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nsROC: An R package for Non-Standard
ROC Curve Analysis
by Sonia Pérez-Fernández, Pablo Martínez-Camblor, Peter Filzmoser and Norberto Corral

Abstract The receiver operating characteristic (ROC) curve is a graphical method which
has become standard in the analysis of diagnostic markers, that is, in the study of the
classification ability of a numerical variable. Most of the commercial statistical software
provide routines for the standard ROC curve analysis. Of course, there are also many R
packages dealing with the ROC estimation as well as other related problems. In this work
we introduce the nsROC package which incorporates some new ROC curve procedures.
Particularly: ROC curve comparison based on general distances among functions for both
paired and unpaired designs; efficient confidence bands construction; a generalization of the
curve considering different classification subsets than the one involved in the classical defini-
tion of the ROC curve; a procedure to deal with censored data in cumulative-dynamic ROC
curve estimation for time-to-event outcomes; and a non-parametric ROC curve method for
meta-analysis. This is the only R package which implements these particular procedures.

Introduction

Given a continuous variable, (bio)marker , we are frequently interested in performing a
binary classification according to its value. This binary classification can be regarded as
the presence or not of a certain characteristic of interest in the population (for instance, one
disease). On the basis of data containing the real diagnosis, subjects are called positive when
they have the characteristic and negative otherwise.

The receiver operating characteristic (ROC) curve assumes that higher values of the
marker are associated with a higher probability of having the characteristic. Therefore, a
subject whose marker value is below a fixed point (usually called threshold or cut-off point )
is classified as negative (without the characteristic) while a subject with a marker value
above the threshold is classified as positive (with the characteristic). Under this proviso, it
displays the ability of the marker to correctly classify a positive subject as positive, or true-
positive rate (TPR), versus the inability to correctly classify a negative subject as negative,
or false-positive rate (FPR), for each cut-off point along all the possible values of the marker.
That is, the sensitivity (TPR) versus the complementary of the specificity (FPR) for each
possible threshold. In addition, the area under the ROC curve , AUC, is frequently used as
an index of the global diagnostic capacity (Fluss et al., 2005). It ranges between 1/2, when
the marker does not contribute to a correct classification, and 1, if the marker may classify
subjects properly. If AUC is less than 1/2 it means that the direction of the classification
should be the opposite (see comments about side of the ROC curve discussed below).

Mathematically, let χ and ξ be two continuous random variables representing the marker
values for negative and positive subjects, respectively. For a fixed value t ∈ [0, 1], the usual
ROC curve (right-sided ) can be defined as follows in terms of the distribution function of
negative (Fχ) and positive (Fξ) group:

R(t) = 1− Fξ

(
F−1

χ (1− t)
)
= F1−Fχ(ξ)(t)

leading the following area under the curve:

A =
∫ 1

0
R(t) dt = P (χ < ξ) .

Of course there exists a wide literature dealing with both theoretical and practical
aspects of the ROC curve and other related problems. The interested reader can consult the
monographs of Zhou et al. (2002) and Pepe (2003) for an extensive review of the topic. There
are also a number of papers dealing with some problems related to ROC curve such as the
usual ROC curve point estimation (see Gonçalvez et al. (2014) for a recent overview) from
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both parametric and non-parametric approaches, even considering Bayesian methods as an
alternative to the maximum likelihood principle; or the curve interval estimation (confidence
bands construction) also using both parametric (Demidenko, 2012) and non-parametric
techniques (Jensen et al. (2000), Horváth et al. (2008) and Martínez-Camblor et al. (2018)).

Furthermore, the ROC curve procedure has been extended to other situations where the
outcome is not binary. For instance, Mossman (1999) extends ROC concepts to diagnostic
tests with trichotomous outcomes; whereas Heagerty and Zheng (2005) deal with time-
dependent responses, whose most direct extension is by means of the cumulative/dynamic
approach (Heagerty et al., 2000), but it involves a new problem: handling censored data.
Additionally, Martínez-Camblor et al. (2017) proposed a ROC curve generalization for non-
monotone relationships between the marker and the response, particularly convenient for
situations in which both lower and higher marker values are associated with higher proba-
bilities of having the studied characteristic. Some other scenarios where the information
is not provided as standard may lead us to conduct a meta-analysis of ROC curves (see
Martínez-Camblor (2017) and references therein) or fit a regression model for these curves
(Cai (2004) and Rodríguez-Álvarez et al. (2011)).

On the other hand, the ROC curve comparison is one of the issues which has been more
treated in literature. Usually ROC curves are compared from their respective AUCs, but
in some situations these hypothesis tests are not the most appropriate (further discussed
in the Comparison section). The similarity between two ROC curves have been tradition-
ally discussed by Venkatraman and Begg (1996) for both paired and unpaired designs
(Venkatraman, 2000). On the other hand, the comparison of the curves as functions is not
different from the cumulative distribution function comparison problem, and this analogy
was used by Martínez-Camblor et al. (2011), and subsequently extended to paired structures
(Martínez-Camblor et al., 2013).

Some of the previous approaches have already been implemented in several software
packages, including R packages such as pROC (Robin et al., 2018) and ROCR (Sing et al.,
2015) which include different procedures to estimate the usual ROC curve (incorporating
smoothing techniques), as well as confidence intervals computation for different parameters
of the curve (sensitivity, specificity, AUC) and comparison of areas under two curves. There
exist also more specific packages to deal with different particular topics and approaches
of the ROC curve. For instance plotROC (Sachs, 2018) displays sophisticated plots of
these curves; fbroc (Peter, 2016) focuses on a fast implementation of bootstrap techniques;
OptimalCutpoints (Lopez-Raton and Rodriguez-Alvarez, 2014) includes several methods
to select optimal cut-off points of the marker; timeROC (Blanche, 2015) and survivalROC
(Heagerty and packaging by Paramita Saha-Chaudhuri, 2013) estimate time-dependent ROC
curves and deal with some related analyses; and HSROC (Schiller and Dendukuri, 2015)
implements a model for joint meta-analysis of sensitivity and specificity of the diagnostic
test under evaluation.

