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We have obtained the electron density of danburite by means of ab initio Perturbed Ion (aiPI)
quantum mechanical calculations and fully characterized its topological features as required for the
analysis of crystal bonding in the light of Bader’s Atoms In Molecules (AIM) theory. Our theoretical
results are compared with the experimental determination by Downs and Swope (J. Phys. Chem.
96 (1992) 4834). Each B and Si ion is bound to its four nearest oxide ions in a deformed tetrahedral
disposition, whereas Ca is bonded to seven oxide ions. What makes this mineral most interesting is
a rich collection of O–O long distance bond paths. Their existence is examined in several crystalline
oxides and gas phase molecules. The occurrence of bond paths is not simply due to the distance
between atoms, but rather is a consequence of the molecular and crystal geometry. It is shown that
the electron density at the bond critical point decreases exponentially as the distance between atoms
increases. This relationship groups together molecules and crystals, neutral oxygen and oxide ions,
bonds from 1.2 to 3.2 Å, both covalent and ionic.

I. INTRODUCTION

From the first days of quantum mechanics, the chem-
ical bond in molecules and solids has been interpreted
in terms of concepts produced by the simplest MO-
LCAO (Molecular Orbitals made as Linear Combinations
of Atomic Orbitals) approximation. Whereas this ap-
proach has been a fruitful source of chemical insight, it
is well known that many LCAO bonding concepts dissi-
pate when large sets of basis functions (atomic or other-
wise) are used, and even more when the molecular wave-
function is systematically improved in Configuration In-
teraction (CI) calculations. Furthermore, new powerful
theoretical techniques generate wavefunctions that can
explain experimental data without resort to the indirect
approach of referring to molecular orbitals or the LCAO
approximation. This situation has led several research
groups to develop and use new approaches to the concept
of chemical bonding, extracting the chemical information
from the wavefunction itself, or from properties derived
from it, as the electron density. This provides a sound
definition for the chemical bonding concepts, since they
become physical properties of the state of the system, in
equal footing with other observables like the energy.

One of the most successful approches is the work by
Bader and collaborators,1–6 and it is usually known as
the Quantum Theory of Atoms in Molecules (AIM). The
AIM theory is founded on the Lagrangian formulation of
Quantum Mechanics7 and, particularly, on Schwinger’s
stationary action principle.8 Through the generalization
of this formulation to open subsystems (i.e. systems ex-
tending in a limited region of space), Bader was able
to demonstrate that quantum mechanical laws don’t ap-
ply locally to arbitrary regions of the molecular systems.
They apply if and only if the regions are chosen accord-
ing to the criterion that the flux of the electron density
through their limiting surfaces is null, ~∇ρ · ~n = 0. In
this case, each and every quantum mechanical law is lo-

cally satisfied, and each and every observable property
is locally well defined. Accordingly, the atoms and func-
tional groups of chemistry can be identified with regions
of space whose properties are well defined, which addi-
tively contribute to the total properties of molecules, and
that bind together providing an unequivocal description
of molecular structure.

Although a review of all AIM studies done lies out-
side of the purpose of this work, we should mention
that the extension of AIM concepts to crystalline solids
has been analyzed in Refs.9–11. High-quality experi-
mental densities of minerals,12–20 covalent,21 metallic,22

and molecular crystals23–27 have been analyzed in terms
of AIM concepts. In addition, theoretical calcu-
lations on simple metals,28–30 alloys and intermetal-
lic phases,31–40 molecular,10,30,41,42 covalent and ionic
crystals,11,20,21,30,43–49 as well as impurity centers and
defects50–53 have been reported.

The electron density of danburite (CaB2Si2O8), a nat-
urally occurring borosilicate, has been determined by
Downs and Swope from x-ray diffraction experiments,14

and analyzed in the light of the AIM theory. Even though
the experimental noise precluded Downs and Swope from
obtaining all topological features of the crystal, their data
provide an excellent test for theoretical calculations of the
crystal wavefunction and for ideas regarding bonding on
ionic crystals.

