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Abstract. 

 

 In this paper, a deterministic stress decomposition is applied over the numerical 3D flow 

solution available for a single volute centrifugal pump. The numerical model has proven in 

previous publications its robustness to obtain the impeller to volute-tongue flow interaction and it 

is now used as starting point for the current research. The main objective has been oriented towards 

a detailed analysis of the lack of uniformity in the flow that the volute tongue promotes on the 

blade-to-blade axisymmetric pattern. Through this analysis, the fluctuation field may be retrieved 

and main interaction sources have been pinpointed.  

 The results obtained with the deterministic analysis becomes of paramount interest to 

understand the different flow features found in a typical centrifugal pump as a function of the flow 

rate. Moreover, this post-processing tool provides an economic and easy procedure for designers 

to compare the different deterministic terms; also giving relevant information on the unresolved 

turbulence intensity scales. Complementarily, a way to model the turbulent effects in a systematic 

way is also presented, comparing their impact on the performance with respect to deterministic 

sources in a useful framework, that may be applied for similar kind of pumps. 
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1. Introduction. 

 

 Centrifugal pumps are a type of turbomachine, quite widespread in modern industry and 

daily applications, used to deliver a given flow rate of an incompressible fluid, typically water, 

with a radial flow or centrifugal impeller arrangement. In the early stage of the research, the focus 

was set on global performance and several studies tried to explain the basic flow features, see for 

instance Binder et al. [1] or Bowerman et al. [2]. More advanced ideas were studied in Adkins et 

al. [3] or Miner et al. [4]. Also, global features were presented in Greitzer [5], Lakshminarayana 

[6] or Brennen [7]. 

More recently, investigations on centrifugal pumps have been focused on the understanding 

of the unsteady flow patterns and the interactions that show up in the different working conditions 

of the machine, being especially oriented towards the improvement of the final pump design. In 

other words, unsteady flow patterns are deeply analysed in the industrial day-to-day activity and 

in the bibliography due to their particular interest for obtaining new and better designs. 

 The experimental works with advanced measurement techniques have been also 

significantly developed over the years, leading to an extensive technical bibliography where the 

studies by Tsukamoto et al. [8] or Kaupert et al. [9] can be considered pioneering works within the 

field. The latter showed the unsteady pressure distributions inside the impeller of a centrifugal 

pump using piezoresistive transducers with the application of a telemetry system. Their study 

revealed quite high-pressure pulses, particularly at the blades trailing edge. Up to 35% of the pump 

head at off-design conditions was observed in the pressure side of the blades close to the trailing 

edge. In addition, concerning flow visualization techniques, the works by Dong et al. [10] or 

Wuibaut et al. [11] are also relevant references to be mentioned. 

Concerning numerical studies, the number of numerical simulations, particularly those 

including 3D and full-unsteady flow descriptions, has been growing significantly since the initial 
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works by Croba and Kueny [12], Shi and Tsukamoto [13], Goto and Zangeneh [14] or González 

et al. [15]. Some other recent contributions have even handled some blade geometry changes in a 

very advanced way, see Wu et al. [16] among others. 

All this knowledge is now available, and the databases provided by these works are a very 

solid base for the development of new advances. During the last years, pump designers have been 

stirred up in the search for more efficient and with less vibration prototypes. All those efforts 

pursuit a decrease of the pressure fluctuations in the volute, which becomes a key issue in the 

design objectives and promotes an iterative procedure that implies geometry changes until desired 

results are accomplished. Obviously, to have a deeper knowledge of the flow features and, 

particularly, of the pressure or velocity fluctuations, an indication of the origin and characteristics 

of the main interactions must be provided. 

 The deterministic flow decomposition was firstly defined as a modelling tool to address 

unsteady effects in steady simulations, see Adamczyk [17,18]. But, with the empowering of the 

computational resources, it became more a post-processing technique to analyse unsteady data in 

a coherent and more understandable way, Van Zante et al. [19]. Though it was originally conceived 

for multistage axial turbomachinery, the authors have already presented the application of this 

methodology for centrifugal pumps, see Fernández Oro et al. [20], advancing interesting features 

in the case of a double suction pump. 

 In this article, a deterministic stress analysis is performed for the flow in a typical, single-

volute centrifugal pump. The location and strength of the main stress contributors, in terms of 

deterministic kinetic energy are obtained and compared to turbulent phenomena. By doing so, the 

sources of the main unsteadiness are identified along the geometry for the different working 

conditions of the pump. 
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2. Geometry: global description and numerical details. 

 

 A single stage centrifugal pump is being studied. It consists of an axial inlet at the suction 

section, a centrifugal impeller with seven logarithmic blades (concerning the mean line definition) 

and a volute, which collects the flow from the volute tongue towards the outlet section. Thus, the 

geometry can be regarded as a kind of classical geometrical arrangement for a single volute 

centrifugal pump (see Fig. 1). 

Fig. 1. Global sketch of a typical centrifugal pump. 

The performance curve of the pump, its nominal working point and the specific speed (nS 

= 0.52) were extensively discussed in previous works. The reader is referred to González et al. 

[15], González et al. [21] and Parrondo et al. [22] for details. Also, a full description of the flow 

patterns was accomplished in González et al. [23], considering both the global variables and the 

vorticity distributions as sources of secondary flows along the volute. 

 Therefore, the considered pump has been extensively studied both in the numerical and 

experimental basis, considering both the nominal working conditions and off-design 

characteristics using full unsteady approaches. In particular, the work by Barrio et al. [24] provides 

a major contribution on the field by showing both steady and unsteady radial forces on the impeller, 

by integrating the instantaneous evolution of the pressure and viscous terms at different locations 

around the impeller exit for different flow rates. Fig. 2 shows the single volute commercial pump 

that has been used for all these research activities. Table 1 summarizes the relevant geometrical 

parameters and the nominal working conditions of the pump. 

