
 1

A User-Oriented Language for Specifying
Interconnections between heterogeneous

objects in the Internet of Things
Cristian González García*, Liping Zhao, and Vicente García-Díaz

Abstract—We propose a user-oriented language to enable end users to specify interconnections between heterogeneous

objects in the Internet of Things (IoT). Based on the idea of the use case specification technique in software engineering, our

language provides end users with a natural language like syntax to allow them to specify when or under what condition they

want which objects to be connected. To support this language, we have also developed a transformation mechanism that

automatically translates users’ specification into the source code. We have evaluated this language through an experiment and

a survey. The main contributions of this paper are: (1) a simple natural language that enables the end-users to specify which

objects to connect and when, and (2) a transformation mechanism that automatically translates users’ specifications into source

code and dynamically attaches the code to relevant applications. Our work represents a first step in bringing the IoT closer to

their users.

Index Terms—Application Platforms, Service Functions and Management, Service Middleware and Platform, User experience

—————————— ——————————

1 INTRODUCTION

HE vision of the Internet of Things (IoT) is to reach
out for everyday objects in the real world and connect

them to the Internet, thus achieving anytime and anyplace
connectivity for anyone and anything [1], [2]. According to
Cisco’s white paper [3], by 2020 there will be 50 billion
physical objects connected to the Internet.

Smart objects, such as smartphones, smartwatches and
tablets, play a key role in the IoT vision as they are pro-
grammed with intelligent information and communica-
tion software. Thus when connected to sensors, these
objects are able to perceive their context and location;
with their built-in networking capabilities, they can
communicate with each other, access Internet services
and interact with people [4]. ‘Conventional objects’, such
as sewing machines, exercise bikes, electric toothbrushes,
washing machines, electricity meters and photocopiers,
can have a ‘digital make-over’, that is, by adding the ca-
pabilities of digital objects, to enhance their functionality
[4]. With digitalisation (digital objects) and sensors, we
can connect both smart and non-smart objects to the In-
ternet [5], make them communicate with each other and
create value-added, intelligent applications such as
‘Smart Homes’ and ‘Smart Cities’ – the dream of the IoT
[6]. However, sometimes, the need of good or special
practices because of the different necessities or limitations
of the hardware, like the battery [7], [8] and the energy

consumption [9], [10], the low computing power [11], the
centralised control of many devices [12], or a standardisa-
tion, data management or security, among others [13],
[14].

In the IoT, however, things, which can be smart and
non-smart [5], are usually diverse, as they are made by
different manufacturers, serve different purposes, contain
different physical components, use different interface
standards, have different communication protocols, and
embed different software technologies, and so on [15]–
[17]. These differences inevitably result in heterogeneous
objects that cannot directly communicate [15], [18]. Alt-
hough global standards on the IoT may ease the hetero-
geneity problem, creating such standards is currently a
major challenge to the IoT [4], [19], [20].

A common solution to this problem combines the prin-
ciple of information hiding and encapsulation with the
concept of Service-Oriented Architecture (SOA). This
approach provides each object with a service, which acts
as a communicator (i.e., interface) for the object and hides
the object details from the client [15]. By using such an
approach, objects heterogeneity is hidden from the ser-
vice consumers, allowing applications to use those objects
via standard services.

Yet, the IoT-based applications are dynamic. We quote
this example from [15]: ‘A device such as a Bluetooth
smartphone might become unavailable to a system as
soon as it moves out of range. Regarding autonomy con-
cerns, a simple sensor cannot perform its task anymore if
its battery is depleted. As a consequence, a system host-
ing IoT-based pervasive applications must be highly dy-
namic to manage the devices, which continuously leave
or enter the system.’ This kind of application, therefore,
cannot be fully described beforehand due to non-
deterministic nature of service availability.

————————————————

 C. González García is with Department of Computer Science, University of
Oviedo, Oviedo, Spain. E-mail: gonzalezcristian@uniovi.es.

 L. Zhao is with School of Computer Science, the University of Manchester,
Oxford Road, Manchester, M13 9PL, United Kingdom, E-mail:
liping.zhao@manchester.ac.uk.

 V. García-Díaz with Department of Computer Science, University of
Oviedo, Oviedo, Spain. E-mail: garciavicente@uniovi.es.

* Corresponding author

T

2

While dynamic SOA [21] offers a promising solution to
this problem by allowing applications to react to service
arrivals and departures according to their environment,
developing dynamic applications in this fashion is a spe-
cialised job, assuming programming skills and software
development knowledge [22]. This assumption seems to
be at odds with the vision of the IoT, which inspires per-
vasive connectivity for anyone and anything at any time
and space. Indeed, the IoT-based applications should be
pervasive and made for the mass, rather than the few. To
take the advantage of the IoT, businesses and individuals
without professional knowledge should be able to define
their own applications and decide when and which of
their objects should be connected to provide their desired
services.

With this motivation, we propose a user-oriented lan-
guage to enable end users to specify interconnections
between heterogeneous objects in the Internet of Things.
Based on the idea of the use case driven approach in
software engineering [23], our language provides end
users with a natural language like syntax to allow them to
specify when or under what condition they want which
objects to be connected. To support this language, we
have also developed a transformation mechanism that
automatically translates users’ specification into the
source code.

The main contributions that can be identified from this
paper are:

1. A Domain-Specific Language (DSL) very similar to
natural language.

2. A DSL that enables the end-users to specify the in-
terconnection among objects in an easy and simple
way without programming.

3. A transformation mechanism that automatically
translates users’ specifications into source code
that includes all the necessary logic.

Although there are already some related works, there
is a great absence on DSLs in the IoT and more specifical-
ly in the scope of this same work [24] Thus, our work
represents a first step in bringing the IoT closer to their
users. Here, users can describe the interconnection that
they need between the objects. This interconnection in-
cludes conditionals, loops, events (using the different
structures), the selection of objects and the messages that
you want to send to an object (actions). Thus, using the
different structures, users can create the interconnection
among objects with a small intelligence or based on dif-
ferent decisions.

We call our specific language MUCSL (Midgar Use
Case Specification Language). Midgar is an IoT platform
developed in our early work [16]. Midgar is necessary
because the objects have to be registered in this platform
and have to use the message system described in the plat-
form to create the interconnection, being Midgar our case
study to demonstrate this research. We develop MUCSL,
which is the contribution of this work, as a new layer on
top of Midgar. The main difference with this previous
research is that now, we have developed a text DSL,
which is very close to natural language. This new DSL
facilitates the conversion of use cases, according to some
rules, to the automated source code generation. This be-
ing opposed to the previous research in which users had
to learn a graphic DSL to develop the applications.

To continue, the next section details our language and
its transformation mechanism. Section 3 presents an ex-
periment on the utility of our approach and evaluates its
usability by analysing the experimental results. Section 4
overviews other approaches that are related to our work,
and finally, Section 5 concludes the paper by summaris-
ing its contributions and outlining future work.

Figure 1 The syntax and structure of MUCSL

 3

2 MUCSL: A USER ORIENTED LANGUAGE

2.1 Language Syntax and Structure

MUCSL has a simple lexicon consisting of ‘when’, ‘if’,
‘for’, ‘while’, ‘sensorID’, ‘then’, etc, defined at the Meta-
Use Case Layer, as Figure 1 shows. MUCSL uses the
syntax of conditional statements and allows the users to
define their intended interconnection through simple
conditional statements, such as ‘If condition then action’
and ‘While condition then action’.

