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Abstract—Technology can highly enhance the quality of life of
elderly people when living autonomously. Actually, fall detection
is one of the possible improvements: having an oracle to request
help in case of falling may succed in provining confidence to
adults who have already fallen, for instance. In a recent study,
a wrist worn wearable solution has been proposed based on
threshold for peak detection and several low computational
models for classifying the peak events as related with falls. It
was found that ensembles could lead to a better performance of
the system. In this research, a preliminary study in ensembling
the classifiers is proposed, analysing the outcome in each case
for each of the different scenarios initially proposed. Although a
very simple ensemble solution is used, results suggest this may
be the solution when a robust fall detection system is needed.

Index Terms—Fall Detection, Neural Networks, Support Vector
Machines, Ensemble of Classifiers

I. INTRODUCTION

Fall Detection (FD) is a very active research area, with
many applications in health care, work safety, etc. [1]. Even
though there are plenty of commercial products, the best rated
products only reach 80% of success [2]. There are basically
two types of FD systems: context-aware systems and wearable
devices [3], [4]. FD has been widely studied using context-
aware systems, i.e. video systems [5]; nevertheless, the use of
wearable devices is crucial because of the high percentage of
elderly people and their desire to live autonomously at their
own house [6].

By far, tri-axial accelerometry (3DACC) is the most used
option within the literature of FD [7]–[11]. Different solutions
have been proposed to perform the FD, for instance, a feature
extraction stage and SVM have been applied directly in [7],
[9], using some transformations and thresholds with very
simple rules for classifying an event as a fall [10]–[12]. A
comparison of classifiers has been presented in [8].

As stated in [13], the most common location of the 3DACC
sensor is on the waist. This location has been proven valid
for FD when the subject suffers from a impairment disease;
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however, it might not be the best option when focusing on
autonomous population. It is suggested that, for this sort of
people, a wrist-based solution would suit better. Furthermore,
in [13], an improvement of a FD method has been proposed
using a 3DACC wearable device placed on a wrist. Although
good results were given, the solution needs further improve-
ments to reduce the false alarms or the undetected events. One
of the possible solutions is to use an ensemble of classifiers
using those models that performed the best. In this study,
a very simple combination of these methods is proposed,
analysing the outcome of the ensemble of the methods.

Next section deals with the description of the FD system
and the details of the model ensemble. Section III deals with
the datasets and the evaluation of the hypothesis. Section IV
shows and discusses the obtained results. Finally, conclusions
are drawn.

II. FALL DETECTION WITH WRIST-WORN WEARABLES

The method was originally proposed in [14], being extended
in [13]. Basically, it is a threshold-based peak detection
stage followed by feature extraction and classification stages.
Several different models were proposed. In this study we
suggest ensembling them to improve the FD.

In the next subsection, the peak detection and feature extrac-
tion stages are detailed, while in subsection II-B the different
models and the ensemble of the outcome are described.

A. Peak detection and feature extraction

As proposed in [13], [14], a very simple finite state machine
is used to detect the falls; this state machine is shown in
Figure 1. The data gathered from a 3DACC located on the
wrist is processed using a sliding window. A peak detection
is performed, and if a peak is found, the data within the
sliding window is analysed to extract several features which
are ultimately classified as FALL or NOT_FALL. The FD
block is performed with a classifier. In [15] it was claimed that
the lower the computational cost of the classifier the better as
it must be run in the wearable device.
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Fig. 1: Block diagram of the solution. Upper part: both the
threshold and the classifier are trained using a dataset. Center
part: the finite state machine, the bouncing and post fall timers
are set to 1000 and 1500 ms, respectively. Bottom part: the
features are computed and the extracted sample is classified
whenever a peak is detected.

