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Abstract

Nonassociative algebras play a fundamental role in the description of physical
systems. Symmetry is related to the transformations of these algebras, which are con-
trolled by their automorphisms group. Starting from the known structure of finite
division ring with 64 elements, we construct some nonassociative finite division
algebras of orders 256 and 512 with a designed automorphism group.
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1 INTRODUCTION

Nonassociative algebras play a fundamental role in Physics and Communications. For instance, Lie and Jordan algebras pro-
vide the mathematical structure of Quantum Mechanics, while finite nonassociative division rings have applications on coding
theory4,8,6, combinatorics and graph theory13. On the other hand, the symmetry of these objects can be related with several
properties, as conservation laws and invariances in Physics. In this context, symmetries can be seen as transformation of the
structure into itself and so, its group of automorphisms gives information about the behaviour of this kind of objects.
During the last few years, computational efforts in order to clasify some of these objects have been made. For instance, the

classification of finite division rings, also called semifields, with 64 elements is completely known,16, as well as those with 243
elements,17. However, many questions are open yet: there is not a classification of semifields with 128 or 256 elements, despite
of the powerful computers available nowadays.
The knowledge of the structure of these concrete division rings can inspire new general constructions, as suggested in9. In this

sense, the work of Lavrauw and Sheekey11 gives examples of constructions of semifields which are neither twisted fields nor
two-dimensional over a nucleus starting from the classification of semifields with 64 elements. In particular, these are the rings
labelled as XIV, XXIV, XXVI and XXVII in16. On the other hand, the construction of finite division rings with a prescribed
automorphism group has been carried out in references such as3 and14.
The present work is motivated by the behaviour of some division rings with 64 elements which also appear in the classification

of16. In particular, semifields coordinatizing 18 planes in the Knuth classes XVII and XVIII and 27 in the Knuth class XXXIX
(see Table 5 of16) have an automorphism group isomorphic to the group 5. Notice that the order of this group, 5, and the
dimension of the semifields over their center, 6, are relatively prime (a fact that differs completely from the situation of the finite
field F64).
We will see in the next section that all these rings can be additively described as a direct sum of two Galois fields of orders 4

and 16. Moreover, some of them can be seen as a 3−dimensional vector spaces over a so called weak nucleus, see10.
In the last part of the paper, we will use this concept in order to generalize the construction of such division rings. Exploring

these ideas, we will be able to construct sporadic examples of semifields with 256 and 512 elements whose automorphism groups
contain a subgroup of prescribed structure. These rings are new, since they do not fall in the Knuth orbit of any finite semifield
either listed in12 or contructed by18.
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2 DIVISION RINGS OF ORDER 64 WITH A CYCLIC AUTOMORPHISM GROUP 5

In this section we will study the structure of a division ring, i.e. a semifield, S with 64 elements with cyclic automorphism group
5. First of all, observe that the center of any such a finite semifield contains F2 = {0, 1}, and S is naturally a 6-dimensional
F2−algebra. We will prove that it is possible to find a set of 4 elements fixed by the action of the automorphism group, which
yields an alternative additive decomposition of S.

Theorem 1. Let (S,+, ∗) be a semifield with 64 elements and automorphism group Aut(S) = ⟨'⟩ isomorphic to 5. Then, there
exists an element a ≠ 0, 1, such that ({0, 1, a, a + 1},+, ∗) is a semifield isomorphic to F4 which is fixed by the automorphism
group. Moreover, there exists an element b ∈ S ⧵ {0, 1, a, a + 1} such that ({'i(b) | i ∈ ℕ},+, ⋅), with 'i(b) ⋅ 'j(b) = 'i+j(b),
is isomorphic to the finite field F16. So, S can be seen as a F2-vector space isomorphic to the direct sum F4 ⊕ F16, with basis
{1, a, b, '(b), '2(b), '3(b)}.

Proof. Let us consider the set Fix(') = {x ∈ S |'(x) = x} of fixed points under the action of Aut(S) over S. Since
|Aut(S)| = 5, we have 64 ≠ |Fix(')| ≡ 64 (mod 5). So, |Fix(')| = 4 and, because there is a unique semifield with four
elements, (Fix('),+, ∗) ≅ F4. Therefore, we can find an element a ∈ S ⧵ {0, 1} such that Fix(') = {0, 1, a, a + 1}.
Since ' ≠ I = '5 and x5 + 1 = (x + 1)(x4 + x3 + x2 + x + 1), then the F2-irreducible polynomial x4 + x3 + x2 + x + 1

divides the minimal polynomial of '. So, there exist an element b ∈ S ⧵ {0, 1, a, a + 1} such that the F2[x]−cyclic submodule
generated by b, ⟨b, '(b), '2(b), '3(b)⟩F2 , is isomorphic to F2[x]∕⟨x4 + x3 + x2 + x + 1⟩ ≅ F16.
Finally, notice that dimF2 S = 6, so the set {1, a, b, '(b), '2(b), '3(b)}, which is linearly independent over F2, is an F2−basis

of S.

Remark 1. The decomposition of S as F4⊕ F16 corresponds to the F2−module decomposition
(

F2[x]∕⟨x + 1⟩
)2⊕ F2[x]∕⟨x4 +

x3+x2+x+1⟩ and that ' preserves this decomposition. Notice that the restriction of the product ∗ of S to Fix(') is the product
of the field F4, but this does not happen with F16. However, � = '(b) ∈ F16 can be identified with a 5tℎ−primitive root of unity,
and it can be assumed that the action of the automorphism ' over the elements of F16 is given by '(c) = � ⋅ c for all c ∈ F16.
From now on we shall simply write �c instead of � ⋅ c.

The next step in the description of semifields with 64 elements with cyclic automorphism group 5 consists on the introduction
of the definition of weak nucleus in the sense of10.

Definition 1. Let (S,+, ∗) be a semifield and let F ⊆ S be a field. Then, F is a weak nucleus for S if (a ∗ b) ∗ c = a ∗ (b ∗ c)
whenever any two of a, b, c are in F .

