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Planning, Execution, and Revision in Mathematics Problem Solving: Does the Order 

of the Phases Matter? 

 

The present study analysed the mathematical problem-solving processes, in terms of linearity and 

recursion, and the relationship with actual and self-perceived performances of a sample of 524 

students of upper-elementary students. The results showed a more linear than recursive process 

while performing the tasks, mainly characterized by continuity. The use of planning strategies before 

execution and the use of revision strategies after this phase were both significantly related to good 

performance, even if rates of success were low. The presence of a linear and hierarchical resolution 

process was related to students´ judgments of success, while recursion, or going back in the process, 

was associated with judgments of failure. Results are discussed in the light of current research on 

mathematics problem-solving. 
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Introduction 

Solving mathematical problems is a common task for students at all educational levels. Problem solving 

is a core goal of mathematics instruction at school, which is justified by the great importance that this 

skill has in everyday life and in the workplace. Although solving problems efficiently can be extremely 

beneficial in both contexts, previous research shows that students frequently struggle with these tasks 

(Babakhania, 2011; García, Rodríguez, González-Castro, González-Pienda, & Torrance, 2016; Silver, 

Ghousseini, Gosen, Charalambous, & Font Strawhun, 2005). There are different definitions of what 

constitutes “mathematical problem-solving”, most of which emphasize the complex nature of this 

activity. According to Raynal and Rieunier (1997; in Căprioarăa, 2015), problem-solving simultaneously 

mobilizes intellectual faculties such as memory, perception, reasoning, conceptualization, language, as 

well as emotional control, motivation, self-confidence and monitoring. On the other hand, Schoenfeld 

(1992) state that problem solving implies “thinking mathematically”, which involves mathematics core 

knowledge; problem-solving strategies such as monitoring and control; effective use of one´s resources; 

having a mathematical perspective; and engagement in mathematical practices (p. 335). In fact, 

successfully solving mathematical problems has been proven to rely on affective-motivational, cognitive, 

self-regulatory and metacognitive components constantly interacting with each other (Babakhania, 2011; 

Căprioarăa, 2015; García, Betts, González-Castro, González-Pienda, & Rodríguez, 2016; Jitendra, 



Dupuis, & Zaslofsky, 2014; Schoenfeld, 1992). More specifically, students who struggle with solving 

mathematical problems are poor at effectively implementing metacognitive and self-regulatory strategies. 

On the same lines, according to recent studies, there is also an important relationship between 

metacognitive and self-regulatory components and students’ own judgments of performance (or self-

perceived performance) (Dunlosky & Rawson 2012; Dunlosky & Thiede, 2013; Finn & Metcalfe 2014; 

García, Rodriguez et al., 2016; Hacker, Bol, & Bahbahani, 2008; Laua, Kitsantasb, & Millerc, 2015). 

These studies suggest that those students who are more accurate in their judgments commonly show 

higher levels of metacognitive control over their own learning processes.  

The studies above provide initial evidence on the important link between the process, actual 

performance, and self-perceived performance in mathematics problem-solving; a link that must be more 

deeply examined. However, there is an important factor that must also be considered, which is how the 

process involved in solving mathematics problems is organized. From a Self-Regulated Learning based 

perspective (Zimmerman, 2000, 2008), learning is characterized by a process where planning, execution 

and revision phases alternate with each other in a cyclical –recursive- relationship (Carlson & Bloom, 

2005). However, from the perspectives of other models, such as those by Polya (1981) and Mayer (2003), 

learning -especially problem-solving- is defined as being a linear (rather than a recursive) cognitive 

process; wherein planning, execution and revision seem to follow each other in a sequential order. 

Considering these two possibilities, and given the lack of empirical evidence on this issue to date, the 

current study examines the process involved in solving mathematical problems to see whether they can be 

better understood in terms of recursion or of linearity, and to analyze whether this process is related to 

students’ actual and self-perceived performance in problem-solving.  

  

Mathematical problem-solving as a process 

Current problem-solving models focus on the process rather than on the content aspects of mathematics 

(Schoenfeld, 1992). According to Schoenfeld (1992), problem solving is based on observation and 

implies searching for patterns, which involves abstraction, symbolic representation, and symbolic 

manipulation as main tools. It also implies a cyclic process that goes from data to deduction to application 

and that is repeated each time we face a mathematical problem.  

There are some previous studies that have examined the process involved in solving mathematical 



problems at different educational stages (García, Rodríguez et al., 2016; García, Betts et al., 2016; 

Jacobse & Harskamp, 2012; Tambychika, Subahan, & Meerahb, 2010; Verschaffel et al., 1999). These 

studies showed that difficulties in solving mathematical problems may occur at any phase during 

performance (i.e., planning-execution-evaluation; Zimmerman, 2000), with the phases of planning and 

evaluation commonly regarded as more problematic. In this sense, students commonly demonstrate 

difficulties in planning how to execute the problem-solving, using inadequate or insufficient strategies 

and devoting their efforts to performing calculations; while, for most of them, the third phase of 

evaluation seems unnecessary. Thus, most students do not usually complete the whole problem-solving 

process, which commonly leads to poor performance.  In this same line, authors such as De Bock, 

Verschaffel and Janssens (1998), or De Corte and Somers (1982) found that when facing unfamiliar 

complex mathematical problems, students usually do not apply effective strategies such as organizing the 

information though a drawing or sketch, dividing the problem into different parts, or guessing and 

checking. Also, self-regulatory and metacognitive strategies are commonly scarce (i.e. analysing the 

problem, monitoring the solution process, evaluating its outcome, etc.). Instead, students frequently jump 

to do calculations, without considering any other alternatives even when performing mathematical 

operations may not be working. Analysing this sometimes erratic process is important, because a crucial 

relationship between ‘process and product’ (i.e. resulting performance on the task) has been extensively 

reported (Tambychika et al., 2010). 

