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Abstract

The sensitivity of crack growth resistance to the choice of isotropic or kine-
matic hardening is investigated. Monotonic mode I crack advance under
small scale yielding conditions is modelled via a cohesive zone formulation
endowed with a traction-separation law. R-curves are computed for materials
that exhibit linear or power law hardening. Kinematic hardening leads to an
enhanced crack growth resistance relative to isotropic hardening. Moreover,
kinematic hardening requires greater crack extension to achieve the steady
state. These differences are traced to the non-proportional loading of mate-
rial elements near the crack tip as the crack advances. The sensitivity of the
R-curve to the cohesive zone properties and to the level of material strain
hardening is explored for both isotropic and kinematic hardening.
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1. Introduction

It is well established that material elements near a mode I crack tip
undergo non-proportional straining due to crack advance, see for example
the early analysis of crack growth by Rice and Sorensen [1]. The degree of
hysteresis associated with this non-proportional loading is sensitive to the
nature of the hardening law of the solid. For example, it is to be expected
that kinematic hardening leads to greater hysteresis than isotropic hardening.
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Consequently, one might expect that the choice of plastic hardening law will
influence the stress intensity factor K versus crack extension ∆a response,
widely known as the R-curve. However, little attention has been paid to the
effect of the hardening law upon crack growth resistance and no clear picture
emerges from the literature. Lam and McMeeking [2] analysed steady state
crack tip fields and concluded from a crack opening displacement criterion
that isotropic hardening augments crack growth resistance. Carpinteri [3]
performed finite element analyses of crack propagation by means of a strain-
based criterion and observed a greater amount of crack extension in the
kinematic hardening case for a given remote load; this also suggests that
isotropic hardening increases crack growth resistance. In contrast, we shall
demonstrate that kinematic hardening significantly raises the level of plastic
dissipation and, thereby, elevates the R-curve along with the steady state
fracture toughness KSS.

2. Numerical model

We consider the small scale yielding problem of a plane strain mode I crack
subjected to a remote stress intensity factor K. The elasto-plastic solid is
isotropic with a Young’s modulus E, a Poisson’s ratio ν and an initial yield
strength σ0. Throughout our study we shall take ν = 0.3 and σ0/E = 0.003.
We denote the Cauchy stress by σij and define sij as its deviatoric part, such
that sij = σij − δijσkk/3. The plastic response involves either isotropic or
kinematic hardening, as follows.

Isotropic hardening: The yield condition reads

Φ = σe − σY = 0 (1)

where σe is the von Mises effective stress and the current yield strength σY is
a function of the accumulated von Mises plastic strain εe. Accordingly, the
effective stress σe in J2 plasticity is defined as

σ2
e =

3

2
sijsij (2)

The increment in plastic strain ε̇pij is computed from the normality hy-
pothesis,

ε̇pij = ε̇e
∂Φ

∂σij
= ε̇e

3

2

sij
σY

(3)
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in terms of the increment in effective plastic strain ε̇e. The relation between
σY and εe is given by the uniaxial tensile response, such that the true tensile
stress σ is related to the true tensile plastic strain εp by

σ = σ0

(

1 +
Eεp

σ0

)N

(4)

where N is the strain hardening exponent. In addition to this power law
description we also consider the case of linear hardening by taking N = 1
and by replacing E in (4) with the tangent modulus Et.