ROC curves research is in fact a growing field in statistics. The aforementioned R pack-
ages are some of the most relevant ones in this topic but there are also more implementations
covering certain algorithms. However, some non-standard ROC curve analyses exist which
were not available to the scientific community in a practical software and this is the main
reason why the new package presented in this paper has been created. The nsROC package
(Pérez-Fernández, 2018) is a compilation of different analyses not computed to date which
attempts to boost awareness of new techniques that have already been published but not
implemented in a user-friendly software widely available. Furthermore, it incorporates sev-
eral studies and techniques (from comparison of ROC curves to time-dependent estimation
and meta-analysis), making it more manageable since all of them are included in the same
package.

The rest of the paper is organized as follows: in the next two sections, Estimation and
Comparison, some basic information about the statistical techniques included in the nsROC
package, as well as some remarkable technical issues about its main functions, are provided.
Particularly, the Estimation section incorporates several aforementioned situations: the
ROC curve generalization for non-monotone relationships, confidence bands construction,
censored data treatment for time-dependent outcomes, and meta-analysis involving ROC
curves. In turn, the Comparison section includes three different methods of comparison
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(based on AUC, diagnostic capacity of the marker, or ROC curve definition in terms of CDF)
to deal with both paired and unpaired data scenarios. Subsequently, in the Examples section,
a complete analysis with different datasets is carried out to illustrate certain applications of
the submitted package; and finally a Summary of the utility of the package is reported.

Estimation

Non-standard ROC curve estimation

As mentioned previously, an ROC curve is a graphical method which displays the sensitivity
(Se) versus the complementary of the specificity (1-Sp) for all possible thresholds of the
considered marker.

Although different parametric and semi-parametric estimators for the ROC curve have
been studied, in our package the empirical estimator, based on replacing the involved
unknown distribution functions with their respective empirical cumulative distribution
functions, F̂, has been considered. Hence, the implemented ROC curve estimator is

R̂(t) = F̂1−F̂χ(ξ)
(t) .

This is the usual definition when higher values of the marker are considered to be
associated with a higher probability of existence of the characteristic under study. It can be
also called right-sided ROC curve.

However, sometimes it can be supposed the opposite, i.e. that higher values of the
marker are associated with a lower probability of the existence of the characteristic. In this
context, the definitions should be adapted and the resulting ROC curve (usually called
left-sided curve) estimator is

R̂(t) = F̂F̂χ(ξ)
(t) .

There exist several R packages also incorporating the non-parametric estimation, for
instance the pROC package includes smoothed estimates. However, they suppose one of the
assumptions aforementioned (right-sided or left-sided curve), considering a single threshold
of the marker in order to classify, since the standard ROC curve definition is associated with
this particular type of classification subsets.

Nevertheless, an extension of those classification subsets has been studied by Martínez-
Camblor et al. (2017), dealing with situations in which not only higher or lower values of
the marker are associated with a higher probability of existence of the studied characteristic,
but both may be related. Under this assumption, not only one cut-off point is considered,
but two xl and xu corresponding to the extremes of a marker interval are regarded, i.e those
subjects with a marker value within the interval (xl , xu) are classified as negative and those
with a marker value below xl or greater that xu are supposed to be positive. In this context,
the sensitivity and specificity definitions are the following ones:

Se(xl , xu) = P (ξ ≤ xl ∪ ξ ≥ xu) = Fξ(xl) + 1− Fξ(xu)

Sp(xl , xu) = P (xl < χ < xu) = Fχ(xu)− Fχ(xl).

At this juncture, it is important to note that there may be different couples (xl , xu) reporting
the same specificity but different sensitivity, so the generalized ROC curve is defined by the
supreme of them:

Rg(t) = sup
(xl ,xu)∈Ft

{
Fξ(xl) + 1− Fξ(xu)

}
where (xl , xu) ∈ Ft iff xl ≤ xu and Sp(xl , xu) ≥ 1− t. It is clear that (xl , xu) ∈ Ft can also
be written as xl = F−1

χ (γt) and xu = F−1
χ (1− [1− γ] t) for some γ ∈ [0, 1], therefore

Rg(t) = sup
γ∈[0,1]

{
Fξ

(
F−1

χ (γt)
)
+ 1− Fξ

(
F−1

χ (1− [1− γ] t)
)}

.
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Using the aforementioned notation, the implemented general ROC curve estimator is

R̂g(t) = sup
γ∈[0,1]

{
1− F̂1−F̂χ(ξ)

(1− γt) + F̂1−F̂χ(ξ)
([1− γ] t)

}
.

Different parametric models have been considered in order to estimate the ROC curve.
Among them, the binormal model is one of the most used, according to which the usual and
general ROC curves, respectively, are the following:

R(t) = Φ
(

a + b ·Φ−1(t)
)

Rg(t) = sup
γ∈[0,1]

{
Φ
(

a + b ·Φ−1 ([1− γ] · t)
)
+ 1−Φ

(
a + b ·Φ−1 (1− γ · t)

)}
where a =

(
µξ − µχ

)
/σξ , b = σχ/σξ and Φ is the cumulative distribution function of a

standard normal. Therefore, the parametric ROC curve estimation gets boiled down to
estimate the parameters involved.

While the usual AUC has a direct probabilistic interpretation: “given two randomly and
independently selected subjects, one negative and one positive, the AUC is the probability
that the marker value in the positive subject is greater than in the negative subject”, this
reading is not directly related to the classification subsets involved in the definition of
the usual ROC curve. However, it is possible to enunciate this relationship in terms of
the diagnostic rule involved (citing Martínez-Camblor and Pardo-Fernández (2017)) and
following the same idea the authors also proved the interpretation of the generalized AUC
in terms of the probability of belonging to the corresponding classification subsets, under a
condition about the continuity of Rg(·) and self-contained subsets as specificity increases.

In the nsROC package the point non-parametric ROC curve estimation can be computed
by the gROC function. Some computational details must be mentioned: if Ni is NULL a fast
algorithm is used to estimate the ROC curve for the considered sample; otherwise, if Ni is a
number, thresholds considered are the marker values collected (adding −∞ and ∞) and the
specificities, t, used to estimate the ROC curve are those resulting from dividing the unit
interval in Ni subintervals with the same length. This latter case is slower because the vector
of γ-values taken into account in order to estimate the general ROC curve is the result of
dividing the unit interval in subintervals with length 0.001. The area under the curve is
computed by the trapezoidal rule.