In this same line, Verschaffel et al. (1999) state that, despite the formal education and training 

provided by school-teachers in the area of mathematical problem solving, students at upper-elementary 

levels do not still have the required aptitudes to approach mathematical problems efficiently. They 

identify three main sources, or problem–solving components, that may cause these deficiencies: first, lack 

of domain-specific knowledge and skills; second, deficits in the heuristic, metacognitive, and affective 

aspects of mathematical competence; and last, inadequate domain-related beliefs about and attitudes 

towards mathematics and problem solving. Concerning student´s beliefs about mathematics, one of the 

most important components is the ability to assess and make judgments about one´s own performance and 

to notice discrepancies between one's own real –actual- performance and perceived performance. The 

correspondence between one´s ‘perceived’ performance and one´s ‘actual’ performance is referred to as 



calibration, and this measure has become an important topic of research in the last decades (Bouffard, 

Vezeau, Roy, & Lengelé, 2011; Dinsmore & Parkinson 2013; García, Rodríguez et al., 2016; Hadwin & 

Webster, 2013). Literature shows that students of different ages commonly make inaccurate evaluations 

or judgments of their performance, showing a tendency towards over-confidence. The relevance of 

calibration mechanisms in mathematics has been substantially demonstrated in mathematics problem-

solving. Specifically, students with higher calibration skills tend to perform more successfully than 

students with lower calibration skills, and this has been explained by the greater degree of control over 

problem-solving processes in students with higher calibration abilities. However, inaccurate judgments of 

performance not only affect actual performance, but also motivation, persistence and interest in the task, 

as previous studies have suggested (Hadwin and Webster, 2013; Jacobse & Harskamp, 2012; Lipko et al., 

2009; Rinne & Mazzocco, 2014). Those students who are less confident may also feel that they unable to 

tackle the given problem, which could thereby hinder them from utilising their full knowledge and 

previously learnt strategies; on the other hand, however, over-confidence may lead to excessive mistakes, 

frustration, and a lack of motivation in the face of failure.  Accordingly, the relevance of taking these two 

variables (actual and perceived performance) into consideration should not be overlooked by researchers. 

Nowadays, there is a good deal of evidence supporting the importance of problem-solving 

processes for learning, particularly regarding actual and self-perceived performance in mathematics 

problem-solving. However, there are two important questions that have been left unresolved to date: 1) Is 

mathematical problem-solving a linear or recursive process? 2) Does the organization of this process 

affect actual and/or perceived performance? A linear process would imply that there is a hierarchy, and 

that problem-solving is a sequential process (Krawec, 2012; Montague, Wager, & Morgan, 2000). So 

obstacles in the first phase would cause failure in the other phases. Alternatively, if the process is 

recursive, this would imply that planning, execution and evaluation may occur at any time during 

performance, which means recognizing the potentially iterative nature of the problem-solving process 

(Boonen, 2015). While the response to this question seems to be clear in the case of, for example, writing 

composition (i.e., the writing process is a recursive cyclical process; Lei, 2008; Smet, Brand-Gruwel, 

Leijten, & Kirschner, 2014), previous empirical evidence on mathematical problem-solving has not 

allowed any conclusion to be reached in this sense.   



A brief description of the most representative models on mathematics problem-solving is provided 

below. It is important to note at this point that, while there are some models that can be easily defined as 

linear or hierarchical, the possible iterative and recursive nature of the problem-solving processes seems 

not to be clear in most models. 

Mathematical problem-solving models 

Table 1 summarizes some of the most representative models on problem-solving. All of these models are 

based on different phases or sub-processes, and (to a certain extent) involve planning, execution, and 

evaluation mechanisms. 

- Please insert Table 1 here- 

 

Within this context, some classical and widely-known models are presented, such as those proposed by 

Polya (1981), Mayer (2003), or Bransford and Stein (1993), or Montague (2000). The problem-solving 

activities that comprise these models can be typically summarized in two main phases: 1) problem 

understanding and representation, and 2) solution development (Babakhania, 2011; Kim, 2015; Krawek, 

2012). For these authors, successful problem-solving is not possible without first interpreting and 

representing the problem adequately. A proper interpretation and representation indicates that the 

problem solver has understood the problem and serves as a powerful tool to guide them towards the 

solution plan (Babakhania, 2011). These authors also highlight the need for evaluation or revision at the 

end of the process. This is important, since revision strategies have been shown to be a determining factor 

for successful problem-solving, and one of the activities with which students struggle the most while 

performing these tasks (Cleary & Chen, 2009; García, Betts et al., 2016; García, Rodríguez et al., 2016; 

Montague, Enders, & Dietz, 2011). However, based on this type of characterization, it is still not clear 

whether evaluation and revision mechanisms are present during the whole process.  

Although it is not properly a problem-solving model, Zimmerman´s Model (2000, 2008) is 

relevant in this sense, as metacognitive and self-regulatory mechanisms are linked to successful problem-

solving (Babakhania, 2015; Cleary & Chen, 2009; Desoete & Roeyers, 2003; García, Rodríguez et al., 

2016; Swanson, 1990). The three main phases of Zimmerman´s model (i.e., Forethoughts, Performance, 

and Self-reflection) correspond to the phases of planning, execution, and evaluation, referring to those 

activities that occur before, during and after performing a task or learning. This model defines the Self-



Regulated Learning (SRL) as a cyclical process in which planning, execution and revision can occur at 

any time during the task. Hence, it recognizes the potential recursive or iterative nature of the process. In 

this same line, the model of mathematical modeling and applied problem solving of Blum and Niss 

(1991) must be highlighted. These authors describe a process that implies the following stages: creation 

of a mathematical model of the situation described in the problem; working within mathematics (drawing 

conclusions, calculating and checking examples, applying known mathematical methods and results as 

well as developing new ones, etc.) which leads to obtain a mathematical result; and last, re-translating the 

result into the real world (validation of the model). The authors also recognize the presence of recursion 

within this process, as they state that various modifications of the previous model can occur as a result of 

the validation stage (p. 35). There are also some models that highlight, aside from recursion or iteration, 

the importance of monitoring one´s progress during the whole problem-solving process (e.g. Pretz, 

Naples, & Sternberg, 2003), which implies that control and evaluation mechanisms, must be present in 

every phase of the process.  This is the case of the model proposed by Verschaffel et al. (1999). The 

authors conceptualize this model as a genuine strategy consisting in five stages eight heuristics that are 

especially valuable in the first two stages of the model (Table 1). Conceived as the goal of a learning 

environment, the model is aimed at facilitating students to become aware of the different phases involved 

in a competent problem-solving process (awareness training), developing the ability to monitor and 

evaluate one´s performance during the different phases of the problem-solving process (self-regulation 

training), and gaining mastery in the use of eight heuristic strategies that are especially useful during the 

first two stages of  building a mental representation of the problem and deciding how to solve the problem 

(heuristic strategy training) (p. 201). More recently, Boonen (2015) empirically found some signs of 

recursion in mathematics problem-solving, on this occasion with a sample of teachers implementing an 

intervention program to support non-routine mathematics word problem-solving in upper-elementary 

students. The author analyzed the problem-solving process followed by teachers during the intervention 

sessions, taking the phases shown in Table 1 as a framework. These findings contrast with some models 

and research-based programs developed to support word problem-solving, which assume that it is a linear 

and hierarchical process; providing interesting evidence about the presence of recursion in the process 

instead. 



