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Abstract—Non-intrusive Load Monitoring (NILM) is a tech-
nique which accepts the total consumption in a house as
an input and computes the estimated demand of individual
appliances in that house. All NILM needs is one single meter
to record the aggregate signals. With NILM, the users can
assess the information of appliances without the intrusion
of measurement devices. Such information could help users
adapt their energy-usage habit for better saving and facilitate
the grid management. This paper presents the disaggregation
with recurrent neural network (RNN) in NILM. The Reference
Energy Disaggregation Data Set (REDD) has been employed
to test the proposed method. The results show the better
performance achieved by RNN, compared with the optimiza-
tion approach. RNN also performs a fair job to test unseen
appliances.

Index Terms—Non-intrusive Load Monitoring, Energy Dis-
aggregation, Recurrent Neural Network, Genetic Algorithm,
Reference Energy Disaggregation Data Set

I. INTRODUCTION

Firstly introduced in 1992 [1], non-intrusive load mon-
itoring (NILM) is the method to break down the total
household demand into the detail consumption of individual
appliances. In this method, only a single meter is required
to measure the total power demand in a house. The com-
putational techniques are then applied to disaggregate the
aggregated signal into individual appliances. The output
information can help users manage their energy usage,
facilitate the demand response techniques, or detect faulty

devices. . .
The disaggregation methods for NILM could be di-

vided into event-based and non-event-based (event-less)
techniques. Event-based approaches capture the changes
of appliance states during the switching events [2]. This
approach usually requires the high-frequency sampling in
order to extract rich features for high accuracy. Some related
work extracted those transient features at kHz sampling
frequency [3]-[5].

Non-event-based methods do not detect any event tran-
sition. Instead, all power states are taken into account. Re-
search based on this approach has studied Hidden Markov
Models [6]-[9] for generally modeling appliances or opti-
mization frame [10], [11].

In addition, some researchers also focused on the energy
disaggregation with external information. Outside tempera-
ture, time of the day, or day of the week are also considered
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important features [12]. Such information is correlated with
individual consumption in an optimization frame.

II. REFERENCE ENERGY DISAGGREGATION DATASET

In 2011, Kolter and Johnson introduced the Reference
Energy Disaggregation Dataset (REDD) [13]. The goal is to
create a benchmark dataset for evaluating the disaggregation
algorithms. REDD covers six houses in Massachusetts,
USA, and consists of both main-circuit and individual-
circuit levels. At the household level, the main circuits
are sampled at 15-kHz in high frequency and 1-Hz in
low frequency. At the appliance level, the sub-meters are
sampled at 0.3 Hz. One major objective of our work is to
create a NILM web server where the inputs are the total
consumption of a household, and the outputs are the dis-
aggregated estimations. Several papers have implemented
REDD as the main object to test their disaggregation
algorithms [14]-[17], which has shown positive outcomes.
Since REDD is widely used for benchmarking the NILM
algorithms, it is the selected option in this study.

In this work, a simple web interface is initially built
for visualizing REDD. When one house is selected, the
reading of the main circuit is displayed. The meter of a
corresponding appliance will be visualized below as the
users select that appliance. Fig. 1 shows the 24-hour record
in House 1. This paper only focuses on the low-frequency
data as they are in a realistic scenario for the current
technology of smart meters. The data from house 1 and
2 are taken into consideration for the disaggregation.

III. PROPOSED METHODS
A. Data Preprocessing

1) Data Filtering: Firstly, a simple median filter is
applied for the noise removal of the raw dataset. The
selected filter order is 30 in this case. The next step is
to threshold the power states of individual appliances. The
objective is to cluster the different states for combinatorial
optimization (CO) and a binary on/off vector for the manual
labeling of recurrent neural network (RNN).

2) Power States Clustering: k-means is the common
clustering algorithm for partitioning the dataset into k
clusters from n observations or data points [18]. With
the simplicity, the k-means algorithm is employed for
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(b) Ground-truth of some individual appliances

Fig. 1. Consumption of house 1 from 18- 19t April, 2011.

power states identification. The non-off power states of
appliances in house 1 and 2 can be summarized in Table
I-11I, respectively.