Two of the results from Downs and Swope’s article are
particularly appealing. First, danburite is shown to be
an ionic crystal, all Ca–O, B–O and Si–O bonds present-
ing a local depletion of electron density (∇2ρb > 0) at
the bond critical point. Second, the oxide ions are highly
polarized and unspherical, extending 0.937±0.003 Å in
the Si–O bond directions, 0.992±0.015 Å in the B–O,
and 1.246±0.023 Å along the Ca–O bond path.54 This
observation supports Pauling’s argument that the bond-
ing radius of an atom should be inversely proportional
to the electronegativity of the atom to which is bonded.
It can also be viewed as an evidence of the polyhedral
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shape of the ionic basins in crystals.11

On the other hand, recent works in ionic crystals,11,46

hydrocarbons with large substituent functional
groups,55–57 and van der Waals aggregates58 have
shown the occurrence, in many instances, of long-range,
low-density bonds. Some authors have raised doubts
about whether these topological bonds should be
considered as true chemical bonds or rather viewed
as mathematical artifacts.55–57,59 Danburite is a very
interesting system in relation to this problem, because
it has five non-equivalent oxide positions, each having
a very different local environment. Unfortunately, the
occurrence of O–O bonds in danburite has not been
experimentally examined.

Our main objective in this work is to produce a com-
plete characterization of all the topological features of
danburite’s electron density. To this end we have used
the techniques previously developed and applied to alkali
halides and halide perovskites.11,46 These techniques are
briefly described in Section II. The topological proper-
ties of the electron density are presented and discussed in
Sec. III. Section IV examines the shape and properties
of atoms in the crystal. Finally, the occurrence of O–O
bonds is addressed in Sec. V.

II. THEORETICAL PROCEDURE

As in previous works,11,46,47 the crystal wavefunc-
tion has been obtained by means of ab initio Per-
turbed Ion (aiPI)60–62 calculations at the experimental
geometry.14 The aiPI method is a localized Hartree-Fock
(HF) scheme60,63,64 that has been extensively used to
describe accurately the electronic structure, geometry
and thermodynamical properties of ionic and partly ionic
pure and defective solids.60,65–71 The multi-ζ exponential
basis sets by Clementi and Roetti72 for Ca+2, B+3, Si+4

and O− have been used in the present aiPI calculations.
In addition, Dovesi’s et al. crystal98

73 code has been
used to obtain HF-LCAO (Linear Combination of Atomic
Orbitals) electron densities on a collection of test crystals
that provide independent validation of our aiPI results
on danburite. Common practice techniques73 have been
used to truncate and adapt to the crystals double or triple
zeta valence (DZV or TZV) gaussian molecular basis sets
as described in Ref.30.

It is worth mentioning that aiPI and crystal98 wave-
functions do complement each other nicely for the pur-
poses of this work. Whereas crystal98 provides a re-
liable description of the bond critical points with a sig-
nificant electron density accumulation, aiPI works best
at providing a good description of the low density re-
gions and producing stable trends across families of com-
pounds.

The electron densities obtained from the aiPI or crys-

tal98 calculations has been the input to the critic
program,74 a code that automatically searches for all the
independent critical points in a crystal lattice. Two dif-

ferent search methods have been used. The first method,
previously described in Ref.11, is based on the recur-
sive division of the irreducible wedge of the Wigner-Seitz
polyhedron of the Bravais lattice and the minimization of
|~∇ρ| within the edges, surfaces and interiors of the result-
ing tetrahedra. Even though this method works nicely in
many simple crystals, it failed to find many critical points
of danburite.

Accordingly, we have turned to a brute force method
that happened to be quite robust at getting all critical
points of danburite. The method starts by recursively
dividing the crystal cell into tetrahedra up to a recursion
level previously fixed (usually 4 or 5 levels, which repre-
sents 425 or 1705 tetrahedra). Then, a Newton-Raphson
search is done, starting from the baricenter of each tetra-
hedra, to find the solutions of the equation ~∇ρ = ~0. The
value of the gradient at each end point must be checked
to be below an appropriate threshold, as the Newton-
Raphson search is not guaranteed to converge on a crit-
ical point. Most critical points, on the other hand, are
reached many times, so the last step of the algorithm
is replicating the points by symmetry and deleting the
repeated ones. The final set must fulfill the Morse rela-
tionships:

n− b+ r − c = 0, (1)

and

n ≥ 1, b ≥ 3, r ≥ 3, c ≥ 1, (2)

where n, b, r and c are the total number of nuclear, bond,
ring and cage critical points of the electron density in the
crystal cell, respectively.