Notice that if there exists a weak nucleus F of S, then S can be written as an F -vector space. However, right and left multi-
plications (Ra(x) = x ∗ a, La(x) = a ∗ x, for all a, x ∈ S) will not be, in general, F -linear transformations. Moreover, the weak
nucleus is generally not preserved by isotopy.
In order to describe the structure of the semifields with weak nucleus presented in this section, we need the following result,

which will be stated without proof.

Lemma 1. [Theorem 4.1 of15] Let R = GR(qd , pd) be a Galois ring of order qd and characteristic pd (in particular a finite
field). For any finite (R,R)-bimodule RMR there exist a generator system {�1,… , �k} (called distinguished basis) and a system
of automorphism �1,… , �k ∈ Aut(R) such that

∀a ∈ R, l ∈ {1,… , k} ∶ �la = �l(a)�l andM = R�1 ⊕⋯⊕ �k

is a direct sum of cyclic (R,R)-bimodules.

Theorem 2. Let (S,+, ∗) be a semifield with 64 elements, automorphism group Aut(S) = ⟨'⟩ ≅ 5 and weak nucleus F =
Fix(') ≅ F4. Then, there exists an element � ∈ S such that {1, �, '(�)} is an F4-basis of S. Moreover, either a ∗ � = � ∗ a for
all a ∈ F , and the basis is called of type A, or a ∗ � = � ∗ a2 for all a ∈ F , and it is called of type B.

Proof. From Definition 1, it follows that the semifield S is a bimodule over the weak nucleus F . So, by Lemma 1, there exists a
distinguished F -basis of S, that is, it is possible to find an F -basis {s1, s2, s3} of S such that, for 1 ≤ i ≤ 3, a ∗ si = si ∗ �i(a),
with �i ∈ Aut(F ), for all a ∈ F . Notice that we can always take s1 = 1 and �1 = Id. If si = 1 for some i, the claim is trivial.
Otherwise, it suffices to see that {1, s2, s3} is a generator system from S whith a ∗ 1 = 1 ∗ a for all a ∈ F .
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Let us denote the element s2 by �. Suppose that �2 = Id and so, a ∗ � = � ∗ a for all a ∈ F . Since S is isomorphic, as
F2−vector space, to the direct sum F ⊕ F16, we can assume that � ∈ F16. Otherwise, � = A + B, with A ∈ F and B ∈ F16, and
{1, � − A, s3} is also a distinguished F -basis of S. Under these assumptions, we claim that {1, �, '(�)} is an F−distinguished
basis of S. Since � ∈ F16, the minimal polynomial '−annihilating � is x4+x3+x2+x+1, i.e,

∑4
k=0 '

k(�) = 0. Let us suppose
that the system {1, �, '(�)} is not F -linearly independent. In such case, we can find c1, c2 ∈ F such that '(�) = c1 + c2�. This
implies that 'k(�) = c1 + c2'k−1(�) for all k ∈ ℕ and so we have

0 =
5
∑

k=1
'k(�) = c1 + c2

5
∑

k=1
'k−1(�) = c1,

that is, '(�) − c2� = 0, and so x4 + x3 + x2 + x + 1 divides x − c2, a contradiction. Now, it is easy to check that {1, �, '(�)} is
a distinguished basis and thus the claim is proved. The case �3 = Id is handled similarly.
Finally, suppose that �2(a) = �3(a) = a2 for all a ∈ F . Consider s2 = A2 + B2 and s3 = A3 + B3 with Ai ∈ F and Bi ∈ F16,

for i = 2, 3. If A2 = 0 (resp. A3 = 0), we can take � = s2 ∈ F16 (resp. � = s3 ∈ F16) and, repeating the argument used
when �2 = Id, we can prove that {1, �, '(�)} is a distinguished F -basis of S. Otherwise, A2 ≠ 0, A3 ≠ 0 and we can take
0 ≠� = A−1

2 ∗ s2 +A−1
3 ∗ s3 = A−1

2 ∗ B2 +A−1
3 ∗ B3 ∈ F16 (observe that F is a weak nucleus and a ∗ � = � ∗ a2 for all a ∈ F ).

Using the previous argument, {1, �, '(�)} can be shown to be a distinguished F -basis of S.

We are able now to describe the product ∗ of the semifield S. First of all, from the previous result, we know that, if F is
a weak nucleus of S, there exists a distinguished F -basis {1, �, '(�)} of S. So, S can be seen as the direct sum of the weak
nucleus F , fixed by ', and the F -bimodule L = ⟨�, '(�)⟩F , which is invariant under '. Thus, any element s ∈ S can be written
as a sum s = s1 + s2 with s1 ∈ F and s2 ∈ ⟨�, '(�)⟩F . It is straightforward to see that, if a ∈ F , then a ∗ s = a ∗ (s1 + s2) =
s1 ∗ a + s2 ∗ �(a), where � is the automorphism of F associated with elements {�, '(�)} of the distinguished basis. Also,
'(s1 + s2) = s1 + '(s2). Taking these ideas into account, we can deduce the following result.

Theorem 3. Let (S,+, ∗) be a semifield with 64 elements and automorphism group Aut(S) = ⟨'⟩ isomorphic to 5. Let us
suppose that F = Fix(') ≅ F4 is a weak nucleus for S and that {1, �, '(�)} is a distinguished F -basis of S with associated
automorphism �. If S ≅ F ⊕L, with L ≅ F16, then there exist two F2-bilinear functions F ∶ F16×F16 → F4 andG ∶ F16×F16 →
F16 satisfying F ('(b), '(d)) = F (b, d) and G('(b), '(d)) = '(G(b, d)) for all b, d ∈ L, such that

(a + b) ∗ (c + d) = (a ∗ c + F (b, d)) + (a ∗ d + �(c) ∗ b + G(b, d)).

Proof. Since the product ∗ is distributive, it is clear that

(a + b) ∗ (c + d) = a ∗ c + a ∗ d + b ∗ c + b ∗ d = a ∗ c + a ∗ d + �(c) ∗ b + b ∗ d.