Fig. 2. Single volute commercial pump used for the present study. 
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Number of blades, Z (-) 7 

Impeller outer diameter, D2 (m) 0.2 

Outlet blade angle, 2 (deg.) 29 

Impeller width, b2 (m) 0.0169 

Rotational speed, Ω (rpm) 1620 

Nominal flow rate, QN (m3/s) 0.015 

Head at nominal flow rate, HN (m) 12.88 

Specific speed, nS (-) 0.52 
  

 

Table 1. Main geometrical and operating variables. 

 

3. Numerical 3D flow model. 

 

 A full 3D numerical model of the commercial pump has been developed. The model 

includes the impeller, the volute, the front and rear casing walls and also a short portion of the inlet 

and outlet pipes. The calculations of the flow through the pump have been carried out by solving 

the Unsteady Reynolds-Averaged Navier-Stokes equations (URANS) with a CFD commercial 

package, particularly the ®Ansys-Fluent. The numerical description, overall results and additional 

specific details on the pressure fields and their time description have been handled in Barrio et al. 

[24]. 

Fig. 3. General view of the numerical model. 

 

 Fig. 3 presents a general view of the model, where the inlet pipe, impeller and casing walls 

are shifted for clarity. The mesh used in the calculations was tetrahedral and unstructured except 

for the two pipes, where structured prismatic cells were adopted. Grid dependence tests showed 

that the adopted 800,000 cells were enough in order to keep numerical uncertainty below 4%. In 

addition, grid quality tests revealed that more than 90% of the cells had a magnitude of the equisize 

skew below 0.5. The impeller passages were discretized with 100 nodes streamwise, 35 nodes 
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pitchwise and 20 nodes to cover the impeller width, thus resulting in approx. 70,000 cells per 

passage. It is also remarkable that the number of cells required for a deterministic decomposition 

of the velocity field, like the one presented in following sections, is not as large as that usually 

needed for a detailed description of the viscous flow interactions. Details of the surface mesh of 

the impeller (including mesh refinement at the leading edge of the blades) and of the volute are 

shown in Fig. 4. An additional cut view with the 3D mesh in the vicinity of the tongue is provided. 

 The flow equations were discretized by second-order terms. Turbulent closure was 

established by means of the k-epsilon RNG turbulence model, together with the classic Log-law 

velocity profile to resolve the flow in the boundary layer. A full rotation of the impeller was 

computed in a sequence of 224 time steps by a Sliding Mesh Model (SMM), which resulted in a 

shift of 1.6 deg between two consecutive time steps. The boundary condition imposed at the inlet 

pipe was a constant gauge pressure. The mass flow was regulated by means of an outlet-vent 

boundary condition that was imposed at the outlet pipe. This condition simulates the operation of 

a regulation valve by means of a minor loss coefficient K. A series of values of K were determined 

from the experimental performance curve of the pump in order to obtain mass flows rated between 

20% and 160% of the nominal one. 

 

Fig. 4. Details of the surface mesh of the impeller (left) and volute (center). Transversal cut 

of the 3D mesh in the vicinity of the volute tongue (right). 

 

The convergence criterion imposed during all calculations was to reach a magnitude of the 

scaled residuals below 10–5 for all the flow variables. About 10 to 15 full impeller revolutions were 

required to achieve a periodic flow regime. After that, an additional blade passage was computed 

and stored to obtain and analyse the results presented in the following sections. 
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4. Deterministic analysis framework. 

 

4.1. General ideas on the velocity decomposition 

 

 The basis for a deterministic decomposition of the velocity field in a single-stage unsteady 

environment is firstly outlined in this section. Its application will allow to numerically split the 

effect of the different unsteadiness inside the pump, providing information on the origin of the 

losses and a deeper knowledge of the flow structures inside the pump. The main idea behind the 

whole procedure relies on the way the final velocity field is obtained from the superposition of 

deterministic and non-deterministic components. As a starting point, a first time-averaging 

operator has to be introduced according to: 

𝑢̅𝑖(𝑥⃗)  =
1

𝑇𝐵
∫ 𝑢̃𝑖(𝑥⃗, 𝑡)𝑑𝑡
𝑇𝐵

0
≈

1

𝑁
∑ 𝑢̃𝑖(𝑥⃗, 𝑡𝑛)
𝑁
𝑛=1     (1)  

 With N being the total number of time steps covering a blade element (i.e., the time required 

for a blade to complete a tangential movement comprising the pitch of the blade passage). Note 

that 𝑢̃𝑖(𝑥⃗, 𝑡𝑛) has been previously obtained as the ensemble-averaging value of the instantaneous 

velocity, thus removing all turbulent scales (this is immediate within the URANS solution of the 

flow field). The deterministic fluctuation, 𝑢𝑖
, (𝑥⃗, 𝑡𝑛), can be calculated as the difference between 

𝑢̅𝑖(𝑥⃗) and 𝑢̃𝑖(𝑥⃗, 𝑡𝑛) for every impeller phase, namely: 

 𝑢𝑖
, (𝑥⃗, 𝑡𝑛) = 𝑢̃𝑖(𝑥⃗, 𝑡𝑛) − 𝑢̅𝑖(𝑥⃗) (2) 

 Precisely, the deterministic fluctuation, or flow unsteadiness being observed in the absolute 

frame of reference, is a direct consequence of the tangential movement of the velocity gradients in 

the blade-to-blade passage. That is to say, it resembles how a time variation of the flow speed in 

the absolute frame is due to the circumferential displacement of an angular gradient in the relative 
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reference frame. Mathematically, it can be expressed as: 
𝜕