The overall structure of MUCSL consists of five layers,
as Figure 1 shows. The top layer, Generic Use Case Lay-
er, provides the vocabulary for end users to define the
sentence structure. This layer consists of six categories of
words (see Table 1): obligatory, conjunction, IDs, values,
optional, and other. These groups of words can be com-
posed of simple and natural sentences that can be inter-
preted in a sequential way: First, we have the condition to
indicate the beginning of a sentence. Second, we compare
the value of a sensor or a list of sensors (to facilitate the
use of numerous objects) with a numerical value to estab-
lish the true or false of the condition. Then, we have the
option to add ‘AND’ or ‘OR’ in the condition if more
sensors are going to be compared. This allows users to
create and combine numerous sensors with different
conditions in an easy way. The next word is the statement
that we use to separate the condition of the clause. The
statement contains the list of actuators with one or more
actuators and the action that the user wants to do on
those actuators. Afterwards, we have another optional
word, indicating an alternative action either to ‘turn on’
or ‘turn off’ the actuator.

The second layer, Meta-Use Case Layer, provides pos-
sible words that some part of the structure needs. For
example, the condition only accepts ‘When’ or ‘If’. The list
of sensors needs one or more sensor IDs. The comparison
operators can be ‘greater than’, ‘less than’, ‘equal to’,
‘greater or equal than’, ‘less or equal than’, ‘different
from’, and so on. The value can be an exact value like a
Boolean, a number, a text message, a character, a numeric
value, or another sensor to obtain a value. For instance,
maybe we have to turn on the light when the two or more

photoresistor sensor of our living room has less value
than five or maybe when the value of this is less than
another photoresistor sensor that we have outside the
house. The optional value ‘and’ or ‘or’ serves to us to
concatenate more conditions. In this example, we did not
use it. After, the statement must be the word ‘then’. This
word indicates the beginning of the actions that the user
wants to do when the conditions are accomplished. The
next words are the list of one or more actuator IDs and
the action ID that the user wants to activate in these actu-
ators. Finally, we have the optional message or value that
may be, the user must send to the action. After all, we can
type the clause ‘else’ or ‘otherwise’ to do an action other-
wise, when the normal clause will not accomplish.

The third layer, Use Case Layer, consists of user-
defined use case instances. For example, in Figure 1, the
statement ‘When the B8AC6F48E370 is greater than 5 then
the C3b9f28c24f2be8b 0 to 5’ suggests that the object ID
will be used instead of the name because we want to
make sure the correct object is called to take the correct
action. Users can see the unique IDs of their objects on the
Midgar platform using the provided RESTful service.
After mapping the IDs to the object names, the statement
‘When the B8AC6F48E370 is greater than 5 then the
C3b9f28c24f2be8b 0 to 5’ will be translated into ‘When the
flameSensor is greater than 5 then the alarm will be set to
5’.

Figure 2 depicts the Describe step using MUCSL. We
can see that the user writes a use case to use the photore-
sistor sensor and a sensor of his smartphone. Exactly, he
wants to turn on the lights when one of these sensors will
have a value less than five. Clearly, as we explain before,
he has to write this use case using the structure of

Category Words

Obligatory

Condition If, for, when, while, meanwhile, as long as

Comparison Oper-
ators

Greater than, more than, less than, lower than, minor than, equal, equal to, great-
er or equal to, equal or greater than, less or equal to, equal or less than, more or
equal to, equal or more than, lower or equal to, equal or lower than, minor or

equal to, equal or minor than, different from, set to, >, <, >=, <=, ==, !=

Conjunction Then

Value Text, number, character, Boolean, sensor ID

ID Alphanumeric, -

Optional

Conjunction And, or

In another case Else, otherwise

Message Text, number, character, Boolean

Others
Irrelevant Words The, a, an, are, is, be, to, will, should, shall, can, could, would

Punctuation ‘,’, ‘.’, ‘:’, ;’, ‘‘’, ‘’’, ‘”’, ‘”’, ‘«’, ‘»’
Table 1 Keywords of MUCSL

Figure 2 Step 2: User case description by the end user

4

MUCSL.

2.2 Use Case Transformation

The previous section explains how the first three layers of
MUCSL can support users to write a use case. This section
describes how the last two layers can help transform a use
case into the source code.

The Template Use Case Layer takes the text from the
Use Case layer as input, removes irrelevant words such as
‘the’, ‘is’, ‘will’, ‘to’, and so on, and maps relevant data
onto the template. In Figure 1, we can see that the obliga-
tory words are transformed into keywords of the pro-
gramming language, while the other words are settled in
their corresponding place.

Finally, the Use Case Instance Layer generates the
source code from the template. In our example, we have
one sensor, the flame sensor. Then, we have created a use
case in which we wrote that when the value of this sensor
will be greater than ‘5’, it will execute an alarm. The value
of the flame sensor is reading every little time. In Figure
1, we can see that at that exact moment the value is ‘20’.
Maybe, in the next petitions, this value could change or
not, it will depend on the distance between the flame and
the sensor. In the case of the Actuator ID, we merge the
actuator ID with the Action ID to obtain the data that we
must send to Midgar for doing the correct query. In this
case, we have set to the action of that actuator, which has
the ID ‘0’, the value ‘5’. After that, we obtain the applica-
tion to interconnect the different objects.

2.3 Midgar Platform

Midgar is a cloud-based IoT platform developed in a
previous work [16]. This platform has been created ac-
cording to have a specific platform for implementing and
managing the different researches, and allows us to create
in an easy way prototypes about the IoT for theses [25]
and other research works. For instance, other contribu-
tions that have been implemented, used, and tested using
Midgar have been [26]–[28].
Midgar offers RESTful web services for the registration
and management of heterogeneous and ubiquitous ob-
jects for IoT applications. Midgar uses an XML-based
message system for data exchange and allows for the
interconnected objects to send or receive the data from
each other, if the objects comply with the predefined
communication rules [16], [26].

Midgar also possesses the basic Artificial Intelligence
[29] (AI) capability [30] and its intelligence can be im-
proved over time. This part has been facilitating the im-
plementation and demonstration of different researches.
Besides, Midgar contains an AI-based decision trees pre-
programmed by Midgar users themselves. Thus, based on
the input parameter, the platform can then know which
object should perform what task, make a predefined deci-
sion accordingly, and then send it to the recipient object.

Once this object is registered, it can send and receive
continuous messages to Midgar in a secure way [27].
These messages can serve to send data from the sensors
and the status of this object to Midgar or to receive mes-
sages from Midgar about what the receiving object should

do. Thus, Midgar is the brain of an entire IoT ecosystem.
Then, Midgar is not a contribution but is an important
part. Midgar is which manages and interconnects the
objects, has the daemon programs that we created using
MUCSL, which is the contribution of this paper, and
keeps and manages all the information of the objects and
daemon programs.

2.4 The Process of Using MUCSL

Using MUCSL is an integral part of the entire IoT applica-
tion development process, as Figure 3 shows. The process
consists of four simple steps: (1) Register—registering the
objects to the IoT platform, (2) Describe—describing their
interconnection in use cases, (3) Transform—
transforming the use cases into source code, and finally
(4) Run—executing the IoT applications through the in-
terconnected objects.

These steps, which have been implemented as web
services on Midgar, are described in detail as follows.

Register: This is the original service provided by Mid-
gar. Users register their objects on the Midgar platform by
providing the information of the objects in the XML for-
mat. This information includes the identifications of the
objects, the identifications of the sensors attached to the
objects and the actions that can be performed by the ob-
jects.