On the other hand, we have also analyzed the occur-
rence of Si–O, Ca–O, B–O and O–O bonds on several
small molecules to the end of comparing with the results
on danburite. Those calculations have been done with
GAMESS75 using triple zeta valence plus diffuse and po-
larization functions at the Hartree-Fock level. The topo-
logical analysis of the GAMESS wavefunction has been
done with the AIMPAC package.76

III. TOPOLOGICAL PROPERTIES OF THE
ELECTRON DENSITY IN DANBURITE

Danburite crystallizes in the orthorhombic system with
space group Pnam and lattice parameters a = 8.0456(7),
b = 8.7629(4) and c = 7.7341(7) Å at 300 K.14 The loca-
tion and properties of all theoretical bond critical points
have been collected in Table I and compared with the
available experimental values. Nuclear, ring and cage
critical points have been also determined and are avail-
able upon request. We have found n = 52, b = 164,
r = 136, and c = 24, which fulfill the Morse relations
and can be compared with the experimentally known set
of n = 52 and b = 92.14
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TABLE I: Theoretical (first row) and experimental (second row when available) bond critical points of Danburite. Ionic radiib

(R1 and R2) are given in Å, bond densities (ρb) in e/Å3, bond Laplacians and curvatures (∇2ρb and λ3(b)) in e/Å5, and
ellipticities (εb) in %.

Wyckoff Bond x y z R1 R2 ρb ∇2ρb λ3(b) ε
8d Ca-O1 0.29145 0.07125 0.12505 1.2285 1.2713 0.1604 3.8317 5.2396 6.99

0.2880 0.0733 0.1228 0.142(3) 3.23
8d Ca-O2 0.37890 0.97270 0.35269 1.2089 1.2460 0.1817 4.2908 5.9416 4.83

0.3791 0.9709 0.3553 0.166(3) 3.73
8d Ca-O3 0.39243 0.19332 0.16563 1.2150 1.2526 0.1733 4.1484 5.7394 1.89

0.3927 0.1949 0.1622 0.161(3) 3.57
4c Ca-O5 0.53289 0.07428 0.25000 1.1856 1.2153 0.2115 4.8858 6.8848 0.75

0.5368 0.0736 0.25 0.184(5) 4.14
8d B–O1 0.22548 0.96781 0.94593 0.4836 0.9955 0.4832 26.7631 36.7152 1.28

0.2205 0.9675 0.9406 0.93(6) 11.85
8d B–O2 0.21572 0.40190 0.03958 0.4886 1.0117 0.4525 24.9145 33.8588 1.99

0.2139 0.3989 0.0438 0.99(3) 6.04
8d B–O3 0.30509 0.38463 0.07901 0.4798 0.9834 0.5092 28.4002 39.1935 1.52

0.3052 0.3850 0.0784 1.13(5) 7.63
8d B–O5 0.23417 0.42207 0.13531 0.4778 0.9763 0.5265 29.1554 40.3686 1.18

0.2432 0.4202 0.1358 1.15(5) 6.95
8d Si-O1 0.11201 0.14006 0.96627 0.6812 0.9375 0.6584 28.1712 39.6897 0.09

0.1094 0.1385 0.9666 1.01(4) 17.56
8d Si-O2 0.08400 0.26499 0.94980 0.6825 0.9413 0.6484 27.7733 39.0528 0.23

0.0856 0.2639 0.9515 0.95(3) 17.16
8d Si-O3 0.48862 0.30996 0.00066 0.6799 0.9351 0.6675 28.6467 40.3599 0.22

0.4883 0.3129 −0.0009 0.95(4) 19.46
8d Si-O4 0.47498 0.68039 0.36237 0.6806 0.9352 0.6626 28.3908 40.0015 0.06