The point estimation of the curve is essential, but it is also important to have an idea of
how relevant the underlying sample is in this estimation, i.e. the interval estimation: how to
build confidence bands of the ROC curve. This problem has been addressed from different
points of view, most of them based on point-wise confidence intervals for sensitivity and/or
specificity instead of focusing on the curve as a function.

There are some R packages providing some kind of confidence regions: fbroc includes a
function which computes regions for the right-sided curve but no information about the
method used to build them is provided; plotROC displays ‘rectangular confidence regions
for the ROC curve’; and pROC computes square pointwise confidence bands of the AUC,
thresholds, specificity, sensitivity and/or coordinates of an ROC curve.

A review of the performance of these methods has already been carried out by Macskassy
et al. (2005) who pointed out the difficulty of translating methods for building pointwise
confidence intervals into methods to obtain confidence bands. However, when the focus
is the whole ROC curve, one should construct confidence bands, and just considering the
‘band’ obtained joining the pointwise confidence intervals does not provide a real confidence
band with the desired confidence level, because the probability that one point of the curve
will be outside this ‘band’ is higher.

In this package three different techniques dealing with the ROC curve itself have been
computed. Namely, one parametric assuming the binormal model (Demidenko (2012)) and
two non-parametric have been included (Jensen et al. (2000) and Martínez-Camblor et al.
(2018)):
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Input parameters

X Vector of marker values.
D Vector of response values. Two levels; if more, the two first ones are used.

side Type of ROC curve. One of "right" (right-sided), "left" (left-sided),
"auto" (right or left-sided is automatically chosen so that AUC will be
greater than 0.5) or "both" (general). Default: "right".

Ni Number of subintervals of the unit interval considered to compute the
curve. Default: NULL (which will use the fast algorithm considering as
many subintervals as number of positive subjects).

pval.auc If TRUE, a permutation test to test H1 : AUC 6= 0 is performed.
B Number of permutations used for testing. Default: 500.

Output parameters

controls,cases Marker values of negative and positive subjects, respectively.
points.coordinates Matrix whose second and third columns correspond to coordinates where

the ROC curve has a step in case of right or left-sided ROC curves. In the
first column there are the marker thresholds considered reporting these
coordinates.

pairpoints.coordinates Matrix whose third and fourth columns correspond to coordinates where
the ROC curve has a step in case of general ROC curves. The first and
second columns are the marker thresholds considered, xl and xu, respec-
tively, reporting these coordinates.

roc Vector of values of the ROC curve for each t considered.
auc Area under the curve estimate.

pval.auc,Paucs p-value and different permutation AUCs if the hypothesis test is per-
formed.

Additional functions to be passed

plot Plot the ROC curve estimate.
print Print some relevant information.

Table 1: The most relevant input and output parameters of the gROC function.

• Demidenko (2012) adapted the Working-Hotelling type confidence bands used in
linear regression and proposed a method called ellipse-envelope. It should be noted
that the ROC curve estimated by this method is not empirical, but the binormal one.

• Jensen et al. (2000) approach is based on the asymptotic distribution of the ROC curve
in terms of Brownian bridges, developing symmetrical non-parametric confidence
bands for the curve, even on a particular region. The main drawback is the need
to estimate density functions from smooth procedures involving a scale parameter
(not chosen by the user) which can strongly affect the resulting ROC curve estimate.
In terms of computational aspects it must be pointed out that the BBridge function
in the sde (Iacus, 2016) package has been used to simulate the Brownian bridges
involved. In addition, the extremes of the interval in (0, 1) in which the user wants to
compute the regional confidence bands must be set. The bootstrap method has been
applied and the confidence bands are truncated making the lower-band being inside
the (0, 0.95) interval and the upper-band within (0.05, 1).

• Martínez-Camblor et al. (2018) method approximates the distribution of the following
pivotal function by a smoothed bootstrap method:

√
n · σ−1

n (t) ·
[
R̂(t)−R(t)

]
where n is the number of positive subjects and σn(t) is the standard deviation estimate
of
√

n
[
R̂(t)−R(t)

]
. Computational issues which should be taken into account are

the following: confidence bands are truncated as in the previous method and the
scale parameter, s, used to compute the smoothed kernel distribution functions (with
bandwidth h = s · σ̂ ·min {n+, n−}) must be set by the user. Furthermore, there
exists the option of selecting a parameter, α1, affecting the width between lower (and
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consequently upper) band and ROC curve point estimate. If α1 is not specified by
the user, the one minimizing the theoretical area between the bands is automatically
considered. It should be remarked that this is the only method designed to estimate
ROC curve confidence bands for the general ROC curve.

Input parameters

groc Output of the gROC function. Ni is the number of subintervals used for estimation.
method Method used. One of "PSN" (Martínez-Camblor et al., 2018), "JMS" (Jensen et al.,

2000) or "DEK" (Demidenko, 2012).
conf.level Confidence level considered. Default: 0.95.

B Number of bootstrap replicates. Default: 500.
alpha1,s Parameters to pass to "PSN" method. Default: s= 1.
a.J,b.J Extremes of interval to pass to "JMS" method. Default: a.J= 1/Ni, b.J= 1− 1/Ni.
plot.var If TRUE, variance estimate along t resulting from "PSN" or "JMS" method is dis-

played.

Output parameters

L,U Lower and upper bands respectively for each t ∈ {0, 1/Ni, 2/Ni, ..., 1}.
practical.area Estimated area between lower and upper band.
alpha1,alpha2 α1 and α2 used in "PSN" method.

Additional functions to be passed

plot Plot the confidence bands of the ROC curve.
print Print some relevant information.

Table 2: The most relevant input and output parameters of the ROCbands function.

Time-dependent ROC curve

Sometimes the response variable is not binary but time-dependent. In this case the resulting
curve is called time-dependent ROC curve. Although there exist different approaches of
this kind of curves depending on the association between the referred time-dependent
outcome and the binary classification (for instance, Heagerty and Zheng (2005) considered
the incident sensitivity defined as SeI(x) = P (X > x|T = t) to build the incident/dynamic
ROC curve), the most direct one is the cumulative/dynamic approach, which classifies as
positive a subject in which the event happens before a fixed point of time t and negative
otherwise. In other words, the cumulative sensitivity and the dynamic specificity are
defined as follows: SeC(x) = P (X > x|T ≤ t) and SpD(x) = P (X ≤ x|T > t).