Kinematic hardening : Assume that the centre of the yield surface is located
at the point αij in deviatoric stress space. We shall refer to αij as a back-
stress, and assume that the Armstrong-Frederick non-linear rule [4] defines
the evolution of this backstress, such that

α̇ij = c
(sij − αij)

σ0

ε̇e − γαij ε̇e (5)

where c and γ are material constants. This rule reproduces ratchetting when
a material element is subjected to a non-zero mean stress and cyclic loading
but predicts a particular shape of the stress-strain curve (see for example [5]).
In order to model a more general shape of the uniaxial tensile response the
constitutive statement (5) has been extended by Chaboche [6]. He replaced
the single backstress αij by a finite number n of backstresses αk

ij, such that

αij =

n
∑

k=1

αk
ij (6)

Each backstress αk
ij evolves with ε̇pij according to the independent hardening

rule,

α̇k
ij = ck

(σij − αij)

σ0

ε̇e − γkαk
ij ε̇e (no sum on k) (7)

in terms of the material constants ck and γk. The resulting Chaboche-
Armstrong-Frederick (CAF) model has been widely used to capture ratchet-
ting effects and non-linear hardening under non-proportional cyclic loading
[7, 8]. We consider here the case of power law hardening (4) and select the
values of

(

ck, γk
)

for k ∈ (1, n) such that the desired response in unaxial ten-
sion is obtained. The choice of n = 10 brings the CAF model into alignment
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with (4) to within 0.04% for the range of true tensile strain 0 ≤ ε ≤ 2.0. The
uniaxial stress-strain response for cyclic loading is given in Fig. 1a for the
case N = 0.2. In the case of linear hardening (5) is used instead of (6)-(7),
with γ = 0 and c = Et; this is the familiar Ziegler formulation [9]. The
hardening laws employed are shown in Fig. 1b; power law hardening for the
choices N = 0.1 and N = 0.2, and linear hardening for Et/σ0 = 5/3 and
Et/σ0 = 50/3.

We model tensile fracture at the tip of a mode I crack by means of a
cohesive zone model, following Tvergaard and Hutchinson [10] - see Fig. 2.
Cohesive zone formulations have a long history back to Dugdale [11] and
Barenblatt [12]: fracture is regarded as a gradual process in which separa-
tion takes place across an extended cohesive zone, and is resisted by cohesive
tractions. As shown in Fig. 3, we shall make use of a trapezoidal traction-
separation law of strength σ̂, with its shape being defined by a critical cohe-
sive separation δc and by two shape parameters δ1 = 0.15δc and δ2 = 0.5δc.
The work of fracture Γ0 is given by the area under the traction-separation
curve, such that

Γ0 =
1

2
σ̂ (δc + δ2 − δ1) (8)

A reference stress intensity factor for crack growth initiation follows im-
mediately as

K0 =

√

EΓ0

(1− ν2)
(9)

along with a reference length R0, where

R0 =
1

3π (1− ν2)

EΓ0

σ2
0

=
1

3π

(

K0

σ0

)2

(10)

The crack tip is placed at the origin and the crack plane is aligned with
the negative x1 axis of the Cartesian reference frame (x1, x2). A remote
KI field is imposed by a boundary layer formulation, as follows. The outer
periphery of the mesh is subjected to the mode I elastic K-field,

ui =
KI

E
r1/2fi (θ, ν) (11)
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where r and θ are polar coordinates centred at the crack tip and the functions
fi (θ, ν) are given by,

f1 =
1 + ν
√
2π

(3− 4ν − cos θ) cos

(

θ

2

)

(12)

f2 =
1 + ν
√
2π

(3− 4ν − cos θ) sin

(

θ

2

)

(13)

Upon exploiting the symmetry about the crack plane, only half of the
model is analysed, as shown in Fig. 4. The finite element model is imple-
mented in the commercial finite element package Abaqus [13] and we solve the
boundary value problem by an implicit Backward Euler integration scheme.
Plane strain quadratic quadrilateral elements are employed, with the mesh
comprising 267272 degrees of freedom. A refined mesh was used along the co-
hesive zone in order to obtain a converged solution. The characteristic length
of the elements in the crack propagation region is chosen to be equal to δc.
Cohesive elements with 6 nodes and 12 integration points are implemented
by means of a user element (UEL) subroutine [14]. A control algorithm is
used to avoid convergence problems due to snap-back instabilities, see [15, 16]
for details. Computations have been performed within an infinitesimal de-
formation framework since strains remain small, as argued by Tvergaard and
Hutchinson [10] in their finite strain analysis. Dimensional analysis shows
that the solution, given in terms of the remote KI = KR(∆a), is a function
F of the following dimensionless quantities,