The present study 

A review of the relevant literature indicates that additional evidence should be gathered on the 

orchestration of the problem-solving process. As students´ difficulties in problem-solving can occur at 

any phase, a good understanding of this process and its characteristics may provide interesting insights 

into the mechanisms responsible for these difficulties. Certain useful guides for teachers to better 

approach mathematics problem-solving might be provided through a proper understanding of what 

happens during this complex activity, as theory and daily practice should be intimately linked (Oonk, 

Verloop, & Gravemeijer, 2015). In order to contribute to this goal, the present study aims to answer the 

following questions: 

- Do students demonstrate a linear process during mathematics problem-solving, or there is some 

recursion present in this process?  

- Is students’ actual and self-perceived performance (i.e. success vs. failure) related to linearity or 

recursion in the process? 

It is expected that: 

- Students will be mainly linear in their process, although some signs of recursion will be present 

during performance. 

- Statistically significant differences in the process will be found in students with differing actual 

and self-perceived performance in the problems (i.e., success-failure). As linear models seem to 

be more extended than those that recognize the possible presence of recursion today, it is likely 

that students who show a linear process will be more successful and make more positive 

judgments of performance than those showing a tendency to recursion. 

Materials and Methods 

Participants 

A sample of 524 fifth and sixth grade students took part in this study. Ages ranged between 10 and 13 

years old (M = 10.99, SD = 0.72). This sample comprised 220 students from the fifth grade (42%) and 

304 students from the sixth grade of elementary school (58%). A total of 260 students (49.6%) were 

female, and 264 (50.4%) were male.  



Students were recruited from 12 state and private schools in Northern Spain. Sample selection was 

made through accessibility procedures. Students volunteered for the study and presented informed 

consent from families. Children with a diagnosis of special educational needs or severe learning 

disabilities were excluded from the study. 

Measures 

As in other similar studies (García, Rodríguez et al., 2016; García, Cueli, Rodríguez, Krawec, & 

González-Castro, 2015), the Triple Task Procedure in Mathematics-TTPM- was used as a measure of the 

mathematics problem-solving process. This procedure is a modification of the traditional Triple Task 

technique, widely used in the study of the processes involved in composition writing (Olive & Piolat, 

2002; Piolat, Olive, & Kellog, 2005). Actual performance was obtained through the students´ written 

responses to the mathematics problems, and self-perceived performance was obtained by asking students 

to judge whether they thought that they had given a correct response to each problem included in TTPM 

procedure. 

Mathematics problem-solving process 

The TTPM consists of the performance of three tasks: a primary task that elicits the cognitive process 

under investigation (i.e. solving a mathematics problem in this case); a probe task, in which response 

times [RTs] are measured; and a categorization task, in which students verbalize or label the actions or 

thoughts that are interrupted by the probe. The second task is used as a control task to ensure that students 

stay engaged in the evaluation process (i.e., extremely long RTs may be indicative of loss of attention or 

poor understanding of the instructions given), while the first and third tasks provide information about 

student performance (i.e. product or final result) and the process, respectively.  

The procedure is as follows: for each mathematics problem, students are asked to select the 

category that best represents the activities they are engaged in at different times during performance 

(García, Rodríguez et al., 2016).  During problem-solving, students hear a one second tone played at 

random intervals of between 40 and 45 seconds. This time interval allows evidence of the process to be 

gathered while trying to reduce possible interference in the process flow. On responding to the tone (i.e. 

probe task), students are presented with a category system that shows different activities involved in 

problem solving. They have to select a category identifying their current process from one of eight 



different activities: Reading the problem, drawing or summarizing, recalling similar problems, thinking 

about a solution, calculating, writing a response, reviewing, and correcting mistakes. RTs to the tones are 

registered. Students are initially trained, by means of examples, how to recognize and relate these 

categories to their own problem-solving process.  

TTPM uses directed introspection in this categorization phase, as students are asked to categorize 

their actions or thoughts according to a given category system. This system is based on Zimmerman´s 

Self-Regulated Learning model (SRL; Zimmerman, 2000, 2008), in combination with Bransford and 

Stein´s (1993) IDEAL model of problem-solving.  From the combination of both models, a system with 

eight categories or sub-processes emerged (García, Rodríguez et al., 2016). These sub-processes are 

organized into three higher level categories, corresponding to the main SRL phases of Planning, 

Execution, and Evaluation (Zimmerman, 2000, 2008). Table 2 shows the category system proposed by 

the authors. An additional category (“other”) has been included to reflect thoughts or activities unrelated 

to problem-solving performance, such as day-dreaming (e.g., “I’m thinking about what I’m going to do 

this afternoon”).  

- Please insert Table 2 here- 

Given its design, this technique is suitable for examination of the linearity and recursion of the 

process from the viewpoint of the main SRL phases of planning, execution and revision; understanding 

“linearity” as the tendency to progress forwards and hierarchically through the process, and “recursion” 

as the tendency to move backwards. Continuity, or the tendency to stay in the same phase for a period of 

time, is also evidenced by this technique, and was measured in the present study. Figure 1 exemplifies the 

process showed by two different students. The figure represents the category choice made by the students 

in each moment, providing evidence of the temporary organization of the process, including transitions 

between phases (either recursion or linearity) and continuity. 

- Please insert Figure 1 here- 

Mathematics problems 

Students performed two word-based mathematical problems during the TTPM. The problems were based 

on everyday situations taken from the book “Problem-solving and comprehension” (Whimbey & 

Lochhead, 1999). 



Problem 1: Beatriz lends €700 to Susana. But Susana borrows €1500 from Esther and €300 from 

Juana. In addition, Juana owes Esther €300 and Beatriz €700. One day they meet at Beatriz’s home to 

settle their debts. Who went back home with €1800 more than she brought? 

