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Abstract 
 
Relatively little attention has been paid in the economics literature to the effects of 
meteorological conditions on milk production. Meteorological variables can be expected 
to affect milk production through their impact on the productivity of cows and the 
production of foodstuff. Rather than including meteorological variables as inputs in the 
milk production process, we propose a production function where these variables affect 
the productivity of cows and the production of forage, thereby indirectly affecting milk 
production. Using production and meteorological data from the Spanish region of 
Asturias corresponding to 382 dairy farms observed during a 6-year period from 2006 to 
2011, the results from our estimated production function show that meteorological 
variables have a significant impact on milk production. We find that milk production is 
higher under warm weather conditions due to improvements in forage production. 
 
Key words 
Weather conditions, milk production, production function, separability, panel data, 
nonlinear least squares.  
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1. Introduction 

Agriculture is perhaps the economic activity most dependent on weather conditions, 

and the climate change that the planet has been undergoing in recent years (IPCC, 2013; 

Carraro, 2016) has led to a growing interest among researchers in the evaluation of the 

impact of weather conditions on agriculture. The economic evaluation of the influence 

of weather conditions has been analyzed from various perspectives. Some studies have 

evaluated the influence of weather conditions on land values (Mendelsohn et al., 1994; 

Schlenker et al., 2006) and agricultural profits (Deschênes and Greenstone, 2007). The 

effect of weather on production from an aggregate perspective has been analyzed using 

several methodologies (Demir and Mahmud, 2002; Barrios et al., 2008; Nelson et al., 

2014; D’Agostino and Schlenker, 2016). Several other studies have considered the 

impact of weather on farms’ productivity for specific crops. For example, Sherlund et al. 

(2002) and Tanaka et al. (2011) evaluate the impact of weather on rice production; Isik 

and Devadoss (2006) analyze its effect on the production of wheat, barley, potato and 

sugar; and Chen et al. (2013) estimate the influence of weather on grain productivity. 

Animal scientists have closely studied the effects of weather conditions on animal 

performance (St-Pierre et al., 2003; Bohmanova et al., 2007; Mader et al., 2010). In 

particular, it has been well-documented that dairy cow performance is heavily affected 

by heat stress, and several variables have been used to evaluate this influence. While 

some studies use temperature to evaluate the incidence of heat stress on dairy cows 

(Barash et al., 2001; Andre et al., 2011), the thermal comfort of animals is influenced by 

variables other than temperature such as relative humidity, wind speed and solar 

radiation. Consequently, most studies use some thermal comfort index which 
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encompasses several meteorological variables to obtain an apparent (or ‘feel-like’) 

temperature. The most commonly-used thermal comfort index in dairy studies is the THI 

(Temperature and Humidity Index), which is constructed with data on temperature and 

relative humidity. This index has been used to evaluate the impact of cows’ thermal 

comfort on dairy cow performance in several studies using data from different countries 

with very different climatic conditions including Sudan (Ageeb and Hayes, 2000), 

Slovakia (Broucek et al., 2007), New Zealand (Bryant et al., 2007) Hungary (Solymosi et 

al., 2010) and the U.S. (St-Pierre et al., 2003). 

However, few economic studies so far have analyzed the effect of weather variables on 

milk production. Kompas and Che (2006) use a dummy variable to control for a drought 

period and Moreira et al. (2006) use dummy variables to control for differences in 

climatic conditions in different geographical zones. To the best of our knowledge, only 

three published studies, all relatively recent and using data from the U.S., analyze the 

impact of meteorological variables on dairy farm productive performance (Mukherjee 

et al., 2013; Key and Sneeringer, 2014; and Qi et al., 2015). 

Mukherjee et al. (2013) analyze the productivity of dairy farms in Florida and Georgia, 

two of the warmest states in the United States, by estimating a production frontier that 

includes a THI that can shift the frontier up or down. Their results show that cows suffer 

from so-called heat stress which negatively affects their productivity, and they evaluate 

the positive impact on income corresponding to the use of fans and sprinklers to 

ameliorate this heat stress. Key and Sneeringer (2014) use U.S. data from the 24 states 

with the highest dairy production, covering a large range of climatic conditions. They 
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estimate a production frontier where a measure of heat stress based on the THI is 

included as an efficiency determinant. A negative impact of heat stress on farms’ 

technical efficiency is found. Finally, Qi et al. (2015) analyze the effect of weather 

conditions on the production frontier of dairy farms located in Wisconsin. The authors 

include measures of temperature and precipitation as technology shifters in a 

production frontier analysis. Their analysis shows that warmer summers and autumns 

diminish milk production whereas warmer winters and springs increase it. On the other 

hand, more precipitation in spring and winter reduces milk production but its effect in 

summer and autumn is not significant.  

The aforementioned studies have in common that they include temperature and rainfall 

or humidity measures, either separately or in the form of a THI, as variables that shift 

milk production functions up or down or that act as determinants of technical 

inefficiency. In this study, we follow Topp and Doyle (1996) by explicitly considering that 

meteorology can affect both cows’ thermal comfort as well as foodstuff (forage) 

production on the farm. As the impact of weather conditions can be positive for cow 

comfort and negative for forage production, and vice versa, their effects on milk 

production may cancel each other out and be difficult to identify. For example, Berman 

(2005) identifies a thermo-neutral zone for dairy cows that ranges from -5ºC to 24ºC, 

while Schlenker and Roberts (2006; 2009) find that the corn yield, corn being one of the 

main forage crops, increases with temperatures up to 29ºC. These results imply that 

there is a range of temperatures within which cows suffer from heat stress while corn 

yields improve. To resolve this identification issue, we propose a model in which 

weather variables influence cows’ productivity and forage production in a separable 
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manner. 

Our work therefore makes two main contributions. Firstly, we have seen that there are 

very few studies to date that have taken a production economics approach to analyzing 

the effects of weather conditions on milk production. Moreover, all of these have used 

U.S. data. It can be argued that further contributions are needed, and from other 

geographical regions, in order to provide a more robust body of empirical findings with 

which to provide guidance for management and policy and that can serve as points of 

reference for future academic studies. Our work contributes to this effort. Secondly, and 

on a more methodological note, our empirical specification of the production 

technology explicitly models the channels through which weather variables can affect 

milk production. In particular, the model is simple yet sufficiently flexible to permit 

weather variables to have direct effects on cow performance and forage production and 

indirect effects on the remaining inputs to the production process. In this way, we can 

separate the effects of weather variables into their effect on cow performance and 

forage production.  