Notice that the product a ∗ c ∈ F , and that b ∗ c = �(c) ∗ b, sinceL has a distinguished basis associated with the automorphism
�. Let the product b ∗ d be F (b, d) +G(b, d), where F ∶ L × L→ F and G ∶ L × L→ L must be F2-bilinear functions, since
∗ is distributive and the centre of S is F2. Thus, we arrive to

(a + b) ∗ (c + d) = (a ∗ c + F (b, d)) + (a ∗ d + �(c) ∗ b + G(b, d)).

Since ' is an automorphism of S, the relation '(a+ b) ∗ '(c + d) = '((a+ b) ∗ (c + d)) holds. Expanding this equation and
using a, c, �(c) ∈ Fix('), we arrive at

F ('(b), '(d)) + G('(b), '(d)) = '(F (b, d)) + '(G(b, d)),

but F (b, d) ∈ F , which is fixed by '. So, we have

F ('(b), '(d)) + F (b, d) = G('(b), '(d)) + '(G(b, d)).

The sum F ⊕L is direct and L is invariant under ', so F ∩ L = 0 and the result follows.

As a consequence of this result, we can deduce the form of the functions F and G.

Corollary 1. The F2-bilinear function G ∶ F16 × F16 → F16 of Theorem 3 is of the form

G(b, d) =
3
∑

i=0

3
∑

j=0
gij b

2id2j ,
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with gij ∈ F16 for all 0 ≤ i, j ≤ 3. Moreover, gij must be 0 for all 0 ≤ i, j ≤ 3 such that 2i + 2j ≢ 1 mod 5.

Proof. For each b ∈ F16 consider the F2-linear application Gb ∶ F16 → F16 defined by Gb(d) = G(b, d) for all d ∈ F16.
From Theorem 2.1 of2, Gb(d) =

∑3
j=0 gj(b) d

2j . Now, notice that, for each 0 ≤ j ≤ 3, gj ∶ F16 → F16 is F2-linear, so
gj(b) =

∑3
i=0 gij b

2i . Thus, G(b, d) =
∑3
i=0

∑3
j=0 gij b

2id2j .
From Theorem 3, we know that '(G(b, d)) = G('(b), '(d)) for all b, d ∈ F16. Using Remark 1, this condition can be rewrite

as � G(b, d) = G(� b, � d), with � a 5tℎ−primitive root of unity. That is,

�

( 3
∑

i=0

3
∑

j=0
gij b

2id2j
)

=
3
∑

i=0

3
∑

j=0
gij�

2i+2j b2id2j ,

which implies gij�2
i+2j−1 = gij for all 1 ≤ i, j ≤ 3. So, gij = 0 whenever 2i + 2j ≢ 1 mod 5.

Corollary 2. The F2-bilinear function F ∶ F16 × F16 → F4 of Theorem 3 is of the form

F (b, d) =
3
∑

i=0

1
∑

j=0
TrF16F4

(fij b2
id2j ),

with fij ∈ F16 for all 0 ≤ i, j ≤ 3. Moreover, fij must be 0 for all 0 ≤ i ≤ 3, 0 ≤ j ≤ 1 such that 2i + 2j ≢ 0 mod 5.

Proof. Since F ∶ F16 × F16 → F4 is F2-linear, F (b, d) =
∑3
i=0

∑3
j=0 fij b

2id2j . For each b, d ∈ F16, F (b, d) ∈ F4 if and only if
F (b, d)4 = F (b, d), that is, if and only if

3
∑

i=0

3
∑

j=0
f 4
i−2 j−2 b

2id2j =
3
∑

i=0

3
∑

j=0
fij b

2id2j ,

where i, j are taken modulo 4. Thus, fij = f 4
i−2 j−2 for all 0 ≤ i ≤ 3, 0 ≤ j ≤ 3 and so

F (b, d) =
3
∑

i=0

1
∑

j=0

(

fij b
2id2j + fi+2 j+2 b2

i+2d2j+2
)

=

=
3
∑

i=0

1
∑

j=0

(

fij b
2id2j + f 4

i j (b
2i)4(d2j )4

)

=
3
∑

i=0

1
∑

j=0
TrF16F4

(fij b2
id2j ).

From Theorem 3, we know that F (b, d) = F ('(b), '(d)) for all b, d ∈ F16. Using Remark 1, this condition can be rewrite as
F (b, d) = F (� b, � d), with a � a 5tℎ−primitive root of unity. That is,

3
∑

i=0

1
∑

j=0

(

fij b
2id2j + f 4

ij b
2i+2d2j+2

)

=
3
∑

i=0

1
∑

j=0

(

fij�
2i+2j b2id2j + f 4

ij�
2i+2+2j+2 b2i+2d2j+2

)

,

which implies fij�2
i+2j = fij for all 1 ≤ i ≤ 3, 0 ≤ j ≤ 1. So, fij = 0 whenever 2i + 2j ≢ 0 mod 5.

From the computational classification of16, it can be checked that there exist 33 non isomorphic semifields (S,+, ∗) with 64
elements, automorphism group isomorphic to 5 and weak nucleus F4. Twelve of them are of type A and 21 of type B. The
semifields of type A are distributed in 4 different planes lying in the Knuth classes XVII and XVIII of16, whereas the other ones
coordinatize 5 planes in the Knuth classes XVIII and XXXIX of16.
From Corollaries 1 and 2 we know that

F (b, d) = TrF16F4
(f02bd4 + f13b2d8), G(b, d) = g21b

4d2 + g12b2d4 + g33b8d8.