However, the time-dependent problem involves a new issue to be addressed: how to
deal with subjects censored before t. There are some R packages which incorporate time-
dependent ROC curve estimation procedures in the presence of censored data. Some good
examples are timeROC, which also performs some estimations about different concepts
related to time-dependent ROC curve and compare time-dependent AUCs (see Blanche
et al. (2013) for a complete overview of the implemented methods); survivalROC which
computes time-dependent ROC curves from censored survival data using the Kaplan-Meier
(KM) or Nearest Neighbor Estimation (NNE) method by Heagerty et al. (2000); and tdROC
(Li et al., 2016), based on the Li et al. (2018) method mentioned below.

In order to deal with time-dependent outcomes, the nsROC package has used the
cumulative/dynamic approach. A different solution for the censoring problem has been
proposed by Martínez-Camblor et al. (2016), considering a time-dependent ROC curve
estimator based on assigning a probability to be negative (consequently positive) to those
censored subjects. Particularly, two different statistics have been suggested in order to
estimate the probability of surviving beyond t: a semiparametric one, using a proportional
hazard Cox regression model considering the marker as the covariate; and a non-parametric
one, using directly the Kaplan-Meier estimator. There exists a subsequent paper based on
the same idea (Li et al., 2018) but using the kernel-weighted Kaplan-Meier estimator instead
of the naive one. This last method is also included in nsROC package, allowing the user to
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choose the kernel and bandwidth to be considered in the kernel-weighted statistic.
In terms of computational aspects it should be noted that the survival (Therneau, 2018)

package has been used. In particular, the survfit and Surv functions are required to
estimate survival functions, and the coxph function is used to fit the Cox proportional
hazard regression model involved in the semiparametric approach aforementioned.

Input parameters

stime Vector of observed times.
status Vector of status (0 if the subject is censored and 1 otherwise).
marker Vector of marker values.

predict.time Time point t considered.
method Method to estimate the probability aforementioned. One of "Cox", "KM" or "wKM".
kernel Procedure used to calculate kernel function if method is "wKM". One of "normal",

"Epanechnikov" or "other" (if the user defines a different one).
h,kernel.fun Bandwidth and kernel function used if method is "wKM" and kernel is "other".

boot.n Number of bootstrap samples considered. Default: 100.

Output parameters

TPR,TNR Vector of sensitivities and specificities estimates, respectively.
cutPoints Vector of marker thresholds considered.

auc Area under the time-dependent ROC curve estimate.

Additional functions to be passed

plot Plot the time-dependent ROC curve estimate.
print Print some relevant information.

Table 3: The most relevant input and output parameters of the cdROC function.

Meta-analysis

Meta-analysis is a popular statistical methodology for combining the results from multi-
ple independent studies about the same topic. It allows us to know the state of the art,
strengths and weaknesses of one considered topic, combining estimation effects from differ-
ent independent comparable studies (Riley et al., 2010). However, the main particularity
of meta-analysis is that only limited information is available from each study considered.
There exist two different meta-analysis models depending on the consideration (or not)
of the variability between studies: the fixed-effects model just considers the within-study
variability whereas the random-effects model also takes into account the variability between
studies (DerSimonian and Laird, 1986).

In the case that the target is the ROC curve, the goal of meta-analysis is combining the
results from several independent studies performed by the same marker and characteristic
of interest in a single outcome. Different methods to compute summary ROC curves have
been introduced in order to determine the global diagnostic accuracy for both fixed-effects
(Moses et al. (1993)) and random-effects model (Hamza et al. (2008), among others). Besides,
the HSROC package implements the procedure of Rutter and Gatsonis (2001). However,
most of those approaches are parametric and consider that only one estimated pair of
sensitivity and specificity from each paper exist and they are supposed to be independently
selected in each study, but often the reported points are the best ones in the Youden index
sense. Nevertheless, some new techniques have been developed taking into account all
the pairs of points reported; Hoyer and Kuss (2018) and Steinhauser et al. (2016) are good
examples. Martínez-Camblor (2017) includes a different view focusing on the direct ROC
curve estimation from a non-parametric approach, using weighted means of each individual
ROC curve, taking all pairs of points (Se, Sp) reported in each study, and performing a
simple linear interpolation between them. Moreover, both the fixed and random-effects
model are covered.

The metaROC function in the nsROC package implements this last approach reporting
a fully non-parametric ROC curve estimate from a data frame including the number of
true positive and negative (TP and TN) subjects, false positive and negative (FP and FN)
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subjects and a identifier of the study they come from. It displays in a plot the non-parametric
summary ROC (nPSROC) curve estimate, and the user has the possibility of including all
ROC curve interpolations in the same graphic, as well as a confidence band estimate. In the
random-effects model there is also the option of plotting the inter-study variability estimate
along the different specificities on the unit interval.

Input parameters

data A data frame containing the variables: "Author", "TP", "TN", "FP" and "FN".
model Meta-analysis model considered. One of "fixed-effects" or "random-effects".
Ni Number of subintervals of the unit interval considered to compute the curve.

Default: 1000.
plot.Author If TRUE, a plot including ROC curve estimates (by linear interpolation) for each

study under consideration is displayed.
plot.bands If TRUE, confidence interval estimate for the ROC curve is added.

plot.inter.var If TRUE, a plot reflecting inter-study variability estimate is displayed on an addi-
tional window.

Output parameters

sRA nPSROC curve estimate resulting from the model considered with a slight modifi-
cation to ensure the monotonicity along the points on the unit interval considered.

se.RA Standard-error of nPSROC curve estimate.
area Area under the curve estimate.

youden.index Optimal specificity and sensitivity in the Youden index sense for nPSROC curve.
roc.j A matrix whose columns contain the ROC curve estimate (by linear interpolation)

of each study.
w.j,w.j.rem A matrix whose columns contain the weights in fixed or random-effects model,

respectively, of each study.

Table 4: The most relevant input and output parameters of the metaROC function.

