,

Hwzw vanishes and it is straightforward to calculate

η =
C√

1− r2ξ̃2

(
−ξ̃ sin ∆φ drd%̃+ ξ̃%̃ cos ∆φ drdφ̃− %̃ sin ∆φ drdξ̃+

2(r2 − 1) dφ2(ξ̃ cos ∆φ d%̃+ ξ̃%̃ sin ∆φ dφ̃+ %̃ cos ∆φdξ̃) + 4
√

1− r2ξ̃ dξ̃(dφ1 + rdφ2)
)

(6.14)

with ∆φ = 2φ1 − φ̃ and

ω =
C

2
√

1− r2ξ̃2

(
−ξ̃ sin ∆φ dr ∧ d%̃+ ξ̃%̃ cos ∆φ dr ∧ dφ̃− %̃ sin ∆φ dr ∧ dξ̃+

2(r2−1) dφ2∧(ξ̃ cos ∆φ d%̃+ ξ̃%̃ sin ∆φ dφ̃+%̃ cos ∆φdξ̃)−4
√

1−r2ξ̃ dξ̃∧(dφ1+rdφ2)
)
.

(6.15)

As we have two maximally isotropic subgroups, η and ω give rise to a para-Hermitian

structure.

In order to also calculate the generalized metric, we first have to relate the sl(2,C)

basis T̃a and Ta := ta to Ra and Ja for which we know the action of E . A short calculation

gives rise to

Ta =
Ra

2ep cosh p
Ra = 2ep cosh pTa

T̃a =
RRa

2 cosh pep
− Ja

2 cosh p
Ja = 2 cosh p(RTa − T̃a) .

(6.16)

This allows us to calculate the contributions to the generalized metric

〈Ta, ETb〉 = −Ce−p(ta, tb) 〈Ta, E T̃b〉 = −Ce−p(ta, Rtb)
〈T̃a, ETb〉 = Ce−p(ta, Rtb) 〈T̃a, E T̃b〉 = −C

(
ep(ta, tb)− e−p(ta, R2tb)

)
.

(6.17)
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We now could start to calculate the generalized frame field Ê and eventually obtain the

metric and the B-field on the target space M = L\P . But this was already done in full

detail for DFTWZW [79]. To see how our convention relates to the one used there, we raise

the index on T̃a with the inverse κab of κab = 〈Ta, T̃b〉 = −C(ta, tb). We then obtain

〈Ta, ETb〉 = e−pκab 〈Ta, E T̃ b〉 = e−pκacR
cb

〈T̃ a, ETb〉 = −e−pRacκcb 〈T̃ a, E T̃ b〉 = epκab − e−pRacκcdRdb
(6.18)

with Rab = κacκbd(tc, Rtd), which is equivalent to (5.2) in [79] after identifying the deforma-

tion parameter e−p = η. Thus, we conclude that the corresponding target space geometry

is the η-deformation [21] of the SU(2) PCM. It has a non-trivial H-flux and therefore is

not a Born geometry.

6.2 λ∗- and λ-deformed three-sphere

Another maximally isotropic subgroup of the pairing (6.1) for ρ = 0 is SU(2). The canonical

choice for a coset representative would be B2, which we already used for L in the last

subsection. Here however, we identify the coset rather with the hermitian 2×2 matrices

m =

(
eφ1
√

1 + r2 −ireiφ2
ire−iφ2 e−φ1

√
1 + r2

)
. (6.19)

For L we use the SU(2) group element from (6.13) but with tilded coordinates. This

particular splitting of SL(2,C) result in a non-vanishing

Hwzw = 4Cr dr ∧ dφ1 ∧ dφ2 . (6.20)

It can be written in terms of the B-field

Bwzw = 2Cr2 dφ1 ∧ dφ2 (6.21)

as Hwzw = dBwzw. Evaluating (3.3) and (3.5) gives rise to

η = 2C

√
1 + r2

1− r̃2

(coshφ1dr

1 + r2

(
2(1− r̃2) sin ∆φ̃ dφ̃− cos ∆φ̃ dr̃

)
+ r cos ∆φ̃ sinhφ1 dφ1dr̃

− 2r(1− r̃2) sin ∆φ̃ sinhφ1 dφ1dφ̃1 + 2
√

(1 + r2)(1− r̃2) dφ1(r̃ dφ̃1 + dφ̃2)