The actual parameters for the different types and planes are shown in Table 1 . The element � ∈ F16 is a primitive 15-th root of
unity satisfying �4 + � + 1 = 0.
Except for the plane 7, all these semifields have an isotopy (H, J,K) of order 3 which commutes with the automorphism of

order 5. In such case, 15 must divide the order of the autotopism group. In agreement with16, for the Knuth classes XVII and
XVIII, this group has order 15 and so, it must be generated by the automorphism of order 5 and the isotopy (H, J,K). For the
Knuth class XXXIX, the autotopism group has order 5 and so it must be generated only by the automorphism.
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Type A Type B
Knuth class Plane F G Plane F G

XVII 1 TrF16F4
(�8bd4 + �9b2d8) �b8d8

2 TrF16F4
(�7bd4 + �b2d8) �b8d8

XVIII

3 TrF16F4
(�5b2d8) b4d2 + �b2d4 5 TrF16F4

(�5bd4) �b2d4 + b8d8

4 TrF16F4
(�5b2d8) �b4d2 + b2d4 6 TrF16F4

(�10b2d8) �b4d2 + b8d8

7 TrF16F4
(�10b2d8) b4d2 + �8b8d8

8 TrF16F4
(bd4) �5b2d4 + �b8d8

XXXIX 9 TrF16F4
(�8bd4 + �2b2d8) b4d2 + b2d4 + �b8d8

TABLE 1 Functions F and G of semifields of order 64 with automorphism group isomorphic to 5 and weak nucleus F4.

The different values for the triplets (H, J,K) can be seen in Table 2 . The element � ∈ F4 is a primitive 3-th root of unity
satisfying �2 + � + 1 = 0.

Type A Type B
Plane H(a, b) J (c, d) K(e, f ) Plane H(a, b) J (c, d) K(e, f )
1 (� a, � b) (�2c, �2d) (e, f ) 5 (� a, �2b) (� c, d) (�2e, � f )
2 (�2a, � b) (�2c, � d) (� e, f ) 6 (� a, b) (� c, � d) (�2e, �2f )
3 (� a, � b) (�2c, �2d) (e, f ) 8 (� a, b) (� c, � d) (�2e, �2f )
4 (�2a, � b) (�2c, � d) (� e, f ) 9 (� a, �2b) (� c, d) (�2e, � f )

TABLE 2 Isotopy (H, J,K) of order 3 for semifields of order 64 with automorphism group isomorphic to 5.

3 EXTENDING THE CONSTRUCTION: SPORADIC FINITE SEMIFIELDS OF ORDERS
256 AND 512

In this section, we introduce some examples of sporadic semifields constructed from a weak nucleus and a cyclic automorphism
group. The starting point are the semifields of 64 elements studied in the previous section.
Let F = F2n with n ∈ {2, 3}. We want to construct semifields S from the direct product of the field F , which will be a weak

nucleus for S, and the field K = F2nk for different values of k. Notice that F is a subfield of K and so K can be seen as a vector
space over F . Let us consider � ∈ K an s−th primitive root of unity for an appropriate s | 2nk−1. Let (S,+) be the direct product
of the additive groups (F ,+) and (K,+), that is S = F × K. Inspired by the behaviour of the semifields of 64 elements studied
in the previous section, we define a product ∗ in (S,+, ⋅) in the following way

(a, b) ∗ (c, d) = (a ⋅ c + F (b, d) , a ⋅ d + �(c) ⋅ b + G(b, d)), (1)

where � ∈ Aut(F ) and F ∶ K × K → F and G ∶ K × K → K are F2-bilinear functions. It is easy to see that ∗ is a well-defined
distributive product due to the F2-bilinearity of F and G. Moreover, the element (1, 0) is an identity for ∗.
The ring (S,+, ∗) will be a semifield if and only if there are no zero divisors for the product ∗. From now on, let us suppose

that (S,+, ∗) is a semifield. Then, we can prove some facts about the structure of S.

Proposition 1. Let (S,+, ∗) be a semifield with multiplication defined by (1). Then, the field F is a weak nucleus for S.
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Proof. SinceS = F ×K, we identify the field F with the elements (a, 0) ∈ S, which clearly is a subfield ofS. From the definition
of the product ∗, and using the fact that F and G are F2 bilinear functions, we have that

(

(a1, 0) ∗ (a2, 0)
)

∗ (c1, c2) =
(

(a1 ⋅ a2) ⋅ c1, (a1 ⋅ a2) ⋅ c2
)

(a1, 0) ∗
(

(a2, 0) ∗ (c1, c2)
)

=
(

a1 ⋅ (a2 ⋅ c1), a1 ⋅ (a2 ⋅ c2)
)

The equality
(

(a1, 0) ∗ (a2, 0)
)

∗ (c1, c2) = (a1, 0) ∗
(

(a2, 0) ∗ (c1, c2)
)

comes from the associativity of the product of the field
K. Notice that, since F is a subfield of K, we can see the product of F as the restriction of the product of K.
In a similar way, since � ∈ Aut(F ), we can see that

(

(a1, 0) ∗ (b1, b2)
)

∗ (a2, 0) = (a1, 0) ∗
(

(b1, b2) ∗ (a2, 0)
)

(

(b1, b2) ∗ (a1, 0)
)

∗ (a2, 0) = (b1, b2) ∗
(

(a1, 0) ∗ (a2, 0)
)

So, F is a weak nucleus for S.

Using the same arguments presented in Corollaries 1 and 2, it is easy to see that the F2-bilinear functions F and G must have
the following form

F (b, d) =
∑nk−1
i=0

∑n−1
j=0 Tr

K
F (fij b

2id2j ), G(b, d) =
∑nk−1
i=0

∑nk−1
j=0 gij b2

id2j . (2)
Let ' ∶ S → S be the map defined by '(a, b) = (a, � ⋅ b) for all (a, b) ∈ S. We can ensure that ' is an automorphism of the

semifield (S,+, ∗) provided that the functions F and G satisfy certain conditions.

Proposition 2. Let (S,+, ∗) be the semifield with multiplication defined by (1). The map ' ∶ S → S defined by '(a, b) =
(a, � ⋅ b) is an automorphism of (S,+, ∗) if and only if F (� ⋅ b, � ⋅ d) = F (b, d) and G(� ⋅ b, � ⋅ d) = � ⋅G(b, d) for all (b, d) ∈ S.

Proof. First of all, we will prove that ' is bijective. Notice that if '(a, b) = '(c, d) then a = c and � ⋅ (b−d) = 0, which implies
b = d. Therefore, ' is injective and so bijective by finiteness.
Now, we will prove that ' is an homomorphism of (S,+, ∗). Notice that

'((a, b) + (c, d)) = '(a + c, b + d) = (a + c , � ⋅ (b + d)) = '(a, b) + '(c, d).