0.4725 0.6802 0.3617 0.94(4) 18.30
8d O2-O1 0.28288 0.96603 0.48110 1.1624 1.1619 0.3127 5.0472 7.6690 3.35
8d O2-O5 0.15642 0.39683 0.39658 1.1874 1.1871 0.2766 4.5689 6.7971 6.19
8d O3-O5 0.29124 0.37154 0.33725 1.2021 1.2029 0.2554 4.3665 6.3211 15.09
8d O3-O1 0.35147 0.44016 0.04131 1.2098 1.2102 0.2455 4.2252 6.1018 13.11
8d O3-O2 0.26303 0.34093 0.01918 1.2148 1.2157 0.2396 4.1421 5.9560 12.06
8d O5-O1 0.24577 0.49408 0.12393 1.2380 1.2376 0.2172 3.9563 5.2931 44.55
4c O3-O3 0.39731 0.31448 0.25000 1.3275 1.3275 0.1336 2.4896 3.4534 12.13
8d O3-O1 0.70470 0.80852 0.96251 1.3962 1.3978 0.0937 1.7990 2.4525 10.33
4c O2-O2 0.37717 0.87129 0.25000 1.6063 1.6063 0.0336 0.7379 0.8526 88.98
4b O2-O2 0.50000 0.00000 0.50000 1.5958 1.5958 0.0333 0.7073 0.9109 3.52
4c O5-O4 0.41326 0.12770 0.75000 1.9157 1.9206 0.0065 0.1564 0.1725 4.96

aWe define the ionic radius as the distance between the bond
critical point and each corresponding nucleus.

bWe define the ellipticity as ε = 1 − λ2/λ1 rather than using
Bader’s definition (λ1/λ2 − 1). The advantage of our definition is
that ε lies in the range [0, 1].

Up to 23 different bond critical points have been found
in danburite’s theoretical density. In the AIM framework,
whenever there exists a bond critical point between two
atoms these atoms are considered to be bonded, and the
gradient line connecting both nuclei and the bond critical
point is referred to as the bond path or simply the bond
between the two atoms. Each Si and B are bonded to
four oxide ions in a distorted tetrahedral configuration.
Ca, on the other hand, is bonded to seven oxide ions in a
configuration similar to a distorted octahedron with an
extra bond appearing where an octahedron edge should
be. This bonding pattern is the same as found exper-
imentally and, in fact, there is an excellent agreement
between the theoretical and the experimental positions
of the M -O bond critical points14 (see Table I). There is
also agreement on the value of the density and the Lapla-
cian at the Ca–O bond critical points. However, the aiPI

theoretical density at the Si–O bond critical point is only
about 65% of the experimental value, and 45% for the
B–O bond. The aiPI values for the Laplacians are also
significantly larger than the experimental values, even if
taking into account an estimated experimental error14

of the order of 25%. This discrepancy on the B–O and
Si–O bond critical properties is mostly due to the ap-
proximations incorporated within the aiPI technique, in
particular the enforced radial symmetry of the electron
density contributed by each ion. This approximation is
expected to become poorer as the covalent accumulation
of electron density increases. On the contrary, the use
of a saturated exponential basis set is expected to work
best on the representation of mostly ionic bonding, in ad-
dition to provide stability of the bond properties across
families of compounds.

To provide an independent validation of our results we



4

TABLE II: Equilibrium geometry and bond topological prop-
erties of some reference molecules. The calculations have
been done with GAMESS75 at the Hartree-Fock level using
a TZV+(3d1f) basis set. The topological analysis has been
done with Bader’s AIMPAC suite.76

State RAB (Å) ρb(e/Å3) ∇2ρb(e/Å5)
SiO X1Σ+ 1.5097 1.26853 35.7156
BO X2Σ+ 1.205 2.09093 44.1469
CaO X1Σ+ 1.9426 0.68947 14.0227

have compared the aiPI and crystal98 electron densi-
ties for a representative collection of oxide crystals: ionic
compounds like MgO, ZnO and CaO; polar crystals like
α-quartz, TiO2 (both, rutile and anatase phases), AlBO3,
and CaTiO3; and even molecular compounds like N2O4.
The comparison shows that aiPI systematically under-
estimates the electron density accumulation in covalent
and highly polar compounds. For instance, the ratio of
aiPI to crystal98 ρb values is about 74–76% on the Si-
O bond critical points and 50% on the B-O ones. The
agreement is much better in the more ionic cases: 80-95%
on Ca-O, 83% on Ti-O, or 87% on Zr-O. More important,
the crystal98 and aiPI calculations agree qualitatively
on the occurrence of O-O bonds like those found on dan-
burite, and quantitatively on the O-O bond point prop-
erties.