2. Model specification 

In our empirical model we will include the THI as a variable conditioning the productivity 

of cows. Other weather variables capturing exposure to wind, rainfall and sun are also 

relevant to milk production as both the quantity of forage produced as well as its 

nutritional quality depend on weather conditions. This is especially true of rainfall, 

temperature and the amount of sunlight, and the effects of these factors on forage 
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production will also be taken into account in our empirical model.1  

We consider that milk production (𝑦) is carried out using cows (𝑥1), expenditures on 

forage production inside the farm (𝑥2), labor (𝑥3), concentrates (𝑥4), forage purchases 

(𝑥5) and animal expenses (𝑥6). The Spanish State Meteorological Agency (AEMET) 

provides daily data on a series of weather variables including temperature (𝑀𝑉1), 

humidity (𝑀𝑉2), rainfall (𝑀𝑉3), wind (𝑀𝑉4) and sun exposure (𝑀𝑉5). We incorporate the 

weather variables into our analysis by assuming that, instead of being direct inputs in 

milk production, these variables can influence the productivity of the production factors 

used by farmers. As cow performance is considered to be affected by temperature (𝑀𝑉1) 

and humidity (𝑀𝑉2), we include the THI as a determinant of cow productivity. We use 

the formula proposed by Yousef (1985) for THI calculation, which has been used by 

Ageeb and Hayes (2000), Mukherjee et al. (2013) and Key and Sneeringer (2014), among 

others.2  

On the other hand, we consider that the complete set of meteorological variables can 

influence the production of forage inside the farm. Hence, we define the milk production 

technology as: 

𝑦 = 𝐹(𝑓1(𝑥1, 𝑇𝐻𝐼), 𝑓2(𝑥2, 𝑀𝑉1, … , 𝑀𝑉5), 𝑥3, … , 𝑥6)                                                            (1)  

                                                 
1 See, for example, the following Penn State Cooperative Extension website devoted to forage quality: 
http://www.forages.psu.edu/topics/forage_qa/index.html. See also: 
https://swap.stanford.edu/20130413002000/http://www.epa.gov/climatechange/impacts-
adaptation/agriculture.html.  
2 This THI is calculated on a daily basis using the formula 𝑇𝐻𝐼 = 41.2 + 𝑀𝑉1 + 0.36𝑇𝑑𝑝(𝑀𝑉1, 𝑀𝑉2). 𝑀𝑉1 

is the average daily temperature and 𝑇𝑑𝑝 is the dew point temperature (i.e., the temperature at which 

the water vapor content in the atmosphere starts to condense into liquid water), which in turn is a 
function of the air temperature (𝑀𝑉1) and the relative humidity (𝑀𝑉2). 

http://www.forages.psu.edu/topics/forage_qa/index.html
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where 𝐹(∙) is the production function that characterizes the technology and 𝑓1(∙) and 

𝑓2(∙) are functions that captures the influence of meteorological variables on the 

productivity of cows and the production of forage inside the farm respectively.  

The interpretation of the function 𝑓1(∙) is straightforward in that it captures the fact that 

milk production not only depends on the number of cows (𝑥1) but also on the effect of 

temperature and humidity conditions on the productivity of these cows. As for 𝑓2(∙), it 

is common in the literature for milk production functions to include a series of inputs 

such as land, machinery, fertilizers and so on whose role is fundamentally to produce 

forage, the intermediate input used in the production of milk. What matters for milk 

production is the quantity and quality of forage produced. Unfortunately, these 

variables are rarely observed, as in our case where we only have information on 

expenditures on forage production (𝑥2) on the farm. While these expenditures will 

obviously influence the quantity and quality of forage produced, they are not the only 

determinants as weather conditions will also play a role (Schlenker and Roberts, 2006). 

As such, the function 𝑓2(∙) can be considered as a production function for forage, where 

expenditure on forage production and weather conditions both contribute to the 

quantity and quality of forage produced.  

The model specification in (1) assumes that weather variables do not have any direct 

impact on milk production. Instead, this impact comes through their influence on the 

productivity of cows and the production of forage. Additionally, the model specification 

assumes that 𝑓1(∙) and 𝑓2(∙) are separable from the inputs other than cows and forage 

production, implying that weather variables do not have a direct effect on the 
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productivity of these other inputs.3 As cows are generally inside the cowshed in our 

sample, the model captures the idea that only temperature and humidity (THI) directly 

affect cow productivity whereas the complete set of weather variables is allowed to 

affect forage production. Indirect effects of weather variables on the productivities of 

the remaining inputs will be allowed in the model through second-order terms. Thus, 

the productivity of, say, concentrates will depend on the values of 𝑓1(∙) and 𝑓2(∙), which 

in turn depend on weather conditions. 

When specifying the functions 𝑓1(∙) and 𝑓2(∙), we need to account for the fact that farm 

data are provided on a yearly basis while weather data are provided on a daily basis. We 

aggregate the weather variables by splitting each year into two periods: the cold period 

which includes January, February, March, October, November and December, and the 

warm period that comprises the central part of the year from April to September. For 

each period we use the average values of the weather conditions in our empirical 

specification, so that the function 𝑓1(∙) is defined as follows: 

𝑓1(𝑥1, 𝑇𝐻𝐼; 𝛾) = ln 𝑥1 + ∑ 𝛾𝑝𝑇𝐻𝐼𝑝

2

𝑝=1

                                                                                     (2) 

where subscript p refers to the cold (p = 1) and warm (p = 2) periods within the year. 

We also need to take into account the fact that not all of the forage produced in a period 

t will be used to feed cattle in period t, as some of it will be stored and used for feed in 

                                                 
3 In particular, Chambers (1988) pp. 41-45 shows that weak separability is necessary to allow the 
separation of some subsets of variables into what he labels micro-production functions, which in this case 
correspond to 𝑓1(∙) and 𝑓2(∙). 
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the following period, t+1. The function 𝑓2(∙) in (1) should therefore capture forage 

actually used in the present period, part of which will correspond to forage produced in 

the previous period. To model this, we begin by specifying the production function for 

forage in a given period as follows: 

𝑔2(𝑥2, 𝑀𝑉𝑤; 𝛿) = ln 𝑥2 + ∑ ∑ 𝛿𝑤𝑝𝑀𝑉𝑤𝑝

2

𝑝=1

5

𝑤=1

                                                                         (3) 

where the subscript 𝑤 (𝑤 =  1, … ,5) stands for the five different weather variables 

provided by AEMET. For each weather variable we also consider two periods within the 

year. To express the forage actually used as feed in a given period t, we take the antilog 

(exponential) of the function 𝑔2(∙) in (3) to capture forage actually produced in period 

t. Then we form a linear combination in levels of actual production in period t and t-1 to 

express the forage actually used as feed in period t, with the function 𝑓2(∙) expressed as 

the logarithm of this linear combination, i.e.:  