KR

K0

= F

(

∆a

R0

,
σ0

E
,
σ̂

σ0

,
Et

E
, ν, N,

δ1
δc
,
δ2
δc

)

(14)

We will conduct calculations until steady state crack growth at constant
KSS is attained. Tvergaard and Hutchinson [10] showed that KSS is sensitive
to the ratio of cohesive strength σ̂ to material yield strength σ0. For an elas-
tic, perfectly plastic solid, KSS/K0 raises steeply as σ̂/σ0 approaches 3. The
interpretation is straightforward by considering a stationary crack in an elas-
tic, ideally plastic solid absent of a cohesive zone. The tensile stress directly
ahead of the crack tip equals 3σ0 as given by the Prandtl field. Consequently,
if σ̂/σ0 exceeds 3, the crack tip blunts without advance as the cohesive zone
strength is not overcome.
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Tvergaard and Hutchinson [10] also considered the role of isotropic strain
hardening on the R-curve. In this case, the stress field ahead of the crack tip
exceeds 3σ0 due to the presence of strain hardening. For σ̂/σ0 < 3, a shallow
R-curve is exhibited and KSS/K0 is slightly above unity. In contrast, for
σ̂/σ0 > 3, a steeper R-curve is observed and KSS/K0 increases its sensitivity
to σ̂. A major aim of the present study is to explore the sensitivity of
the R-curve to the nature of the hardening law: isotropic versus kinematic
hardening.

3. Results

R-curves are shown in Fig. 5 for linear hardening and σ̂/σ0 = 3.5; this
value of σ̂/σ0 is close to the limiting value of σ̂/σ0 = 3 for an elastic, per-
fectly plastic solid, as discussed in the previous section. Consider first the
R-curve for a small level of strain hardening Et/σ0 = 5/3. A steeply ris-
ing R-curve is predicted, which will give rise to a large steady state fracture
toughness KSS/K0 and a large value of the crack extension to achieve steady
state (∆a/R0)SS. The steep R-curve is a consequence of plastic dissipation
with crack advance. Little difference is observed between the kinematic and
isotropic hardening predictions since the degree of hardening is small. We
note in passing that for the elastic, ideally plastic case, Et/σ0 = 0, and
σ̂/σ0 = 3.5 no crack advanced is observed: the tensile traction ahead of the
crack tip is insufficient to overcome the cohesive zone strength. Now consider
the case of a high strain hardening rate Et/σ0 = 50/3. The strain level near
the crack tip can now exceed the cohesive strength σ̂ at a relatively low value
of plastic strain. A shallow R-curve is predicted. Again, kinematic hardening
elevates the R-curve compared to the isotropic hardening case.

The predicted R-curves for the case of a power law hardening solid are
shown in Fig. 6 for the choice of N = 0.1. We consider both isotropic and
kinematic hardening, and selected values of the cohesive strength σ̂/σ0 = 3.2,
3.4 and 3.5. As expected, increasing σ̂/σ0 elevates the K versus ∆a response
for both hardening laws. However, the R-curves are more sensitive to the
cohesive strength for the case of kinematic hardening. Also, as in the linear
hardening study, the R-curves are steeper for kinematic hardening, implying
a higher value of the steady state fracture toughness KSS. We note that
there is no straightforward relationship between K0, KSS and the crack ini-
tiation toughness KIc as defined in the standard test methods for fracture
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toughness, such as the ASTM E 1820 [17]. The standard defines KIc as the
value of K corresponding to a crack growth increment which is in the range
of 0.2 - 0.5 mm, see [18] for a discussion. When the R-curve is steep, KIc/K0

may be large.