Furthermore, we can gain additional understanding on
the crystal bonding and the aiPI results by turning to
examine the electron density of SiO, BO and CaO di-
atomic molecules, as they provide a model of the electron
density behavior when the interatomic distance changes.
Table II presents the topological bond properties of the
three molecules at their respective equilibrium distances.
The calculations have been done with high quality ba-
sis sets at the Hartree-Fock level, and we have checked
that the bond properties don’t change appreciably when
correlation effects, up to a CI-SD level (Configuration
Interaction including Single and Double excitations), are
included. We can observe that bond lengths are consis-
tently shorter in the molecule than in the crystal for the
same pair of atoms, being the electron density and its
Laplacian at the bond critical points much larger in the
molecules.

To be able to compare molecular and crystal densities
we need to put them in the same distance scale. Accord-
ingly, we have represented the bond density versus the
interatomic distance for the reference molecules in Fig 1.
The most important thing to observe is that ln ρb de-
creases linearly with the interatomic distance, RAB , for
a large range of distances that includes both the molec-
ular equilibrium distance and the distances in danburite
under normal pressure and temperature. The reason for
this linear behavior is directly inherited from the proper-
ties of the radial electron density, ρ(r), of the free atoms.
Effectively, ln ρ(r) decreases from the maximum cusp at
the nucleus following linear steps, each step being re-

lated to one of the K, L, M, ... electron shells. Differ-
ent linear steps, on the other hand, have different slope,
and they are separated by rather curved arms. Those
linear regimes are found to be essentially conserved on
many molecules that we have analyzed, both diatomic
and polyatomic. It is quite interesting to notice that ρb
is a measurement of the bond strength and it has been
observed to correlate with the traditional bond order, n,
as n = αρβb or n = α exp(βρb) (Ref.4). We can then re-
late bond order and distance or, which is more striking,
use a single and unified concept to deal with, say, the C–
C bond on such molecules as C2H6, C2H4, C6H6, C2H2

and C2.
Fig 1 shows that the molecular values of ρb corre-

late quite well with the experimental values on danbu-
rite when the same interatomic distances are considered.
This result suggests that the molecular and crystalline
regimes are manifestations in a different distance range
of an unique universal regime. The experimental densi-
ties on the crystal show, on the other hand, significant
error bars that could, perhaps, be reduced if the molec-
ular results were used to refine the analysis of the X-ray
diffraction data. The aiPI densities for the Ca–O bond
agree with the molecular results. Even more, the aiPI
bond densities obtained in a collection of crystals that in-
cludes several phases of CaTiO3 and CaO, as well as dan-
burite predict exactly the calculated molecular bond den-
sity when extrapolated to the molecular distance. The
same extrapolation, however, predicts densities on the di-
atomic Si–O and B–O bonds that are about half of what
should be expected from the diatomic molecule calcu-
lations, owing to the more covalent character of these
diatomics.

It appears, from the above analysis, that the aiPI wave-
function underestimates the electron density in tetra-
hedral bonds, but it is satisfactory representing bonds
from higher coordination environments. This conclusion
is in accordance with the lack of multipolar contribu-
tions to the energy and wavefunction in the present aiPI
calculations.61,62 These difficulties should be overcome
in the next generalized Perturbed Ion method,77 which is
presently being coded.