The feature extraction is executed whenever a peak is
detected and follows the dynamics within a fall -refer to Fig. 2-
. Let us assume that gravity be g = 9.8m/s. Given the current
timestamp t, we find a peak at peak time pt = t − 2500ms
(point 1) if at time pt the magnitude of the acceleration at -see
Equation 1- is higher than th1 = 3× g and there is no other
peak in the period (t − 2500ms, t] (no other a value higher
than th1). If this condition holds, then it is stated that a peak
occurred at pt.

at =
√

a2tx + a2ty + a2tz (1)

The impact end (ie) (point 2) denotes the end of the fall
event; it is the last time for which the a value is higher than
th2 = 1.5×g. Finally, the impact start (is) (point 3) denotes
the starting time of the fall event, computed as the time of
the first sequence of an a <= th3 (th3 = 0.8 × g) followed
by a value of a >= th2. The impact start must belong to the
interval [ie− 1200 ms, pt]. If no impact end is found, then it

is fixed to pt+1000 ms. If no impact start is found, it is fixed
to pt. From now on and without loosing generalization, as
long as we we know the sampling frequency, we can refer
to timestamp or to positions within a sliding window that
includes the samples in [is, ie].

When using subindex i we refer to the sample position
within the sliding window, and when using subindex t we refer
to a timestamp; however, they are interchangeable. When a
peak is detected the feature extraction is performed, computing
for this peak time several parameters and features.

With these three times -is, pt, ie- calculated, the following
transformations should be computed:
• Average Absolute Acceleration Magnitude Variation,

AAMV =
∑ie

t=is
|at+1−at|

N , with N the number of sam-
ples in the interval.

• Impact Duration Index, IDI = ie− is.
• Maximum Peak Index, MPI = maxt∈[is,ie](at).
• Minimum Valley Index, MV I = mint∈[is−500,ie](at).
• Peak Duration Index, PDI = pe− ps, with ps the peak

start defined as the time of the last magnitude sample
below thPDI = 1.8 × g occurred before pt, and pe, the
peak end defined as the time of the first magnitude sample
below thPDI = 1.8× g occurred after pt.

• Activity Ratio Index, ARI , calculated as the ratio be-
tween the number of samples not in [thARIlow0.85 ×
g, thARIIhigh = 1.3×g] and the total number of samples
in the 700 ms interval centered in (is+ ie)/2.

• Free Fall Index, FFI , the average magnitude in the
interval [tFFI , pt]. The value of tFFI is the time between
the first acceleration magnitude below thFFI = 0.8 × g
occurring up to 200 ms before pt; if not found, it is set
to pt− 200 ms.

• Step Count Index, SCI , measured as the number of peaks
in the interval [pt− 2200, pt].

As stated in the Introduction section of this study, several
solutions for FD are based on threshold to detect peaks plus
an extra processing [10], [16]–[18]. The solution proposed
in [14] is not different. Furthermore, several thresholds are
used in that study not only to detect a peak but also to
compute the extracted features. All of them have been fixed by
analysing the gathered data, establishing some typical values
for the features for the class FALL. In otder to obtain a better
threshold, [13] proposed the use of computational intelligence
and optimization, suggesting that Genetic Algorithms and
Simulated Annealing would find most suitable values for the
threshold.

B. Ensemble of models

According to the block diagram, each sample of these eight
features is classified as a fall event or not using the predefined
model. Therefore, this model has to be trained; this topic is
covered in the next subsection.

As explained in [13], several different low computational
models were proposed to classify each peak as Fall or
Not_Fall; the constraint of reduced computational capacity
is a current limit in nowadays wearable devices. Therefore,
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Fig. 2: Graph elaborated from [14], showing the evolution of
the magnitude of the acceleration in multiples of g. Analysing
the signal at time stamp t, the peak condition described in
the text must be found in order to detect a fall. The x-axis
represents the time; each mark corresponds to 500 ms.

Decision Trees (DT) suing C5.0, Rule Based Systems (RBS)
also using C5.0, and Support Vector Machines (SVM) were
added to the original option of feed-forward Neural Networks
(NN).