𝜕𝑡
= −Ω

𝜕

𝜕𝜃
. However, this is strictly valid 

only if the velocity in the relative frame is completely steady. This would be equivalent to admit 

that there are no interaction effects between the flow in the volute tongue and the velocity field 

within the impeller blades. Consequently, in order to handle the lack of uniformity of the real flow 

in what refers to the volute tongue interaction in the blade-to-blade patterns, an extra term to 

account for the pure interaction between both frames is considered in the analysis. This additional 

term, added to the periodic fluctuation of the deterministic excitations, is then expressed as: 

 

 𝑢𝑖
, (𝑟, 𝜃, 𝑧, 𝑡) = 𝑢𝑖

"(𝑅)(𝑟, 𝜃 − Ω𝑡, 𝑧) + 𝑢̂𝑖(𝑟, 𝜃, 𝑧, 𝑡) (3) 

 

 In the previous equation, 𝑢̂𝑖(𝑟, 𝑡) stands for the pure unsteady term in the impeller flow-

tongue interaction while 𝑢𝑖
"(𝑅)

 is the term to consider the difference between the time-averaged 

flow and the axisymmetric velocity component, 𝑢̃𝑖
(𝑎𝑥𝑖)

, in the relative frame. This final component 

is retrieved through pitch-averaging (or circumferential averaging) and consists in the span-wise 

distribution of the velocity, which is no longer function of the relative frame to be considered, 

namely: 

 𝑢𝑖
"(𝑅)(𝑟, 𝜃 − Ω𝑡, 𝑧) = 𝑢̅𝑖

(𝑅)(𝑟, 𝜃 − Ω𝑡, 𝑧) − 𝑢̃𝑖
(𝑎𝑥𝑖)(𝑟, 𝑧) (4) 

 

 Operating with the procedure as explained, the time evolution of the impeller-volute 

interaction, 𝑢̂𝑖(𝑟, 𝑡), is found as the difference of the two terms that account for the impeller relative 

motion that is observed in the volute-tongue or absolute frame (eq. 3). To proceed correctly, a 

relocation routine of the variables has to be implemented to consider the change in the two frames 

according to: 𝜃𝑎𝑏𝑠 = 𝜃𝑟𝑒𝑙 + Ω𝑡. All the averaging procedures are graphically sketched in Fig. 5. 
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Fig. 5. Deterministic decomposition in both fixed and moving reference frames (adapted 

from Fernández Oro et al. [20]). 

 

 To sum up, the velocity field obtained by the URANS solution for a single volute 

centrifugal pump is split into a set of four components. The first one is the axisymmetric through-

flow or pitch-averaged distribution of the velocity field. Following, there are the spatial blade-to-

blade non-uniformities in the relative frame (R) and the volute-tongue gradients in the absolute 

frame (S). Those last ones are steady in their corresponding frames of reference because the time 

dependency has been dropped in the averaging procedures. Finally, it is found the pure temporal 

term, which is phase dependent and shows the impeller to volute-tongue flow interactions and is 

regarded as a totally non-linear term. Those four terms are included in the following 

decomposition: 

 

 𝑢̃𝑖(𝑥⃗, 𝑡) = 𝑢̃𝑖
(𝑎𝑥𝑖)(𝑟, 𝑧)⏟      

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑓𝑙𝑜𝑤

+ 𝑢̂𝑖(𝑟, 𝜃, 𝑧, 𝑡)⏟      
𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

+ 𝑢𝑖
"(𝑆)(𝑟, 𝜃, 𝑧) + 𝑢𝑖

"(𝑅)(𝑟, 𝜃 − Ω𝑡, 𝑧)⏟                      
𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑛𝑜𝑛−𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑖𝑒𝑠

 (5) 

  

It must be noted that a similar decomposition can be attained using space‐time periodicities. 

The deterministic velocity field can be expanded into a Fourier series with rotating circumferential 

modes representing the different interactions between the rotor and the stator (volute) flow, 

inspired in the Tyler and Sofrin rule; see Gerolymos et al. [25] or He [26]. Another possibility has 

been lately explored introducing modal decompositions – Trébinjac et al. [27] or Arnaud et al. [28] 

– to analyze unsteady flows within turbomachinery environments in order to save computational 

costs. In particular, Proper Orthogonal Decomposition (POD) can be also an interesting option to 

identify the relevant interaction mechanisms preserving most of the energy content of the velocity 

signals, but with a less number of modes; see Rochuon et al. [29] or Danaila et al. [30].  
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4.2. Deterministic stresses 

 

As previously stated, the deterministic flow quantities are obtained after ensemble-

averaging an unsteady signal in any turbomachinery environment. By definition, all the time scales 

correlate only with the periodic (deterministic) events associated to the rotation of the machine. In 

the case of a URANS simulation, and assuming that a convenient spectral gap exists, the temporal 

description of the flow guarantees that all the random fluctuations (turbulence) have been filtered 

out so the blade passing frequency and its harmonics are the only ones being preserved. 