The steady state toughness is attained when KR reaches a plateau value.
Fig. 7 shows the sensitivity of KSS to the strain hardening exponent and
to the cohesive strength. The isotropic curves are in agreement with the
results of Tvergaard and Hutchinson [10]. First, note that for N = 0 a single
KSS/K0 versus σ̂/σ0 curve corresponds to the cases of isotropic and kine-
matic hardening. The value of the steady state toughness increases rapidly
in the vicinity of the limiting value of σ̂/σ0 = 2.8. With increasing N ,
kinematic and isotropic hardening theories give increasingly divergent pre-
dictions. Consistently, for N > 0, kinematic hardening leads to a higher
value of KSS/K0 at a given σ̂/σ0 than does isotropic hardening. Also, the
value of the cohesive strength at which KSS/K0 increases rapidly is lower for
the case of kinematic hardening.

It is instructive to consider the value of crack extension (∆a)SS that is
required to achieve the steady state toughness. The dependence of (∆a)SS
upon σ̂/σ0 is shown in Fig. 8 for the power law hardening solid, for both
kinematic and isotropic hardening. Note that both KSS/K0 and (∆a)SS /R0

depend upon σ̂/σ0 in a highly non-linear manner for both hardening laws,
recall Figs. 7 and 8. Is there a simple relation between (∆a)SS /R0 and
KSS/K0? This might be expected as the plastic zone size associated with
K = KSS, is of the order,

RSS =
1

3π

(

KSS

σ0

)2

(15)

Assume that (∆a)SS is proportional to RSS,

(∆a)SS = CRSS (16)

where the constant C is of order unity with some sensitivity to the choice of
the hardening law and to N . It follows immediately that,

(∆a)SS
R0

= C
RSS

R0

= C

(

KSS

K0

)2

(17)
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The accuracy of this prediction is shown by a cross-plot of (∆a)SS /R0

versus KSS/K0 in Fig. 9, with σ̂/σ0 as the parameter trending variable. A
curve fit reveals that C increases from 0.574 to 1.703 as N goes from 0.1 to 0.2
for kinematic hardening, and C increases from 0.31 to 0.496 as N goes from
0.1 to 0.2 for isotropic hardening. Our numerical predictions show that the
isotropic hardening idealization may significantly underestimate the degree
of subcritical crack propagation before catastrophic failure. Note further that
(17) can be re-expressed in the form

∆aSS =
C

3π

(

KSS

σ0

)2

(18)

What is the physical basis for the steeper R-curve observed in the case of
kinematic hardening? We show in Fig. 10 that significant non-proportional
loading occurs in the vicinity of the crack tip, as the crack advances. Consider
a representative material point P at a distance for 2R0 ahead of the initial
crack tip and slightly above the cracking plane (height of 0.1R0). Allow the
crack to advance by ∆a = 2R0 for both cases of isotropic and kinematic
hardening. The active plastic zone is shown in Fig. 10a for ∆a = 0+ and
∆a = 2R0. The plastic zone at ∆a = 0+ for kinematic hardening is identical
to that for isotropic hardening, whereas the plastic zone at ∆a = 2R0 is
much larger in the kinematic hardening case. Only the isotropic hardening
active plastic zone is shown at ∆a = 2R0 for the sake of clarity. The stress
paths imposed on point P for isotropic and kinematic hardening are given
in Fig. 10b. Differences between kinematic and isotropic stress paths arise
soon after cracking initiates (∆a = 0+), due to non-proportional straining in
the neighbouring points. As the crack advances not only are the stress paths
non-proportional but they also deviate from each other, with the greatest
change in stress direction given by isotropic hardening. The stronger path
dependence of kinematic hardening also plays an important role on localiza-
tion in thin sheets and in shear localization. For example, Tvergaard [19]
showed that the forming limit curves predicted by kinematic hardening are
in better agreement with experimental results than isotropic hardening pre-
dictions. The dependence of the critical strain for shear localization upon
the local curvature of the yield surface has been investigated by Mear and
Hutchinson [20].