Describe: Users describe when and under what condi-
tions they want to use which objects in a use case using
MUCSL (Midgar Use Case Specific Language) (Figure 3
The proposed approach supports the development of
interconnection software through a lifecycle process,
consisting of a series of steps of Register, Describe, Trans-
form, and Run: 3.1). The syntax of MUCSL is similar to
the syntax of the English language. Here, the user uses
the created DSL, MUCSL, to create the use case that de-
scribes the desired interconnection. To do this, he writes,
using natural language, what he wants to create following
a series of guidelines, which are shown in Figure 1. All
this information is saved in an XML to send to the trans-
form step.

Transform: The use case is sent to the Transformer
(Figure 1: 3.1), which reads the use case, analyses it, and
creates the corresponding source code according to the
use case description (Figure 1: 3.2). In this step, the trans-
former receives the use case, which was defined by the
user, in XML format with only the needed information
but without irrelevant words or punctuation characters.
The transformer parses it and creates an active process
that contains how the interconnection of objects is. The
transformer is a Java application, which is a part of the
transformer situated in Step 3 (Figure 3) which reads the
information of the use case. This information is read and
inserted in a template that has the general information of
the daemon: access to the databases (IP, password, que-
ries), and the architecture and basic structures of the
source code. Besides, the Java application completes the
template with the information of the specific use cases
which is contained and provided in the XML that was
received in this layer: objects id, Server IP, which data of
the objects have to compare, how to compare it (greater

 5

than, less than, and so on), and how to use that data.
Run: In this step, an Active Process will execute the in-
coming message sent from the Transformer (Figure 1:
4.1). The message instructs the Active Process how to
connect different registered objects. When the transform-
er creates the active process, the Active Process can be
run in Midgar platform or in our own computer, because
this process will send all the information to Midgar. The
Active Process is continuing consulting the database of
Midgar because this platform is which manages and
keeps all the information of all the registered objects.
Exactly, it is consulting the data of the objects that are
presented in the use case that the user defined. Then, the
Active Process reads the values of these objects and tests
the condition. If the condition does not accomplish, the
active process does not do anything. In the case that the
condition is accomplished, then, the Active Process sends
a query to Midgar to set the action that the user defined
in the use case, Meanwhile, all the registered object in
Midgar are sending the values of their sensors to the plat-
form.

2.5 Used Software and Hardware

To develop this research work it is required the use of
different types of software and hardware components:

 The IoT Midgar platform (Updated to).
o Ruby 2.5.1p57.
o Rails 5.2.0.
o Thin Web Server 1.7.2
o MariaDB 10.1.29-MariaDB-6.

 MUCSL:
o HTML 5, PHP 7.2.8, JavaScript with-

out the use of external languages and
using the standard.

 Application generator.
o Java 10.

Libraries used in the generated applications:
 Arduino: RXTXcomm.jar for Arduino and Ja-

va, and HTTPComponents of Apache Soft-
ware Foundation.

 Android: HTTPComponents of Apache Soft-
ware Foundation.

For the evaluation of the proposal, we use a server and
several components that are used as Smart Objects:

 A Raspberry Pi 2 Model B as a dedicated serv-
er with Raspbian Jessie 4.9.75 v7+.

 3 Android Smartphones and 1 emulator.
o One Android emulator with Android

8.1.
o Moto 5GS Plus with Android 7.1.
o Nexus 4 with Android 5.1.1.
o Motorola with Android 2.2.2.

 Arduino Uno SMD Microcontroller based on
ATmega328.

 During the different tests and evaluations, we
have used the next sensors and actuators:

o ThermistorTMP36, a speaker, a ser-
vomotor, a DC motor, different LEDs,
two buttons, a photoresistor, the tem-
perature and humidity sensor
DHT11, and the flame detector
KY026.

2.6 Use Case Examples

In this section, we show different examples to demon-
strate the capacity of the DSL:

 Combination of two sensors that have to be
equal than five and another one than has to be
less than 20 to activate the action that requires
or needs, or may be allowed sending a not de-
fault value, which is 100 in this case. This use
case could be a system to automate the
heather based on temperature sensors, or a
sound alarm or an automatic door that has
two proximity sensors to cover range define in
meters.

o When the B8AC6F48E370-0,
B8AC6F48E370-1 are equal to 5 and
B8AC6F48E370-1 is less than 20 then
the C3b9f28c24f2be8b-0 to 100.

 A sensor that has to be greater than 5 and a
second sensor that has to be less than 20. If
both cases are accomplished, then the applica-
tion activates two actions, which do not need
any value. This use case could be an alarm
system with two actions like sound and pic-
tures or VoIP calls or text messages, or a sys-
tem to ventilate a room according to two gas
sensors.

o When the B8AC6F48E370-0 is greater
than 5 and B8AC6F48E370-1 is less
than 20 then the C3b9f28c24f2be8b-0
and D4az78t31y7ghu8p-0.

 When the values of the three sensors are
greater than 28, then the first and second ac-
tions of the second device will be launched. In

Figure 3 The proposed approach supports the development of

interconnection software through a lifecycle process, consisting of

a series of steps of Register, Describe, Transform, and Run.

6

all other cases, the actions 0 and 1 of the third
device will be run. This use case could be
matched with distributed sensors along a
place to detect a determinate measure that
could be dangerous or uncomfortable gases
(CO, CO2, H2, etc.), or temperature, to open
different windows or doors, activate an alarm,
start an extractor, other ones, or various of
them.

o If B8AC6F48E370-0, B8AC6F48E370-2,
B8AC6F48E370-3 are greater than 28
then the C3b9f28c24f2be8b-0,
C3b9f28c24f2be8b-1 else the
Z7kl94iop22ns89e-0 and
Z7kl94iop22ns89e -1.

 In case we want to increment or do a repeti-
tive task, we can use the loop to launch one or
more action when one or more sensors reach
the defined parameter/s.

o Meanwhile, the B8AC6F48E370-1 is
less than 10 then the
Z7kl94iop22ns89e-0

 This use case can be a loop that is executing
meanwhile the temperature is greater than
30ºC and the humidity is greater than 80% to
call two services to increment the air condi-
tioning and the dehumidifier until the sensors
detect again a normal temperature (< 30ºC
and < 80% humidity). In the other case, the
data will be sent to a log web service.

o While the B8AC6F48E370-0 is greater
than 30 and the B8AC6F48E370-1 is
greater than 80 then the
Z7kl94iop22ns89e-1 and
Z7kl94iop22ns89e-2 else
Z7kl94iop22ns89e-0

The examples used in this paper are the typical ones that
people use in homes or industry, but the DSL supports
the use of any other device or web service that uses the
Midgar platform and their systems. These devices can be
RFID tags to detect when someone or something use the
RFID tag, any type of sensor or actuator that you can
connect to an Arduino, any sensor or actuator a
smartphone has, web services, a robot that has Internet
connection to move according to other sensors or devices,
different smartphones, or any other device with Internet
connection and the possibility of parsing an XML.

3 EVALUATION AND RESULTS

This subsection contains the methodology used in the
evaluation of this prototype and the evaluation along
with its discussion. The evaluation was divided into two
phases. The first phase is the taking of quantitative data
from the evaluation made to the participants, which con-
sists of three tests. The second phase is a survey made by
the participants after testing the first phase, which gives
us a qualitative assessment.

3.1 Methodology

The main objective of this evaluation has been to validate
the initial hypothesis, for which the presented objectives
must be fulfilled. To achieve this, MUCSL has been creat-
ed, a language close to the natural language that allows,
by complying with a series of rules, to transform the use
cases written by the participants into the final application
that will interconnect the objects.
21 participants have taken part in the evaluation:

 95.2% had heard about the IoT.
 38.1% had never worked with the IoT before.
 81% had heard about Smart Objects.
 38.1% had never worked with Smart Objects be-

fore.
 90.5% were familiar with use cases.