Provided there exists a collection of Time Series (TS) with
data gathered from real falls or from Activities of Daily Living
(ADL), a training phase can be proposed to train the FD model.
Let us consider a dataset containing {TSL

i }, with i = 1 · · ·N ,
where n is the number of TS samples and L is the assigned
label; that is, a sample of this dataset is a TSL

i with the data
gathered from a participant using a 3DACC on the chosen
location, i.e., on a wrist. Let us assume we know a priori
whether this TSL

i includes or not the signal gathered when a
fall occurred; therefore, each TS is labelled as L = FALL or
L = NOT_FALL.

Now, let us evaluate the peak detection and the feature
extraction blocks for each TS. Whenever a TSL

i has no peak,
the TSL

i is discarded. When a peak is detected for TSL
i , then

the eight features are computed, and label L can be assigned
to this new sample. Therefore, a new dataset is created with
M eight features labelled samples, with M ≤ N . This dataset
was used in [14] to train the feed-forward NN.

Nevertheless, it has been found that this solution i) might
generate more than a sample for a single TSL

i -which is not a
problem-, and ii) certainly will generate a very biased dataset,
with the majority of the samples belonging to the class FALL.
From their study [14], it can be easily drawn that the main
reason of a 100% of detection is this biased dataset.

Consequently, in this research we propose to include a
dataset balancing stage using SMOTE [19], so at least a 40/60
ratio is obtained for the minority class.

Therefore, in this study we discard the method of DT
because it was the one that was found with higher number
of undetected events and higher number of false alarms. The
remaining three models (RBS, SVM and NN) will be used
as independent classifiers; the ensemble is computed as the
weigthed sum of the outcomes of the three models, using
the same weight for each one. As mentioned before, this is
a preliminary study and just a simple solution is fetched in

order to evaluate whether the outcome of the system can be
enhanced or not.

III. MATERIAL AND METHODS

A. Public Datasets

A common way of studying FD is by developing a dataset of
simulated falls plus extra sessions of different ADL. All these
TS are labelled and become the test set for the corresponding
study. The vast majority of these datasets were gathered with
the sensor attached to the main body -either on the chest, waist,
lumbar area, or thigh-.

In this research, three publicly available 3DACC datasets
are used:
• UMA Fall dataset [20] includes data gathered from

3DACC sensors placed on different parts of the body -
ankle, waist, wrist and, head- while performing simulated
falls; this is the type of data needed in this research
because the main hypothesis of this study is to perform
FD with a sensor worn on a wrist. Furthermore, there is
no pattern in the number of repetitions of each activity
or fall simulation. Some participants did not simulate any
fall, some performed 6 or 9, and one participant simulated
60 falls.

• UNIOVI dataset [21] includes ADL and simulated epilep-
tic seizures [22]. This one has been considered because
it includes a high movement activity -the simulated
partial tonic-clonic seizures- followed by a relatively calm
period plus some other ADL, all of them measured using
3DACC placed on the dominant wrist.

• DaLiaC dataset [23] includes several sensors, one on
the wrist and one on the waist among others. Up to 19
young healthy participants and up to 13 different ADL
are considered, from sitting to cycling.

B. The Experimentation Scheme

As proposed in [13], a participant based cross validation (cv)
scheme is performed, including training, testing and validation.
Once a participant is chosen for validation -or train and test-
, all the TS gathered for that participant are included in
the validation -or train and test- dataset. The 15% of the
participants from the UMA Fall and the UNIOVI datasets
have been chosen for validation, the remaining participants
are assigned to the training and testing dataset.

The general process is depicted in Fig. 3. The training and
testing dataset was used in [13] for tuning the threshold to
perform the peak detection; three thresholds were considered:
2.5 as the minimum value of a peak for the 3DACC magnitude,
3.0 given in [14] and 3.09590 obtained from the optimization
stage.