Problem 2: Paula, Mari, and Juana have a total of 16 dogs, 3 of which are poodles, 6 are 

greyhounds, and the rest of them are German shepherds and Pekinese dogs. Juana does not like poodles 

and Pekinese dogs, but she has 4 hounds and 2 German shepherds, leading to a total of 6 dogs. Paula has 

a poodle and 2 more dogs, which are German shepherds. Mari has 3 Pekinese dogs and several dogs of 

other breeds. Which breeds, and how many dogs of each breed, does Mari have? 

Actual and self-perceived performance 

A measure of actual performance (correct - incorrect) was obtained based on students´ written responses 

to the two mathematics problems.  

A measure of self-perceived performance was obtained after task completion, by asking students 

to judge whether they thought that they had given a correct response to each problem. This variable was 

scored as “success” when students provided a positive judgment of performance, and as “failure” when 

they did not. This measurement system was used in previous studies with upper-elementary students 

(García, Kroesbergen, Rodríguez, González-Castro, & Gonzalez-Pienda, 2015; García, Rodríguez et al., 

2016). 

Procedure 

The study was conducted in accordance with the Helsinki Declaration of the World Medical Association 

(Williams 2008), which reflects the ethical principles for research involving humans. The assessment 

procedure was collectively administered during a regular mathematics class. The TTPM was presented 

through a module enabled on Moodle. Students accessed the platform from their personal computers. 

They were given a username and password in order to guarantee anonymity. Two trained examiners led 

the evaluations.  Only two mathematical problems were used in the present study according to the design 

of the TTPM, which requires that training and TTPM administration are conducted during the same 

session. This same procedure has been used in previous studies in mathematics and writing composition 

(García, Cueli et al., 2015; García, Betts et al., 2016; García, Rodríguez et al., 2016: Torrance, Fidalgo, & 

Robledo, 2015).  



The first part of the session consisted of explaining the evaluation process to students. Then, they 

were trained in the recognition of the different process categories. In order to determine the students´ 

accuracy in categorizing the activities involved in mathematical problem solving, a pilot test was 

conducted, using the example of a student of their age (Alex) thinking aloud while solving a 

mathematical problem. Students had to recognize and categorize the sample student’s activity at 18 

different time points during the process (2 items per category, including the category called “other”). The 

students’ categorizations were subsequently compared with those of one of our expert raters. Mean 

agreement between students´ codes and those of the expert was high (mean Cohen´s κ =.89). This result is 

consistent with those from recent studies on writing composition (Rodríguez, Grünke, González-Castro, 

García, & Álvarez-García, 2015; Torrance et al., 2015), and indicates a high reliability of the coding 

process in the current sample. This training phase lasted about 15 minutes.  

Once the system of categories was understood, the TTPM was administered as previously 

described. The TTPM lasted until students indicated they had completed the problem, by clicking on a 

“finish” button set up for that purpose. Once students clicked on the “finish” button, a box appeared on 

the computer screen displaying the following question: “Do you think that you have given the correct 

response to the problem?” This allowed an indicator of students´ self-perceived performance to be 

gathered. The same procedure was repeated for the second problem.   

The TTPM was designed so that, regardless of each student’s response speed and the time they 

started or finished each problem, the time intervals between probes were the same for all participants.  As 

evaluations were collectively administrated, students were provided with headphones. However, no more 

than 20 students were evaluated simultaneously.  

Both the materials and the evaluation procedure were designed so that students found them 

appealing and motivating. The category system was represented through text and graphic symbols 

simultaneously. Mathematical problems were displayed on the computer screen and also presented on 

paper. Students were able to use the paper to write whatever they needed with the condition that they had 

to write their answer on the paper when they finished each problem. Once data from the process were 

retrieved, and the mathematics problems were marked, students´ actual and self-perceived performance in 

the problems was established in terms of success (1) or failure (0).  



As extreme RTs during the TTPM were not identified, data from all the students were included in 

the analyses.  

Students´ responses during the TTPM were coded for further analyses as follows: the reported 

activities in the planning phase (i.e., from reading to thinking about solutions) were assigned the number 

1; those within the execution phase (i.e., calculating, and writing a response) were coded as the number 2; 

and those related to revision mechanisms (i.e., reviewing, and correcting mistakes) were assigned the 

number 3. Students´ responses during the TTPM were recorded for a maximum of 20 different times. 

They had to label their actions according to the category systems describe previously. Each time 

represented a 40-45 second interval, matching the different probes presented. Based on these time 

intervals, students had a maximum of 15 minutes to solve each problem. A significant number of students 

completed the task before reaching probe number 20. Once evidence from the process was obtained, 

transitions within the three different phases were established.   

There were 19 possible transitions within phases, providing a sequence like this (e.g. 112223123). 

In this sequence, a student is performing the problem during 9 probe times. Thus, eight transitions 

(including continuity) are made. The student starts the task by planning and stays in this phase for two 

probes; then makes a transition to the execution phase, where they stay for a longer period of time; after 

that, the student moves to the revision phase and starts a new cycle of planning-execution-revision.  In 

order to quantify these transitions, the phase reported by students at a certain probe time was compared to 

the phase they reported at the immediately preceding probe. Two different possibilities arose: 1) that 

students stayed performing an activity within the same phase (e.g. 11- continuity within the planning 

phase); or 2) that students made a transition from one phase to another, either forwards (e.g. 12- transition 

from planning to execution- linearity) or backwards (e.g. 21- transition from execution to planning- 

recursion). The absolute frequencies of these transitions, related to staying in each phase and transitions 

within phases, were calculated and used as dependent variables in the statistical analyses.  

The Excel counting function was used to calculate absolute frequencies of transitions. Absolute 

frequencies for each transition were then averaged over the 524 participants in order to perform statistical 

analyses with means. In addition, and given that frequencies may provide a more exact estimation of 

process organization, they were also reported and analyzed in the present study.  



Data analysis 

As in previous studies, these analyses were initially based on mean frequency counts (García, Cueli et al., 

2015; García, Betts et al., 2016; García, Rodríguez et al., 2016; Torrance et al., 2015). The dependent 

variables considered were the mean frequency with which students stayed focused on activities within the 

Planning, Execution and Revision phases while solving the problems, and the number of transitions they 

made from one phase to another (either forward or backward). In accordance with the objectives of the 

study, the data was analyzed in two steps. 

