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Abstract: The ionic liquid (IL) tributylmethylammonium bis(trifluoromethylsulfonyl)amide ([N4441][NTf2]) was 

used as neat lubricant and as an additive (1.5 wt%) in a polar oil to study its friction and wear reducing 

properties. Tribological tests were completed for 90 minutes at room temperature and 100 °C in a reciprocating 

configuration at loads of 30 and 70 N, 10 Hz-frequency, and 4 mm stroke length. Wear volume was measured 

by confocal microscopy and the surface-IL interaction determined by XPS. The main findings were that neat IL 

showed the best tribological behavior; the IL-containing mixture behaved similar to the base oil regarding 

friction, however outperformed the antiwear behavior of the base oil under higher temperature; surface-IL 

chemical interaction was found mainly at 100 °C. 
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1  Introduction 

The ionic liquids (ILs) as a potential component 

(basestock and/or additive) in a lubricant formulation 

has been studied since 2001 [1−8]. Despite all their 

excellent properties for lubrication (large liquid range, 

high thermal stability and polarity, and low flammability 

and melting point), the ILs have the problem of low 

solubility in non-polar compounds (mineral oils and 

polyalphaolefins) usually used in lubricant formulation. 

Most of the studies on use of ILs as an additive have 

been completed with nonpolar-neat and fully formulated 

oils [9−15], and only a few works worked with polar 

base oils [13-16]. The former situation is related with 

previous studies [20, 21], where a binary mixture 

formed by a non-polar base oil and a polar additive 

was used for lubricant purposes, avoiding the possible 

competition of both compounds for the metallic 

surfaces.   

Due to the use of polar base oils for different 

applications and the expected better solubility of the 

ILs in these base oils, it is important not only the study 

of ILs as an additive but also as a neat lubricant or 

basestock in order to compare their friction and wear 

reduction with other ILs. This current research considers 

the antifriction and antiwear performance of a [NTf2] 

anion-based IL as neat lubricant and as an additive in 

a polar oil.  

2 Experimental details 

2.1 Lubricant samples  

The ionic liquid tributylmethylammonium bis(trifluoro-
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methylsulfonyl)amide ([N4441][NTf2]), supplied by 

Io-Li-Tec (Ionic Liquid Technologies GmbH) and whose 

chemical formulae is C15H30F6O4N2S2 and with 99% of 

purity, was used as a pure lubricant and as an additive 

at 1.5 wt% in a hydrolytically stable and readily 

biodegradable diester oil (coded as A1). This concen-

tration was the maximum value found in solubility 

tests previously made [22]. A Stabinger Viscometer 

SVM3001 was used for density and viscosity measure-

ments of the lubricant samples (base oil, ionic liquid 

and the mixture) at temperatures ranging from 15− 

100 °C. Thermogravimetric analysis (TGA) was made 

for all lubricant samples under reactive (oxygen) 

and inert (nitrogen) atmospheres (50 mL/min) at tem-

peratures ranging from 25−600 °C and heating rate of 

10 °C/min.  

2.2 Tribological tests and surface characterization 

Friction and wear tests were performed using a ball- 

on-disk reciprocating rig with AISI 52100 chrome steel 

balls (6.0 mm, Ra ≤ 0.05 μm, 58−66 HRC) and AISI 

52100 steel disks (10 mm, 3 mm thick, Ra ≤ 0.02 μm, 

190−210 HV30). Normal load is applied using a closed- 

loop servomechanism, and normal load and friction 

force are measured with strain-gages. Test conditions 

were: 90 min-duration, stroke length of 4 mm, 10 

Hz-frequency, loads of 30 and 70 N (medium contact 

pressures of 1.37 and 1.82 GPa, respectively) at room 

temperature (RT) and 100 °C. Tests with neat base oil 

and mixture used 4 ml as lubricant volume, while tests 

with neat IL used 25 L.  

Test specimens were cleaned in an ultrasonic bath 

with heptane for 5 minutes, rinsed in ethanol later 

and dried in hot air. After the tribological tests, wear 

volume on the disks was determined using confocal  

microscopy. Three tests were conducted for each 

lubricant sample, and the average value and the standard 

deviation for friction coefficient and wear volume was 

determined. X-Ray photoelectron spectroscopy (XPS), 

energy dispersive spectroscopy (EDS) and scanning 

electron microscopy (SEM) were used for chemical 

interaction measurements on the disk’s surface, 

respectively. 

3 Results and discussions 

The density and viscosity measurements of the IL- 

containing mixture showed that the addition of  

the IL at 1.5 wt% hardly changed these properties in 

comparison to that of the base oil (Fig. 1). This result 

suggests that the tribological behavior of the mixture 

can be explained by the influence of the chemical 

composition of the IL instead of its rheological pro-

perties. Figure 2 shows thermal characteristics of the 

lubricants samples and as expected the neat IL has the 

highest thermal stability with temperatures of thermal 

degradation (Tonset) of 304 °C (oxygen atmosphere) and 

360 °C (nitrogen atmosphere). On the other hand, the 

base oil showed Tonset values of 179 and 223 °C under 

oxygen and nitrogen atmospheres, respectively, and 

the Tonset of the mixture were 205 and 258 °C. 