Comparison

An important role of diagnostic medicine research is the comparison of the accuracy of
diagnostic tests. With the goal of comparing their global accuracy, the comparison of AUCs is
the most usual method (DeLong et al., 1988). However, when there is no uniform dominance
between the involved curves (i.e. the sensitivities associated with each specificity along
the unit interval are not always higher in one curve than in the other), they can differ
having the same AUC. In these situations, these tests are not valid to compare the equality
among the ROC curves, and some other approaches could be considered to compare the
equality of all the curves, such as Martínez-Camblor et al. (2013) and Martínez-Camblor et al.
(2011) mentioned below, which deal with the ROC curve by its definition as a cumulative
distribution function. On the other hand, Venkatraman and Begg (1996) and Venkatraman
(2000) propose the use of a non-parametric permutation test to compare the equality of
two diagnostic criteria. Both paired and unpaired designs have been treated, i.e. when
different markers for detecting the existence of one characteristic are compared in the
same sample (just one positive-negative sample) or when the same marker is compared
along different and independent samples (as many positive-negative samples as groups to
compare), respectively.

In the first case (paired design), different non-parametric tests have been implemented
to perform the comparison:

• The procedure of Martínez-Camblor et al. (2013) takes into account the expression of
the ROC curve in terms of the distribution function shown in the Estimation section
and extends classical tests for comparing the cumulative distribution functions to this
context. Four of these tests have been included in the compareROCdep function but
any other can be defined by the FUN.dist input parameter. Those included are the
following: Kolmogorov-Smirnov, the two ones based on the L1 or L2 measure and
Cramér von-Mises. It is important to highlight that the user can set any other criteria

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 9

to perform the test.
Two different methods could also be considered in order to approximate the distri-
bution function of the selected statistic under the null hypothesis: the procedure of
Venkatraman and Begg (1996) or the one of Martínez-Camblor and Corral (2012) based
on permutated and bootstrap samples, respectively. This last one (gBA) is a novel
bootstrap procedure which allows us to deal with complex structures.

• Venkatraman and Begg (1996) method tests the hypothesis that two curves are identi-
cal for all cut-off points. It should be noted that the permutation procedure covered in
this paper requires the exchangeability assumption.
Some technical issues should be also indicated: if the comparison involves more than
two ROC curves, the value of the statistic is the sum of the corresponding values
of each pair without repetition. In addition, the Venkatraman estimator has been
developed just for comparing right-sided ROC curves.

• One test based on the comparison of the areas under the curve has also been included;
in particular, the one proposed by DeLong et al. (1988). It should be noted that
two different ROC curves can have the same AUC as it has been mentioned above.
In computational terms this procedure takes longer because the statistic involved
requires positive sample size× negative sample size comparisons.

Input parameters

X A matrix whose columns are the vectors of each marker-values sample.
D Vector of response values.

side Type of ROC curve. One of "right" or "left".
statistic Statistic used to compare the curves. One of "KS", "L1", "L2", "CR", "other" (if the

user defines a different one using other input parameters) or "VK".
FUN.dist The distance considered as a function of one variable. Example: FUN.dist =

function(g){max(abs(g))} defines the Kolmogorov-Smirnov statistic.
method Method used to approximate the statistic distribution under the null. One of

"general.bootstrap", "permutation" or "auc".
B,perm Number of bootstrap or permutation samples considered, respectively. Default: 500.
plot.roc If TRUE, a plot including the ROC curve estimates for each sample and their mean is

displayed.

Output parameters

statistic The value of the test statistic.
p.value The p-value for the test.

Table 5: The most relevant input and output parameters of the compareROCdep function.

In the second case (unpaired design), different non-parametric tests have also been
implemented to perform the comparison. They are similar to the previous ones:

• The comparisons of Martínez-Camblor et al. (2011) are inspired by the usual distances
between cumulative distribution functions. Three of those distances have been in-
cluded in the compareROCindep function (particularly, the two ones based on L1 and
L2 measures and the Cramér von-Mises criterion), but it should be highlighted that
the user has the possibility to define any other distance by the FUN.stat.dist and
FUN.stat.cons input parameters, described in more detail below.
Furthermore, the permutation method proposed by Venkatraman (2000) is used to
approximate the distribution function of the selected statistic under the null. Related
to this method, both raw or ranked data (including a method for breaking ties) could
be considered.

• The procedure of Venkatraman (2000) is based on the idea that two ROC curves are
identical if and only if for every cut-off point from one marker there is an equivalent
one from the other with the same probabilities of failure, i.e the same sensitivity and
specificity. Technical issues which are worth noting are the same as those aforemen-
tioned in the Venkatraman method for paired samples.
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A straightforward k-sample non-parametric test for the AUC statistic computing the
differences with respect to the mean can also be considered. It should be remembered
the consideration mentioned above about comparing areas under the curve.

Input parameters

X Vector of marker values.
G Vector of group identifier values (with as many levels as independent samples to

compare).
D Vector of response values.

side Type of ROC curve. One of "right" or "left".
statistic Statistic used to compare the curves. One of "L1", "L2", "CR", "other" (if the user

defines a different one using other input parameters), "VK" or "AUC".
FUN.stat.int A function of two variables, roc.i and roc standing for ROC curve estimate for

i-th sample and mean ROC curve estimate along k samples, respectively. Example:
FUN.stat.int = function(roc.i,roc){mean(abs(roc.i -roc))} defines the L1-
measure statistic.

raw If TRUE, raw data is considered; if FALSE (default) data is ranked and a method to
break ties in permutations is performed.

perm Number of permutation samples considered. Default: 500.
plot.roc If TRUE, a plot of ROC curve estimates for each sample and their mean is displayed.

Output parameters

statistic The value of the test statistic.
p.value The p-value for the test.

Table 6: The most relevant input and output parameters of the compareROCindep function.

Examples

Some examples analysing real data-sets are shown in this section in order to illustrate the
application of the different functions included in the nsROC package. Namely, the Breast
Cancer dataset is used to show the different estimation of the ROC curve considering the usual
definition versus the generalization (gROC function) as well as confidence bands estimation
reported by different procedures, particularly PSN, JMS and DEK (ROCbands function). Further-
more, a comparison of the ROC curve reported by two different markers is performed by
the compareROCdep function and also the diagnostic capacity of one marker in three different
groups is studied by the compareROCindep function. The intended goal of the Primary Biliary
Cirrhosis dataset example is considered to show time-dependent ROC curve estimation in
the presence of censored data at a specific time using different procedures implemented
in cdROC function: Cox, KM and wKM with different kernels. Finally, the Interleukin 6 dataset
includes the results regarding diagnostic ability of a marker over the same characteristic
reported by different research papers and the goal is to perform a meta-analysis over them
in order to unify the studies in one unique response (metaROC function).