Firstly, in order to examine the processes used by the students, and whether they were linear or 

recursive, means and standard deviations of the different dependent variables were reported. As 

dependent variables did not follow a normal distribution, non-parametric analyses were conducted. At a 

descriptive level, means and absolute frequencies both provided initial evidence about students´ tendency 

to continuity, recursion or linearity (Table 3). 

Secondly, the Mann Whitney U-test was applied to analyze differences in the process between 

students with differing actual and self-perceived performance in the mathematics problems. Cliff’s delta 

(δ) was used as a measure of effect size (Macbeth, Razumiejczyk, & Ledesma, 2011). This statistic 

provides a measure of dominance, or the degree of overlap between two distributions of scores. The value 

of this statistic ranges from –1 (if scores in Group 2 are larger than scores in Group 1) to +1 (if scores in 

Group 2 are smaller than scores in Group 1), and takes the value of zero if the two distributions are 

similar (i.e., absence of statistically significant group differences in the measured variables). Cohen 

(1988) established a bridge between Cohen’s d and Cliff´s δ statistic: a δ value of .147 has an effect size 

of d = .20 (small effect); a δ value of .330 corresponds to an effect size of d = .50 (medium effect); and a 

δ of .474 has an effect size of d = .80 (large effect). Absolute frequencies of transitions were reported for 

each each group, as they provide a purer measure of the transition pattern than means. Based on these 

frequencies, odds ratios were calculated as an additional estimation of effect size (Tables 4 and 5). This 

statistic was used as an estimation of students´ likelihood to make a transition in comparison the total 

number of possible transitions. The higher the Odds ratio, the greater the probability of making this 

transition. The values of this statistic range from 0 to 1. 



Separate analyses were conducted for each mathematics problem. SPSS v.23 (Arbuckle, 2010) 

was used to carry out the statistical analyses, with the exception of the non-parametric effect size analysis 

(i.e., Cliff´s delta statistic), for which Cliff’s Delta Calculator (CDC: Macbeth et al., 2011) was used. A p-

value ≤ .05 was established as the criterion of statistical significance. 

 

Results 

Mathematics Problem Solving Process: Linearity vs. Recursion 

Table 3 shows descriptive statistics for each dependent variable. The first three transitions presented in 

the table are indicative of recursion, while the last three are related to linearity in the process. The second 

group of variables are indicative of continuity. As can be observed, the frequency of the different 

transitions is generally low, as students show a high tendency to stay in the same phase (high continuity), 

particularly in planning and execution phases. This pattern is even more visible when absolute 

frequencies are considered. 

- Please insert Table 3 here- 

 

In addition to this tendency to continuity, there are some transitions that are relatively frequent. 

The transition from planning to execution (related to the linearity of the process) is considerably more 

frequent than any other transition. However, the least frequently reported transitions occur from revision 

to planning, and from planning to revision in both mathematical problems. The first transition would be 

indicative of starting a new cycle in the process, while the second one would reflect the presence of 

monitoring activities from the initial phases of the process. Transitions from execution to revision (i.e., 

linearity), and from execution to planning (i.e., recursion) are also reported by students in some cases, 

with a similar frequency.  

 

Relationship between Process and Actual Performance 

Students´ actual and self-perceived performance in the two mathematical problems was measured in order 

to analyze the relationship between these two variables and the problem-solving process. For the first 

problem, 156 students (29.8%) were successful, while 368 (70.2%) answered incorrectly. A total of 449 



(85.7%) gave a judgment of success about their performance in this problem, while 75 (14.3%) judged 

their performance as failure. For the second problem, 185 students (35.3%) solved it correctly, while 339 

(64.7%) did not. A total of 403 (76.9%) judged their performance as successful in this problem, while 121 

(23.1%) made a judgment of failure.  This pattern indicates that there is a high mismatch between 

students´ perception of performance and actual performance.  

Table 4 shows absolute frequencies for each dependent variable in the groups with differing actual 

performance in the mathematics problems. Figure 2, based on frequency means, shows the same tendency 

observed in the general group, with the activities within the phases of planning and execution being the 

most frequently reported by students. The transition from planning to execution (i.e. linearity) remains the 

most frequent observed category. 

 

- Please insert Table 4 here- 

Regarding inter-subject differences in the process as a function of students´ actual performance, 

statistical analyses showed that there is an absence of statistically significant differences between the 

students who solved the problem correctly and those who did not in Problem 1. There are however some 

statistically significant differences in Problem 2, specifically in the execution phase, U = 25665.000, p < 

.001, δ = .181, as well as in transitions from planning to execution, U = 28484.500, p = .033, δ = .162, 

and execution to revision, U = 28347.000, p = .027, δ = .112; the latter two relate to the linearity of the 

process. The means indicate that students who successfully solved the second problem spent significantly 

more time executing. This group also reported planning before – and reviewing after- task execution 

(both related to the linearity of the process) to a greater extent than their peers with low performance in 

this problem (see Figure 2).  As the δ statistic indicates, the effect size of these differences was low. The 

positive sign of the statistic confirms the direction of the differences, with higher means in the group who 

correctly judged their performance. Odds ratios in Table 4 also confirmed the tendency found regarding 

differences between groups, showing a higher likelihood of making the aforementioned transitions on this 

group. The Odds ratio values were very low in general, and only slightly higher in the case of the 

execution phase. This is explained by the generally low frequency of transitions that students made 

between the different phases, as they tended to continuity. 



 

-Please include Figure 2 here- 

 

Relation between Process and Self-Perceived Performance  

Table 5 shows absolute frequencies for each transition between phases in the groups with differing self-

perceptions of performance (success vs. failure) in the mathematics problems. Figure 3 shows frequency 

means of the transitions between the different phases in both groups. Again, a tendency towards 

continuity was found, and students spent most of their time in the planning and execution phases. In terms 

of linearity, the transition from planning to execution was the most frequent transition in both groups; 

while in the case of recursion, the transition from execution to planning was one of the most frequently 

reported by the students. 

-Please insert Table 5 here- 

 

Statistical analyses revealed that there were significant differences between the groups with differing 

judgments of performance in both problems. These differences were more notable in Problem 2. On the 

one hand, students who had a positive judgment about their performance in Problem 1 significantly 

differed from those that gave a judgment of failure in the following variables: transition from execution to 

planning, U = 14217.500, p = .009, δ = -.155, and execution to revision, U = 12501.500, p < .001, δ = 

.257, as well as in the amount of time they spent performing activities within the planning phase, U = 

11644.500, p < .001, δ = -.308. Students who believed they were correct in solving the first problem 

stayed in planning significantly less, and made the transition from execution to planning (i.e., recursion) 

to a lesser extent than the other group, while reviewing after execution (i.e., linearity) more frequently.  