IV. SHAPE AND PROPERTIES OF ATOMS

We can now turn to discuss the shape and proper-
ties of atoms in danburite. In a solid, we have shown11

that the smallest proper quantum subsystems are the pri-
mary bundles. A primary bundle is the set of all points
traversed by upward trajectories of the electron density
gradient field that start at a given minimum and end
at a given maximum. The collection of all bundles that
have the same maximum as a common vertex form the
attraction basin for that particular maximum. The inte-
gration of appropriate functionals over the basin gives the
atomic properties, which are well defined for any quan-
tum mechanical observable, are additive to give the total
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FIG. 1: Electron density versus interatomic distance for the
Ca–O, Si–O and B–O bonds in danburite and the correspond-
ing diatomic molecules. The solid lines correspond to the
bond critical point densities (ρb) of the corresponding di-
atomic molecules for a range of internuclear distances. Notice
the logarithmic scale on the density.

property of the system, and are maximally transferable
among systems up to the point that the basin shape is
maintained.

The basin shapes of the ions in danburite are shown in
Fig.2. Basins are topologically equivalent to polyhedra,
in the sense that they have faces, edges and vertices, and
they satisfy Euler’s relationship (faces − edges + vertices

= 2). Unlike polyhedra, however, basins tend to have
rather curved edges and faces. Each face is the attraction
surface of a bond critical point, edges are the attraction
lines of a ring, and vertices are minima of the electron
density. Accordingly, ionic basins provide another way of
looking at the crystal bonding.

Bonding in crystals is dominated by geometric factors.
The existence of a bond path is not simply due to the
distance between a particular pair of atoms, but it is
rather the result of a complex balance among the basins
of many neighbors. We have already observed that be-
havior on the rock-salt phase of alkali-halides and simple
oxides (AX): the ratio among anion and cation topologi-
cal radii (rX and rA, respectively) on the A–X bond path
is an exact predictor on whether there is (rX/rA > 1.15)
or not (< 1.15) a X–X bond path.47,48 Similar rules hold
for the CsCl phase,47,48 perovskites,46 fluorites and other
prototypical crystalline structures.49

Danburite presents some striking examples of this bal-
ance principle. Whereas B, Si, Ca and O1 ions are
bonded to their nearest neighbors up to a given distance,
the behavior of O2, O3, O4 and O5 ionic basins is quite
different. O4 ions, for instance, being the bridge among
two SiO4 tetrahedra, are bonded to both Si ions at 3.083
Å and to an O5 ion placed quite far away (6.353 Å), even
though there are ten oxide ions and four B ions in the
range 4.99–6.27 Å to which O4 ions are not bonded.

The most striking feature of ionic basins is, perhaps,
their anisotropy and irregular shape as we can appreciate
in Fig. 2. The distance from the nucleus to its basin’s
surface is quite different depending on the direction. In
addition, basin shapes on danburite reflect the low sym-
metry of the ions within the crystal. We could conclude,
näıvely, that being the ion shape something completely
different from a sphere the classical notion of ionic radius
is not compatible with Bader’s AIM theory. However,
our previous work has clearly shown us that the topolog-
ical radii, defined as the distance from a nucleus to its
bond critical points, can be compared to and have the
predictive rôle of the empirical ionic radii.47,48

In agreement with this idea, the topological radii of
cations show a very small variation among the different
bonds in danburite: rB = 0.483± 0.005 Å, rSi = 0.681±
0.001 Å, and rCa = 1.213 ± 0.014 Å. Oxide ions, on the
contrary, present a wide range of values: 0.935–1.921 Å.
Quite interestingly, the radii of oxide ions are more or less
constant when bonded to a particular cation — rO(Si–
O)= 0.937± 0.003, rO(B–O)= 0.989± 0.015 and rO(Ca–
O)= 1.246±0.023 Å — but show a large variability when
bonded to other oxide ions: rO(O–O)= 1.33 ± 0.23 Å.
The image of hard cations versus soft, polarizable anions
is a natural conclusion from these results. This image is
clearly compatible with the description of ionic crystals
traditional since Pauling.79

Regarding the basin shapes as we can see in Fig. 2,
B and Si appear as slightly deformed tetrahedra, Ca is
a heptahedron with bilateral symmetry, and the oxide
basins have a very variable number of faces: 7 (O1), 8
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FIG. 2: Atomic basins for the ions in danburite. From left to right, up to down: (a) Two BO−5
4 groups united by a O5 bridge.