From the definition of the product ∗, we have

'((a, b) ∗ (c, d)) = (a ⋅ c + F (b, c) , � ⋅ (a ⋅ d + �(c) ⋅ b + G(b, d))).

On the other hand,

'(a, b) ∗ '(c, d) = (a ⋅ c + F (� ⋅ b, � ⋅ d) , a ⋅ (� ⋅ d) + �(c) ⋅ (� ⋅ b) + G(� ⋅ b, � ⋅ d)).

Which leads to F (� ⋅ b, � ⋅ d) = F (b, d) and G(� ⋅ b, � ⋅ d) = � ⋅ G(b, d) for all (b, d) ∈ S. The converse is trivial.

Corollary 3. If ' is an isomorphism of (S,+, ∗) with multiplication defined by (1), then fij must be 0 for all 0 ≤ i ≤ nk − 1
and 0 ≤ j ≤ n − 1 such that 2i + 2j ≢ 0 mod s. Moreover, gij = 0 for all 0 ≤ i, j ≤ nk − 1 such that 2i + 2j ≢ 1 mod s.

Proof. It suffices to apply the same argument of Corollaries 1 and 2, taking into account that the multiplicative order of � is
s.

Now, we will analyse which conditions must verify the F2-bilinear functions F and G in order to make (S,+, ∗) a semifield.
That is, in order to avoid zero divisors for the product ∗. In particular, we will apply the techniques presented in10.
We start from the expression of the product ∗, that is

(a, b) ∗ (c, d) = (a ⋅ c + F (b, d) , a ⋅ d + �(c) ⋅ b + G(b, d)).

Recall that a, c ∈ F whereas b, d ∈ K. We get a zero divisor when (a, b) ∗ (c, d) = (0, 0) but neither (a, b) = (0, 0) nor
(c, d) = (0, 0). In such case, we arrive at the following equations

a ⋅ c + F (b, d) = 0,
a ⋅ d + �(c) ⋅ b + G(b, d) = 0.

Let us suppose that a ⋅ c ≠ 0. So, there exists an element x ∈ F such that a = x ≠ 0 and c = x−1 ⋅ F (b, d). Substitution in the
other equation leads us to

x ⋅ d + �(x)−1 ⋅ �(F (b, d)) ⋅ b + G(b, d) = 0.
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This expression can be transformed into the following one

d ⋅ �(x) ⋅ x + G(b, d) ⋅ �(x) + �(F (b, d)) = 0, (3)

which can be seen as a set of polynomials inK[x]. Thus, if any of these polynomials has a root in F, then we can ensure that there
exists a zero divisor inS. The converse is also true. That is, if there exist elements (a, b) and (c, d) such that (a, b) ∗ (c, d) = (0, 0)
with a ⋅ c ≠ 0, then it is easy to see that x = a ∈ F is a root of the polynomial

d ⋅ �(x) ⋅ x + G(b, d) ⋅ �(x) + �(F (b, d))

for certain values of b and d.
If a ⋅ c = 0, then we have F (b, d) = 0 and either a = 0 or c = 0. In such case, there exists a zero divisor if the equation

�(c) ⋅ b + G(b, d) = 0 has a solution with b ≠ 0, or if a ⋅ d + G(b, d) = 0 for some d ≠ 0.
We have constructed some examples of new semifields starting from a weak nucleus F with a designed automorphism '. In

particular, we have chosen F to be the field F4 or F8 whereas the field K is given by an extension of F. The most difficult step
consists on the verification of the absence of zero divisors. For doing that, the previous techniques were applied with the help
of Magma,1. Our results are summarized in Table 3 .

F ∖ K F4 F8 F16 F64 F256

F4

'3 = 1 �(a) = a2 n/a '5 = 1 �(a) = a '9 = 1 �(a) = a2 '17 = 1
�(a) = a2 '51 = 1

'85 = 1
'255 = 1

#Planes 2 9 6 0

F8
n/a '7 = 1 n/a '9 = 1 �(a) = a n/a

�(a) = a2

�(a) = a4

#Planes 0 18

TABLE 3 Possible choices for automorphisms in semifields with weak nucleus.

The weak nucleus F appears in the rows of the table, while the columns represent the field K. Since F must be a subfield of
K there are some forbidden combinations. Such is the case of F = F4, K = F8 and, for F = F8, K = F4, F16 and F256. The new
semifields are characterized by the order of the automorphism ' and � ∈ Aut(F). For F = K = F8 there are no semifields with
an automorphim of order 7, as can be seen in the classification of16, whereas for F = F4 and K = F256 no semifields with an
automorphism of order 17 have been found.
The semifields S = (F4 × F4,+, ∗) are already known. This construction provides semifields with 3 and 6 automorphisms

which are isotopic to the systems V andW of Section 2.2 of10. The same happens with S = (F4 × F16,+, ∗) for the two possible
choices of �: these semifields are exactly those considered in the previous section.
The computational process for finding the new semifields is the following one. First of all, we choose the field F = F2n , which

will be the weak nucleus for S, and an extension K = F2nk of F. Now, we fix a F2-basis {1, �,… , �nk−1} for K and choose an
automorphism � of F. Recall that the multiplicative order, s, of � will be the order of the automorphism ' of S. With Magma,1,
we construct the functions F and G for all possible choices of the coefficients fij and gij (notice that some of these coefficients
are known to be 0), and then we find the roots of polynomial (3) for all possible choices of b, d ∈ K. If there exists a root in F,
then we have found a zero divisor and (S,+, ∗) can not be a semifield. Otherwise, we calculate (a, b) ∗ (c, d) for all a, c ∈ F
and b, d ∈ K and verify the absence of zero divisors. If there are none of them, we have found a new semifield (S,+, ∗) with an
automorphism ' of order s and weak nucleus F.
Some semifields have been found with weak nucleus F = F4 and K = F64. They all have order 256 and automorphism group

isomorphic to 9. From Corollary 3, we know that the functions F and G must have the following form