Notwithstanding, the only thing that the users have to
know is the rules of MUCSL. MUCSL and an introduction
to the IoT, Smart Objects and the problem and solution of
the research were explained before to each participant
independently.
To validate the hypothesis, two phases have been devel-
oped so that the first one obtains quantitative data and
the second one qualitative data to evaluate it correctly:

 Phase 1: in this first phase, three tests have been
proposed to the participants. These three tests
have been three possible use cases of intercon-
nection of objects that have been written using
MUCSL. This phase corresponds to the quantita-
tive evaluation.

 Phase 2: after completing phase 1, 21 participants
had to answer a survey, putting together 17
statements, using the 5-point Likert scale [31].
The survey contains statements about MUCSL
and what was done in the first phase, so that the
participants should state how they agree with
each of the statements. This gives the qualitative
data to the evaluation.

The background of the participants:
 The 95.2% of users had heard about the IoT but

only the 38.1% had worked with the IoT.
 The 81% of the users had heard about Smart Ob-

jects but only the 38.1% had worked with them.
 The 90.5% had heard about use cases and the

81% had worked with them.

3.1.1 Phase 1

In this first phase, the participants had to perform three
tasks using MUCSL, each task being independent of the
others. The three tasks were sent to the user to facilitate
understanding, being the first task easier and the second
and third similar, although more difficult.
During the tests, quantitative data has been acquired
regarding the use of the editors. For example, the time in
seconds that each participant needed to make the applica-
tion, the displacement, measured in centimetres, with the
mouse and the clicks with the right and left mouse but-
tons. To measure this data the tool Mousotron [32] has
been used.
To create the three tasks, we though in examples that can
be used thoroughly by almost all people in normal and

 7

typical tasks. However, as we have seen in section 2.6, we
can use this DSL to more complex tasks.
The first task has been to create an application that inter-
connects an Arduino with a smartphone. The purpose is
for this application to use the Arduino's Flame Sensor to
detect fire. This first example is based on the common use
of a fire detector for Smart Homes, in the Industrial IoT
(IIoT), Smart Towns, Smart Cities, or in Smart Earth.
Thus, when it marks a value of 50 or less, the application
should send a notification to the smartphone with the
message ‘Fire’. The sensor identifier is ‘B8AC6F48E370-0’
and the smartphone identifier is ‘C3b9f28c24f2be8b-0’. A
possible solution of the first task is shown in Source Code
1, where possible optional words of the phrase are shown
in square brackets (‘[‘ and ‘]’).

If [the] B8AC6F48E370-0 [is] greater than

49 then C3b9f28c24f2be8b-0 [to] ‘fire’

Source Code 1. The solution for the first task

The second task has been to develop an application
that will interconnect the Arduino with a smartphone and
a light. The application must use the Arduino photoresis-
tor and the smartphone to detect whether the light needs
to be turned on. This second example is based on the turn
on/off the lights of a place automatically using a perma-
nent Arduino with a photoresistor and using the
smartphone like a mobile sensor. Especially, this applica-
tion can be used in Smart Homes and in the Industrial IoT
(IIoT) because they are indoor places.

If the Arduino sensor drops to a value of 30 or less and
the smartphone to a value of 20 or less, the application
must send the command to turn on the light, otherwise,

the light must be turned off. The identifiers of the Ar-
duino and smartphone sensors are ‘B8AC6F48E370-0’ and
‘C3b9f28c24f2be8b-0’ respectively. Meanwhile, the identi-
fiers of the actions for turning on and off the light are
‘D4az78t31y7ghu8p-0’ and ‘D4az78t31y7ghu8p-1’ for
each case. A possible solution to the second task is shown
in Source Code 2.

When [the] B8AC6F48E370-0 [is] equal or

less than 30 and C3b9f28c24f2be8b-0 [is]

equal or less than 20 then [the]

D4az78t31y7ghu8p-0 else [the]

D4az78t31y7ghu8p-1

Source Code 2 The solution for the second task

In the third task, the participants had to develop an
application that interconnects the Arduino and a fan.
Thus, by using the Arduino temperature sensor the appli-
cation will be able to change the fan speed of movement.
This last task is the classical example based on the use of a
temperature system to automate a fan in Smart Homes.

If the Arduino sensor reaches a value of 25°C or more,
the application will add a speed point to the fan for each
degree of difference. Otherwise, the application will turn
off the fan. The identifiers are ‘B8AC6F48E370-1’,
‘Z7kl94iop22ns89e-0’ and ‘Z7kl94iop22ns89e-1’ for the
Arduino sensor and the increase and decrease of the
speed of the fan. A possible solution to the third task is
shown in Source Code 3.

For [the] B8AC6F48E370-1 [is] greater or

equal than 25 then [the] Z7kl94iop22ns89e-

0 else [the] Z7kl94iop22ns89e-1

Source Code 3 The solution for the third task

Figure 4 Time required by each participant in each task along with the overall average

3.1.2 Phase 2

In the second phase, the qualitative part of MUCSL
was evaluated to obtain the opinion of the participants
and to know what they think on this research. To do this
survey, the 5-point Likert scale has been used as an eval-
uation method because it is a widely used method in the
field of software engineering to obtain information effec-
tively to support decision making [33].

When using the 5-point Likert scale, containing a total
of 17 statements, 5 possible responses are offered: 1 as
Totally Disagree, 2 as Disagree, 3 as Neutral, 4 as Agree,
and 5 as Totally agree.

The participants always performed this survey after
completing phase 1, anonymously and without help. This
survey contains statements about MUCSL, its possibilities
and possible impact on the Internet of Things and Smart
Objects, offering an interconnection between the two.

0

25

50

75

100

125

150

175

200

225

250

275

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21

TI
M

E
(M

S)

PARTICIPANTS

Time of the Participants in the 3 test

Time 1

Time 2

Time 3

Average 1

Average 2

Average 3

8

Table 2 contains the statements.

Declarations

D1
You can understand the structure of the elements and their

role in the application creation process.

D2
This tool offers a useful help to interconnect heterogeneous

objects.

D3 The syntax is clear, easy, and natural.

D4
This solution offers a fast way for you to specify how you

wish to connect your devices.

D5 This solution provides assistance to interconnect objects.

D6
The way to create interconnections using this language is

understandable.

D7
The language does not require the user to use complex pro-

gramming skills, as in traditional application development.

D8
The syntax includes enough elements and functionality for

the user to create a wide range of interconnections to objects.

D9

This proposal is a positive contribution to encourage the

development of services and applications for the Internet of

Things.

D10
Internet of Things and Smart Objects will benefit from this

solution.

D11

This language could be used to simplify the classic develop-

ment process of software applications in other areas (educa-

tion, video games, and so on).

D12
The use of this language reduces the complex development

for this type of applications.

D13
This syntax provides an easy and intuitive way to intercon-

nect devices

D14
The syntax of the use cases and the role of the use cases in

application creation process are clear.

D15
The user makes less mistakes if he uses this language than if

they programmes

D16
The user works quicker and more effective if he uses this

language than if they programmes

D17 This language can be useful

Table 2 Statements in the MUCSL survey

3.2 Results

This section analyzes and discusses the results ob-
tained in the two phases. Section 3.2.1 provides a quanti-
tative analysis of the results obtained by performing the
three tasks with MUCSL. The qualitative results obtained
from the survey are presented in Section 3.2.2.