𝑓2(𝑥2
𝑡 , 𝑥2

𝑡−1, 𝑀𝑉𝑡 , 𝑀𝑉𝑡−1; 𝛼, 𝛿) = 

ln [𝛼𝑥2𝑡𝑒(∑ ∑ 𝛿𝑤𝑝𝑀𝑉𝑤𝑝
𝑡2

𝑝=1
5
𝑤=1 ) + (1 − 𝛼)𝑥2𝑡−1𝑒(∑ ∑ 𝛿𝑤𝑝

2
𝑝=1 𝑀𝑉𝑤𝑝

𝑡−15
𝑤=1 )]                               (4) 

where vector 𝑀𝑉𝑡 is defined as 𝑀𝑉𝑡 = (𝑀𝑉11
𝑡 , … , 𝑀𝑉51

𝑡 , … , 𝑀𝑉12
𝑡 , … , 𝑀𝑉52

𝑡  ), and 𝛼 is a 

parameter to be estimated. From (4) it is clear that the function capturing forage used 

for feed in period t, 𝑓2(∙), depends on weather conditions in both the present and 

previous periods.4 

                                                 
4 The linear combination of the forage variables is carried out to ensure that past and present forage are 
not considered to be different inputs, as would be the case if past forage were included as a separate 
variable. This ensures that we are imposing the desirable property that the productivity of a unit of forage 
consumed in a given period should be independent of the period in which it is produced. 
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To estimate the production function (1) empirically, we specify a translog production 

function for 𝐹(∙) where the functions 𝑓1(∙) and 𝑓2(∙) are included as arguments 

substituting cows (𝑥1) and expenditures on forage production (𝑥2): 

ln 𝑦 = ∑ 𝛽ℎ𝐷ℎ

𝑛

ℎ=1

+ 𝛽1𝑓1(𝑥1, 𝑇𝐻𝐼; 𝛾) + 𝛽2𝑓2(𝑥2, 𝑀𝑉𝑤𝑝; 𝛼, 𝛿) + ∑ 𝛽𝑖 ln 𝑥𝑖

6

𝑖=3

+
1

2
𝛽11𝑓1(𝑥1, 𝑇𝐻𝐼; 𝛾)2 + 𝛽12𝑓1(𝑥1, 𝑇𝐻𝐼; 𝛾)𝑓2(𝑥2, 𝑀𝑉𝑤𝑝; 𝛼, 𝛿)

+ ∑ 𝛽1𝑗 ln 𝑥𝑗

6

𝑗=3

𝑓1(𝑥1, 𝑇𝐻𝐼; 𝛾) +
1

2
𝛽22𝑓2(𝑥2, 𝑀𝑉𝑤𝑝; 𝛼, 𝛿)

2

+ ∑ 𝛽2𝑗 ln 𝑥𝑗

6

𝑗=3

𝑓2(𝑥2, 𝑀𝑉𝑤𝑝; 𝛼, 𝛿) +
1

2
∑ ∑ 𝛽𝑖𝑗

6

𝑗=3

6

𝑖=3

ln 𝑥𝑖 ln 𝑥𝑗 + ∑ 𝛽𝑡𝐷𝑡

2011

𝑡=2008

+ 𝜖                                                                                                                        (5) 

where 𝛽′𝑠, 𝛿′𝑠, 𝛾′𝑠 and 𝛼 are parameters to be estimated, 𝐷𝑡 is a vector of time dummy 

variables, and 𝐷ℎ are individual (farm) dummy variables.5 Symmetry restrictions are 

imposed so that 𝛽𝑖𝑗 = 𝛽𝑗𝑖. Given the specification in (5), the output elasticities of the 

inputs other than cows and forage production, say 𝑥3, take the following form: 

𝜕 ln 𝑦

𝜕 ln 𝑥3
 =  𝛽3 + 𝛽13𝑓1(𝑥1, 𝑇𝐻𝐼; 𝛾) + 𝛽23𝑓2(𝑥2, 𝑀𝑉1, … , 𝑀𝑉5; 𝛼, 𝛿) + ∑ 𝛽3𝑗 ln 𝑥𝑗

6

𝑗=3

     (6) 

where it is clear that the THI and the meteorological variables affect the output elasticity 

of input 𝑥3 indirectly through their impact on cow productivity and forage production.  

                                                 
5 The final equation estimated by non-linear least squares is found by substituting equations (2) and (4) 
into equation (5). The full expression for the equation actually estimated can be found in the online 
Appendix A (equation A.1).  
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A simpler alternative to incorporating the effect of weather variables on milk production 

by interacting with cows and forage production expenses while maintaining separability 

would be to add these weather variables to the translog function imposing weak 

separability restrictions.6,7 In a translog setting, Berndt and Christensen (1973a, 1973b) 

demonstrate that two inputs 𝑥𝑖  and 𝑥𝑗 are weakly separable from another input 𝑥𝑘 if 

and only if 
𝜕𝑦

𝜕𝑥𝑖
𝛽𝑗𝑘 −

𝜕𝑦

𝜕𝑥𝑗
𝛽𝑖𝑘 = 0. Thus, if 𝛽𝑖𝑘 = 0, weak separability requires 𝛽𝑗𝑘 to be 

null. This implies that if the interaction effects between weather conditions and, say, 

concentrates are null, the interaction between forage production expenses and 

concentrates must also be null in order for weather conditions and forage production 

expenses to be weakly separable from the rest of the inputs. The model specification we 

propose in (5) is the simplest way of maintaining separability if we do not wish to restrict 

the interactions of cows and forage expenses with the remaining inputs to be null. Given 

this lack of restrictions on the interactions, we will label the specification in (5) as the 

general model specification. 

For comparative purposes, we will also estimate the model where the weather variables 

are added as technology shifters to the translog production function. As before, part of 

the forage produced in the current year is consumed this year and the rest is consumed 

in the following year. Forage used in the present year, 𝑥2
𝑢, is defined as: 

                                                 
6 In principle, the separability assumptions could be tested rather than imposed. However, in that case 
the larger model involves estimating a non-linear model including a function with 191 parameters (plus 
316 individual and 4 time effects), which is unfeasible with our dataset. 
7 Weak separability of a subset of variables from the other variables will require the marginal rate of 
substitution between any two variables in the subset to be independent of any other variable outside the 
subset (Chambers, 1988; p. 42). 
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𝑥2
𝑢 = 𝛼𝑥2𝑡

𝑝 + (1 − 𝛼)𝑥2𝑡−1
𝑝                                                                                                         (7) 

where 𝛼 is a parameter to be estimated and 𝑥2𝑡
𝑝  and 𝑥2𝑡−1

𝑝 are expenditures on forage 

production in periods 𝑡 and 𝑡 − 1. The model to be estimated in this case is: 

ln 𝑦 = ∑ 𝛽ℎ𝐷ℎ

𝑛

ℎ=1

+ 𝛽1 ln 𝑥1 + 𝛽2 ln 𝑥2
𝑢  + ∑ 𝛽𝑖 ln 𝑥𝑖

6

𝑖=3

+
1

2
𝛽11(ln 𝑥1)2 + 𝛽12 ln 𝑥1 ln 𝑥2

𝑢  

+ ln 𝑥1 ∑ 𝛽1𝑗 ln 𝑥𝑗

6

𝑗=3

+
1

2
𝛽22(ln 𝑥2

𝑢)2 + ln 𝑥2
𝑢 ∑ 𝛽2𝑗 ln 𝑥𝑗

6

𝑗=3

+
1

2
∑ ∑ 𝛽𝑖𝑗

6

𝑗=3

6

𝑖=3

ln 𝑥𝑖 ln 𝑥𝑗 + ∑ 𝛽𝑡𝐷𝑡

2011

𝑡=2008

+ ∑ 𝛾𝑝𝑇𝐻𝐼𝑝

2

𝑝=1

+ ∑ ∑ 𝛿𝑤𝑝

2

𝑝=1

[𝛼𝑀𝑉𝑤𝑝
𝑡 + (1 − 𝛼)𝑀𝑉𝑤𝑝

𝑡−1]