On the other hand, in Problem 2, group differences were found in a wider set of variables. 

Specifically, statistically significant differences were found in the amount of time that students stay in the 

phases of planning, U = 18119.000, p < .001, δ = -.256, and execution, U = 19425.000, p = .001, δ = .203, 

as well as in the frequency of transitions from revision to planning, U = 23190.000, p = .005, δ = -.109, 

planning to execution, U = 20511.500, p = .001, δ = .158, and execution to revision, U = 20226.500, p = 

.001, δ = .170.  Students who made a judgment of success in this second problem spent significantly less 



time in planning, while spending more time executing the task, in comparison to those who made a 

judgment of failure. The success group also went back from revision to planning (i.e., recursion) less 

frequently, but planned before- and reviewed after- execution (i.e., linearity) more frequently than their 

peers in the failure group. The effect size of these differences was generally low, although higher than in 

the actual performance analysis. The highest effect sizes were found in planning in both problems, and in 

the transition from execution to revision in Problem 1, with values close to a medium effect size. The sign 

of the δ statistic indicates the direction of the differences, the negative sign being indicative of higher 

means in the failure group. Odds ratios in Table 5 showed the same direction of means and effect sizes. 

The highest values of this statistic were found in the case of continuity in planning, which indicated a 

higher likelihood of the students making this transition as opposed to the others. Greater differences in 

Odds ratios were found in the transitions that turned out to be statistically significant in previous non-

parametric analyses. The values of this statistic were very low, with the exception of continuity in the 

planning phase, as in previous analyses of actual performance.   

-Please include Figure 3 here- 

 

Discussion 

This study aimed to analyze the mathematical problem-solving process in a sample of upper-elementary 

students in terms of linearity and recursion, and how this organization relates to students actual and self-

perceived performance in these tasks. While the linear nature of the problem-solving process seems to be 

included in most of the previous models, some current research suggests that a form of recursion is also 

possible.  

Firstly, although some examples of recursion were observed in this study (i.e. retrogressing from 

execution to planning), students used noticeably more linear than recursive processes. This is consistent 

with a characterization of the problem-solving process as a series of hierarchically organized activities, 

where students progress towards the solution in a linear and ordered function. This process is different 

from that found in the case of writing-composition activities, which have been demonstrated to show a 

cyclical nature (Lei, 2008; Smet, Brand-Gruwel, Leijten, & Kirschner, 2014). It is also important to note 

that the process demonstrated by this sample of students can be categorized as predominately continuity. 

Once students get involved in activities within a phase, they stay in that phase for a long period of time. 



This pattern is especially evident in the planning and execution phases, but not in revision. Revision 

mechanisms are very scarce, and when present, they seem to be sporadic. This is coherent with previous 

research indicating that revision is an activity that many students overlook or even dislike, which 

commonly leads to poor performance in tasks (Cleary & Chen, 2009; García, Betts et al., 2016; Montague 

et al., 2011; Pennequin, Sorel, Nanty, & Fontaine, 2010). In fact, success rates in the present sample of 

students were very low for both problems.  

Secondly, results showed a weak but statistically significant relationship between the organization 

of the process and students´ actual performance, but only in the second problem. It is worth noting in this 

case that these differences were found in the frequency of transitions related to linearity. Thus, no effect 

of recursion on actual performance was found. In this sense, success in the task was related to more time 

spent executing the task, the use of planning strategies before execution, and the presence of revision 

mechanisms once the task had been performed (i.e. a solution was given). This is important since, despite 

students not showing a great preference for revision in this study, the presence of these mechanisms has 

been shown to be significantly linked to good performance in the tasks. This finding is supported by 

previous literature (Cleary & Chen, 2009; García, Betts et al., 2016; Montague et al., 2011) recognizing 

the important role of planning and evaluation strategies for problem-solving in different educational 

stages. Thus, an important emphasis must be made in instructional programs to encourage students to put 

both mechanisms into practice.   

Thirdly, regarding the relationship between process organization and students´ self-perceived 

performance, results indicated that students who judged their performance as correct demonstrated a more 

linear process (e.g. transition from execution to revision), while those who made a judgment of failure 

showed more signs of recursion (e.g. transition from execution to planning). Thus, linearity relates to 

good perceptions of one´s performance, while the presence of recursion is perceived by students as 

negative for performance. This finding is coherent with the current scientific scenario in which most 

intervention programs seem to be based on the linearity of the process (see Kim, 2015). Since most 

students are commonly encouraged to follow a structured, hierarchical, and linear path, it is unsurprising 

that they feel less confident when changes to this sequence are experienced. This might be perceived as 

negative by students, leading to a perception of failure. Another explanation may be that students may 



have found it to be a very difficult task, one for which they could not find an adequate strategy/solutions, 

which led to both recursive paths and to negative feelings about their performance in the problem. It is 

also worth noting that a large number of students in the current sample made a positive judgment of 

performance, which contrasts to the low levels of success rates in solving the tasks. Thus, there is a high 

mismatch between students´ actual and self-perceived performance. This is a tendency which has been 

widely reported in previous literature. Using the concept of calibration, or the degree of correspondence 

between one´s judgment of performance and actual performance (Hacker et al., 2008), there is a good 

deal of evidence that students in upper-elementary school commonly make inaccurate judgments, with a 

tendency to over-confidence in mathematical problem-solving and other areas (Bouffard et al. 2011; 

Dinsmore & Parkinson 2013; Hadwin & Webster 2013), which is indicative of poor metacognitive and 

self-regulatory skills. It is also important to consider the sort of problems used. Students commonly prefer 

problems that are directly solved through algorithmic methods, rather than those that imply heuristic 

methods, where effort has to be made “searching” for the solution (Căprioarăa, 2015). This second group 

of problems would correspond to the problems used in the present study, which imply understanding, 

planning and monitoring at a deep level in order to be successfully solved.  Thus, it might be possible that 

the low rates of success could be due in part to the type of problems involved in the present study.   