Each B is surrounded by O1 (subtracted to show the B basin), O2, O3 and O5 atoms. (b) An O1 basin acts as a bridge
between the SiO−4

4 (up) and BO−5
4 tetrahedra (O4 and O5 have been subtracted around Si and B, respectively). (c) The SiO−4

4

tetrahedra are bridged by an O4 basin. Each Si edge in the Si basin extends in the space as a nearly bidimensional wing, and
is surrounded by O1 (subtracted to show the Si basin), O2, O3, and O4 atoms. (d) The Ca basin is heptacoordinated by two
O2 basins (up), two O1 basins (middle), two O3 basins (down), and a single O5 basin (front). The figures have been created
with Geomview.78

(O2 and O3), 3 (O4) and 10 (O5). The basin of O4 is,
in fact, one of the strangest we have found in studying
many kinds of crystals. Each O4 ion is only bonded to
two equivalent Si ions (rO4(Si–O4)= 0.935 Å) and to a
single O5 ion (rO4(O4-O5)= 1.921 Å). Accordingly, the
O4 basin, which must show bilateral symmetry, has only
three faces with a very large curvature (see Fig. 2).

The integration of appropriate functionals over the
basins provides the properties of ions. Table III lists
the basin volume and net charge of danburite’s ions. As
the integration is done numerically, it is relevant to in-
dicate that the residual charge on the unit cell due to
the integration errors is −0.018 e, and the absolute error
in the cell volume is −0.125 Å3, which represents a rel-
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TABLE III: Volume and charge of ionic basins in Danburite.
Shown as a comparison, R is the radius of a sphere with the
same volume than the basin, and 〈R〉 is the average of the
topological radii.

V (Å3) Q(e) R(Å) 〈R〉(Å)
Ca 12.183 +1.921 1.427 1.213
B 0.717 +2.874 0.555 0.483
Si 2.388 +3.735 0.829 0.681
O1 14.910 −1.890 1.527 1.173
O2 14.387 −1.896 1.509 1.246
O3 13.738 −1.900 1.486 1.190
O4 17.225 −1.862 1.602 1.264
O5 14.599 −1.909 1.516 1.234

ative error of −0.023%. According to our calculations,
the net charges of all ions are very close to their nomi-
nal oxidation states: QCa = 1.9, QB = 2.9, QSi = 3.7,
and QavO = −1.9. Comparison with crystal98

73 cal-
culations on simpler oxides30 suggests that aiPI basin
charges are slightly large and we should expect charges
around 1.85 (Ca), 3.5 (Si), −1.75 (O) and 2.6 (B). These
atomic charges are very important components in the de-
velopment of force fields, that allow for a fast estimation
of the lattice energy on geometries not far away from the
static equilibrium arrangement.

Basin volumes, on the other hand, show the trends that
should be expected from the atomic number and oxida-
tion state of the ions: VO−2 > VCa+2 � VSi+4 > VB+3 .
It is a little surprising the large variation among the vol-
umes of oxide basins, from 13.7 Å3 on O3 to 17.2 Å3 on
O4. This variability is related to the rôle that anions play
on filling the space in the crystal. This large difference
in the O−2 basin volumes is not, however, accompanied
by an equivalent variability in the ion charge, and we
can conclude that the additional volume on some basins
corresponds to very low density regions. This is, prob-
ably, the reason for the rough correlation between basin
volumes and average topological radii in danburite.

Once obtained, it is worth considering how the topo-
logical charges on the basins can be used. First of all, the
charges provide a description, albeit a very limited one,
of the distribution of electron density among the nuclei.
It is possible, in principle, for two different electron den-
sities to give equivalent descriptions of the critical points
number and properties. The charges integrated over the
basins give a different kind of information to distinguish
them.

Furthermore, we can define an ionicity scale from the
charges. We can compare, for instance, the topological
charge, Qi and the nominal oxidation state of an atom,
Qi, and define the charge transfer index 80 of the atom in
the crystal as:

Ci = 1− Qi −Qi
Qi

=
Qi
Qi
. (3)

We have found, in all the crystals studied, that |Qi| <
|Qi|. The Ci are then positive and lie in the range [0, 1].