5

𝑤=1

+ 𝜖                                 (8) 

This is similar to the general model (5), with the difference being that in (5) weather is 

assumed to act through cows’ productivity and forage production whereas in (8) 

weather variables are considered technology shifters and their effect comes through 

homothetic shifts of the technology according to the weather conditions. Note that 

symmetry restrictions are again imposed so that 𝛽𝑖𝑗 = 𝛽𝑗𝑖. 

As the farm uses forage produced in the previous year, we include the weather variables 

of the previous year in the model, assuming that they influence milk production in the 

same proportion (α) as that which forage produced in the previous year is consumed in 

the present year.8 Given that the model in (8) imposes restrictions on the interactions 

                                                 
8 The lagged values of the THI are not included as this affects cow performance, not forage. The final 
equation estimated by non-linear least squares is found by substituting equation (7) into equation (8). The 
full expression for the equation estimated can be found in the online Appendix A (equation A.2). 
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of weather variables with remaining inputs, we label it the restricted interactions model 

specification. 

3. Data 

The empirical application is carried out using data from dairy farms located in the region 

of Asturias in northwest Spain. Asturias is one of main milk-producing regions in Spain, 

and milk production accounted for 52% of total agricultural production in the region in 

2011. 

The economic data used in the empirical analysis consists of an unbalanced panel of 

1,325 observations corresponding to 383 specialized dairy farms (milk accounting for 

over 90% of sales revenues) observed during a 6-year period from 2006 to 2011. These 

farms were enrolled in a voluntary record-keeping program conducted by the regional 

government which gathers information on nine Dairy Farmer Management Associations 

located in Asturias.  

The dependent variable in the model is the production of milk (𝑦) and is measured in 

liters. As mentioned above, six inputs are considered: cows (𝑥1), defined as the number 

of adult cows in the herd (all the farms in the sample use Holstein-Frisian cows); forage 

production expenditure (𝑥2), defined as the cost of seeds, fertilizer, fuel, land, other raw 

materials, and machinery hire and amortization; labor (𝑥3), which includes family labor 

and hired labor and which is measured using Social Security contributions; concentrate 

feeds (𝑥4) is the amount of concentrates used by the farm measured in kilograms; forage 

purchases (𝑥5), defined as expenditure on the acquisition of forage; and animal expenses 

(𝑥6), which includes expenditure on veterinary services, milking, electricity, water and 
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the amortization of buildings and technical installations.9 All the monetary variables 

were deflated using specific price indexes available from the Spanish Ministry of 

Agriculture (2018). As lagged variables are included in our model, the final sample used 

for estimation purposes comprises 939 observations corresponding to 316 farms over 

the period 2007-2011.  

The data on weather variables are provided by AEMET. The data come from 10 

meteorological stations spread across Asturias, which has an area of 10,604 km², and 

includes daily values of temperature (maximum and minimum) measured in degrees 

Celsius, relative humidity (maximum and minimum) measured as the actual vapor 

content in the atmosphere as a percentage of the maximum vapor content, rainfall 

measured in liters per square meter, maximum wind speed measured in kilometers per 

hour, and hours of sun exposure.  

Each farm is assigned the weather information corresponding to its nearest 

meteorological station following two criteria. First, farms and meteorological stations 

are classified into two groups, coastal and interior. This is a relevant classification 

because in Asturias the mountains are near to the coast and the meteorology can be 

quite different among relatively nearby areas depending on whether there are 

mountains between a given area and the coast. Thus, each farm is assigned to the closest 

meteorological station within its group: coastal farms are assigned to their closest 

coastal meteorological station and interior farms are assigned to their closest interior 

                                                 
9 The use of the categories forage production expenses and animal expenses as inputs can also be found 
in Roibas and Alvarez (2012), Orea et al. (2015) or Alvarez and Arias (2015), among others. 
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meteorological station. The data assigned are the mean daily weather variables in each 

one of the two periods within the year.  

[INSERT TABLE 1 AROUND HERE] 

Descriptive statistics of the economic and weather data are shown in Table 1. 

Differences among farms are quite large as the standard deviation of milk production is 

73% of the mean production. The average farm size in the sample is larger than the 

average Spanish farm (31 cows in 2010; Eurostat, 2015) but quite similar to the average 

farm size in some of the main milk-producing countries in Europe such as France or 

Germany (46 cows; Eurostat, 2015). 

Climate conditions are quite temperate in Asturias. Average temperatures are not very 

different between the cold and the warm periods and humidity is always high as it is a 

coastal region and the differences in humidity between the cold and warm periods are 

small. When comparing the values corresponding to maximum and minimum 

temperatures, it occurs that in the cold period the minimum temperatures are more 

disperse than the maximum temperatures, whereas in the warm period the opposite 

occurs. Hence, in the empirical application we use the minimum temperature for the 

cold period and the maximum temperature for the warm one. The opposite occurs with 

relative humidity and therefore maximum humidity is used in characterizing the cold 

period while minimum humidity is used for the warm period. These are the values for 

temperature and humidity which appear in Table 1. Rainfall and wind are relatively high 

and there are moderate differences between the cold and warm periods, especially for 

rainfall. Finally, sun exposure is not too high and is moderately higher in the warm 
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period, as would be expected given the differences in the durations of day and night 

along the year which correspond to the latitude of the region of Asturias (43º N).  

4. Results  

We estimate several versions of the general and restricted specifications of the model 

in equations (5) and (8) which differ according to the assumptions made regarding the 

effects of THI and weather variables on production. The models are nonlinear in nature 

so we estimate them using nonlinear least squares.10 As specified in equations (5) and 

(8), we estimate the models accounting for fixed effects by including dummy variables 

for each farm. The estimation procedure was carried out using the econometrics 

package TSP. 

We first present the results from the general model specification (5). We estimate four 

variants of this model. In Model 1 we estimate the complete model where weather 

affects both cow productivity and forage so that the weather variables and the THI 

indexes are all included. In Model 2 we assume that the weather variables only affect 

the production of forage, so we include the weather variables but not the THI indexes. 

In Model 3 we assume that the weather variables only affect the productivity of cows, 

so that only the THI indexes are included. Finally, in Model 4 we assume that the weather 

variables do not affect milk production. Thus, Models 2-4 are restricted (nested) versions 

of Model 1. 