TABLE I
NON-OFF POWER STATES IN W OF HOUSE-1 APPLIANCES
Appliances State 1 | State 2 | State 3 | State 4
Oven 4117.5 - - -
Washer Dryer 2657 - - -
Microwave 1525 - - -
Lighting 45 64 82 -
Kitchen Outlets 22 64 1047 1522
Refrigerator 191 - - -
Dishwasher 221 1102 - -
Bathroom GFI 1596 - - -
TABLE II
NON-OFF POWER STATES IN W OF HOUSE-2 APPLIANCES
Appliances State 1 | State 2 | State 3
Dishwasher 249 1196 -
Refrigerator 162 - -
Kitchen Outlets 775 1059 -
Lighting 106 156 289
Microwave 1859 - -
Stove 407 - -

B. Combinatorial Optimization

1) Basic Principle: The optimization-based algorithm of
disaggregation can be described as follows. The time-series
aggregated power of a house is recorded P = {Py, P, ...,
P} where P, is the kW reading at t time instant. Assume

that the house has m appliances. The state of k™ appliance
can be described by a binary vector X = {x1, 2, ..., Ty, }.
When the k® appliance is on xj = 1; otherwise, xj = 0. The
individual consumption of each appliance can be expressed
in a vector p = {p1, p2, ..., Pm}. At every t" instant, the
combined demand should be equal the sum of all individual
demands, as can be expressed:

Pr=Y " prax(t) +we (1)
k=1

where w; is the error.

In supervised learning, the rating power of each appliance
should be known. Then, for every iteration of ¢, we should
try to search a variable vector X; such that w; is minimized,
ie.

min | P, — Y pra(t) @
! k=1

Assume that the m'™ appliance has [ states. Since any
appliance must be in only one state at the t" time instant,
the constraint for multi-state appliance can be described:

T (t) + Tm2(t) + . F i (t) <1 3)

In this work, the genetic algorithm (GA) MATLAB Tool-
box is employed to optimize Eq. 2. The selected numbers
of generation and population are 100 and 200, respectively.

2) Correction Rule: The result of GA optimization could
lead to short-time transition where one load can be in its
state for only a few samples. Generally, it is not possible, so
a correction rule should be applied to filter the short-time
spikes or notches, as follows [11]:

Algorithm 1 Correction Rule

X < A binary matrix as a result of GA optimization
if median(X;,X;_1,...,.Xs—_np) = 0 and X;_j; = 1
then

Xt—M - O
else if median(X;,X;_1,....X;_p)=1land X;_p; =0
then

Xt—M =1
end if

This rule implies that one appliance will remain in its
state at least within M samples. In this paper, M = 5.

C. Recurrent Neural Networks

Artificial Neural Network (ANN) has been the powerful
pattern recognizer for the complicated problem sets. Basi-
cally, an ANN architecture consists of an input layer, one
or multiple hidden layers, and one output layer.

In multilayer feedforward neural network (MFNN), the
connection among layers is completely straightforward and
open-loop. MFNN has been commonly used for nonlinear
classification. The term of classification in this work de-
notes a mapping from the aggregate power to the binary
on/off vectors of one targeted appliance.
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Fig. 2. A simple RNN structure with two delays.

Recurrent Neural Network (RNN) is an advanced version
of MFNN where the information is propagated not only
forward but also backward in each layer. Fig. 2 exemplifies
a RNN structure with two delays in one hidden layer. This
means that the values of the time series at time ¢ — 1 at
t — 2 are stored in the internal memory. At time ¢, they
are simultaneously loaded together with the ¢ value for
processing. In other words, the previous outputs of RNN at
t—1 and t—2 affects the decision at ¢t. With the capability of
recognizing the time-series signals, RNN can be the good
candidate for energy disaggregation.

In RNN training, tuning hyper-parameters plays a crucial
role in optimizing the RNN performance. In MATLAB,
such hyper-parameters are configured and adjusted during
experiments, as follows:

o Maximum number of epochs: 200

o Number of delays: 5

o Number of hidden layers: 10

o Training function: Levenberg-Marquardt backpropaga-

tion (trainlm)

D. Metrics

The disaggregation metrics are followed by the formula
of proportion of total energy correctly assigned over a
period T' [11], [13], [19].