Consequently, it can be obtained the deterministic stresses (according to the previous 

decomposition, Adamczyk, 1985), as those mixed products of the unsteady fluctuations departing 

from the time-averaged flow field. These stresses address the effects of unsteadiness caused by 

moving blade rows and are obtained according to: 

𝜏𝑖𝑗
𝐷 =

1

𝑇𝐵
∫ [𝑢̃𝑖(𝑥⃗, 𝑡) − 𝑢̅𝑖(𝑥⃗)]
𝑇𝐵

0
· [𝑢̃𝐽(𝑥⃗, 𝑡) − 𝑢̅𝐽(𝑥⃗)]𝑑𝑡 ≈

1

𝑁
∑ [𝑢̃𝑖(𝑥⃗, 𝑡𝑛) − 𝑢̅𝑖(𝑥⃗)] ·
𝑁
𝑛=1

[𝑢̃𝑗(𝑥⃗, 𝑡𝑛) − 𝑢̅𝑗(𝑥⃗)]  (6) 

 

Where TBPF corresponds to the blade passing period, sampled for a given discrete number 

N of intermediate instants (time steps per blade event), 𝑢̃𝑖(𝑥⃗, 𝑡𝑛) stands for the unsteady 

deterministic flow and 𝑢̅𝑖(𝑥⃗) represents the time-averaged velocity at every spatial position 𝑥⃗ 

inside the flow field, calculated according to (1). 

Following, the deterministic kinetic energy (DKE) is calculated through the summation of 

the normal stresses in the main diagonal of the tensor, given by Meneveau et al. [31], as: 

 

 𝑘𝐷  =
1

2
(𝜏𝑟𝑟
𝐷 + 𝜏𝜃𝜃

𝐷 + 𝜏𝑧𝑧
𝐷 ) (7) 
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Where cylindrical coordinates have been employed because of the pump geometry. This 

metric of the energy associated to the deterministic unsteadiness can be easily compared to the 

turbulent kinetic energy, kT, given by the turbulence model of the URANS simulation. As shown 

in section 4.1, the generation of the deterministic fluctuation, 𝑢𝑖
, (𝑥⃗, 𝑡) = [𝑢̃𝑖(𝑥⃗, 𝑡) − 𝑢̅𝑖(𝑥⃗)], can be 

further decomposed in new components, considering that spatial non-uniformities (gradients) in 

the relative frame of reference are sources of unsteadiness in the absolute frame, as derived by 

Leboeuf [32] and shown previously in eq. (2) to (5). Those spatial deviations 𝑢𝑖
"(𝑅)

 in the rotor 

from an axisymmetric flow produces unsteadiness in the stator and can be isolated introducing an 

additional circumferential averaging (pitch-averaging) along the angular extension of the impeller 

passage: 

 𝑢̃𝑖
(𝑎𝑥𝑖)(𝑟, 𝑧)  =

1

𝜆
∫ 𝐻𝑢̅𝑖(𝑥⃗)𝑑𝜃
𝜃𝑜+2𝜋/𝐵

𝜃𝑜
≈

1

𝑁𝜃
∑ 𝑢̃𝑖(𝜃𝑛)
𝑁𝜃
𝑛=1  (8) 

 

Where λ and H are functions to take into account the tangential thickness of the blades. 

Finally, this component is employed to retrieve a purely unsteady part that accounts for non-linear 

rotor-stator interactions:  

 

 𝑢̂𝑖(𝑥⃗, 𝑡) = 𝑢̃𝑖(𝑥⃗, 𝑡) − 𝑢̃𝑖
(𝑎𝑥𝑖)(𝑟, 𝑧) − 𝑢𝑖

"(𝑅)(𝑥⃗) − 𝑢𝑖
"(𝑆)(𝑥⃗) (9) 

 

Where, for this last equation, 𝑢𝑖
"(𝑆)(𝑥⃗) stand for the spatial deviations from the 

axisymmetric flow in the absolute frame of reference. More details of this decomposition can be 

found in Leboeuf [32] and Fernández Oro et al. [20]. Because the deterministic fluctuation 𝑢𝑖
, (𝑥⃗, 𝑡) 

is the combination of 𝑢𝑖
"(𝑅)(𝑥⃗) and 𝑢̂𝑖(𝑥⃗, 𝑡) in the absolute frame of reference, 𝑢𝑖

, (𝑥⃗, 𝑡) =

[𝑢𝑖
"(𝑅)(𝑥⃗) + 𝑢̂𝑖(𝑥⃗, 𝑡)], the deterministic correlation tensor for the stator flow can be rewritten as:  
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 𝑢𝑖
,𝑢𝑗
,̅̅ ̅̅ ̅ = 𝑢𝑖

"(𝑅)
𝑢𝑗
"(𝑅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

+ 𝑢̂𝑖𝑢𝑗
"(𝑅)̅̅ ̅̅ ̅̅ ̅̅ ̅

+ 𝑢𝑖
"(𝑅)
𝑢̂𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅
+ 𝑢̂𝑖𝑢̂𝑗̅̅ ̅̅ ̅ (10) 

 

In this equation, the first term is the spatial correlation, the second and third terms are 

spatial-temporal mixed correlations and the forth term is a purely temporal correlation. The 

meaning and physical understanding of all these terms will be discussed in detail for a typical 

volute-type centrifugal pump in the following section. 

 

5. Deterministic stresses inside the pump. 

 

5.1. Unsteadiness and spectral gaps. 

 

Deterministic stresses account for the effect of unsteadiness in the time-averaged flow 

caused by the moving blade rows. The periodic displacement of the blades generates an unsteady 

flow structure, as shown in Fig. 6-left, where the time evolution of the tangential velocity in the 

point C (located in front of the tongue, see sketch on the upper right corner) is plotted for the five 

flow rate conditions analysed. The velocity is normalized by the blade tip velocity and the traces 

have been repeated for convenience. At high flow rates (1.6 and 1.2N), the impact of the 

unsteadiness is particularly intense, with velocity deficits, due to the blade wakes, as high as 40% 

and 20% of the through-flow velocity respectively. For nominal and lower flow rates, the effect of 

the wakes is found to be weaker, but still clearly retrieved from the numerical values. Regardless 

the flow rate, the influence of the unsteadiness is clearly prominent in the vicinity of the volute 

tongue, as shown in previous investigations by the authors, Barrio et al. [33]. 