                                                 
10 See Greene (2018, Chapter 7) for an overview of the nonlinear least squares (NLLS) estimator, which is 
the nonlinear counterpart of the OLS estimator when the model to be estimated is nonlinear in 
parameters. 
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[INSERT TABLE 2 AROUND HERE] 

The parameter estimates are shown in Table 2. The logarithms of the inputs were 

transformed by subtracting their sample mean, which means that the first-order 

coefficients of the inputs can be interpreted as the output elasticities for a 

representative farm characterized by an input endowment equal to the sample 

geometric mean. 

The results of some specification tests are reported at the bottom of Table 2. The first 

set of F-tests (i) compare Models 2, 3 and 4 with Model 1. Model 2 cannot be rejected 

against Model 1 but Models 3 and 4 are rejected against Model 1. Models 2 and 3 are 

non-nested and the F-test cannot be used to compare these models. However, under 

the assumption that residuals are normally distributed, it is possible to compare these 

models using the Vuong test. The Vuong-test (ii) rejects Model 3 in favor of Model 2. 

The next F-test (iii) compares Models 2 and 4, and Model 4 is rejected. A final F-test (iv) 

comparing Model 3 and Model 4 shows that Model 4 cannot be rejected. Therefore, the 

preferred model is Model 2. 

The estimates from the restricted interactions model specification where weather 

variables are included as technology shifters (8) are presented in Table 3. In this 

specification the weather variables enter the production function without interaction 

terms with the inputs. Again, we estimate four variants of the model, analogous to those 

in Table 2 for the general model: Model 1 is the complete model, including the whole 

set of weather variables; Model 2 includes the whole set of weather variables except the 

THI; Model 3 includes the THI and excludes the rest of weather variables; and Model 4 



20 

 

assumes that the weather variables do not affect milk production. Hence, Model 1 nests 

the other three models. 

[INSERT TABLE 3 AROUND HERE] 

The important implication of this specification is that we did not find a statistically 

significant influence of weather variables on milk production. In particular, we carried 

out F-tests and a Vuong test to compare the performance of Models 1, 2, 3 and 4, and 

the values of these statistics are shown at the end of Table 3. The validity of Model 4, 

where weather variables are not included, cannot be rejected.  

Finally, it is of interest to compare Model 2 in the general model specification (Table 2) 

with Model 2 from the specification with weather variables as technology shifters (Table 

3) using the Vuong test. The results of this test are reported at the bottom of Table 3 

(Specification test (v)), and show that Model 2 in the general model specification is 

preferred at the 5% level of significance. Our discussion of results from here on will 

therefore focus on Model 2 of the general specification. We carried out a Ramsey RESET 

test including the squared of the fitted values of the dependent variables to check the 

model specification. The test statistic takes a value of 1.57, so the hypothesis that the 

model was well-specified could not be rejected (the test is distributed as an F-test with 

degrees of freedom 1 and 581, giving a p-value 0.211). 

As the preferred model is Model 2, we find that there is no evidence that the THI affects 

the productivity of cows but that there is strong evidence of weather variables affecting 

the productivity of forage production expenses. Some words on the parameter 
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estimates of this model are in order. As stated above, the model was estimated by 

nonlinear least squares. To account for fixed effects, dummy variables for each farm 

were included. We carried out an F-test to compare the model with individual dummy 

variables to a version of the model with a common intercept for all farms. The latter was 

conclusively rejected, thereby justifying the fixed effects specification.11  

The logarithms of the inputs were transformed by subtracting their sample mean and 

the same transformation was applied to the weather variables. With this, the first-order 

parameters can be interpreted as output elasticities for a representative farm 

characterized by an input endowment equal to the sample geometric mean and which 

operates under the weather conditions corresponding to the sample average value of 

the meteorological variables.12  

As we would hope, all first-order coefficients (output elasticities for the representative 

farm with sample average input endowment and operating under sample average 

weather conditions) are positive, and they are all highly significant with the exception 

of the labor input.13 Regarding the extent to which the results conform to 

microeconomic theory, 696 of the 939 observations complied with the monotonicity 

conditions, representing 74.12% of the total. The scale elasticity (0.864) shows 

                                                 
11 The test value was 6.713 yielding a p-value of 0, clearly rejecting the common intercept (‘pooled’) 
specification. 
12 Recall that these sample averages refer to the averages over the period of the variables used, which in 
some instances are themselves minima or maxima. Thus, for temperature, the sample averages refer to 
the average of the minimum temperature for the cold period and the average of the maximum 
temperature for the warm period. Similarly, the sample averages for relative humidity are the averages 
of the maximum humidity for the cold period and of the minimum humidity for the warm period.  
13 Other studies have found a non-significant labor elasticity (Ahmad and Bravo-Ureta, 1995; Cuesta, 
2000). Note that the relative variation of the labor input is considerably smaller than that of the remaining 
inputs, with the standard deviation being 53% of the mean value. The next smallest relative variation is 
for cows, and is 61%, and for the other inputs it is over 75%. 
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decreasing returns to scale at the sample mean and on the basis of a Wald test is 

statistically lower than 1 at any conventional level of significance.14 It should be noted 

that 87% of forage produced is estimated to be consumed in the present period, with 

the remaining 13% consumed in the following period (�̂� = 0.868). Comparing the 

estimates from the different models in Tables 2 and 3, we find that when the effects of 

weather variables on forage production are taken into account the estimates of 𝛼 rise 

from values in the range (0.54-0.58) in the models in Table 3 and the first two models in 

Table 2 to a value of 0.86 in Models 1 and 2 of Table 2. When the weather variables are 

modelled as technology shifters and this specification is inappropriate, the estimate of 

𝛼 is biased (in our case, underestimated). 

Comparing Models 2 and 4, one of the most important differences between the 

estimates with and without the weather variables concerns the dummy variables 

capturing time effects.15 When the weather variables are included, none of the time 

dummy variables is significant, whereas one of these – corresponding to 2009 – was 

highly significant in the model without weather variables. This implies that differences 

in productive performance due to shifts in the production function can be explained by 

differences in weather conditions over this period. It should be noted, however, that a 

test of whether the set of estimated coefficients of the time dummy variables in the 

model with weather variables was statistically different from the set of estimated 

                                                 
14 The Wald test follows a chi-squared distribution: the test statistic took a value of 14.4 which is significant 
at any usual level of significance. 
15 The remaining parameters, and hence quantities such as the scale elasticity, are quite similar between 
Models 2 and 4. This absence of dramatic changes in the remaining model parameters indicates that 
Model 2 works well. 
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coefficients of the time dummy variables in the model without weather variables could 

not reject that they were equal.  

Looking more closely at the effects of individual weather variables on forage production 

we find that high temperatures and humidity favor this production during the warm 

period, which may be expected. The variables capturing rainfall are not significant. High 

average wind speed increases forage production in the warm period. Sun exposure was 

found not to be significant in the warm period, which could be due to the relative 

stability of sun exposure over the warm period in the different years and locations. 