The peak detection algorithm is run on the TS belonging to
the train and test dataset; for each peak detected, the features
are extracted and labelled as FALL or NOT_FALL. This
procedure produces a feature extraction dataset; this dataset is
used to train the models using either 5x2 cv or 10-fold cv. In
this research, 5x2 cv has been used. Beacuse this dataset might
be highly imbalanced, SMOTE is applied to obtain a more
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Fig. 3: The Machine Learning process within the cross val-
idation scheme. The training and testing dataset is used for
i) threshold optimization, and ii) peak detection and feature
extraction. The labelled dataset is then used for the machine
learning process to find the best modelling option. The best
option is then evaluated with the validation dataset once
processed so the real performance of the system can be
obtained.

suitable dataset to use in the learning process; the balanced
dataset must have a minority class percentage within 40%-
60%. Afterwards, the models are learnt using grid search for
the best parameter subset.

Finally, the validation dataset is considered. It goes through
the peak detection block -using the optimized threshold- and,
whenever a peak is found, the feature extraction stage is
executed. Finally, the eight features are classified using the best
model found in the previous stage. A TS from the validation
dataset will be classified as FALL if a peak is detected and
the subsequent classifier outputs the FALL label; otherwise,
the TS will be assigned the label NO_FALL.

In this study, the same participant based cv and the same
models used in [13] are proposed. Only the validation is
performed differently. This is because the hypothesis is that
using ensembles of the models obtained in the train and test
stage can improve the overall performance of the FD system.
Therefore, only the validation stage is performed, comparing
the results of each individual model with the very simple
ensemble scheme detailed before.

IV. EXPERIMENTATION’S RESULTS

A. Obtained Results

Table I and Table II show the results obtained in the vali-
dation; the former includes the confusion matrices, while the
latter shows the standard statistical measurements. Although
the number of TS belonging to the Fall class are relatively
too small, it seems that the ensemble obtained performance is
nearly as good as the best model in terms of the number of
detected events, while at the same time reduces the number
of false alarms. Still, some undetected fall events can be
observed, though.

TABLE I: Confusion matrices for the three analysed thresholds
and for each model type: feed-forward NN, rule base sys-
tems learned with C5.0 (RBS) and, Support Vector Machines
(SVM). ENS stands for ensembling the outcome of the models.

Threshold 2.5
Reference Reference

NN Fall Not Fall RBS Fall Not Fall
Fall 10 47 Fall 10 42

Not Fall 2 250 Not Fall 2 245
SVM Fall Not Fall ENS Fall Not Fall
Fall 8 18 Fall 10 37

Not Fall 4 279 Not Fall 2 260
Threshold 3.0

Reference Reference
NN Fall Not Fall RBS Fall Not Fall
Fall 12 52 Fall 11 29

Not Fall 0 245 Not Fall 1 268
Reference Reference

SVM Fall Not Fall ENS Fall Not Fall
Fall 10 12 Fall 11 29

Not Fall 2 285 Not Fall 1 268
Threshold 3.09290

Reference Reference
NN Fall Not Fall RBS Fall Not Fall
Fall 12 59 Fall 12 35

Not Fall 0 238 Not Fall 0 262
Reference Reference

SVM Fall Not Fall ENS Fall Not Fall
Fall 10 13 Fall 12 31

Not Fall 2 284 Not Fall 0 266

B. Discussion

Clearly, the number of TS in the validation dataset were not
enough to gather a proper conclusion. It is simply too small
to evaluate the general performance. Therefore, the first issue
to solve is the number of TS. In a recent study [24], up to
twelve publicly available datasets related with FD and ADL
were compared. However, these datasets show as a very sparse
effort, with different ADLs, goals, population, etc. besides,
the UNIOVI dataset [21] also includes ADLs. Moreover, each
of published datasets includes its own set of 3DACC sensors,
placed on different body locations. Some of them include only
data from the waist, others include data from different places.

In the context of this research, where the wearable device
is expected to be on one wrist, only five datasets are valid for
further work. Nevertheless, the Gravity Project dataset [25],
which made use of a smartphone and an Android wearable,
does not includes the TS from the on wrist sensor, only from
the smartphone. Therefore, the four datasets depicted in the
next item list can be used in future work for a total of 1414 TS,
of which 412 include simulated falls using different sensors
and sampling frequencies with different behaviour performed
by up to 55 participants. Each TS will be assigned either a
FALL or NOT_FALL lable, accordingly to the TS including
a fall or not.