F (b, d) = TrF64F4
(f30b8d + f41b16d2), G(b, d) = g31b

8d2 + g13b2d8 + g55b32d32.
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Plane F (b, d) G(b, d) Atm(S) Atp(S)

1
TrF64F4

(�57b16d2) �b8d2 + �44b2d8 + �12b32d32

9 9 × 3

TrF64F4
(�12b16d2) �b8d2 + �47b2d8 + �27b32d32

TrF64F4
(�21b16d2) �b8d2 + �59b2d8 + �24b32d32

2
TrF64F4

(�60b16d2) b8d2 + �29b2d8 + �22b32d32

TrF64F4
(�42b16d2) �3b8d2 + �26b2d8 + �58b32d32

TrF64F4
(�3b16d2) �3b8d2 + �46b2d8 + �8b32d32

3
TrF64F4

(�42b16d2) �b8d2 + �6b2d8 + �47b32d32

TrF64F4
(�33b16d2) �b8d2 + �18b2d8 + �17b32d32

TrF64F4
(�15b16d2) �b8d2 + �21b2d8 + �41b32d32

4
TrF64F4

(�39b16d2) �b8d2 + �11b2d8 + �48b32d32

TrF64F4
(�48b16d2) �b8d2 + �35b2d8 + �33b32d32

TrF64F4
(�3b16d2) �b8d2 + �41b2d8 + �45b32d32

5
TrF64F4

(�24b16d2) �b8d2 + �18b2d8 + �11b32d32

TrF64F4
(�21b16d2) �3b8d2 + �46b2d8 + �41b32d32

TrF64F4
(�15b16d2) �3b8d2 + �26b2d8 + �61b32d32

6
TrF64F4

(�6b16d2) �b8d2 + �6b2d8 + �23b32d32

TrF64F4
(�24b16d2) �b8d2 + �18b2d8 + �11b32d32

TrF64F4
(�60b16d2) �b8d2 + �21b2d8 + �8b32d32

TABLE 4 Functions F and G of new semifields of order 256 with a weak nucleus F4, and their automorphism (Atm(S)) and
autotopy (Atp(S)) groups (all of them lie in the same Knuth class).

We have only found semifields when the automorphism � is of the form �(a) = a2 for all a ∈ F. Thus, the product ∗ of S is
given by

(a, b) ∗ (c, d) = (a ⋅ c + F (b, d) , a ⋅ d + c2 ⋅ b + G(b, d)),

where the explicit form of F (b, d) and G(b, d) is given in Table 4 . The element � ∈ K is a primitive 63-th root of unity
satisfying �6 + �4 + �3 + � + 1 = 0. As can be seen in that table, we have found a total of 18 non isomorphic semifields, lying
in six different planes. All these planes are in the same Knuth orbit.
By construction, for all these semifields the map '(a, b) = (a, � ⋅ b), is an automorphism of order 9. Thus, the order of their

automorphism group, |Atm(S)|, must be a multiple of 9. After computational verification we found that, in fact, |Atm(S)| = 9
and so, the automorphism group of any of these semifields is isomorphic to the cyclic group 9. On the other hand, if � ∈ F64
is a 3-rd root of unity, it is easy to see that the triple (H, J,K), defined byH(a, b) = (�2 ⋅ a, �2 ⋅ b), J (c, d) = (�2 ⋅ c, � ⋅ d) and
K(e, f ) = (� ⋅ e, f ), satisfies the relation H(a, b) ∗ J (c, d) = K((a, b) ∗ (c, d)) and so, it is an isotopy of S of order 3 which
commutes with the automorphism '. Then, the autotopism group, Atp(S), must contain the group 9 × 3 as subgroup. Using
the computational methods of5, we verified that Atp(S) ≅ 9 × 3.
In the case F = F4 and K = F256 with an automorphism ' of order 17, we obtain from Corollary 3 that F (b, d) =

TrF256F4
(f14bd16 + f15b2d32) and G(b, d) = g41b16d2 + g14b2d16 + g77b128d128. After a systematic computational search for these

semifields, we have not found any of them. For the automorphisms of order 51, 85 and 255, the function F (b, d)must be identi-
cally zero and G(b, d) = g77b128d128. As in the previous case, there are no semifields of this kind. A proof of the non existence
of these semifields is provided in Theorem 5.
The results obtained for semifields with weak nucleus F = F8 and K = F64 are summarized in Table 5 . The element � ∈ K is

a primitive 63-th root of unity such that �6 + �4 + �3 + � + 1 = 0. We have found a total of 94 non-isomorphic such semifields
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Knuth Class Plane F (b, d) G(b, d) Atm(S) Atp(S)

I 1 TrF64F8
(�12b8d + �6b32d4) �42b32d32 9 ⋊ 3 63 ⋊ 313 TrF64F8
(�12b8d + �6b32d4) �21b32d32

II 2 TrF64F8
(�13b8d + �58b16d2 + �2b32d4) �5b32d32 9 633 TrF64F8
(�31b8d + �49b16d2 + �2b32d4) �31b32d32

III 4 TrF64F8
(�46b8d + �6b16d2 + �6b32d4) �19b32d32 9 637 TrF64F8
(�4b8d + �24b16d2 + �6b32d4) �50b32d32

IV 6 TrF64F8
(�38b8d + �12b16d2 + �2b32d4) �4b32d32 9 6312 TrF64F8
(�11b8d + �57b16d2 + �2b32d4) �14b32d32

V 9 TrF64F8
(�29b8d + �5b16d2 + �6b32d4) �14b32d32 9 6310 TrF64F8
(�29b8d + �5b16d2 + �6b32d4) �49b32d32

VI 5 TrF64F8
(�34b8d + �18b16d2 + �2b32d4) �42b32d32 9 638 TrF64F8
(�52b8d + �9b16d2 + �2b32d4) �12b32d32