However, sun exposure shows a positive and significant effect in forage production in 

the cold period. 

In an attempt to quantify the effects of the weather variables on farm performance, we 

exploit the estimated production function parameters by simulating some weather 

scenarios and calculating their impact on production and profits. In the first exercise, we 

simulate the volume of production, revenue (using the average price of milk for each 

year) and profits (defined as milk revenue minus expenditure on forage production, 

social security, concentrates, forage purchases and animals) for a representative farm 

with an input endowment corresponding to the (arithmetic) mean of the sample under 

two scenarios: (i) weather conditions equal to the sample mean, and (ii) the actual 

average weather conditions each year. The results are reported in Table 4, where it 

should be kept in mind that milk production under average weather conditions in the 

sample changes due to the time dummy variables.  

The results of this simulation show that there are small differences between production, 
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revenue and profits under each scenario for the first four years analyzed. However, for 

the last year, 2011, the effect of weather is quite important. Operating under actual 

weather conditions in 2011 leads to a difference in revenue compared to what would 

have been achieved under average conditions of approximately €4,500, representing an 

increase in profits of 10%.  

Comparing the production predicted by the model under actual weather conditions for 

each individual observation with its predicted production if weather conditions 

corresponded to those of the sample mean, we find that the standard deviation of 

production was 16,927 liters.16 This represents 4.4% of average production predicted by 

the model under actual weather conditions, highlighting the significant swings in output 

that can be caused by changes in the meteorological conditions.  

In a second simulation exercise, we analyzed the effects on production and profit for the 

representative farm in the year 2011 when the temperature rises by a maximum of 2º 

Celsius. We find that an increase of 1ºC would increase profits by €3,071 (or 7.5%), rising 

to €5,509 (13.5%) for a 1.5ºC increase and €8,590 (21%) for a 2ºC increase.17  

5. Summary and conclusions 

The process of climate change that the planet is undergoing has increased the interest 

and timeliness of economic studies evaluating the effect of weather conditions on 

agriculture. However, despite the attention devoted by animal scientists to the effect of 

                                                 

16 The formula used was √
∑ (�̂�𝑖𝑡

𝑀𝑉−�̂�𝑖𝑡
𝑀𝑉̅̅ ̅̅ ̅

)
2

𝑁
𝑖=1

𝑁−1
, where �̂�𝑖𝑡

𝑀𝑉 is the predicted production under actual weather 

conditions and �̂�𝑖𝑡
𝑀𝑉̅̅ ̅̅ ̅

 is the predicted production under the sample average weather conditions. 
17 See Figures 1 and 2 in the on-line Appendix B. 
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weather on dairy production, very few studies in the economic literature have analyzed 

the effect of weather on milk production. We contribute to this literature by considering 

the effect of weather conditions on both cow productivity (through the effect of 

weather variables on cows’ thermal comfort) and forage production inside the farm. To 

do so, we construct a production model in which the weather variables are included in 

a separable way in the production function in order to assess their expected impact on 

cow productivity and foodstuff production. In the specification of the production 

technology, the weather variables affect cow productivity and forage production 

directly, and affect the productivity of the remaining inputs indirectly through their 

effects on cows and forage.  

Our results show that weather conditions can have an important impact on milk 

production. In simulation exercises, we found that differences in weather conditions 

from average conditions can lead to large deviations in production, and differences in 

profits of up to 10% for the representative farm. The impact of weather variables in our 

analysis comes through their effect on forage production, as the effect on cow 

performance of the THI was not found to be significant. 

For a more complete assessment of the impact of weather conditions on milk 

production, more research is needed in several directions. Milk production is carried out 

in several geographical zones around the world and the effect of weather will depend 

on the climatic conditions in each zone. This will lead to the use of different forage crops 

that will be affected by weather in a different way to those harvested in Asturias.   
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Table 1: Descriptive statistics of economic and weather variables 

 Mean Std. Dev. Minimum Maximum 

Milk (liters) 401423 293404 22685 2672774 

Cows (number) 49.70 30.52 6 249 

Forage production expenditures (€) 20510 17665 851 172591 

Labor (€ social security expenditure) 4859 2577 215 20400 

Concentrates (Kg.) 189607 144374 11855 1220100 

Forage purchases (€) 8909 12692 10 176843 

Animal expenses (€) 17330 13577 577 129768 

Weather data     

THI Period 1 54.51 1.34 51.67 57.02 

THI Period 2 62.53 0.81 60.59 64.20 

Temperature Period 1 (ºC)* 6.80 1.35 4.45 9.60 

Temperature Period 2 (ºC)**  20.91 1.36 17.53 23.75 

Humidity Period 1 (%)*** 94.24 2.82 85.34 98.07 

Humidity Period 2 (%)****  61.87 4.63 53.95 73.58 

Rainfall Period 1 (mm/m2) 3.40 0.87 1.58 5.72 

Rainfall Period 2(mm/m2)  1.90 0.58 0.82 3.09 

Wind Period 1 (Km/h) 32.76 9.74 11.16 50.38 

Wind Period 2 (Km/h)  27.93 6.01 9.46 40.70 

Sun exposure Period 1 (Hours/day)  3.87 0.57 2.76 4.78 

Sun exposure Period 2 (Hours/day)  5.58 0.48 4.82 6.50 

* Minimum temperature for cold period. ** Maximum temperature for the warm period. *** Maximum 

humidity for the cold period. **** Minimum humidity for the warm period. 
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Table 2: Estimates of general model specification 

  Model 1 Model 2 Model 3 Model 4 

Param. Variable Value t-st. Value t-st. Value t-st. Value t-st. 

𝜷𝟏 𝑓1(𝑥1, 𝑇𝐻𝐼) 0.490 14.96 0.494 15.05 0.501 15.15 0.497 15.13 

𝜷𝟐 𝑓2(𝑥2, 𝑀𝑉𝑤𝑝) 0.024 2.08 0.023 2.10 0.080 3.94 0.080 3.97 

𝜷𝟑 ln 𝑥3 0.023 1.19 0.017 1.18 0.018 1.19 0.019 1.25 

𝜷𝟒 ln 𝑥4 0.255 13.40 0.256 13.35 0.261 13.62 0.260 13.65 

𝜷𝟓 ln 𝑥5 0.026 4.24 0.025 4.09 0.027 4.50 0.028 4.56 

𝜷𝟔 ln 𝑥6 0.046 2.00 0.051 2.23 0.056 2.53 0.056 2.54 

𝜷𝟏𝟏 1

2
(𝑓1(𝑥1, 𝑇𝐻𝐼))

2
 0.282 2.43 0.280 2.44 0.295 2.50 0.275 2.33 

𝜷𝟏𝟐 𝑓1(𝑥1, 𝑇𝐻𝐼) × 𝑓2(𝑥2, 𝑀𝑉𝑤𝑝) -0.051 -1.59 -0.049 -1.52 -0.056 -1.03 -0.052 -0.95 