 3.2.1 Results of Phase 1

In this phase, the time of each participant has been tak-
en while performing the three tasks required. This time is
shown in Figure 4, which contains the time of each partic-
ipant in each task and the overall average among all par-
ticipants to perform each task.

Analyzing this graph, the following interpretations can
be suggested:

 All participants took a little longer to perform the
second tasks compared to the first, with the ex-
ceptions of P8, P10 and P13.

 The third task, with a difficulty like the second

one, took less than the two previous tasks, except
P14 and p15.

 In general terms, it seems to provide a rapid
learning curve due to the decrease in the average
of the third task compared to the previous two.
The increment in the second task seems to be due
to the increase in the difficulty of the requested
task.

3.2.2 Results of Phase 2

Table 3 shows the responses of each participant for
each survey statement.

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
1
0

D
1
1

D
1
2

D
1
3

D
1
4

D
1
5

D
1
6

D
1
7

P01 3 5 5 4 5 4 4 5 5 5 5 5 4 5 4 4 5

P02 4 5 4 4 4 4 4 4 5 5 5 4 4 5 5 4 5

P03 3 4 3 4 4 3 5 4 4 4 4 4 5 5 5 5 4

P04 4 3 5 3 3 5 5 3 5 4 4 4 5 5 4 4 5

P05 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

P06 4 4 4 4 4 5 5 4 5 5 5 5 5 4 5 5 5

P07 4 5 5 4 5 5 4 3 5 4 5 3 4 4 5 5 5

P08 5 4 4 4 5 4 3 3 4 4 2 4 4 5 5 4 5

P09 4 5 4 4 3 4 5 4 4 4 3 4 4 4 3 4 3

P10 5 5 4 5 5 4 3 4 5 4 2 4 2 5 4 5 5

P11 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4

P12 5 5 4 5 5 4 4 5 5 4 5 5 5 4 5 5 5

P13 4 5 5 5 4 5 5 3 5 5 5 5 5 4 4 5 5

P14 5 4 3 4 4 4 2 3 3 3 4 3 4 3 3 3 4

P15 4 5 4 5 5 5 4 4 4 4 2 4 4 4 4 4 4

P16 5 5 5 5 5 5 4 4 4 4 5 5 5 5 5 5 4

P17 5 5 4 5 5 4 4 4 5 5 4 4 5 5 5 4 4

P18 5 5 5 5 5 4 4 4 5 5 5 5 5 5 5 5 5

P19 5 4 4 5 4 5 4 4 4 4 3 3 5 5 3 4 4

P20 5 5 4 5 5 5 4 5 5 5 4 5 5 5 5 5 5

P21 4 5 4 5 4 5 4 4 5 5 5 5 4 4 4 4 5

Table 3 Participant responses for each MUCSL statement

Table 4 contains the global descriptive statistics of the
MUCSL survey evaluation. This table shows the mini-
mum, the first quartile, the median or second quartile, the
third quartile, the maximum, the range between quartiles
and the mode of each of the 17 statements of the survey.

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
1
0

D
1
1

D
1
2

D
1
3

D
1
4

D
1
5

D
1
6

D
1
7

 Min 3 3 3 3 3 3 2 3 3 3 2 3 2 3 3 3 3

Quartile1 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4

Median 4 5 4 5 5 4 4 4 5 4 4 4 5 5 5 4 5

Quartile3 5 5 5 5 5 5 5 4 5 5 5 5 5 5 5 5 5

 Max 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Range 2 2 2 2 2 2 3 2 2 2 3 2 3 2 2 2 2
Inter.

range 1 1 1 1 1 1 1 0 1 1 2 1 1 1 1 1 1

Mode 5 5 4 5 5 4 4 4 5 4 5 5 5 5 5 4 5

Table 4 MUCSL global descriptive statistics

Figure 5 shows the data for each question represented
in a box in the diagram.

 9

Figure 5 Global Box Diagram for each MUCSL statement

Thus, from the data collected and shown in Table 4
and Figure 5 the following interpretations can be suggest-
ed:

 All statements have a maximum of 5, which indi-
cates that at least 1 person has fully agreed with
each.

 All statements, except D7, D11 and D13, have a
minimum of 3, indicating that in these statements
the worst case has been ‘neutral’.

 D7, D11 and D13 have the smallest minimum as
‘disagreement’.

 D2, D4, D5, D9, D13, D14, D15 and D17 have the
highest median. From this, we can deduce that
most of the participants are totally in agreement
with these statements.

 D7, D11 and D13 have a range of 3, which indi-
cates that there is a great diversity of opinions on
these statements. The rest of the statements have
a range of 2, which indicates that the participants
have a similar basic opinion on those statements.

 According to the mode, we can see that D1, D2,
D4, D5, D9, D11, D12, D13, D14, D15 and D17
have a mode of 5, which indicates that most of
the chosen answers have been ‘totally agree’. The
rest have a mode of 4, indicating that the next
most chosen answer has been ‘agree’.

 D11 with a range of 3, a minimum of 2, a median
of 4, a mode of 5, an interquartile range of 2 and
a maximum of 5, is the most dubious statement,
although the most repeated answer was ‘Totally
agree’. On the other hand, looking at D7, which
has a range of 3, a minimum of 2, a median of 4, a
mode of 4, an interquartile range of 1 and a max-
imum of 5, is the worst-valued statement. How-
ever, D13 with a range of 3, a minimum of 2, a
median of 5 a mode of 5, an interquartile range of
1 and a maximum of 5 is very well valued, alt-
hough there are some participants that do not
agree.

 D8 is one of the worst rated statements because it
has a range of 2, a minimum of 3, a median of 4,
is the only one with the quartile 3 in 4, an inter-
quartile range of 0 and a mode of 4. This indi-
cates that most participants are only in agree-

ment with it and have a very similar opinion
among them since it is the statement with a lower
interquartile range.

Table 5 shows the different frequencies obtained from

the survey for each statement based on the answers cho-
sen by the participants. This table contains the breakdown
of each question to show the number of votes for each
decision and their corresponding percentage.

 State-

ment

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

D1.
0 0 2 9 10

% 0% 0% 10% 43% 48%

D2.
0 0 1 6 14

% 0% 0% 5% 29% 67%

D3.
0 0 2 12 7

% 0% 0% 10% 57% 33%

D4.
0 0 1 9 11

% 0% 0% 5% 43% 52%

D5.
0 0 2 8 11

% 0% 0% 10% 38% 52%

D6.
0 0 1 10 10
% 0% 0% 5% 48% 48%

D7.
0 1 2 12 6

% 0% 5% 10% 57% 29%

D8.
0 0 5 12 4

% 0% 0% 24% 57% 19%

D9.
0 0 1 7 13

% 0% 0% 5% 33% 62%

D10.
0 0 1 11 9

% 0% 0% 5% 52% 43%

D11.
0 3 3 5 10

% 0% 14% 14% 24% 48%

D12.
0 0 3 9 9

% 0% 0% 14% 43% 43%

D13.
0 1 0 9 11
% 0% 5% 0% 43% 52%

D14.
0 0 1 8 12

% 0% 0% 5% 38% 57%

D15.
0 0 3 7 11

% 0% 0% 14% 33% 52%

D16.
0 0 1 10 10

% 0% 0% 5% 48% 48%

D17.
0 0 1 7 13

% 0% 0% 5% 33% 62%

Table 5 Frequencies of the global responses of MUCSL

Figure 6 shows a bar chart with the frequency of re-
sponses from all participants.