VII

11 TrF64F8
(�27b16d2) �3b8d2 + �45b2d8

9 ⋊ 3 63 ⋊ 3

14 TrF64F8
(b16d2) b8d2 + �42b2d8

15 TrF64F8
(b32d32) b8d2 + �21b32d32

16 TrF64F8
(�54b32d32) �3b8d2 + b32d32

17 TrF64F8
(b8d) �42b2d8 + b32d32

18 TrF64F8
(b8d) b2d8 + �42b32d32

TABLE 5 Functions F and G of new semifields of order 512 with a weak nucleus F4, and their automorphism (Atm(S)) and
autotopy (Atp(S)) groups.

of order 512 distributed in 18 planes. The product ∗ is of the form

(a, b) ∗ (c, d) = (a ⋅ c + F (b, d) , a ⋅ d + �(c) ⋅ b + G(b, d)),

with F (b, d) = TrF64F8
(f30 b8d+f41 b16d2+f52 b32d4) andG(b, d) = g31 b8d2+g13 b2d8+g55 b32d32, as is established in Corollary

3. The automorphism � is the identity for planes 1–14, �(a) = a2 for planes 15 and 16, and finally, �(a) = a4 for planes 17 and
18.
By construction, the map '(a, b) = (a, � ⋅ b), with � ∈ F64 a primitive 9-th root of unity satisfying �6 + �3 + 1 = 0, is an

isomorphism of S. So, the group Atm(S) must have a cyclic subgroup of order 9. The planes 1, 11, 13, 14, 15, 16, 17 and 18
have another automorphism � of order 3, that can be found in Table 6 . It is straightforward to see that �'�−1 = '7 and so, the
group Atm(S)must contain the groupG = ⟨g1, g2 | g91 = 1 , g32 = 1 , g2g1g−12 = g71⟩ as a subgroup. This group has order 27 and
is isomorphic to a semidirect product 9 ⋊ 3. Using computational methods, we verified that the group Atm(S) has order 27
and so it is equal to G. The remaining 10 planes have no other automorphism apart from ' and its powers and so, Atm(S) ≅ 9
for all of them.
Planes 1, 2, 4, 5, 6 and 9 lie on the Knuth classes I to VI. Each class also contains the dual plane of the chosen representative

(i.e., planes 13, 3, 7, 12, 10 and 8) see Table 5 . The other six planes constitute a single Knuth class: VII. For semifields in
classes I and VII, we can find an isotopy (H, J,K) of order 7, see Table 6 , which commutes with the automorphism '. Thus,
we have an isotopy (H̃, J̃ , K̃) = (H ⋅ ', J ⋅ ',K ⋅ ') of order 63 which verifies that � ⋅ (H̃, J̃ , K̃) ⋅ �−1 = (H̃, J̃ , K̃)16 for all �
in Table 6 . So, the autotopy group, Atp(S), for semifields in classes I and VII must contain the subgroup G = ⟨g1, g2 | g631 =
1 , g32 = 1 , g2g1g−12 = g161 ⟩ which is isomorphic to a semidirect product 63 ⋊ 3.After a computational verification, we
found that Atp(S) has order 189 and so, Atp(S) = G. For classes II to VI, there exist the automorphism ' and the isotopy
(H, J,K) of order 7 given byH(a, b) = (�6a, �6b), J (c, d) = (�c, �d) and K(e, f ) = (e, f ), where � is a 7-th root of unity. The
automorphism and the isotopy commute, so, in this case, the autotopy group Atp(S) contains the direct product 9 × 7 ≅ 63.
Using computational methods, we found that, in fact, Atp ≅ 63.
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Knuth Class Plane �(a, b) H(a, b) J (c, d) K(e, f )

I 1 (a2, �6b16) (�6a, �6b) (�c, �d) (e, f )
13 (a2, �6b16) (�6a, �6b) (�c, �d) (e, f )

VII

11 (a2, �12b16) (�a, �4b) (�c, �4d) (�2e, �5f )
14 (a2, b16) (�a, �4b) (�c, �4d) (�2e, �5f )
15 (a2, b16) (�2a, �3b) (�6c, �6d) (�e, �f )
16 (a2, �54b16) (�2a, �3b) (�6c, �6d) (�e, �f )
17 (a2, b16) (�5a, �6b) (�4c, �3d) (�2e, �f )
18 (a2, b16) (�5a, �6b) (�4c, �3d) (�2e, �f )

TABLE 6 Automorphism � of order 3 and Isotopy (H, J,K) of order 7 for semifields of order 512 in Knuth classes I and VII.
The element � is a 7-th root of unity.

3.1 Proof that the sporadic semifields are new
In this subsection we provide some facts which show that the sporadic semifields described in this work are new. Since the size
of the nuclei Nl, Nr and Nm, is invariant under isotopy transformations, we will use this information in order to prove that the
constructed semifields are actually new.
The sporadic semifields with 256 elements lie in a unique Knuth orbit, and the size of their nuclei is |Nl| = |Nr| = |Nm| = 2.

In agreement with12, these semifields could be in the Knuth orbit of:

1. Hughes-Kleinfeld semifields of order 22⋅4 and Sandler semifields of order 24⋅2 with center of order 2. All these semifields
have at least two of their nuclei of size 4. So, they can not be isotopic to any of the semifields constructed in this section.

2. Knuth semifields of type I, II, III or IV and binary Knuth semifields. Knuth semifields of type II, III and IV must have
two nuclei of size 24. So, the only ones that can be isotopic to the semifields found in this section are those of type I.
Using computational methods, we found that the our semifields are neither Knuth semifields of type I nor binary Knuth
semifields, since they are not commutative.

In addition, we have taken into account the constructions of semifields presented in18. They generalize some known structures
like generalized twisted fields and cyclic semifields, but some of them are completely new. As can be seen in Corollary 2 of18,
there are two different families of these semifields. The first one is denoted by Sn,s,1(�, �, F ) ≤Mn(Fqs) ≤Mns(Fq), with q = pe,
� ∈ Fqn , � ∈ Aut(Fqn) and F an irreducible polynomial over K[x], with K a subfield of Fqn . The second family is denoted by
Sn,s,k(0, 0, F ), with F an irreducible polynomial over K[x]. In any case, for semifields of order 256, the size of their nuclei can
never be equal to |Nl| = |Nr| = |Nm| = 2. Thus, the semifields described in this section can never be isotopic nor fall in the
Knuth orbit of those presented in18.
There exist seven different Knuth classes for the sporadic semifields with 512 elements. The size of the nuclei for semifield

III in Table 5 are |Nl| = |Nr| = |Nm| = 2, whereas for the other ones we have |Nl| = |Nr| = 2, |Nm| = 8. From12, these
semifields could be isotopic to some of the following ones:

1. Albert generalized twisted fields of order 29. These semifields have center of order 23. So, they can not be isotopic to
semifields in Table 5 since the formers have center isomorphic to F2.