+ r coshφ1 sin ∆φ̃ dφ2dr̃ + 2r(1− r̃2) cos ∆φ̃ coshφ1 dφ2dφ̃1

)
(6.22)

with ∆φ̃ = φ2 + 2φ̃2 and

ω = C

√
1 + r2

1− r̃2

(coshφ1dr

1 + r2
∧
(
2(1− r̃2) sin ∆φ̃ dφ̃− cos ∆φ̃ dr̃

)
+ r cos ∆φ̃ sinhφ1 dφ1 ∧ dr̃

− 2r(1− r̃2) sin ∆φ̃ sinhφ1 dφ1 ∧ dφ̃1 + 2
√

(1 + r2)(1− r̃2) dφ1 ∧ (r̃ dφ̃1 + dφ̃2)

+ r coshφ1 sin ∆φ̃ dφ2 ∧ dr̃ + 2r(1− r̃2) cos ∆φ̃ coshφ1 dφ2 ∧ dφ̃1

)
+ 2Cr2 dφ1 ∧ dφ2 .

(6.23)

As Hwzw does not vanish, η and ω only give rise to a L̃-integrable structure.
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The target space geometry which originates from choosing L = SU(2) is Poisson-Lie

T-dual to the η-deformation discussed in the last subsection. It is called λ∗-deformation

because it is closely related to the λ-deformation [28]. Instead of deforming a PCM, the

latter starts from a WZW-model. An analytic continuation allows to transition from the

λ∗- to the λ-deformation [29–31]. It takes m from a hermitian matrix to a unitary one.

For m in (6.19) this analytic continuation reads

φ1 → iφ1 and r → ir . (6.24)

and results in

η → −iη′ and ω → −iω′ (6.25)

where η′ and ω′ describe the λ-deformation on P = SU(2) × SU(2) with L = SU(2)diag.

The corresponding coset representative is (m′,m′−1) where m′ is a SU(2) element that

squares to m in (6.19) after the analytic continuation.

6.3 η-deformed two-sphere

Let us finally come to the dressing coset construction. Our starting point is the η-

deformation discussed in section 6.1. Its target space is the group manifolds SU(2) which is

isomorphic to the three-sphere S3. The latter admits a Hopf fibration S1 ↪→ S3 → S2. Us-

ing the parameterization (6.13), we find that the coordinates r and φ describe the base S2

which can be embedded into R3 with the Cartesian coordinates y1, y2 and y3 according to

y1 = r y2 =
√

1− r2 cos(2φ1) y3 =
√

1− r2 sin(2φ1) . (6.26)

This embedding shows that r ∈ [−1, 1] and φ1 ∈ [0, π). Furthermore, we notice that the

right-action of an U(1) element f = eT3∆φ2 just shifts the fiber coordinate φ2 by ∆φ2 but

does not affect the base. Thus, we identify the S2 with the coset SU(2)/U(1). Since the

U(1) we mod out is an isotropic subgroup of SL(2,C) with the pairing (6.1) (ρ = 0), we

have satisfied all requirements for the dressing coset construction.

We have seen in the last two subsection that the explicit expressions for η and ω

are lengthy. The same holds for their projection to the horizontal subspace ηh and ωh.

Hence, we will not present them here. However, we have checked that they satisfy (4.11).

Instead we rather discuss the generalized frame field ιĀÊ
−1
h in more detail. The index Ā

captures the generators of the horizontal subspace TĀ =
(
T̃ 1 T̃ 2 T1 T2

)
. Applying (3.46),

we eventually find

ι1Ê
−1
h =

√
1−r2

(
2 sin(2φ2)∂r +

cos(2φ2)

1− r2
(∂φ1 − r∂φ2)

)
ι2Ê

−1
h =

√
1−r2

(
−2 cos(2φ2)∂r +

sin(2φ2)

1− r2
(∂φ1 − r∂φ2)

)
ι1Ê−1

h =
√

1−r2

(
−(1−r) cos 2φ2

C
∂r +

sin(2φ2)

2C(1+r)
(∂φ1 + ∂φ2) +

sin(2φ2)

2(1−r2)
dr + cos(2φ2)dφ1

)
ι2Ê−1

h =
√

1−r2

(
−(1−r) sin 2φ2

C
∂r −

cos(2φ2)

2C(1+r)
(∂φ1 + ∂φ2)− cos(2φ2)

2(1−r2)
dr + sin(2φ2)dφ1

)
.