Conclusions 

Solving mathematical problems is a difficult cognitive activity in many cases. This difficulty frequently 

comes from the complex nature and organization of the processes involved. Taking into account the 

cognitive and metacognitive nature of the process, the study of its organization can provide interesting 

insights into the strategies students use and whether they follow a structured, smooth path towards the 

solution or, on the contrary, it can provide information about the sub-process or phases they struggle with 

(Bonner, 2013). 

Findings from this study demonstrated certain characteristics in the way students faced the task, 

such the use of as a linear -step by step- approach to the solution, poor revision strategies, or a perception 

of failure when they had to look back over the process and look at a new way to tackle the problem. This 

is important since this pattern is accompanied by low rates of success in problem-solving in the present 

sample, which suggests that some changes should be made in this context.  



As mentioned before, obstacles in problem-solving may occur in any phase. Therefore, control 

and monitoring components should play a more important role throughout the entire process. In the 

present study, for instance, the students reported to using revision mechanisms after performance, but not 

after planning. Thus, it would seem that students do not tend to check their planning strategies. 

Understanding and representation of a problem usually occur during the planning phase and, in many 

cases, form the basis for subsequent development of a suitable method to solve the task (Babakhania, 

2011; Kim, 2015; Krawek, 2012). Thus, correct monitoring during this phase may lead to essential steps 

in the progression towards a successful problem-solving strategy. 

On the other hand, it is also worth noting that only a negligible proportion of students made a 

transition from revision to planning, which involves completing one cycle and starting another. This 

contrasts with previous conceptualizations of Self-Regulated Learning as being a cyclical and active 

process, as per those proposed by Zimmerman (2000; 2008). 

Within this perspective, it is important for students to understand that solving a mathematical 

problem should be seen as a flexible and adaptive process, where they can move forwards and backwards 

in order to find the best solution path. In this sense, it is becoming more and more necessary to look at 

learning and teaching practices (Arslan & Yazgan, 2015; De Bock et al., 1998; Verschaffel et al., 1999). 

The inclusion of different dynamics, such us group work, modeling, or recursive prompts would greatly 

benefit students´ adoption of the correct process in each case.  Thus, more effort should be made in the 

study of the nature and organization of mathematics problem-solving. Once good information about this 

is available to educators and the scientific community, more students will benefit from better adapted and 

maybe more efficient instructional approaches.  

Limitations and future lines of research 

Some limitations in the present study must be acknowledged: firstly, the use of only two mathematical 

problems. Including more tasks would permit gathering a clearer and more continuous measure of both 

actual and self-perceived performance (expressed in dichotomous terms in the present study).  

Secondly, another possible limitation in the present study is that the TTPM may be intrusive for students, 

leading to a sort of “reactivity” (Bowles & Leow, 2005). This is a common factor in on-line 

measurements, and has been widely studied in the context of Thinking-aloud and traditional Triple Task 



procedures, with the conclusion that, although the use of these measures may increase time taken to 

complete the task, simply instructing participants to verbalize their thoughts during a task does not alter 

the sequence of their cognitive processes or task performance (Bannert & Mengelkamp, 2008; Fox, 

Ericsson, & Best, 2011; Olive & Piolat, 2002). Nevertheless, the study of the process would greatly 

benefit from the adoption of new perspectives and methods, such as the use of eye-tracking systems (Van 

Viersen,  Slot, Kroesbergen, Van't Noordende, & Leseman, 2013), which may provide interesting insights 

into student strategy use while minimizing reactance.  The use of additional assessment techniques and 

instruments, such as cognitive interviews or observation, would also help improve the knowledge of such 

processes. Third, it is important to note that some additional variables, such as task complexity and 

familiarity, and the student´s general mathematics ability, must be considered as modulating variables for 

future studies. Both variables can influence the linear/recursive nature of the problem-solving process.  

Also, the type of instruction on mathematics problem solving received by the student must be considered 

(Pelaez, Cueli, Areces, García, & Rodríguez, 2017). Authors such as De Bock et al. (1998) suggest in this 

sense that, different aspects of the current culture and practice of school mathematics may develop in 

students a tendency to use linear models also in situations in which they are not applicable. Thus, the 

influence of these three components (students’ familiarity with the task, students´ general mathematical 

ability, and school learning and teaching practices) and their possible interaction must be properly 

analyzed in further studies. Exploring these variables and their relation to the problem-solving process is 

also important taking into account the great number of students who did not solve the problems 

successfully.  Lastly, the low to medium effect sizes found in this study indicate the need for caution 

about the scope of the findings. This could be partially explained by the high inter-subject variability 

observed in the problem-solving process (i.e. extremely high values of variance, skewness and kurtosis 

were found). It would be interesting to establish more homogeneous groups, maybe on the basis of 

additional components such as affective-motivational variables or academic achievement in the subject.  

In summary, our contribution can be considered as a first attempt to answer the question about the 

linear or recursive nature of the mathematical problem-solving process. This is a question that has been 

raised for years, capturing the attention of theorist in Mathematics education. However, it seems to have 

no answer yet. Through the present study, the authors sought to integrate a great part of the information 

http://www.ncbi.nlm.nih.gov/pubmed/?term=van%2527t%2520Noordende%2520JE%255Bauth%255D


gathered for decades at a theoretical level, while pointing out the need to propose and test empirical data-

analysis methods that allow us to validate some of the theoretical models proposed up to the date, and 

therefore, be closer to answering the question about whether the order of the phases in solving 

mathematical problems matters.  
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 Table 1. Problem-solving Models 

Model Phases 

Linear (hierarchical) models 

Polya (1981) - Understanding the problem 

- Planning 

- Performing the plan 

- Confirmation of the answer 

IDEAL model (Bransford & Stein, 

1993) 
- Identification of the problem 

- Definition of the problem 

- Exploration of possible solutions 

- Acting according to the solution plan  

- Review of the last stages (Looking back) 

Montague (2000) - Read  

- Paraphrase  

- Visualize  

- Hypothesize  

- Estimate (predict the answer)  

- Compute  

- Check  

Mayer (2003) - Translation  

- Interpretation 

- Planning 

- Execution 

Pretz et al. (2003) - Recognizing the problem 

- Defining and interpreting the problem 

- Developing a solution strategy 

- Organizing one´s knowledge about the problem 

- Allocating mental resources to solve the problem 

- Monitoring one´s progress towards the goal 

- Evaluating the solution 

Recursive models 

Verschaffel et al. (1999) -Build a mental representation of the problem 

Heuristics:  

- Draw a picture 

- Make a list, scheme or a table 

- Distinguish relevant information from 

irrelevant data 

- Use your own real-world knowledge 

-Decide how to solve the problem 

Heuristics:  

- Make a flowchart 

- Guess and check 

- Look for a pattern 

- Simplify the numbers 

-Execute the necessary calculations 

-Interpret the outcome and formulate an answer 

-Evaluate the solution 

*Zimmerman´s SRL Model (2000, 

2008) 
- Forethoughts 

- Performance 

- Self-reflection 

Boonen (2015) 
 

 

- Read the problem 

- Understand the text 

- Visualize the problem structure 

- Hypothesize a plan to solve the problem 

- Compute the required operation 

- Check your answer 

Note. *Zimmerman´s Model is included as it is an example of the process involved in general learning and 

supposed the basis for different models based on problem-solving. 
 