On the other hand, the presented ensembling method is one
of the most simple ensembling scheme. Several improvements
can be performed on this topic. Firstly, the weights can be
easily fixed taking advantage of the statistical measurements
of performance of the models: the better the model is, the
higher the relative weight. Or the vote, because the voting
scheme can also be introduced in this context.



TABLE II: Results obtained for the best model for each
threshold. Different statistics are shown: the Accuracy (Acc),
Kappa factor (Kp), Sensitivity (Se), Specificity (Sp), Precision
or positive predictive value (Pr) and the geometric mean
of Sp and Se (G). The models are feed-forward NN, rule
base systems learned with C5.0 (RBS), and Support Vector
Machines (SVM). ENS stands for the ensemble of the different
models.

Threshold Model Acc Kp Se

2.5

NN 0.8414 0.2412 0.8333
DT 0.9288 0.4454 0.8333

RBS 0.8576 0.2662 0.8333
SVM 0.9288 0.3886 0.6667
ENS 0.8738 0.2954 0.8333

3.0

NN 0.8317 0.2679 1.0000
DT 0.9385 0.5096 0.9167

RBS 0.9029 0.3864 0.9167
SVM 0.9547 0.5664 0.8333
ENS 0.9029 0.3864 0.9167

3.09290

NN 0.8091 0.2386 1.0000
DT 0.9126 0.4146 0.9167

RBS 0.8867 0.3677 1.0000
SVM 0.9515 0.5484 0.8333
ENS 0.8997 0.3999 1.0000

Threshold Model Sp Pr G

2.5

NN 0.8418 0.1754 0.8375
DT 0.9327 0.3333 0.8816

RBS 0.8586 0.1923 0.8459
SVM 0.9394 0.3077 0.7914
ENS 0.8754 0.2128 0.8541

3.0

NN 0.8249 0.1875 0.9082
DT 0.9394 0.3793 0.9280

RBS 0.9024 0.2750 0.9095
SVM 0.9596 0.4545 0.8942
ENS 0.9024 0.2750 0.9095

3.09290

NN 0.8013 0.1690 0.8952
DT 0.9125 0.2973 0.9146

RBS 0.8822 0.2553 0.9392
SVM 0.9562 0.4348 0.8927
ENS 0.8956 0.2791 0.9464

Furtermore, what is really important is to introduce a
new testing scenario. With all these available TS, and even
considering the participant cross validation -which we do think
is important-, there is enough size to have a proper training,
test and validation datasets. For instance, the train dataset can
be used as described in this paper to obtain the models in
the feature extraction domain; the test dataset can be used in
determining the best ensemble scenario, while the validation
dataset would keep the same aim as in this research. It seems
this experimentation might allow us to obtain a suitable FD
system for this type of falls.

V. CONCLUSIONS

In this research a fall detection method has been described
using a wearable device placed on a wrist measuring tri-axial
accelerometry; this method is based on thresholds. The basic
idea is to detect peaks of high activity; for those peaks a
feature extraction stage is performed. Using publicly available
datasets, a train, test and validation experimentation has been

designed; the train and test stage allows to obtain models,
while the validation stage mimics the performance of the
system with unseen participants.

In order to reduce the number of false alarms while keeping
the accuracy high, this study has proposed using ensembles.
It has been found that this idea seems to perform better: not
only a higher accuracy is obtained but also the number of false
alarms is reduced.

Moreover, several posibilities of how to enhance these
results have been discussed. On the one hand, making use
of more datasets with a proper selection of data sources.
On the second hand, different schemes of ensembling can
be easily introduced. Besides, provided new collections of
data are available, better solutions for the training, testing and
validation stages have been introduced.

Finally, all these arrangements needs to be addressed, but
also a careful analysis of the data gathered from the focused
population is needed. As it is known, the level of activity
decreases with the age, and so does the possible scenarios of
a fall event. This issue must be studied using, if possible, data
gathered from the target population.
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