In addition, we investigate the level of energy dissipation in the main
plastic zone in the vicinity of the crack tip (denotedW1) and in the secondary
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plastic zone that arises in the crack wake (denoted as W2). Here, the energy
dissipated due to plastic deformation is computed for all material elements
in the active plastic zone as,

W (∆a) =

∫ ∆a

0

(
∫

σij ε̇
p
ijdV

)

da (19)

The predictions are given in Table 1 for various stages of crack advance.
Computations reveal that plastic work in the secondary plastic region is neg-
ligible relative to the energy dissipated in the vicinity of the crack. We con-
clude that differences between isotropic and kinematic hardening responses
are mainly due to non-proportional deformation in the crack tip plastic zone.
Also, Table 1 shows that kinematic hardening involves a much larger plas-
tic dissipation energy than isotropic hardening, and is consistent with the
steeper R-curve.

Table 1: Plastic energy dissipation with crack advance in the primary plastic zone region
at the crack tip W1 and the secondary plastic zone region at the crack wake W2. Material
properties: δ1/δc = 0.15, δ2/δc = 0.5, σ0/E = 0.003, ν = 0.3, N = 0.1 and σ̂ = 3.5σ0.

∆a/R0

Isotropic Kinematic

W1/ (Γ0∆a) W2/ (Γ0∆a) W1/ (Γ0∆a) W2/ (Γ0∆a)

0.5 21.98 0.01 52.69 0.42

1 17.24 0.14 58.36 0.85

2 8.21 0.17 78.75 1.08

4. Conclusions

We investigated how the isotropic or kinematic nature of strain hard-
ening influences crack growth resistance. Finite element results show very
significant differences between isotropic and kinematic hardening laws that
yield the same response under uniaxial tension. We show that kinematic
hardening notably enhances plastic dissipation and the steady state frac-
ture toughness KSS. These differences persist over different hardening levels,
cohesive strengths, and hardening profiles.
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[16] E. Mart́ınez-Pañeda, S. del Busto, C. Betegón, Non-local plasticity ef-
fects on notch fracture mechanics, Theoretical and Applied Fracture
Mechanics 92 (2017) 276–287.

[17] ASTM E 1820-01, Standard Test Method for Measurement of Fracture
Toughness.

[18] T. L. Anderson, Fracture Mechanics. Fundamentals and Applications,
3rd Edition, CRC Press, Taylor & Francis, Boca Raton, 2005.

[19] V. Tvergaard, Effect of kinematic hardening on localized necking in
biaxially stretched sheets, International Journal of Mechanical Sciences
20 (9) (1978) 651–658.

11



[20] M. E. Mear, J. W. Hutchinson, Influence of yield surface curvature on
flow localization in dilatant plasticity, Mechanics of Materials 4 (1985)
395–407.

12



List of Figures

1 Uniaxial stress strain response for (a) cyclic loading of a non-
linear hardening solid with N = 0.2, and (b) half-cycle for
linear and non-linear hardening. Material properties: σ0/E =
0.003. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Schematic representation of the cohesive zone model for fracture. 15
3 Cohesive traction T - separation δ law characterising the frac-

ture process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4 Finite element mesh and configuration of the boundary layer. . 17
5 Crack growth resistance curves for linear isotropic and kine-

matic hardening plasticity and different hardening levels. Ma-
terial properties: δ1/δc = 0.15, δ2/δc = 0.5, σ0/E = 0.003,
ν = 0.3, and σ̂ = 3.5σ0. . . . . . . . . . . . . . . . . . . . . . . 18

6 Crack growth resistance curves for power law isotropic and
kinematic hardening plasticity and different levels of the cohe-
sive strength. Material properties: δ1/δc = 0.15, δ2/δc = 0.5,
σ0/E = 0.003, ν = 0.3, and N = 0.1. . . . . . . . . . . . . . . 19