 

Fig. 6. Temporal evolution of the tangential velocity at point C for different flow rate 

conditions (left plot) and corresponding spectra (right plot). 
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Fig.6-right also shows the corresponding spectra of those velocity signals where the BPF 

peak (189 Hz) and their harmonics are found. Obviously, due to the nature of the URANS 

modelling, contributions from other (non-deterministic) scales have been removed. However, the 

accurate employment of a URANS simulation requires the existence of a spectral gap between 

periodic (deterministic) unsteadiness and large-scale (random) turbulence in order to prevent 

unrealistic modelling issues. See Tucker [34] or Leschziner [35] for an excellent overview on the 

particular topic. In other words, the unsteady scales should range at lower frequencies than the 

beginning of the inertial subrange in the energy cascade, corresponding to the largest scales of the 

turbulent motion (i.e., fILS/fBPF>1). Table 2 provides a global estimation of those frequencies, 

obtained from the time-averaged values of the turbulent kinetic energy (TKE) within the 

interaction region in previous CFD simulations of the authors, Barrio et al. [33]. As given by the 

eddy-viscosity model of the numerical database, TKE is computed as the summation of the normal 

Reynolds stresses, that is, all the terms in the main diagonal of the Reynolds tensor. The size of 

the largest eddies has been assumed to be in the order of a fraction of the blade thickness for 

nominal conditions, or as a fraction of the impeller passage (outlet or inlet sections) for higher and 

lower flow rates, as suggested by the regions of turbulence generation observed in the contours of 

TKE close to the volute tongue (see Fig. 7 later). 

 

Flow rate 

condition 

TKE 

(m2/s2) 𝒖′ = √
𝟐

𝟑
𝑻𝑲𝑬 

(m/s) 

L 

(mm) 

fILS 

(Hz) 

fILS/fBPF 

(-) 

1.6N 0.5 0.6 ~1.75 330 1.74 

1.0N 0.3 0.4 ~0.9 497 2.63 

0.2N 3 1.4 ~4.5 314 1.66 

 

Table 2. Estimation of integral scales of turbulence for different flow rate conditions. 

Comparison of deterministic and large-scale, turbulent phenomena. 
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As can be observed for all flow rates, the integral scales of turbulent motion are beyond the 

characteristic range of the fundamental frequency of the rotating blades, thus preserving the 

assumption of a spectral gap and providing correctness to the applicability of a URANS turbulence 

modelling in this case. The turbulent correlations, representing the modelled manifestation of the 

turbulent activity alone, is now presented for all the flow rates analysed in this investigation. Fig. 

7 shows both instantaneous (top) and time-averaged (bottom) maps of TKE close to the volute 

tongue. For the instantaneous representation, only the snapshot corresponding to the position 

where the blade TE is facing the tongue is shown (this criterion will be repeated for unsteady 

variables throughout the whole paper). It can be observed how the generation of turbulence is 

mainly associated to the incoming flow onto the impeller inlet for higher flow rates, whereas highly 

turbulent regions are clearly shifted towards the pressure side of the blades TE for lower flow rates. 

Also, the position of the stagnation point in the tongue is severely displaced as a function of the 

operating flow rate (a well-known mechanism described in the open literature). Alternatively, the 

time-averaged maps show, in general, a quite axisymmetric behaviour, except for 0.2N, where an 

important blade-tongue interaction is revealed when the next blade is arriving towards the tongue. 

To perform the average, a blade blockage factor must be introduced to consider the local angular 

thickness of the blades. Consequently, the blades are smeared out when averaged over the blade 

passing period. 

 

Fig. 7. Distribution of TKE as a function of the flow rate: Instantaneous snapshot (top plot) 

and time-averaged distributions (bottom plot). 

 

 

5.2. Deterministic stresses. 

 

The deterministic stresses are evaluated from the difference between the unsteady (phase-

averaged) flow and the time-averaged data, thus obtaining the squared product of the fluctuations, 
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as defined previously in Eq. 6. Moreover, the deterministic kinetic energy (DKE) is computed 

adding the normal stresses in the main diagonal of the deterministic tensor (Eq. 7). The computed 

distributions of DKE are presented in Fig. 8 for all the flow rate conditions (bottom plot) for 

comparison with the TKE results. Additionally, the instantaneous representation of the 

deterministic fluctuations for a single snapshot is also represented in the figure (top plot). Notice 

again how the time-averaged procedure removes the instantaneous presence of the blades. 

Deterministic stresses appear as circumferential bands, mainly associated to the interior 

regions of the impeller that are continuously swept by the rotating blades (bottom plot). This is 

clear at nominal and high flow rates and represents the time-averaged distribution of the velocity 

fluctuations induced by the passing blades. As it will be discussed later, that typical pattern is 

provided by the main correlation of the deterministic stresses (see Eq. 10), the spatial correlation, 

which comprises the flow-turning effect (potential mechanism) of the blades. At lower flow rates, 

this contribution is partly masked by the influence of the temporal correlation that takes into 

account the blade-tongue interaction in the time-averaged flow structure: although the 

characteristic circumferential bands are quite preserved, a region of high values close to the volute 

tongue is predominant. Also note that both deterministic and turbulent stresses present similar 

values and overall trends with the flow rate, with lower values at nominal than at off-design 

conditions. 

 

 

 Fig. 8. Distribution of DKE as a function of the flow rate: Instantaneous snapshot of the 

deterministic fluctuations (top plot) and distributions (bottom plot). 