Breast cancer dataset

The Breast Cancer dataset consists of several features computed from a digitized image
of a fine needle aspirate (FNA) of a breast mass describing the characteristics of the cell
nuclei present in a 3D image. This dataset, freely available at https://archive.ics.uci.
edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data , includes a
diagnosis variable (“malignant” vs “benign”) and ten real-valued features about each cell
nucleus (radius , texture , perimeter , area , smoothness , compactness , concavity, concave
points , symmetry and fractal dimension) collected from 569 patients in Wisconsin. The
mean , standard error and worst (defined as the mean of the three largest values) of these
features were computed for each image, resulting in 30 variables. The reader is referred to
Bennett and Mangasarian (1992) for a complete information about the dataset.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://archive.ics.uci.edu/ml/machine-learning-databases/breast- cancer-wisconsin/wdbc.data
https://archive.ics.uci.edu/ml/machine-learning-databases/breast- cancer-wisconsin/wdbc.data


CONTRIBUTED RESEARCH ARTICLE 11

There exists a variable, the fractal dimension (mean) , which does not seem to correctly
distinguish between “malignant” and “benign” cases, reporting an usual ROC curve (left-
sided) crossing the diagonal with an AUC of 0.513. Looking at the density function estimates
displayed in Figure 1 (top), it can be seen that although the vast majority of the fractal
dimension values are in the interval (0.055, 0.075) in both groups (so this marker is not a
good one to perform the classification), lower and higher values are likely to be “malignant”
cases (positive subjects). Thus, it makes sense to compute the general ROC curve estimate
proposed in this package, which reports an AUC of 0.633, higher than the usual one, and of
course the curve is above the diagonal by definition (see graph bottom-right in Figure 1).
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Figure 1: Top, density function estimates of fractal dimension mean variable for both
“malignant” and “benign” subjects. Bottom, left-sided and generalized ROC curve estimates,
respectively.

Figure 1 and information about ROC curve estimates have been reported using the gROC
function:

library(data.table)
data <- fread('https://archive.ics.uci.edu/ml/machine-learning-databases/breast-
cancer-wisconsin/wdbc.data')
names(data) <- c("id", "diagnosis", "radius_mean", "texture_mean", "perimeter_mean",

"area_mean", "smoothness_mean", "compactness_mean", "concavity_mean",
"concave.points_mean", "symmetry_mean", "fractal_dimension_mean",
"radius_se", "texture_se", "perimeter_se", "area_se", "smoothness_se",
"compactness_se", "concavity_se", "concave.points_se", "symmetry_se",
"fractal_dimension_se", "radius_worst", "texture_worst",
"perimeter_worst", "area_worst", "smoothness_worst",
"compactness_worst", "concavity_worst", "concave.points_worst",
"symmetry_worst", "fractal_dimension_worst")

attach(data)

library(nsROC)

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859
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roc <- gROC(fractal_dimension_mean, diagnosis, side = "auto", plot.density = TRUE)
generalroc <- gROC(fractal_dimension_mean, diagnosis, side = "both")

print(roc)
#> Data was encoded with B (controls) and M (cases).
#> Wilcoxon rank sum test:
#> alternative hypothesis: median(cases) < median(controls); p-value = 0.7316
#> It is assumed that lower values of the marker indicate larger confidence that a
#> given subject is a case.
#> There are 357 controls and 212 cases.
#> The area under the ROC curve (AUC) is 0.513.

print(generalroc)
#> Data was encoded with B (controls) and M (cases).
#> It is assumed that both lower and larges values of the marker indicate larger
#> confidence that a given subject is a case.
#> There are 357 controls and 212 cases.
#> The area under the ROC curve (AUC) is 0.633.

plot(roc, main = "ROC curve (left-sided)")
plot(generalroc, main = "General ROC curve")

In order to illustrate the confidence bands construction reported by each method im-
plemented ("PSN" (Martínez-Camblor et al., 2018), "JMS" (Jensen et al., 2000) and "DEK"
(Demidenko, 2012)), a marker with a better global diagnostic accuracy (in terms of AUC)
than the previous one has been considered: the texture (mean) .

In Figure 2 it can be seen that not only the bands are different but also the ROC curve
point estimates. This is because each method uses a different way to compute it: "PSN"
considers the same as the one computed in the gROC function, "JMS" performs a similar
one with smoothed estimators and "DEK" computes a parametric estimate based on the
assumption of the binormal model. This last one displays the narrowest confidence bands
as it was expected (with an area between the CI bands equals to 0.069).

The ROCbands function has been used for this purpose:

roc <- gROC(texture_mean, diagnosis) # right-sided in this case

rocbands_psn <- ROCbands(roc, method = "PSN")
rocbands_psn_mod <- ROCbands(roc, method = "PSN", alpha1 = 0.025)
rocbands_jms <- ROCbands(roc, method = "JMS")
rocbands_dek <- ROCbands(roc, method = "DEK")

The computations performed to get the graphics and some useful information about the
confidence bands construction are detailed below:

print(rocbands_psn)
#> The method considered to build confidence bands is the one proposed in
#> Martinez-Camblor et al. (2016).
#> Confidence level (1-alpha): 0.95.
#> Bootstrap replications: 500.
#> Scale parameter (bandwidth construction): 1.
#> The optimal confidence band is reached for alpha1 = 0.035 and alpha2 = 0.015.
#> The area between the confidence bands is 0.2294 (theoretically 0.2453).

print(rocbands_psn_mod)
#> The method considered to build confidence bands is the one proposed in
#> Martinez-Camblor et al. (2016).
#> Confidence level (1-alpha): 0.95.
#> Bootstrap replications: 500.
#> Scale parameter (bandwidth construction): 1.
#> alpha1: 0.025.
#> The area between the confidence bands is 0.2368 (theoretically 0.2539).