Figure 3 shows the friction reducing behavior of the 

mixture and the neat IL in comparison with the neat 

base oil. The mixture had similar mean friction values 

as the base oil at both RT and 100 °C, meanwhile the 

IL presented the best antifriction result. This behavior 

was also found on the wear reducing properties   

of the mixture and the neat IL at RT (Fig. 4). But the 

mixture showed better antiwear behavior than the 

base oil at 100 °C, although the neat IL demonstrated 

the best results.  

 

Fig. 1 Density and viscosity versus temperature for the lubricant samples.  
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Figure 5 shows SEM images of the wear scar after 

the tribological tests made with all the lubricant 

samples at room temperature. It can be observed that 

the samples lubricated with the mixture and the base 

oil exhibited similar appearance, while the surfaces 

tested with neat IL present a smoother wear scar and 

less material displacement at its borders for the both 

studied loads. Similar results can be observed in  

the test at 100 °C according with tribological behavior, 

where neat IL had the best friction and antiwear 

performance. In addition, the EDS spectra showed 

that for all the lubricants and test conditions, the only 

chemical elements found on the worn surface were 

those present in the steel. 

Table 1 shows XPS results. According to the work 

of Mangolini et al. [23], iron spectra peaks around 

711, 713 and 708 eV were assigned to Fe (III), FeOOH 

and Fe (0), respectively. Similar results were obtained 

for all the tests conditions. Only the sample lubricated 

with neat IL at 100 °C showed a slight decrease in the 

Fe (0) content and an equivalent increase in the Fe (III). 

At RT the presence of fluorine is only clear with 

neat IL. Two peaks were detected at 689.3 eV (80% 

total fluorine) assignable to NTf2 residues [24], and at  

 

Fig. 2 Thermogravimetric characteristics of the lubricant samples under oxygen and nitrogen atmospheres. 

 

Fig. 3 Friction coefficient from tribological tests made at RT and 100 °C. 

 

Fig. 4 Wear volume on the disk after tests made at RT and 100 °C. 
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Fig. 5 SEM images from the wear scar of test made at room 
temperature. 

685.1 eV belonging to Fe–F interactions [25], which 

indicate a low-extent IL-surface reaction. For neat IL 

the same peaks were also detected at 100 °C, but the 

peak at 685.1 eV (Fe–F) represents the 70% of the total 

fluorine. Furthermore, sample lubricated with the 

mixture at 100 °C shows a weaker peak at 685.0 eV, 

indicating also a IL-surface interaction generating Fe–F.  

These results demonstrate that higher temperature 

promotes the chemical interaction between the IL and 

the surface, modifying its tribological performance. 

On the other hand, the behavior of O1s was very 

similar in all the samples, showing three peaks at 

530.5 eV, 532.2 eV and 533.5 eV. These bands are very 

hard to assign, since there are many possibilities for 

these positions. Taking into account the position of the 

peak and the fact of being the least contribution to 

the O1s envelope, the peak at 533 eV belongs probably 

to water [26]. The assignation of the other two peaks is 

unclear, because peaks around 530 eV can be assignable 

to metal oxides, but also to O2 adsorbed on certain 

metals or some long-chain ethers [27]. Likewise, the 

oxygen in some long-chain esters as well as the oxygen 

in some organic complexes of iron appears around 

532 eV. It is probably that there is a combination   

of different compounds difficult to identify without 

further experimentation [27]. 

4 Conclusions 

A [NTf2] anion-based IL was used as neat lubricant 

and as an additive in a polar oil and the main 

conclusions are: neat IL showed better tribological 

behavior under all testing conditions than the neat 

base oil and the IL-containing mixture; the addition 

of the IL hardly changed friction with regard to the neat 

Table 1 Positions in eV of the photoelectron peaks of iron and fluorine. In brackets the relative amount of this species with respect to 
the total amount of the element. 

Iron 

Room temperature 100 ºC 

A1 1.5% IL [N4441][NTf2] A1 1.5% IL [N4441][NTf2] 

710.8 (49%) 710.9 (53%) 710.8 (54%) 710.8 (52%) 710.7 (51%) 711.0 (68%) 

712.6 (14%) 712.8 (14%) 712.8 (14%) 712.7 (13%) 712.6 (14%) 713.0 (13%) 

707.5 (37%) 707.6 (33%) 707.5 (32%) 707.5 (35%) 707.5 (35%) 707.6 (19%) 

Fluorine 

Room temperature 100 ºC 

A1 1.5% IL [N4441][NTf2] A1 1.5% IL [N4441][NTf2] 

— — 689.3 (80%) — — 689.1 (31%) 

— — 685.1 (20%) — 685.0 (100%) 685.1 (69%) 

Oxygen 

Room temperature 100 ºC 

A1 1.5% IL [N4441][NTf2] A1 1.5% IL [N4441][NTf2] 

530.5 (49%) 

532.2 (41%) 

533.7 (10%) 

530.6 (50%) 

532.3 (38%) 

533.6 (12%) 

530.5 (53%) 

532.0 (35%) 

533.3 (12%) 

530.4 (48%) 

532.0 (40%) 

533.4 (12%) 

530.5 (51%) 

532.1 (38%) 

533.4 (11%) 

530.5 (50%) 

532.0 (40%) 

533.3 (11%) 
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base oil but decreased wear at higher temperature; 

and the antiwear behavior at higher temperature was 

related to reaction of active elements of the IL with 

the steel surface. 
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