(6.27)
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This generalized frame field satisfies the frame algebra (4.19) where the restricted struc-

ture coefficients FĀB̄C̄ vanish. We can now use this generalized frame field to obtain the

generalized metric Ĥ on TN ⊕ T ∗N with N = SU(2)/U(1), namely

Ĥ
(

(π∗ + σ∗)ιĀÊ
−1
h , (π∗ + σ∗)ιB̄Ê

−1
h

)
= 〈TĀ, ETB̄〉 . (6.28)

Since we have chosen an adapted coordinate system, the pushforward map π∗ and the

pullback map σ∗ are simple. They just chop off the ∂φ2 and dφ2 contributions. Furthermore,

we have to set φ2 to a fixed value, for example φ2 = 0. Because E is invariant under the

U(1) we gauge, this choice does not affect Ĥ. The right hand side of the equation was

already calculated in (6.18). Finally, we read off the metric

ds2 =
C

ep(1 + e−2pr2)

(
dr

2(1− r2)
+ 2(1− r2)dφ1

)
(6.29)

and the B-field

B =
Cr

2e2p(1 + e−2pr2)
dφ1 ∧ dr (6.30)

from the generalized metric in (3.42). The resulting expressions match nicely with [89]

once we remember that the identity η = e−p holds for the deformation parameter.

7 Conclusions

In this article we have shown that all group manifolds which appear in the construction of

Poisson-Lie σ-models give rise to an almost para-Hermitian structure. It is formed by an

even-dimensional Lie group P endowed with a para-complex structure K and a pseudo-

Riemannian metric η of split signature. Together they give rise to an almost symplectic

form ω. Only in special cases, this structure is completely integrable and this paper shows

that the notion of half-integrability is sufficient to capture all features of the Poisson-Lie σ-

model. Because half-integrable structures are central in our discussion, let us quickly recap

how they arise. The tangent bundle TP of a para-Hermitian manifold is naturally split into

two subdistributions L and L̃. Unlike in the Hermitian case, they can be independently

integrable. Hence, it is possible to have only one integrable distribution which is then

call L- or L̃-integrable. Recent works [47–49] focused on setups where at least L has to

be integrable. However, we find that on group manifolds (and there is no obvious reason

why this results should not also hold for more general cases) instead of L-integrability,

L̃-integrability is the only requirement to make contact with the σ-model. L-integrability

breaks down once the σ-model admits a WZ-term.

The Lie group P can be view from two different perspectives. For the closed string

worldsheet theory it plays the role of the phase space, as demonstrated in section 3.3.

But it also acts as doubled target space manifold when approached from DFT. We show

that it is equipped with a generalized differentiable structure, the so called D-structure.

Most importantly for applications in physics, this structure includes a D-bracket whose

extension to higher rank tensors gives rise to the generalized Lie derivative. It captures the

global symmetries on the worldsheet theory and the local symmetries of the target space,
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namely diffeomorphisms and B-field transformations. In the case where the H-flux on the

target space vanishes, the generalized metric H together with η and ω from the almost

para-Hermitian structure form a Born geometry.

A para-Hermitian or Born manifold is the target space of a doubled σ-model. In the

case of group manifolds this model is the so called E-model [2, 31, 75]. It incorporates a

WZ term which is governed by the three form F on P. The latter encodes the structure

constants of the Lie algebra p of P and measures the obstruction of ω to close, F = dω.

From a string theory point of view it implements the various fluxes on the target space.

More specifically, we established the precise relations between para-Hermitian and Born

geometry, generalized geometry, DFTWZW and the E-model. Furthermore, we showed that

Poisson-Lie symmetry is related to the isometry group of the generalized metric H and the

integrability of the σ-model is discussed.

Another interesting setup that we investigated is that of a dressing coset [59–61] which

arises when considering gauged Poisson-Lie σ-models. Here an isotropic subgroup of P
is gauged and the gauge connection provides a splitting of the doubled target space into

a horizontal and vertical subspace. The vertical projections of tensors just captures the

gauge symmetry of the model. On the horizontal subspace we construct an almost para-

Hermitian structure and, in case of vanishing H-flux, a Born geometry as before. We also

consider deformations which remain half-integrable. They are a powerful tool to explore

the moduli space of T-dual backgrounds, because T-dual backgrounds arise if P admits

different L̃-integrable structures for the same η.

Besides the conceptual insights, the most practical outcome of our work is that we

provide an explicit construction of a huge class of para-Hermitian geometries. We also show

how the corresponding generalized frame fields are constructed. Using them for generalized

Scherk-Schwarz reductions [62–64] results in a large class of new consistent truncations.

Explicit examples we are presenting are integrable deformations of the three-sphere and

two-sphere. They are obtained by considering various subgroups of P = SL(2,C). These

examples nicely display the structures and features discussed in this paper.
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[20] G. Itsios, C. Núñez, K. Sfetsos and D.C. Thompson, Non-Abelian T-duality and the

AdS/CFT correspondence:new N = 1 backgrounds, Nucl. Phys. B 873 (2013) 1

[arXiv:1301.6755] [INSPIRE].
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