 

 

As can be observed at the top plot in Fig. 8, instantaneous fields of deterministic 

fluctuations resemble a quite local behaviour and seem to be linked to the blade sides in the relative 

frame (within the impeller), thus leading to the generation of circumferential bands when averaged 

in the absolute frame (are rotated). This is not the case for 0.2N where the blade-tongue 
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interaction, due to the massive flow separation, induces highly unsteady, viscous mechanisms. The 

deterministic shear stress for the radial-tangential (in-plane) component also shows a typical band-

like pattern and has not been included for brevity. 

Therefore, and due to this axisymmetric feature of the deterministic stresses, it is quite 

useful to represent all these distributions in Fig. 8 after an additional pitch-averaging (or 

circumferential averaging). It is interesting to observe the radial evolution of the stress as we move 

through the impeller, which also provides the description of the stresses for 1-D through-flow 

models. For completeness, both pitch-averaged distribution of turbulence and deterministic 

unsteadiness are included in Fig. 9. For nominal and high flow rates, the turbulence kinetic energy 

is quite reduced and decreasing along the impeller passage (see Fig. 9, left). For 1.6N and 1.2N 

is later increased because of the separation region in the volute discharge conduit, well downstream 

of the impeller. For lower flow rates, turbulence exhibits an inverted behaviour, being 

progressively increased along the passages, with high maximum values at the blades TE. 

Afterwards, the levels decay severely with large rates of turbulent dissipation in the volute casing. 

Conversely, deterministic distributions (Fig. 9, right) present quite similar evolutions for 

all the flow rates, with maximum values in the first half of the impeller passages, followed by an 

abrupt reduction towards the impeller exit and, finally, a sharp peak at the impeller outlet. 

Surprisingly, the nominal flow rate is not the case showing the lowest values of deterministic 

fluctuations, being the lowest flow rate the condition with the lowest unsteadiness. Note also how 

the volute tongue is completely absent of deterministic contributions. For this centrifugal pump, 

deterministic unsteadiness is exclusively confined to the impeller region, where the passage flow 

and the wake-jet pattern at the impeller outlet are influenced by the non-uniformities associated to 

the stagnation conditions of the volute tongue. 
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Fig. 9. Pitch-averaged distributions of turbulent (left) and deterministic (right) stresses as a 

function of the flow rate. 

 

 Additionally, the deterministic sources can be considered as an alternative metric to 

characterize some secondary flows due to the superimposition of relative flow patterns within the 

volute flow. The internal displacement flow in the impeller passages, concentrating the flow 

towards the suction side; the classic jet-wake pattern or the development of recirculation vortex 

and separation in the blades TE are typical phenomena found in single volute centrifugal pumps 

(Barrio et al. [33]). To analyse them, the Rossby number is usually introduced in the scientific 

literature (see Moore et al. [36]; Moore and Moore [37] or Lakshmnirayana and Horlock [38]) in 

order to assess the effect of the curvature in the impeller passages and the rotation on the stability 

(here viewed as unsteadiness) of the flow. The classic definition by Moore, relating the relative 

velocity W through the passages, with the rotation and the local curvature of the streamlines 

imposed by the blades camber has been employed here: 𝑅𝑜 = 𝑊 Ω𝑟𝑛⁄ . High Ro numbers are 

associated to high relative velocities and large curvatures (small local blade radii), while small Ro 

numbers are found in case of low flowrates and mild bending. Moreover, classic references 

indicate that large Ro are associated to stable wake flow close to the shroud wall while low Ro 

lead to stable flow in the suction side of the blades. 

 Fig. 10-top shows the circumferential distribution of the Rossby number in the impeller 

passages for the different flow rates analysed. It is confirmed that higher flow rates experience 

large values of Ro in the inlet zone of the impeller, especially close to the suction side. In the case 

of lower flow rates, a recirculation vortex induces high relative velocity values towards the blade 

TE which is facing the volute tongue, promoting a thin region with large Ro values. 
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Fig. 10. Distributions of the Rossby number in the impeller passages as a function of the 

flowrate (top). Correlations between pitch-averaged distributions of DKE and Rossby 

number for different flow rates (bottom). 

 

 

 

 To give more insight, the pitch-averaged distributions of the Rossby number and the 

Deterministic Kinetic Energy are compared in Fig. 10-bottom. It is noticeable that a significant 

correlation is established in the results for all the flow rates observed, thus confirming that 

deterministic unsteadiness may be perceived as sources of secondary flows. In particular, next 

section, which involves a further decomposition of the deterministic stresses into spatial and 

temporal components, reveals that the spatial correlation, associated to the circumferential motion 

of the rotor gradients is responsible for the internal displacement flow and the stability of the wake-

flow pattern; whereas the pure temporal term is specifically linked to a vortex recirculation 

established close to the volute tongue (at the lowest flowrate). If this impeller-tongue interaction 

is to be limited, then it is necessary to optimize the blade profiling close to the TE or modify the 

impeller-tongue distance to reduce the vortex. 

 

5.3. Impact of the different Correlations on the Deterministic Stresses. 

 

Following, the relevance of the spatial, temporal and spatial-temporal correlations that 

compose the deterministic stresses is shown in this final subsection. Firstly, the effect of the pure-

unsteady interaction of the temporal correlation is shown in Fig. 11. The time-averaged maps 

reveal the existence of a region close to the tongue where high temporal (periodic) interaction 

between viscous and potential effects arises. At 1.6N, this region is perfectly aligned with the 

angular location of the tongue, limited to a small region at the impeller outlet. At 1.2N and 1.0N 

this contribution is really marginal, but it is again predominant for lower flow rates at 0.6N and 

0.2N. The tangential extension of this hot spot is practically equivalent to the width of the impeller 

passage at the outlet and it is extended radially along ¼ of the blade chord. This source of 
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unsteadiness is clearly associated to the periodic interaction of the separated flow in the pressure 

side of the blades with the geometrical blockage imposed by the tongue. 