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 13

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC curve 
 (PSN confidence bands)

False−Positive Rate

Tr
ue

−
P

os
iti

ve
 R

at
e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC curve 
 (PSN confidence bands)

False−Positive Rate

Tr
ue

−
P

os
iti

ve
 R

at
e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC curve 
 (JMS confidence bands)

False−Positive Rate

Tr
ue

−
P

os
iti

ve
 R

at
e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC curve 
 (DEK confidence bands)

False−Positive Rate

Tr
ue

−
P

os
iti

ve
 R

at
e

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Figure 2: Top, confidence bands for the ROC curve using the "PSN" procedure for optimal α1
and fixed α1 = α/2, respectively. Bottom, confidence bands for the ROC curve constructed
by the "JMS" and "DEK" method, respectively. Confidence level: 1− α = 0.95.

print(rocbands_jms)
#> The method considered to build confidence bands is the one proposed in
#> Jensen et al. (2000).
#> Confidence level (1-alpha): 0.95.
#> Bootstrap replications: 500.
#> Interval in which compute the regional confidence bands: (0.00280112,0.9971989).
#> K.alpha: 3.163202.
#> The area between the confidence bands is 0.1668.

print(rocbands_dek)
#> The method considered to build confidence bands is the one proposed in
#> Demidenko (2012).
#> Confidence level (1-alpha): 0.95.
#> The area between the confidence bands is 0.0694.

plot(rocbands_psn)
plot(rocbands_psn_mod)
plot(rocbands_jms)
plot(rocbands_dek)
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CONTRIBUTED RESEARCH ARTICLE 14

Figure 3 presents the comparison of two dependent ROC curves describing the ability
of the markers mean and the worst smoothness to make an accurate diagnosis. Different
procedures dealing with different estimators and ways to approximate their distribution
under the null hypothesis (H0 : R1(t) = R2(t) ∀t ∈ (0, 1)) have been considered.
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Figure 3: Top, ROC curve estimates for mean (R̂1(t)) and worst (R̂2(t)) smoothness , in
black the mean ROC curve estimate (R̂(t)). Bottom, p-values of previous tests by bootstrap
(black line) and permutated (blue line) iterations based on the Kolmogorov-Smirnov test, L1
and L2 measures, Cramér von-Mises criterion, a new one whose statistic value is defined as
1
2

2

∑
i=1

∫ 1

0
n2
(

R̂i(t)− R̂(t)
)4

dt, and the Venkatraman approach.

The p-values reported by every method are below 0.05 except for Kolmogorov-Smirnov.
It should be noted that the p-values returned by the Venkatraman permutation method are
slightly lower than those ones obtained by the general bootstrap technique.

The compareROCdep function has been used with this objective:

depmarker <- cbind(smoothness_mean,smoothness_worst)

out.KS <- compareROCdep(depmarker, diagnosis)
out.L1 <- compareROCdep(depmarker, diagnosis, statistic = "L1")
out.L2 <- compareROCdep(depmarker, diagnosis, statistic = "L2")
out.CR <- compareROCdep(depmarker, diagnosis, statistic = "CR")
out.new <- compareROCdep(depmarker, diagnosis, statistic = "other",

FUN.dist = function(g){mean(g^4)})

out.perm.KS <- compareROCdep(depmarker, diagnosis, method = "perm")
out.perm.L1 <- compareROCdep(depmarker, diagnosis, statistic = "L1", method = "perm")
out.perm.L2 <- compareROCdep(depmarker, diagnosis, statistic = "L2", method = "perm")
out.perm.CR <- compareROCdep(depmarker, diagnosis, statistic = "CR", method = "perm")
out.VK <- compareROCdep(depmarker, diagnosis, statistic="VK")
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CONTRIBUTED RESEARCH ARTICLE 15

out.perm.new <- compareROCdep(depmarker, diagnosis, statistic = "other", method = "perm",
FUN.dist = function(g){mean(g^4)})

On the other hand, Figure 4 reflects the comparison of three independent ROC curves
performed to analyze the diagnostic accuracy of the mean radius variable in each group
defined by symmetry values: group 1 if symmetry_mean < 0.18 and symmetry_worst
< 0.29, group 3 if symmetry_mean > 0.18 and symmetry_worst > 0.29, and group 2
otherwise. The five estimators computed in the compareROCindep function have been used.
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Figure 4: Top, ROC curve estimates for radius mean variable in each group (R̂i(t)) and their
mean ROC curve estimate (R̂(t)). Bottom, p-values of previous tests based on L1 and L2
measures, Cramér von-Mises criterion, Venkatraman approach and AUC comparison test.

The p-value is greater than 0.1 for all tests considered, being the one reported by the
AUC approach the lowest one. Therefore it might be concluded that there is no statistically
significant evidence to state that these three ROC curves differ.

The commands used to build Figure 4 are the following, using the compareROCindep
function:

type <- as.numeric(symmetry_mean > 0.18) + as.numeric(symmetry_worst > 0.29) + 1
table(type,diagnosis)
#> diagnosis
#> type B M
#> 1 189 48
#> 2 91 51
#> 3 77 113

output.L1 <- compareROCindep(radius_mean, type, diagnosis, statistic = "L1")
output.L2 <- compareROCindep(radius_mean, type, diagnosis, statistic = "L2")
output.CR <- compareROCindep(radius_mean, type, diagnosis, statistic = "CR")
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CONTRIBUTED RESEARCH ARTICLE 16

output.VK <- compareROCindep(radius_mean, type, diagnosis, statistic = "VK")
output.AUC <- compareROCindep(radius_mean, type, diagnosis, statistic = "AUC")

Primary Biliary Cirrhosis (PBC) Data

The Primary Biliary Cirrhosis (PBC) dataset contains the results of a trial in PBC of the liver
conducted between 1974 and 1984 referred to Mayo Clinic. A total of 424 PBC patients met
eligibility criteria for the randomized placebo controlled trial of the drug D-penicillamine;
among them, the 393 non-transplanted ones have been considered for this analysis. This
dataset is freely available within the R package survival by the name pbc. The reader is
referred to Therneau and Grambsch (2000) for a complete information about the study.

In order to analyze how good the marker serum bilirubin (mg/dl) is to detect those
patients who died or survived by 4000 days from their registration in the study, the ROC
curve has been estimated. However, there are some patients censored before the regarded
time, and two different approaches have been considered in order to estimate the survival
probability of those patients censored before the time considered: Figure 5 at top-left, a semi-
parametric one based on Cox regression model; at top-right and bottom, a non-parametric
one based on naive and smoothed Kaplan-Meier estimators, respectively.

As shown in Figure 5, the different approaches considered report similar ROC curves
but it should be noted that the area under the curve reported by the weighted Kaplan-Meier
method with normal kernel is slightly higher (AUC= 0.809) because the sensitivities related
to specificity values close to one are the highest.