1

2

3

4

5
D

1
D

2
D

3
D

4
D

5
D

6
D

7
D

8
D

9
D

1
0

D
1

1
D

1
2

D
1

3
D

1
4

D
1

5
D

1
6

D
1

7

P
o

in
t

o
n

 L
ik

e
rt

 s
ca

le

Declarations

Min Quartile 1 Median Quartile 3 Max

10

Figure 6 Overall response distribution

Figure 7 shows the responses of the different state-
ments using a stacked bar graph by marking the percen-
tiles.

Figure 7 Stacked bar graph with the global responses

Based on the latest data shown, the following interpre-
tations can be suggested:

 D2 has 67% of the votes as ‘totally agree’ and
29% as ‘agree’, while only 5% of the votes were
‘neutral’. In number of votes, this is 14, 6 and 1,
respectively. This indicates that the participants
agree, at least in this statement, except a small
minority, being this the statement best valued.

 D9 and D17 are the following two most valued
statements, changing one ‘totally agree’ to just
‘agree’.

 On the other hand, D7 is the statement with the
worst opinions and with the most different re-
sponses with 57% of the votes as ‘totally agree’,
29% as ‘agree’, 10% as ‘neutral’ and 5% as ‘disa-
gree’. However, D11 is the worst rated by having
48% of the votes as ‘totally agree’, 24% as ‘agree’,
14% as ‘neutral’ and 14% as ‘disagree’.

4 RELATED WORK

Currently, there is still a great lack of scientific literature
on DSLs in the context of this work. In fact, some works
[24] emphasize that those kinds of languages are largely
non-existent, and that this is one of the areas that need to
be addressed in the future.
 In addition, some of the few available works have dif-
ferent scope and objectives. For example, µPnP provides a
platform-independent driver language for the IoT that
enables the implementation of driver functionality in a
high-level way. However, the language includes multiple
options that require programming skills [34].
 There are other visual languages. For example, DSL-4-
IoT is a graphical modelling language, using formal
presentations and abstract syntax in a metamodel to cre-
ate IoT related applications [35], [36]. The PervML is
another graphical DSL, created to provide developers
with different elements to describe IoT systems.
 Others, like the PIG DSL, focuses on a very concrete
task. In this case, the definition of processes to handle the
huge amount of data that is generated in the IoT in a de-
clarative way [37].
 SensApp is a platform to support cloud experiments. It
uses a DSL called Gatling. It is very reminiscent of a gen-
eral-purpose language due to its complexity and because
of the number of possibilities it allows. For example, it is
needed to create and extend classes and methods [38].
 There are other works more oriented to a specific con-
text. For example, Vitruvius [39], [40] is a platform fo-
cused on-road vehicles and is designed to simplify the
collection of information in order to generate applications
quickly. Therefore, interconnections are created using a
DSL between vehicles and users’ mobile devices with the
aim of creating applications based on the collected real-
time data.
 In addition to the previous works, our research shows
that very little current work is closely related to ours.
However, for comparison purposes, we provide an over-
view of some representative work focusing on our previ-
ous work with Midgar, other middlewares and IoT plat-
forms.

4.1 Migar platform and Migar Object
Interconnection Specific Language

Domain-Specific Languages have been widely used in
Web applications development such as HTML, CSS, and
XML. In our early work [16], we have developed a plat-
form and a graphical DSL for the users to specific connec-
tions between heterogeneous objects through a graphic
interface. Users must define the interconnections among
objects, which are registered in Midgar, using the DSL. It
allows users to define conditions, actions, loops, sleeping
times for objects, and even Java source code that involves
any of the integrated objects. They can define relational
operations using fixed numbers or using collected or real-
time data. This is the way in which they must create
events like ‘when the temperature sensor reaches 30ºC
degrees, then…’ This graphic representation is sent to the
parser and then automatically transformed into applica-
tions for connecting objects.

0

5

10

15
D

1
D

2
D

3
D

4
D

5
D

6
D

7
D

8
D

9
D

1
0

D
1

1
D

1
2

D
1

3
D

1
4

D
1

5
D

1
6

D
1

7

N
u

m
b

e
r

o
f

re
sp

o
n

se
s

Declarations

Strongly Disagree Disagree Neutral

Agree Strongly Agree

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

St
ac

ke
d

 p
e

rc
e

n
t

o
f

re
sp

o
n

se
s

Declarations

Strongly Disagree Disagree Neutral
Agree Strongly Agree

 11

 The language reported in this paper, known as Midgar-
Object Interconnection Specific Language (MUCSL),
complements the graphical DSL and allows the users to
specify object connections in natural language, rather
than in a graphical one. In this case, we also present a
DSL, which is a restricted language designed specifically
for object connections. However, in this case, we have
developed a textual DSL, which is very close to natural
language. Therefore, this facilitates the automated source
code generation from use cases, as long as the follow
certain rules.

4.2 Middleware

The Web and Internet services have been used as ubiqui-
tous middleware to facilitate the implementation of new
functionality and innovative applications for smart ob-
jects [4]. Middleware is ‘a software layer or a set of sub-
layers interposed between the technological and the ap-
plication levels’ [20].

On a small scale, mashups can be thought of as a kind
of middleware that uses content from more than one
source to create a single new service displayed in a single
graphical interface. Mashups can be used to link event
and data streams from physical objects with each other as
well as with Web services [4], [41].

On a larger scale, service-oriented middleware has
been used to support interaction and integration between
different technologies, applications or communication
protocols [20]. On the Internet scale, IoT middleware has
begun to emerge to facilitate communication between
heterogeneous and dynamic objects at different levels of
abstraction and granularity [15].

Our user-oriented language can be used to aid users to
specify object connections at the application level of the
IoT.

4.3 IoT Platforms

There are different platforms, which, although they are
not specifically a DSL, they have been designed with
similar objectives to those mentioned in this work.

For example, Paraimpu (Paraimpu SRL, 2012), which
can integrate heterogeneous data and connect different
sensors and actuators using a specific message mecha-
nism. It allows reducing the complexity, but users still
need some programming skills. In addition, it does not
allow control structures. On the other hand, Midgar pro-
vides a higher level of abstractions and allows different
powerful constructors like loops or timers.

Xively [42], is a supplier of cloud REST services and li-
braries for different platforms such as Arduino and An-
droid. One specific conditions are met; devices can com-
municate with the services to perform only an action,
what can reduce the possibilities of creating complex
applications. Midgar, however, does not put any limita-
tion when creating conditions and actions, and it even
allows creating nested conditions.

ThingSpeak [43], is another platform to connect ser-
vices and objects by creating different channels through
which to transmit the data. It provides convenient mech-
anisms to display interactive charts. However, the system

requires general-purpose programming skills to develop
applications. Midgar, by contrast, is based on the use of a
DSL, making it easier to perform the same type of opera-
tions

Nimbits has a different approach. It includes a down-
loadable server that can be used to create customized IoT
servers with REST services. Midgar also uses a similar
idea. One of the main differences between both is that
Nimbits manage the concept of ‘trigger’, to perform com-
putation depending on values of data. However, Nimbits
can only use three parameters, while with Midgar there
are no restrictions.

SIoT [44], [45], is a platform for the Social Internet of
Things based on previous research [44]–[46]. As in other
works, it allows creating channels to move data among
devices. However, unlike Midgar, it lacks a graphical
DSL to make it easier the creation of connections between
the different smart objects involved.

Finally, Open.Sen.se that is a platform that supports
several different protocols. It also uses channels to move
data and create applications based on the data. It is also
possible to carry out actions when different events occur.
The main drawback is that the platform only allows creat-
ing simple connections among objects and Web services.
In contrast, Midgar is valid to create much more complex
collaboration among objects.