 

Fig. 11. Distribution of the temporal correlation of the DKE as a function of the flow rate. 

 

 

Fig. 12 presents the results of the mixed spatial-temporal correlation as a function of the 

flow rate. It is important to see that the spatial-temporal correlation might be negative or positive, 

pending on the direction of the fluctuations of both crossed velocities involved. This leads to a 

strong impact on the circumferential non-uniformities of the global deterministic stresses. Also, it 

has to be considered two times according to eq. 10. The results show that the order of magnitude 

of the correlation is quite similar for all the flow rates analysed, with a characteristic range between 

-0.75 and 0.75 approximately. For higher flow rates, the influence of the spatial non-uniformities 

is more evident, with the fingerprint of the typical circumferential bands. For lower flow rates, the 

impact of the temporal non-uniformities is dominant, with positive values before the tongue and 

negative ones afterwards. 

Fig. 12. Distribution of the spatial-temporal correlation of the DKE as a function of the 

flow rate. 

 

To better clarify the idea, Fig. 13 represents the pitch-averaged distribution of the spatial 

correlation for different flow rates. In addition, the maps (before tangentially-averaged) 

corresponding to the highest and lowest flow rates are also introduced for traceability. The 

axisymmetric pattern of the spatial correlation justifies the use of a single plot to represent its radial 

evolution for the meridional planes under study. The evolution of this correlation with the flow 

rate is equivalent to the one previously discussed in Fig. 9 for the global deterministic stresses. It 

can be observed that the values are even slightly higher than those of the global results in Fig. 9-

right because of the effect of the negative values introduced by the mixed spatial-temporal 



20 
 

correlation. In the case of the nominal flow rate, the value is practically uniform within the impeller 

passage, only peaked at the blade TE.  

 

Fig. 13. Distribution of the pitch-averaged spatial correlation of the DKE as a function of 

the flow rate. 

 

To conclude the analysis of the results, the comparison of the different products of velocity 

fluctuations concerning deterministic (with all the correlations) and turbulent fluctuations are 

summarized in Fig. 14. Only the first time step for the highest, nominal and lowest flow rates is 

shown in the representation for brevity. The instantaneous products can be even interpreted as 

noise sources according to different aero-acoustic analogies, whose origin can be related to 

deterministic interactions or turbulent broadband instabilities. For the highest flow rate, spatial 

deterministic stresses are dominant in the impeller region, mainly associated to the suction side of 

the blades, while turbulent generation is weaker and restricted to the entrance of the impeller 

passages. In the case of the nominal flow rate, deterministic sources present a similar pattern, 

introducing relevant unsteadiness once the blades have passed by. Turbulent kinetic energy is 

spread through the passages, with moderate turbulent regions in the outer half of the blades 

pressure side and also in the blades TE. However, at the lowest flow rate, the temporal correlation 

of the deterministic stresses plays a major role, contributing to address the fluctuations of the 

detached flow in the pressure side of the blades. More precisely, the circumferential displacement 

of the massive separation in the blades is the flow feature captured by the spatial correlation. It can 

be observed how the turbulent stresses resemble those characteristics and exhibit also relevant 

values in the pressure side of the blades. In this case, the turbulent mechanisms are shed with a 

certain angular delay with respect the deterministic stresses. 

 

Fig. 14. Comparison of instantaneous fluctuations related to deterministic (identifying 

correlations) and turbulent mechanisms as a function of the flow rate: highest (top), 

nominal (middle) and lowest (bottom) flow conditions. 
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6. Conclusions. 

 An existing and validated 3D URANS numerical model has been revisited in this paper to 

perform a detailed deterministic analysis of the unsteady flow structures. This methodology, 

oriented towards a post-processing tool, allows to identify the origin and nature of the relevant 

unsteady sources that play a major role in the performance of the turbomachine. A better 

understanding of the unsteadiness, the transport of turbulent scales and the mechanisms 

responsible for impeller-volute interactions is essential to foresee a possible geometrical 

optimization, becoming an important objective at the current technological status. 

First of all, overall trends in the evolution of deterministic and turbulent fluctuations in 

terms of kinetic energy were analysed for different flow rate conditions. Turbulent structures are 

important for higher and lower flow rates only, associated to flow separations in the blades TE, 

and persist in the vicinity of the volute tongue. Deterministic stresses are predominant in both LE 

and TE of the blades for all flow rate conditions and they are completely absent in the volute 

tongue. Globally speaking, both turbulent and deterministic scales present similar intensities 

although deterministic contributions are higher within the impeller of the pump. In addition, all 

these variables show lower values at nominal flow rates and increasing ones for off-design 

conditions, resembling the classical V-shaped curves that were obtained several decades ago for 

the forces in the shaft of similar geometries. 

The further decomposition of the deterministic stresses into spatial and temporal 

correlations has provided also valuable information. The pure unsteady component (temporal 

correlation) has revealed the significant interaction established between the detached flow in the 

pressure side of the blades and the tongue blockage for low flow rates. On the contrary, wake-

tongue interactions are practically negligible, thus confirming that the tongue promotes a 

significant interference on the impeller flow structures, but the impeller wakes have no effect over 

the flow structures of the volute tongue. 



22 
 

 Additionally, the study of the mixed spatial-temporal correlation has shown that, for the 

nominal flow rate, the value is practically uniform within the impeller passage, only peaked at the 

blade TE. Clear deviation from this trend is observed for both high and low flow rates. A full range 

of behaviours have been studied in order to search for a full definition of the existing interactions. 