7 Steady state toughness as a function of the cohesive strength
for isotropic and kinematic hardening at different N levels.
Material properties: δ1/δc = 0.15, δ2/δc = 0.5, σ0/E = 0.003,
and ν = 0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

8 Crack extension at steady state as a function of the cohesive
strength for isotropic and kinematic hardening at different N
levels. Material properties: δ1/δc = 0.15, δ2/δc = 0.5, σ0/E =
0.003, and ν = 0.3. . . . . . . . . . . . . . . . . . . . . . . . . 21

9 Log-log representation of the relation between the crack exten-
sion at steady state and the steady state fracture toughness for
isotropic and kinematic hardening at different N levels. Each
data point corresponds to a value of the cohesive strength.
Material properties: δ1/δc = 0.15, δ2/δc = 0.5, σ0/E = 0.003,
and ν = 0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

10 Schematic insight into the effect of isotropic or kinematic hard-
ening on a material point ahead of the initial crack (r = 2R0);
(a) active plastic zone and evolution path, and (b) stress state
on the π-plane. Material properties: δ1/δc = 0.15, δ2/δc = 0.5,
σ0/E = 0.003, ν = 0.3, σ̂/σY = 3.7, and N = 0.1. . . . . . . . 23

13



-0.03 -0.02 -0.01 0 0.01 0.02 0.03

-3

-2

-1

0

1

2

3 Kinematic

Isotropic

(a)

0 0.05 0.1 0.15

0

0.5

1

1.5

2

2.5

3

3.5

(b)

Figure 1: Uniaxial stress strain response for (a) cyclic loading of a non-linear hardening
solid with N = 0.2, and (b) half-cycle for linear and non-linear hardening. Material
properties: σ0/E = 0.003.
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Figure 3: Cohesive traction T - separation δ law characterising the fracture process.
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Figure 4: Finite element mesh and configuration of the boundary layer.

17



0 0.5 1 1.5 2 2.5 3

1

1.5

2

2.5

3

3.5

4

4.5

5 Isotropic hardening

Kinematic hardening
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plasticity and different hardening levels. Material properties: δ1/δc = 0.15, δ2/δc = 0.5,
σ0/E = 0.003, ν = 0.3, and σ̂ = 3.5σ0.
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Figure 6: Crack growth resistance curves for power law isotropic and kinematic hardening
plasticity and different levels of the cohesive strength. Material properties: δ1/δc = 0.15,
δ2/δc = 0.5, σ0/E = 0.003, ν = 0.3, and N = 0.1.
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Figure 7: Steady state toughness as a function of the cohesive strength for isotropic and
kinematic hardening at different N levels. Material properties: δ1/δc = 0.15, δ2/δc = 0.5,
σ0/E = 0.003, and ν = 0.3.
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Figure 8: Crack extension at steady state as a function of the cohesive strength for isotropic
and kinematic hardening at different N levels. Material properties: δ1/δc = 0.15, δ2/δc =
0.5, σ0/E = 0.003, and ν = 0.3.
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Figure 9: Log-log representation of the relation between the crack extension at steady state
and the steady state fracture toughness for isotropic and kinematic hardening at different
N levels. Each data point corresponds to a value of the cohesive strength. Material
properties: δ1/δc = 0.15, δ2/δc = 0.5, σ0/E = 0.003, and ν = 0.3.
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Figure 10: Schematic insight into the effect of isotropic or kinematic hardening on a
material point ahead of the initial crack (r = 2R0); (a) active plastic zone and evolution
path, and (b) stress state on the π-plane. Material properties: δ1/δc = 0.15, δ2/δc = 0.5,
σ0/E = 0.003, ν = 0.3, σ̂/σY = 3.7, and N = 0.1.
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