𝜷𝟏𝟑 𝑓1(𝑥1, 𝑇𝐻𝐼) × ln 𝑥3 0.032 0.60 0.030 0.57 0.010 0.17 0.012 0.21 

𝜷𝟏𝟒 𝑓1(𝑥1, 𝑇𝐻𝐼) × ln 𝑥4 -0.087 -1.33 -0.086 -1.32 -0.088 -1.32 -0.081 -1.22 

𝜷𝟏𝟓 𝑓1(𝑥1, 𝑇𝐻𝐼) × ln 𝑥5 -0.010 -0.49 -0.009 -0.48 0.004 0.20 0.005 0.24 

𝜷𝟏𝟔 𝑓1(𝑥1, 𝑇𝐻𝐼) × ln 𝑥6 0.017 0.24 0.017 0.23 -0.007 -0.09 -0.009 -0.13 

𝜷𝟐𝟐 1

2
(𝑓2(𝑥2, 𝑀𝑉𝑤𝑝))

2

 0.029 1.69 0.028 1.65 0.092 1.86 0.091 1.84 

𝜷𝟐𝟑 𝑓2(𝑥2, 𝑀𝑉𝑤𝑝) × ln 𝑥3 0.023 1.40 0.023 1.41 0.029 1.13 0.027 1.07 

𝜷𝟐𝟒 𝑓2(𝑥2, 𝑀𝑉𝑤𝑝) × ln 𝑥4 -0.021 -1.04 -0.022 -1.08 -0.098 -2.74 -0.096 -2.70 

𝜷𝟐𝟓 𝑓2(𝑥2, 𝑀𝑉𝑤𝑝) × ln 𝑥5 0.016 2.35 0.016 2.36 0.019 1.85 0.019 1.93 

𝜷𝟐𝟔 𝑓2(𝑥2, 𝑀𝑉𝑤𝑝) × ln 𝑥6 -0.075 -3.12 -0.076 -3.14 -0.045 -1.27 -0.046 -1.31 

𝜷𝟑𝟑 1

2
(ln 𝑥3)2 0.001 0.04 0.000 0.00 0.002 0.09 0.001 0.04 

𝜷𝟑𝟒 ln 𝑥3 × ln 𝑥4 0.008 0.23 0.008 0.24 0.017 0.49 0.016 0.45 

𝜷𝟑𝟓 ln 𝑥3 × ln 𝑥5 0.005 0.56 0.005 0.59 -0.005 -0.56 -0.005 -0.55 

𝜷𝟑𝟔 ln 𝑥3 × ln 𝑥6 -0.048 -1.55 -0.049 -1.56 -0.034 -1.02 -0.033 -0.99 

𝜷𝟒𝟒 1

2
(ln 𝑥4)2 -0.115 -2.30 -0.115 -2.30 -0.082 -1.62 -0.085 -1.70 

𝜷𝟒𝟓 ln 𝑥4 × ln 𝑥5 -0.019 -1.46 -0.019 -1.48 -0.026 -1.95 -0.027 -2.03 
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𝜷𝟒𝟔 ln 𝑥4 × ln 𝑥6 0.073 1.57 0.072 1.55 0.110 2.33 0.109 2.33 

𝜷𝟓𝟓 1

2
(ln 𝑥5)2 0.008 1.88 0.008 1.89 0.009 2.03 0.009 2.10 

𝜷𝟓𝟔 ln 𝑥5 × ln 𝑥6 -0.012 -1.01 -0.012 -1.01 -0.015 -1.23 -0.015 -1.23 

𝜷𝟔𝟔 1

2
(ln 𝑥6)2 0.036 0.70 0.037 0.72 0.013 0.25 0.015 0.30 

𝜷𝟐𝟎𝟎𝟖 D2008 -0.003 -0.20 -0.004 -0.32 -0.017 -1.55 -0.017 -1.59 

𝜷𝟐𝟎𝟎𝟗 D2009 -0.016 -1.13 -0.018 -1.43 -0.028 -2.24 -0.033 -3.03 

𝜷𝟐𝟎𝟏𝟎 D2010 0.004 0.15 -0.002 -0.14 -0.009 -0.43 -0.019 -1.56 

𝜷𝟐𝟎𝟏𝟏 D2011 0.014 0.66 0.011 0.74 -0.012 -0.76 -0.005 -0.47 

𝜶 ---- 0.868 17.30 0.867 17.77 0.562 4.80 0.572 4.88 

𝜹𝟏𝟏 Temperature1 0.256 0.92 0.264 0.95     

𝜹𝟏𝟐 Temperature2 0.476 3.14 0.473 3.15     

𝜹𝟐𝟏 Humidity1 0.013 0.16 0.014 0.17     

𝜹𝟐𝟐 Humidity2 0.094 2.16 0.096 2.19     

𝜹𝟑𝟏 Rain1 -0.150 -1.23 -0.146 -1.20     

𝜹𝟑𝟐 Rain2 0.140 0.85 0.140 0.86     

𝜹𝟒𝟏 Wind1 -0.042 -1.36 -0.043 -1.40     

𝜹𝟒𝟐 Wind2 0.081 2.03 0.082 2.06     

𝜹𝟓𝟏 Sun Exposure1 0.876 1.90 0.900 1.97     

𝜹𝟓𝟐 Sun Exposure2 -0.852 -1.53 -0.848 -1.53     

𝜸𝟏 THI1 0.005 0.22   0.013 0.58   

𝜸𝟐 THI2 -0.006 -0.30   0.006 0.36   

𝑹𝟐 0.992 0.992 0.992 0.992 

Specification tests 

(i)    F-tests: M2 v M1; M3 v M1; M4 v M1 0.076 (p-0.93) 2.417 (p-0.01) 2.060 (p-0.02) 

(ii)   Vuong-test: M3 v M2  2.387 (p-0.02)  

(iii)  F-test: M4 v M2   2.465 (p-0.01) 

(iv)  F-test: M4 v M3   0.273 (p-0.76) 
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Table 3: Estimates of model with weather variables included as technology shifters 

  Model 1 Model 2 Model 3 Model 4 

Param. Variable Value t-st. Value t-st. Value t-st. Value t-st. 