 

Table 2. Category System of problem-solving process (as a combination of Zimmerman and Bransford 

and Stein’s models) 

SRL Model IDEAL Model Process categories (I am ...) 

Planning 

Identification of the problem Reading 

Definition and representation 
Drawing or summarizing 

Recalling similar problems 

Exploration of possible strategies Thinking about a solution 

Execution Action based on the strategy 
Calculating 

Writing a response 

Revision Look at effects of solutions 
Reviewing 

Correcting mistakes 

“Other”  Doing something unrelated 

Note. Retrieved from García, Rodríguez et al. (2016). 

  



Table 3. Descriptive statistics for each dependent variable (transitions within phases). Problems 1 and 2 

Transitions 
Problem 1 Problem 2 

M SD AF  M SD AF 

Recursion 

 

rev-plan .053 .241 28  .034 .211 18 

rev-exec .116 .385 61  .068 .295 36 

exec-plan .431 .716 226  .316 .604 166 

TOTAL .595 .898 314  .421  .762 219 

 Continuity 

 

plan-plan 3.162 2.602 1657  2.774 2.864 1454 

exec-exec 2.524 2.785 1323  2.509 2.470 1315 

rev-rev .319 .782 167  .200 .677 105 

TOTAL 6.042 3.369 3147  5.501  2.951 2873 

Linearity 

 

plan-exec 1.162 .693 609  1.068 .638 560 

exec-rev .456 .576 239  .347 .503 182 

plan-rev .099 .311 52  .064 .275 34 

TOTAL 1.711 .947 900  1.484  .862 775 

Note. M = Mean frequency of transitions within phases; AF = Absolute frequencies; Rev = revision phase; Plan = 

planning phase; Exec = execution phase. Total sample = 524.  

  



Table 4. Absolute Frequencies (AF) of the groups in the dependent variables (transitions within phases). 

Groups divided according to actual performance (correct vs incorrect). Problems 1 and 2 

 Problem 1  Problem 2 

 Correct  Incorrect  Correct  Incorrect 

Transitions AF(OR)  AF(OR)  AF(OR)  AF(OR)       

 Recursion 

rev-plan 
8  

(.002) 
 20  

(.002) 
 4 

(.001) 
 14 

(.002) 

rev-exec 
16 

 (.005) 
 45  

(.006) 
 12 

(.003) 
 24 

(.003) 

exec-plan 
56  

(.018) 
 170  

(.024) 
 57 

(.016) 
 109 

(.017) 

 Continuity 

plan-plan 
461  

(.155) 
 1196  

(.171) 
 466 

(.132) 
 988  

(.153) 

exec-exec 
374  

(.126) 
 949  

(.135) 
 532 

(.152) 
 783  

(.121) 

rev-rev 
45  

(.015) 
 122  

(.017) 
 46 

(.013) 
 59 

(.009) 

 Linearity 

plan-exec 
179  

(.060) 
 430  

(.061) 
 212 

(.060) 
 348  

(.054) 

exec-rev 
73  

(.024) 
 166  

(.023) 
 75 

(.021) 
 107 

(.016) 

plan-rev 
16  

(.005) 
 36  

(.005) 
 10 

(.002) 
 24  

(.003) 

Note. OR = Odds Ratio; Plan = planning phase; Exec = execution phase; Rev = revision phase; Problem 1 Correct 

(n = 156); Problem 1 Incorrect (n = 368), Problem 2 Correct (n = 185), Problem 2 Incorrect (n = 339). 

  



Table 5. Absolute Frequencies (AF) of the groups in the dependent variables (transitions within phases). 

Groups divided according to self-perceived performance (correct vs. incorrect). Problems 1 and 2 

 Problem 1  Problem 2 

 Correct  Incorrect  Correct  Incorrect 

Transitions AF(OR)  AF(OR)  AF(OR)  AF(OR) 

Recursion 

rev-plan 
23 

(.002) 
 5 

(.003) 
 2 

(< .001) 
 10 

(.004) 

rev-exec 
54 

(.006) 
 7 

(.005) 
 27 

(.003) 
 9 

(.004) 

exec-plan 
185 

(.021) 
 41 

(.029) 
 129 

(.016) 
 37 

(.016) 

Continuity 

plan-plan 
1.317 

(.154) 
 340 

(.238) 
 988 

(.129) 
 466 

(.202) 

exec-exec 
1.078  

(.126) 
 245 

(.171) 
 1075 

(.140) 
 240 

(.104) 

rev-rev 
149  

(.017) 
 18 

(.012) 
 86 

(.011) 
 19 

(.008) 

Linearity 

plan-exec 
521  

(.061) 
 88 

(.061) 
 450 

(.058) 
 110 

(.047) 

exec-rev 
221 

(.026) 
 18 

(.012) 
 154 

(.020) 
 28 

(.012) 

plan-rev 
47 

(.005) 
 5 

(.003) 
 25 

(.003) 
 9 

(.004) 

Note. OR = Odds Ratio; Plan = planning phase; Exec = execution phase; Rev = revision phase; Problem 1 Correct 

(n = 449); Problem 1 Incorrect (n = 75), Problem 2 Correct (n = 403), Problem 2 Incorrect (n = 121). 

  



 

Figure 1. Example of TTPM design. The figure shows the category choice made by two different 

students. 

 

 

 

 

 

 

  



 

Figure 2. Mean frequency of transitions between phases (groups based on Actual Performance) 
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Figure 3. Mean frequency of transitions between phases (groups based on Self-Perceived Performance) 
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