Total energy - Zthl S|P — P

correctly assigned % 25T P @
Relative error in _ |E* — E| 5)

total energy %  max(E*, E)

Additional metrics to test unseen appliances:
Energy correctly assigned . ZtT=1 |Pr — P ©

per appliance (ECApA) % 2 Zthl P;

where:

o P7: Estimated power of appliance i™ at t.

o P;: Actual power of appliance i" at ¢.

o P;: Aggregated actual power at t.

o FE*: Total predicted energy.

o FE: Total actual energy.
Metrics based on the confusion matrix are also useful
to evaluate the disaggregation performance. The general
confusion matrix can be described in Table III. Then, the

TP
Recall = ———— 7
T TPIFEN )
Precision = e ®)
BN = T Ep
Precision x Recall
F1 =2 9
% Precision + Recall ©)
TP+ TN
A =~ 10
ccuracy PN (10)

In order to identify positive and negative labels in RNN,
the discrimination threshold should be defined. This thresh-
old can be tuned by receiver operating characteristics (ROC)
curve. ROC curve shows the relationship between Recall
versus False-positive-rate at various threshold settings. If
the area under ROC curve (AUC) is close to 1, the clas-
sification is close to the perfection (0.5 < AUC < 1).
Therefore, the threshold can be tuned to obtain the optimal
value where AUC is maximized (optimal operating point).

IV. EXPERIMENTAL RESULTS

A. Combinatorial Optimization (CO)

Fig. 3a and Fig. 4a show the disaggregation performance
of combinatorial optimization. It is obvious that CO model
could well disaggregate refrigerators and lightings. One
remark is that such appliances are regular in operation. In
particular, the operation of refrigerators is periodic.

On the other hand, the disaggregation of dishwashers is
unsuccessful in most cases. The high accuracy scores in
dishwasher recognition are due to their high portions of
true negative. This means that dishwashers are off for a
long time. To be more precise, the CO model is totally
unable to detect the ON state of the house-1 dishwasher,
where its F1 score returns null.

For the kitchen outlets, the optimization outputs tend
to return low accuracy. This is due to the difficulty in
clustering their exact power states as their state differences
are insignificant. It is noticeable that kitchen outlets always
consume some powers from the household networks.

Several outlets which consume high power like bathroom
GFI, washer dryer, or microwave could be fairly disaggre-
gated. This is understandable as their non-off power states
are quite distinctive. However, we could not state that the
disaggregation with CO is successful if the average total
energy correctly assigned is only around 50%.
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lected for the unseen-house experiment. The data selection
for this scenario can be listed below:

o Dishwasher: Training in house 1, 2, 3, 4 (3
days/house). Test in house 5
o Refrigerator: Training in House 1, 2, 3, 6 (3

days/house). Test in house 5

The purpose is to consider how good the generalization
of RNN model is, for the unseen data. Without the prior
information of power states, CO could not follow this
scenario.

Fig. 6 describes the disaggregation performance in this
case study. It is noted that the RNN has not succeeded in
generalizing the dishwasher where its metrics are too low.
Three days per house is possibly insufficient for the RNN
model to learn the information in this case. Another remark
is that the power in house 5 is recorded within only two
days. If the RNN model aggregates the prediction over a
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Fig. 5. Some examples of RNN outputs (seen houses).

longer duration (more test dataset), the errors tend to be
reduced.
V. CONCLUSION

This paper has compared two methods in energy disag-
gregation algorithms. One is the eventless-based combina-



Recall Precision Fl Accuracy Relative Error ECApA

(a) Disaggregation metrics.

©

Aggregate
Power (kW)

1 1.5 1 1.5 2 25

il

Dishwasher <10' Reftigerator <10

Samples Samples

(b) RNN outputs on 19/04/2011.

RNN
Outputs
o
o
=
=
—
—
————

Fig. 6. Results of RNN in unseen dishwasher and refrigerator in house 5.

torial optimization (CO) and the other is the event-based
recurrent neural network (RNN). The outcomes conclude
that CO mostly falls behind RNN in those case studies, and
RNN could work well for the unseen case studies. However,
some improvement is considerably needed to enhance the
RNN performance for the multi-state appliances.

The CO model has been unable to disaggregate the
dishwasher. This is the fundamental issue of non-unique
solutions in optimization frame as one power state of an
appliance can be equal to the sum of power states from
other appliances. Additionally, as the non-event method, CO
could not describe the physical characteristics of multi-state
appliances.

In RNN, the training process is computationally burden-
some, which requires several days up to months to achieve
good performance. There is the possibility that training has
to be re-done if the end-users buy or replace new appliances.
This could frequently occur depending on their usage habit
and how well the NILM models can generalize the unseen
houses. Due to the limitation of our computer systems,
only a small days per house can be used for training. The
more the training data are provided, the better the network
outputs are produced. Overall, RNN requires the powerful
computer hardware. The current technology of embedded
systems could not possibly put the complex RNNs into real-
world applications. At this moment, one possible solution
is to give the customer the off-line feedback.
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