2. Knuth binary semifields. These semifields are commutative and so their Knuth orbits have 3 semifields at most. However,
it has been computationally checked that the Knuth orbit of semifields in Table 5 always has 6 semifields.

3. Jha-Johnson cyclic semifields. They are a special case of the construction in18, and they will be analysed latter on.

4. Kantor-Williams symplectic pre-semifields of order 29 or 83 and their commutatives Knuth derivatives. Again, the Knuth
orbit of these semifields has 3 semifields at most, so those in Table 5 can not be isotopic to any of them.

Finally, we have to consider the semifields Sn,s,1(�, �, F ) and Sn,s,1(0, 0, F ) of18. There are only two possible choices for the
parameters n and s in order to construct semifields with nuclei of sizes |Nl| = |Nr| = |Nm| = 2 or |Nl| = |Nr| = 2 and
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|Nm| = 8. For the first case, n = 3, s = 1 and q = 23. By Remark 8 of18, these semifields must be Albert generalized twisted
fields. But, in that case, the nuclei and the center must have 8 elements, which leads to a contradiction. So, n = 3, s = 3, q = 2
and the semifield must be of type S3,3,1(�, �, F ). From Theorem 6 of18, this election of parameters implies � = 0 and so, as
a consequence of Theorem 8 of18, the semifield must be of type S3,3,1(0, 0, F ). In such a case, the sizes of the nuclei must be
|Nl| = |Nm| = 23, |Nr| = 29, which is impossible.

4 CONCLUSIONS

In this work we have studied the structure of some division rings with 64 elements and automorphism group isomorphic to the
cyclic group 5. Using the techniques presented in10, we have been able to extend this behaviour to other finite division rings
with 256 and 512 elements and with a designed automorphism group. Notice that all these rings are 3-dimensional vector spaces
over the weak nucleus instead of 2-dimensional, as in10. These rings have been classified into Knuth orbits and their autotopism
group has been calculated. Finally, we have proved that these rings do not belong to the large class of semifields presented in18.
The work finishes with some results about the non existence of division rings with 256 and 1024 and certain automorphisms
groups.
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APPENDIX

A NON EXISTENCE RESULTS

In this last section, we collect some results on the nonexistence of semifields with weak nucleus and designed automorphism
group.
In the case of semifields with 256 elements with weak nucleus F = F4 and K = F64 there exist two more possible choices for

the automorphism group. However, it is not possible to construct such semifield, as it is proved in the following result.

Theorem 4. There are no semifields S = (F4 × F64,+, ∗) with multiplication defined by (1) with an automorphism ' of order
21 or 63.

Proof. From Corollary 3, the order of the automorphism ' implies that, from (2), F (b, d) = 0 and G(b, d) = g55b32d32 for
all b, d ∈ F64. So, (a, b) ∗ (c, d) = (0, 0) is equivalent to the conditions a ⋅ c = 0 and a ⋅ d + �(c) ⋅ b + g55b32d32 = 0. If
g55 = 0, then (a, b) = (c, d) = (0, 1) are zero divisors. So let us assume that g55 ≠ 0. Let � ∈ F64 be a primitive 63-th root of
unity, so that g55 = �k, for some integer k. Let us suppose that a = 0 and that b, c, d ≠ 0. Then, �(c) ⋅ b = g55b32d32 and so,
�(c) = g55(db−1)32 because b63 = 1 gives b−32 = b31. Since � ∈ Aut(F4), the latter equation has a valid solution if and only
if (g55d32b−32)4 = g55d32b−32, that is, if and only if (db−1)30 = g355 because (db

−1)63⋅2 = 1 gives (db−1)−32⋅3 = (db−1)30. The
previous equation can be written as �30i = �3k, and it has solutions if and only if the congruence 30i ≡ 3k (mod 63) has any
solutions in ℤ, which is true because gcd(30, 63) = 3 trivially divides 3k for any k. Let i be any one of these solutions, and let
z = �i. For any b ≠ 0, let Rb−1 be the right multiplication by b−1 in F64. This operator is surjective, so there exists an element d
such that Rb−1(d) = z. Then, (db−1)30 = �30i = �3k = g355 and so, we have found an element d ≠ 0 such that (0, b) ∗ (c, d) = 0
and S cannot be a semifield.

For semifields with 1024 elements and weak nucleus F = F4, notice that it is also possible to take automorphisms of order
51, 85 and 255. In such case, the functions F and G given in (2) must be F (b, d) = 0 and G(b, d) = g77b128d128. It is easy to see
that there are no semifields of this kind.

Theorem 5. There are no semifields S = (F4 × F256,+, ∗) with multiplication defined by (1) with an automorphism ' of order
51, 85 or 255.
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Proof. As in the proof of the previous theorem, it suffices to find b, d ∈ F ∗
256 such that (db

−1)126 = g377. If � ∈ F256 is a primitive
255-th root of unity, this condition is equivalent to solve the congruence 126i ≡ 3k (mod 255) for a certain k such that g77 = �k.
But this congruence can always be solved, because gcd(126, 255) = 3 divides 3k for any k. The rest of the proof is as in the
previous theorem and will be omitted.

Finally, we state the following result about the non existence of semifields of order 1024 with weak nucleus F = F8 and
automorphism group of order 21 or 63. The proof is similar to those of Theorems 4 and 5 and will be omitted.

Theorem 6. There are no semifields S = (F8 × F64,+, ∗) with multiplication defined by (1) with an automorphism ' of order
21 or 63.
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