𝜷𝟏 ln 𝑥1 0.487 14.41 0.488 14.50 0.496 14.95 0.497 15.13 

𝜷𝟐 ln 𝑥2
𝑢 0.080 3.79 0.079 3.78 0.080 3.95 0.080 3.97 

𝜷𝟑 ln 𝑥3 0.018 1.20 0.029 1.20 0.018 1.21 0.019 1.25 

𝜷𝟒 ln 𝑥4 0.257 13.05 0.259 13.17 0.260 13.47 0.260 13.65 

𝜷𝟓 ln 𝑥5 0.027 4.42 0.027 4.45 0.028 4.56 0.028 4.56 

𝜷𝟔 ln 𝑥6 0.056 2.44 0.055 2.42 0.056 2.52 0.056 2.54 

𝜷𝟏𝟏 1

2
(ln 𝑥1)2 0.256 2.12 0.256 2.13 0.272 2.29 0.275 2.33 

𝜷𝟏𝟐 ln 𝑥1 × ln 𝑥2
𝑢 -0.060 -1.08 -0.057 -1.02 -0.050 -0.91 -0.052 -0.95 

𝜷𝟏𝟑 ln 𝑥1 × ln 𝑥3 0.017 0.31 0.015 0.26 0.011 0.20 0.012 0.21 

𝜷𝟏𝟒 ln 𝑥1 × ln 𝑥4 -0.079 -1.17 -0.080 -1.19 -0.081 -1.21 -0.081 -1.22 

𝜷𝟏𝟓 ln 𝑥1 × ln 𝑥5 -0.001 -0.04 0.000 0.02 0.005 0.24 0.005 0.24 

𝜷𝟏𝟔 ln 𝑥1 × ln 𝑥6 0.009 0.12 0.005 0.07 -0.010 -0.14 -0.009 -0.13 

𝜷𝟐𝟐 1

2
(ln 𝑥2

𝑢)
2
 0.098 1.95 0.101 2.00 0.091 1.83 0.091 1.84 

𝜷𝟐𝟑 ln 𝑥2
𝑢 × ln 𝑥3 0.027 1.05 0.026 1.02 0.027 1.06 0.027 1.07 

𝜷𝟐𝟒 ln 𝑥2
𝑢 × ln 𝑥4 -0.081 -2.23 -0.084 -2.32 -0.096 -2.68 -0.096 -2.70 

𝜷𝟐𝟓 ln 𝑥2
𝑢 × ln 𝑥5 0.020 1.97 0.020 1.97 0.020 1.94 0.019 1.93 

𝜷𝟐𝟔 ln 𝑥2
𝑢 × ln 𝑥6 -0.052 -1.43 -0.053 -1.47 -0.047 -1.31 -0.046 -1.31 

𝜷𝟑𝟑 1

2
(ln 𝑥3)2 0.003 0.10 0.005 0.19 0.001 0.03 0.001 0.04 

𝜷𝟑𝟒 ln 𝑥3 × ln 𝑥4 0.019 0.52 0.017 0.48 0.016 0.45 0.016 0.45 

𝜷𝟑𝟓 ln 𝑥3 × ln 𝑥5 -0.004 -0.45 -0.004 -0.43 -0.005 -0.55 -0.005 -0.55 

𝜷𝟑𝟔 ln 𝑥3 × ln 𝑥6 -0.039 -1.17 -0.036 -1.07 -0.033 -0.98 -0.033 -0.99 

𝜷𝟒𝟒 1

2
(ln 𝑥4)2 -0.094 -1.83 -0.094 -1.82 -0.087 -1.71 -0.085 -1.70 

𝜷𝟒𝟓 ln 𝑥4 × ln 𝑥5 -0.027 -2.07 -0.027 -2.06 -0.027 -2.04 -0.027 -2.03 



34 

 

𝜷𝟒𝟔 ln 𝑥4 × ln 𝑥6 0.107 2.24 0.110 2.31 0.111 2.34 0.109 2.33 

𝜷𝟓𝟓 1

2
(ln 𝑥5)2 0.009 2.08 0.009 2.14 0.009 2.11 0.009 2.10 

𝜷𝟓𝟔 ln 𝑥5 × ln 𝑥6 -0.013 -1.05 -0.013 -1.08 -0.015 -1.24 -0.015 -1.23 

𝜷𝟔𝟔 1

2
(ln 𝑥6)2 0.011 0.22 0.012 0.22 0.015 0.30 0.015 0.30 

𝜷𝟐𝟎𝟎𝟖 D2008 -0.004 -0.15 -0.001 -0.02 -0.017 -1.55 -0.017 -1.59 

𝜷𝟐𝟎𝟎𝟗 D2009 -0.009 -0.23 -0.001 -0.03 -0.034 -2.60 -0.033 -3.03 

𝜷𝟐𝟎𝟏𝟎 D2010 0.012 0.24 0.018 0.46 -0.022 -0.93 -0.019 -1.56 

𝜷𝟐𝟎𝟏𝟏 D2011 0.011 0.34 0.025 0.93 -0.002 -0.11 -0.005 -0.47 

𝜶 ------ 0.542 4.94 0.579 5.24 0.572 4.84 0.572 4.88 

𝜹𝟏𝟏 Temperature1 -0.021 -0.60 -0.020 -0.55     

𝜹𝟏𝟐 Temperature2 -0.011 -0.62 -0.004 -0.27     

𝜹𝟐𝟏 Humidity1 -0.007 -0.83 -0.007 -0.79     

𝜹𝟐𝟐 Humidity2 0.003 0.62 0.002 0.49     

𝜹𝟑𝟏 Rain1 -0.026 -1.37 -0.027 -1.54     

𝜹𝟑𝟐 Rain2 -0.010 -0.40 -0.013 -0.55     

𝜹𝟒𝟏 Wind1 -0.002 -0.51 -0.002 -0.53     

𝜹𝟒𝟐 Wind2 0.000 0.09 0.001 0.17     

𝜹𝟓𝟏 Sun Exposure1 0.070 1.09 0.045 0.82     

𝜹𝟓𝟐 Sun Exposure2 0.000 0.00 -0.003 -0.04     

𝜸𝟏 THI1 -0.005 -0.25   -0.002 -0.14   

𝜸𝟐 THI2 0.014 0.85   -0.002 -0.24   

𝑹𝟐 0.992 0.992 0.992 0.992 

Specification tests 

(i)    F-tests: M2 v M1; M3 v M1; M4 v M1 0.407 (p-0.67) 0.746 (p-0.68) 0.629 (p-0.82) 

(ii)   Vuong-test: M3 v M2   1.025 (p-0.31)   

(iii)  F-test: M4 v M2     0.675 (p-0.75) 

(iv)   F-test: M4 v M3     0.044 (p-0.96) 

(v)   Vuong test: M2 (restricted spec.) v M2 (gen. spec.) 1.982 (p-0.05)   
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Table 4: Impact on milk production, revenue and profits of different weather 

conditions 

 2007 2008 2009 2010 2011 

      

Milk production (l): average weather  382829 381307 376004 382100 386946 

Milk production (l): actual weather 382227 380124 374153 382622 400193 

      

Total Revenue (€): average weather 141750 150582 122389 123770 131666 

Total Revenue (€): actual weather 141527 150115 121787 123939 136174 

      

Profit (€):  average weather 54171 63003 34810 36191 44087 

Profit (€): actual weather 53948 62535 34207 36359 48594 

Profit Variation (€) -223 -467 -602 169 4507 

Profit variation (%) -0.41 -0.74 -1.73 0.47 10.22 

      

 

 

 