5. CONCLUSION AND FUTURE WORK

This paper has presented a novel approach to enable end
users to specify dynamic interconnections for their IoT
objects to serve their own purposes. The main contribu-
tions of this approach are summarised as follows:

First, this approach contributes to our integrated de-
velopment process for the IoT-based applications, which
includes registering the objects to the IoT platform, de-
scribing their interconnection in use cases, transforming
the use cases into source code, and finally executing the
IoT applications through the interconnected objects. This
approach thus addresses the challenge to create the nec-
essary source code for the objects automatically from the
use cases, provided that they keep some small rules ac-
cording to the parser.

Second, our approach provides end users with a sim-
ple use case specification language MUCSL and supports
automatically transformation of use cases into the source
code. This allows end users to connect their own objects
without the need for them to learn programming lan-
guages or operating systems of the objects. Our approach
thus represents a tiny step towards bringing the IoT clos-
er to the end users, and empowering end users with the
control and connectivity of their IoT objects.

This contribution supplements deficiencies in other
works previously done and provides a programming
language very close to natural language to reduce the
learning curve of the users at the same time it offers a
clearer interface.

We have proved the concept of this approach through
developing the working prototype and demonstrated the
feasibility of this approach through an experiment and a

12

survey. The feedback from 21 participants was very posi-
tive: 19 out of 21 participants (90%) either totally agreed
or agreed that our approach will be useful and beneficial
for IoT. However, our approach still needs further im-
provements as the remaining participants (2 out 21) who
commented that users would still need to have some
prior knowledge of use case specification in order to use
MUCSL. Despite this concern, we believe that end users
can learn the basic syntax of use case specification quickly
and can therefore master MUCSL easily.

Our future work will extend MUCSL to support more
complex use cases so that users can specify more re-
quirements. We will also investigate advanced NLP tech-
niques to support the syntactic and semantic processing
of the use cases. Our goal is to create a more flexible, yet
powerful, language for end users. Such enhancement will
enable users to describe more freely what they want from
IoT applications.

Our current work has not considered the optimization,
scalability, and performance of the IoT connectivity, as
the number of interconnected objects is currently small.
With the ever-increasing number of smart objects, their
interconnections will become more complex. How to
reduce the coupling of many objects while maintaining
the high connectivity and performance is a major chal-
lenge in our future research.

A similar situation occurs with the security because the
use of the Midgar platform offers as a secure system to
send the messages that have been published in [27].
However, one of the improvements and future work that
we must do is the improvement and implementation of a
secure registration.

Another possible future work line could be the intro-
duction of different protocols and data formats (JSON,
CSV, etc.) to allow users to choose between the protocol
and format that they want or prefer to use.

ACKNOWLEDGEMENT

This work was performed by the ‘Ingeniería Dirigida por
Modelos MDE-RG’ research group at the University of
Oviedo under Contract No. FC-15-GRUPIN14-084 of the
research project ‘Ingeniería Dirigida Por Modelos MDE-
RG’. Project financed by PR Proyecto Plan Regional.

REFERENCES

[1] G. Santucci, “The internet of things: Between the revolution
of the internet and the metamorphosis of objects,” 2010.

[2] International Telecommunication Union, “The Internet of
Things,” 2005.

[3] D. Evans, “The internet of things: How the next evolution of
the internet is changing everything,” 2011.

[4] F. Mattern and C. Floerkemeier, “From the Internet of
Computers to the Internet of Things,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 6462 LNCS, Springer, Berlin, Heidelberg, 2010, pp.
242–259.

[5] C. González García, D. Meana-Llorián, B. C. P. G-Bustelo,
and J. M. C. Lovelle, “A review about Smart Objects,
Sensors, and Actuators,” Int. J. Interact. Multimed. Artif.
Intell., vol. 4, no. 3, pp. 7–10, 2017.

[6] K. Ashton, “That ‘Internet of Things’ thing,” RFiD J., vol. 22,
no. 7, pp. 97–114, 2009.

[7] G. Cueva-Fernandez, J. Pascual Espada, V. García-Díaz,
and R. Gonzalez-Crespo, “Fuzzy decision method to
improve the information exchange in a vehicle sensor
tracking system,” Appl. Soft Comput., vol. 35, pp. 1–9, Oct.
2015.

[8] N. Taušan, J. Markkula, P. Kuvaja, and M. Oivo,
“Choreography in the embedded systems domain: A
systematic literature review,” Inf. Softw. Technol., vol. 91,
pp. 82–101, Nov. 2017.

[9] M. Faheem and V. C. Gungor, “Energy efficient and QoS-
aware routing protocol for wireless sensor network-based
smart grid applications in the context of industry 4.0,” Appl.
Soft Comput. J., 2017.

[10] B. Zeng and Y. Dong, “An improved harmony search based
energy-efficient routing algorithm for wireless sensor
networks,” Appl. Soft Comput. J., vol. 41, pp. 135–147,
2016.

[11] E. Lee, Y.-G. Kim, Y.-D. Seo, K. Seol, and D.-K. Baik,
“RINGA: Design and verification of finite state machine for
self-adaptive software at runtime,” Inf. Softw. Technol., vol.
93, no. September 2016, pp. 200–222, Jan. 2018.

[12] N. M. do Nascimento and C. J. P. de Lucena, “FIoT: An
agent-based framework for self-adaptive and self-
organizing applications based on the Internet of Things,”
Inf. Sci. (Ny)., vol. 378, pp. 161–176, 2017.

[13] J. Carretero and J. D. García, “The Internet of Things:
connecting the world,” Pers. Ubiquitous Comput., vol. 18,
no. 2, pp. 445–447, Feb. 2014.

[14] Y. Sun, R. Bie, P. Thomas, and X. Cheng, “Theme issue on
advances in the Internet of Things: identification,
information, and knowledge,” Pers. Ubiquitous Comput.,
vol. 19, no. 7, pp. 985–987, 2015.

[15] K. Gama, L. Touseau, and D. Donsez, “Combining
heterogeneous service technologies for building an Internet
of Things middleware,” Comput. Commun., vol. 35, no. 4,
pp. 405–417, Feb. 2012.

[16] C. González García, C. P. García-Bustelo, J. P. Espada,
and G. Cueva-Fernandez, “Midgar: Generation of
heterogeneous objects interconnecting applications. A
Domain Specific Language proposal for Internet of Things
scenarios,” Comput. Networks, vol. 64, no. C, pp. 143–158,
Feb. 2014.

[17] Y. Zhang, Y. Xiang, X. Huang, X. Chen, and A. Alelaiwi, “A
matrix-based cross-layer key establishment protocol for
smart homes,” Inf. Sci. (Ny)., vol. 429, pp. 390–405, 2018.

[18] J. I. R. Molano, J. M. C. Lovelle, C. E. Montenegro, J. J. R.
Granados, and R. G. Crespo, “Metamodel for integration of
Internet of Things, Social Networks, the Cloud and Industry
4.0,” J. Ambient Intell. Humaniz. Comput., pp. 1–15, Feb.
2017.

[19] O. Vermesan and P. Friess, Internet of Things: Converging
Technologies for Smart Environments and Integrated
Ecosystems. Aalborg, Denmark: River Publishers, 2013.

[20] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things:
A survey,” Comput. Networks, vol. 54, no. 15, pp. 2787–
2805, 2010.

[21] H. Cervantes and R. S. Hall, “Autonomous adaptation to
dynamic availability using a service-oriented component
model,” in Proceedings. 26th International Conference on
Software Engineering, 2004, vol. 3, no. October, pp. 614–
623.