 Finally, a comparison of the different products of velocity fluctuations concerning 

deterministic and turbulent fluctuations was considered. For the nominal flow rate, turbulent 

kinetic energy is spread through the passages, with moderate turbulent regions in the outer half of 

the blades pressure side and also in the blades. At off-design conditions, the turbulent mechanisms 

are shed promoting an angular delay with respect the deterministic stresses. 

 Therefore, for the flow in the pump, substantial differences have been observed as a 

function of the flow rate or working condition. Blade optimization could target both the blade 

leading and trailing edges. For the first one, similar evolutions for all the flow rates regarding the 

deterministic stresses, with maximum values in the first half of the impeller passages was found. 

The latter position shows a growing peak in the pitch-averaged spatial distribution of the turbulent 

kinetic energy.  

 

Nomenclature. 

 

 
b  = Impeller width, [m]. 

B  = Number of blades, [–]. 

BPF  = Blade Passing Frequency. 

CFD  = Computational Fluid Dynamics. 

D  = Impeller diameter, [m]. 

DKE  = Deterministic Kinetic Energy. 

f  = Frequency, [s-1]. 
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H  = Head; Blockage function.  

ILS  = Integral Length Scale.  

L  = Integral length scale, [m]. 

LE  = Blade Leading Edge. 

kD  = Deterministic kinetic energy, [m2/s2]. 

kT  = Turbulent kinetic energy, [m2/s2]. 

K  = Valve loss coefficient, [m/(m3/s)2]. 

ns  = Specific speed, [–]. 

n  = Single realization.  

N  = Number of time steps per blade event. 

POD  = Proper Orthogonal Decomposition. 

Q  = Volumetric flowrate, [m3/s]. 

r  = Radial coordinate, [m]. 

rn  = Radius of curvature, [m] 

RNG  = Renormalization Group (k-epsilon model). 

Ro  =  Rossby number, [-] 

SMM  = Sliding Mesh Model. 

t  = Time, [s]. 

TB  = Blade passing period, [s]. 

TE  = Blade Trailing Edge. 

URANS = Unsteady Reynolds-Averaged Navier-Stokes. 

𝑢̃  = Ensemble-averaged (U-RANS) velocity, [m/s]. 

𝑢̅  = Time-averaged velocity, [m/s]. 

𝑢̂  = Unsteady impeller-volute fluctuation, [m/s]. 

𝑢´  = Deterministic velocity fluctuation, [m/s]. 

𝑢´´  = Spatial velocity fluctuation, [m/s]. 
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Ub  = Blade peripheral velocity, [m/s]. 

W  = Relative velocity, [m/s]. 

𝑥⃗  = Position vector. 

z  = Axial coordinate, [m]. 

 

Greek Letters 

β  = Blade angle, [deg]. 

θ  = Angular coordinate, [rad]. 

λ  = Angular blade thickness, [deg]. 

ϕ  = Flow coefficient, [–]. 

ρ  = Density, [kg/m3]. 

τD  = Deterministic stress, [m2/s2]. 

Ω    = Rotational speed, [rad/s]. 

 

Superscripts and Subscripts 

̅   = Time-averaging. 

̃   = Ensemble-averaging. 

(axi)  = Pitch-averaging. 

abs  = Absolute reference frame. 

b  = Blade 

i,j,k  = Radial, circumferential and axial components. 

N  = Nominal conditions. 

(R)  = Rotor frame of reference (relative). 

rd  = Radial component. 

rel  = Relative reference frame. 

(S)  = Stator frame of reference (absolute). 
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tg  = Tangential component. 

1,2  = Impeller inlet, outlet. 
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Fig. 1. Global sketch of a typical centrifugal pump. 

 

 

Fig. 2. Single volute commercial pump used for the present study. 
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Fig. 3. General view of the numerical model. 

 

 

Fig. 4. Details of the surface mesh of the impeller (left) and volute (center). Transversal cut 

of the 3D mesh in the vicinity of the volute tongue (right). 
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Fig. 5. Deterministic decomposition in both fixed and moving reference frames (adapted 

from Fernández Oro et al. [20]). 

 

 

Fig. 6. Temporal evolution of the tangential velocity at point C for different flow rate 

conditions (left plot) and corresponding spectra (right plot). 
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Fig. 7. Distribution of TKE as a function of the flow rate: Instantaneous snapshot (top plot) 

and time-averaged distributions (bottom plot). 
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Fig. 8. Distribution of DKE as a function of the flow rate: Instantaneous snapshot of the 

deterministic fluctuations (top plot) and distributions (bottom plot). 

 

 

 

 

 
 

Fig. 9. Pitch-averaged distributions of turbulent (left) and deterministic (right) stresses as a 

function of the flow rate. 
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Fig. 10. Distributions of the Rossby number in the impeller passages as a function of the 

flowrate (top). Correlations between pitch-averaged distributions of DKE and Rossby 

number for different flow rates (bottom). 

 

 

 

 
 

Fig. 11. Distribution of the temporal correlation of the DKE as a function of the flow rate. 
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Fig. 12. Distribution of the spatial-temporal correlation of the DKE as a function of the 

flow rate. 

 

 

 

 

 
 

 

Fig. 13. Distribution of the pitch-averaged spatial correlation of the DKE as a function of 

the flow rate. 
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Fig. 14. Comparison of instantaneous fluctuations related to deterministic (identifying 

correlations) and turbulent mechanisms as a function of the flow rate: highest (top), 

nominal (middle) and lowest (bottom) flow conditions. 

 

 