The cdROC function has been used for this purpose:

library(survival)
data <- subset(pbc, status!=1)
attach(data)
status <- status/2

out1 <- cdROC(time, status, bili, 4000)
out2 <- cdROC(time, status, bili, 4000, method = "KM")
out3 <- cdROC(time, status, bili, 4000, method = "wKM")
out4 <- cdROC(time, status, bili, 4000, method = "wKM", kernel = "other",

kernel.fun = function(x,xi,h){u <- (x-xi)/h; 1/(2*h)*(abs(u) <= 1)}, h = 0.5)

plot(out1, main="ROC curve at time 4000 (Cox method)")
text(0.8, 0.1, paste("AUC =", round(out1$auc,3)))
plot(out2, main="ROC curve at time 4000 (KM method)")
text(0.8, 0.1, paste("AUC =", round(out2$auc,3)))
plot(out3, main="ROC curve at time 4000 \n (Weighted KM method with normal kernel)")
text(0.8, 0.1, paste("AUC =", round(out3$auc,3)))
plot(out4, main="ROC curve at time 4000 \n (Weighted KM method with uniform kernel)")
text(0.8, 0.1, paste("AUC =", round(out4$auc,3)))

Interleukin 6 (IL6) Data

The Interleukin 6 (IL6) dataset includes the results of 9 papers which study the use of the
IL6 as a marker for the early detection of neonatal sepsis. An analysis of this dataset, freely
available within the nsROC package by the name interleukin6, can be found in Martínez-
Camblor (2017). Particularly it includes true-positive (TP), false-positive (FP), true-negative
(TN) and false-negative (FN) sizes for all cut-off points reported in each paper, resulting in
19 entries.

Figure 6 shows the summary ROC curve estimate from the 9 papers included, con-
sidering either a fixed-effects or a random-effects meta-analysis model (up and down,
respectively). The optimal point of the curve in the Youden index sense is displayed, as
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Figure 5: Time-dependent ROC curve estimate using "Cox", "KM" (top) and "wKM" method
with normal kernel and bandwidth h = 1 and with uniform kernel and h = 0.5 (bottom),
respectively.

well as the area under the curve. In this case, the curve does not vary much when the
variability between studies is taken into account, reporting similar AUC (0.772 and 0.788,
respectively) as a consequence. In addition, both estimates seem to be below most of the
interpolated curves they come from; that is because the weights for the study number 9
(with an interpolate ROC curve close to diagonal) are the largest ones in the interval (0, 0.5).
As it can be seen in the bottom-right plot of Figure 6, the FPR interval with higher inter-study
variability is (0, 0.2).

The code computed, using the metaROC function, is listed below:

data(interleukin6)

output1 <- metaROC(interleukin6, plot.Author = TRUE)
#> Number of papers included in meta-analysis: 9
#> Model considered: fixed-effects
#> The area under the summary ROC curve (AUC) is 0.772.
#> The optimal specificity and sensitivity (in the Youden index sense) for summary
#> ROC curve are 0.7 and 0.76, respectively.
points(1-output1$youden.index[1], output1$youden.index[2], pch = 16, col = 'blue')
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Figure 6: Summary ROC curve estimate considering a fixed-effects (top) and a random-
effects meta-analysis model (bottom), respectively. Bottom-right, inter-study variability
estimate of summary ROC curve reported by a random-effects model.

output2 <- metaROC(interleukin6, model = "random-effects", plot.Author = TRUE,
plot.inter.var = TRUE)

#> Number of papers included in meta-analysis: 9
#> Model considered: random-effects
#> The area under the summary ROC curve (AUC) is 0.788.
#> The optimal specificity and sensitivity (in the Youden index sense) for summary
#> ROC curve are 0.701 and 0.763, respectively.
points(1-output2$youden.index[1], output2$youden.index[2], pch = 16, col = 'blue')

Summary

This article introduces the usage of the R package nsROC for analyzing ROC curves. In
particular, the package contains the following new techniques:

• point ROC curve non-standard estimation implementing the generalization proposed
by Martínez-Camblor et al. (2017) [gROC function];

• confidence bands construction by three different methods: two of them are non-
parametric (Jensen et al. (2000) and Martínez-Camblor et al. (2018)) and the other one
is based on the binormal model (Demidenko (2012)) [ROCbands function];
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• time-dependent ROC curve estimation, dealing with the presence of censored data
respect to the time-dependent response variable following Martínez-Camblor et al.
(2016) procedure [cdROC function];

• meta-analysis, implementing the methods proposed by Martínez-Camblor (2017),
covering both fixed and random-effects model considering all the points of the curve
reported in each study [metaROC function];

• comparison of several ROC curves using different procedures, among which the ones
based on usual tests to compare distribution functions proposed by Martínez-Camblor
et al. (2011) and Martínez-Camblor et al. (2013) stand out. Not only the usual tests
can be performed, but the user can define any other by the input parameters in the
compareROCdep and compareROCindep functions.

In spite of the popularity of R packages about ROC curves dealing with some of the
most important analyses related to this tool, nsROC includes some algorithms which had
not been computed to date in order to address some of those standard analyses (such as
time-dependent ROC curve estimation and comparison between curves) and others totally
new such as the generalized ROC curve estimation and non-parametric procedure for meta-
analysis. Any of these particular techniques had been addressed earlier, excluding the usual
estimation of the curve, the weighted Kaplan-Meier method to deal with the presence of
censored data in time-dependent ROC curves estimation, and the Venkatraman and DeLong
approaches to compare diagnostic accuracies of two tests.

The following table indicates which functions in the package can be used for different
options of side of the ROC curve. In addition to this, it should be mentioned that cdROC
function estimates a time-dependent ROC based on cumulative sensitivity and dynamic
specificity definitions, which are ultimately related to right-sided ROC curve. On the other
hand, metaROC function includes directly the TP, FP, TN and FN as input parameters, and
those may have been generated by any ROC curve approach, but it should be the same for
all studies considered.

Right Left Both

gROC gROC gROC
ROCbands ROCbands(method=="PSN") ROCbands(method=="PSN")
compareROCdep compareROCdep(method!="VK")
compareROCindep compareROCindep(statistic!="VK")

Table 7: Options of side of the ROC curve for different functions of the nsROC package
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