[22] S. J. Bolaños Castro, R. González Crespo, and V. H.
Medina García, “Patterns of Software Development
Process,” Int. J. Interact. Multimed. Artif. Intell., vol. 1, no. 4,
p. 33, 2011.

[23] I. Jacobsson, M. Christersson, P. Jonsson, and G.
Övergaard, Object-oriented software engineering: A use-
case driven approach. Addison-Wesley, 1992.

[24] J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma, “A gap
analysis of Internet-of-Things platforms,” Comput.
Commun., vol. 89, pp. 5–16, 2016.

[25] C. González García, “MIDGAR: Interoperability of objects in
the Internet of Things scenario using Model-Driven
Engineering,” J. Ambient Intell. Smart Environ., vol. 9, no. 6,
pp. 799–801, Nov. 2017.

 13

[26] C. González García, J. P. Espada, E. R. N. Valdez, and V.
García-Díaz, “Midgar: Domain-Specific Language to
Generate Smart Objects for an Internet of Things Platform,”
in 2014 Eighth International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing,
2014, pp. 352–357.

[27] G. Sánchez-Arias, C. González García, and B. C. Pelayo
G-Bustelo, “Midgar: Study of communications security
among Smart Objects using a platform of heterogeneous
devices for the Internet of Things,” Futur. Gener. Comput.
Syst., vol. 74, no. September, pp. 444–466, 2017.

[28] D. Meana-Llorián, C. González García, B. C. Pelayo G-
Bustelo, J. M. Cueva Lovelle, and N. Garcia-Fernandez,
“IoFClime: The fuzzy logic and the Internet of Things to
control indoor temperature regarding the outdoor ambient
conditions,” Futur. Gener. Comput. Syst., vol. 76, pp. 275–
284, Nov. 2017.

[29] C. G. García, E. Núñez-Valdez, V. García-Díaz, C. Pelayo
G-Bustelo, and J. M. Cueva-Lovelle, “A Review of Artificial
Intelligence in the Internet of Things,” Int. J. Interact.
Multimed. Artif. Intell., vol. InPress, no. InPress, p. 1, 2018.

[30] C. González García, D. Meana-Llorián, B. C. Pelayo G-
Bustelo, J. M. Cueva Lovelle, and N. Garcia-Fernandez,
“Midgar: Detection of people through computer vision in the
Internet of Things scenarios to improve the security in
Smart Cities, Smart Towns, and Smart Homes,” Futur.
Gener. Comput. Syst., vol. 76, pp. 301–313, Nov. 2017.

[31] R. Likert, “A technique for the measurement of attitudes,”
Arch. Psychol., vol. 22, pp. 1–55, 1932.

[32] Blacksun Software, “Mousotron,” 2016. [Online]. Available:
http://www.blacksunsoftware.com/mousotron.html.
[Accessed: 25-Jul-2016].

[33] M. Kasunic, Designing an effective survey. Pittsburgh,
2005.

[34] F. Yang, N. Matthys, R. Bachiller, S. Michiels, W. Joosen,
and D. Hughes, “μPnP: plug and play peripherals for the
internet of things,” in Proceedings of the tenth European
conference on computer systems, 2015, p. 25.

[35] E. Azadi Marand, E. Azadi Marand, and M. Challenger,
“DSML4CP: A Domain-specific Modeling Language for
Concurrent Programming,” Comput. Lang. Syst. Struct., vol.
In Press, 2015.

[36] A. Salihbegovic, T. Eterovic, E. Kaljic, and S. Ribic, “Design
of a domain specific language and IDE for Internet of things
applications,” in Information and Communication
Technology, Electronics and Microelectronics (MIPRO),
2015 38th International Convention on, 2015, pp. 996–
1001.

[37] A. F. Gates et al., “Building a High-Level Dataflow System
on top of Map-Reduce: The Pig Experience,” Proc. VLDB
EndowmentVldb ’09, pp. 1–12, 2009.

[38] S. Mosser, F. Fleurey, B. Morin, F. Chauvel, A. Solberg, and
I. Goutier, “Sensapp as a reference platform to support
cloud experiments: From the internet of things to the
internet of services,” in Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC), 2012 14th International
Symposium on, 2012, pp. 400–406.

[39] G. Cueva-Fernandez, J. P. Espada, V. García-Díaz, C.
González García, and N. Garcia-Fernandez, “Vitruvius: An
expert system for vehicle sensor tracking and managing
application generation,” J. Netw. Comput. Appl., vol. 42, pp.
178–188, Jun. 2014.

[40] V. García-Díaz, J. P. Espada, and G. C. Fernández,
“Vitruvius: Vehicle sensor based model-driven engineering
application generation,” J. Ambient Intell. Smart Environ.,
vol. 10, no. 1, 2018.

[41] D. Guinard, V. Trifa, T. Pham, and O. Liechti, “Towards
physical mashups in the Web of Things,” in 2009 Sixth
International Conference on Networked Sensing Systems
(INSS), 2009, pp. 1–4.

[42] LogMeIn, “Xively,” 2013. [Online]. Available:
https://xively.com/. [Accessed: 29-Jul-2015].

[43] IoBridge, “Thingspeak,” 2013. [Online]. Available:
http://www.thingspeak.com. [Accessed: 29-Jul-2015].

[44] L. Atzori, A. Iera, and G. Morabito, “SIoT: Giving a Social

Structure to the Internet of Things,” IEEE Commun. Lett.,
vol. 15, no. 11, pp. 1193–1195, Nov. 2011.

[45] R. Girau, M. Nitti, and L. Atzori, “Implementation of an
Experimental Platform for the Social Internet of Things,” in
2013 Seventh International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing,
2013, pp. 500–505.

[46] L. Atzori, A. Iera, G. Morabito, and M. Nitti, “The Social
Internet of Things (SIoT) – When social networks meet the
Internet of Things: Concept, architecture and network
characterization,” Comput. Networks, vol. 56, no. 16, pp.
3594–3608, Nov. 2012.

Cristian González García is a Technical
Engineer in Computer Systems, M.Sc. in Web
Engineering, and a Ph.D. in Computers Sci-
ence graduated from School of Computer
Engineering of Oviedo in 2011, 2013, and 2017
(University of Oviedo, Spain). He has been a
visiting Ph.D. candidate in the University of
Manchester, United Kingdom. Besides. He has

been working in different national and regional projects, in projects
with private companies, and in the University of Oviedo as a profes-
sor. He has published 9 journals articles, 4 conference articles, and
2 book chapters. His research interests are in the field of the Internet
of Things, Web Engineering, Mobile Devices, and Modelling Soft-
ware with DSL and MDE.

Liping Zhao is an academic member at the
School of Computer Science, the University of
Manchester. Her current research focuses on
two areas: the application of novel natural
language tools for requirements engineering
and the development of software services
systems to support scientific big data analytics
and management. She is an associate editor
for Expert Systems—The Journal of

Knowledge Engineering, Wiley-Blackwell, a member of the editorial
board of Requirements Engineering Journal, Springer, and a mem-
ber of editorial board of Services Transactions on Cloud Computing.
She is also a member of IEEE Computer Society's Technical Com-
mittee on Services Computing. She has published over 100 papers
in journals and conferences.

Vicente García-Díaz is a Software Engineer
and has a PhD in Computer Science from the
University of Oviedo since 2011. He is an
Associate Professor in the Department of
Computer Science at the University of Oviedo.
He is also part of the editorial and advisory
board of several journals, and has been editor
of several special issues in books and jour-
nals. He has supervised more than 60 aca-

demic projects and published more than 70 research papers in
journals, conferences and books. His research interests include
machine learning, natural language processing, model-driven engi-
neering and domain specific languages.