The charge transfer index of the crystal, C, can be ob-
tained as an average of the atomic values. On a binary
compound, AmBn, the cell neutrality condition deter-
mines that CA = CB = C. In the case of danburite, the
Ci values range from 0.931 in O4 to 0.961 in Ca, with an
average value of 94.7% for the whole crystal. This value
is similar to those found in the alkali halides or simple
oxides.30 As a general rule, the charge transfer indexes
defined in Eq. 3 are usually bigger than the ionicities
obtained from Pauling’s electronegativities.

V. THE LONG-DISTANCE O–O BONDS

We have already shown the existence of topological
oxide–oxide bond paths in danburite in addition to the
typical metal–oxide bonds. We analyze now this evidence
in detail and address the more general question of sec-
ondary (i.e. between second and further nearest neigh-
bors) anion–anion bonds in crystals.

The occurrence of anion–anion bonds in ionic crystals
has already been proposed several times: (a) Pauling dis-
cussed the importance of anion–anion contact in lithium
halides.79 He saw in this interaction the source of an addi-
tional repulsion, given the energy required to deform the
anionic density. (b) O’Keefe and Brese81 proposed a set
of empirical rules to identify X–X bonds, where X is any
of F−, Cl−, Br−, I−, O−2, S−2, etc. (c) Göttlicher and
Vegas82 observed the existence of O–O density bridges
in a very high-quality X-ray determination of magnesite
(MgCO3), although later experiments on the same crys-
tal by Maslen et al.83 didn’t reproduced this observation.
(d) The topological features of anion–anion bond criti-
cal points were already detected in many historical high-
quality measurements of the total electron density like
Krug et al84 on LiF, Göttlicher85 on NaCl, and Nieder-
auer and Göttlicher86 on MgF2, to name just a few.

Traditionally, O–O bonds have been described in a va-
riety of forms: dioxygenil ion, O+

2 , as in O2PtF6
87; neu-

tral O2
88 and O3; ozonides containing the O−3 group, like

NH4O3
89; superoxides containing the O−2 group, like α-

KO2
90; and peroxides having the O−2

2 group like CdO2
91

and H2O2.92 The O–O distances in these molecular and
crystalline compounds range from 1.1 to 1.5 Å.93 The
oxide–oxide bond, on the other hand, would be described
as an O−4

2 embedded group, and its O–O bond length
would be 3.02 Å in MgCO3

82 or 2.3–3.4 Å for the differ-
ent O-O topological bonds in danburite.

Let us analyze the situation in danburite. Our topo-
logical analysis of the electron density indicates the ex-
istence of 11 different types of oxide–oxide bond critical
points, with O–O bond lengths from 2.32 to 3.36 Å. The
occurrence and spatial organization of oxide–oxide bond
paths in danburite are shown in Figs. 3 and 4. Fig. 3
clearly shows that bond critical points do not simply ap-
pear when the O–O distance is below some threshold.
Together, both figures indicate that bond formation is
a consequence of the local geometry of the ions basins
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FIG. 3: Plot of the shortest O–O distances in danburite. The
actual topological bonds are indicated by arrows.

FIG. 4: Molecular graph of danburite illustrating the position
of the O–O bond critical points (small spheres) and the O–O
bond paths (sticks passing through the bond critical point).
The dark tetrahedra correspond to the B coordination poly-
hedra, and the light ones are the Si coordination polyhedra.
The plot has been designed with tessel94 and rendered with
POVRay.95

or, in other words, it is due to the competition among
neighboring ions to attract electrons. The case of O4
is, again, the best example of what can happen in ex-
treme cases. Effectively, O4, the bridge atom between
two SiO−4

4 tetrahedra (see Fig. 2), is not bonded to its
six O−2 neighbors in the tetrahedra, but it is bonded to
its 9th neighboring shell: an O5 situated 3.362 Å away.

The different behavior of SiO−4
4 and BO−5

4 coordina-
tion tetrahedra is worth noticing. Whereas the oxide
ions in the BO−5

4 tetrahedra are bonded together, those
in SiO−4

4 are not. If we assume a regular tetrahedron
and consider the ions as rigid spheres, the anion–anion

contact on the edges would happen only if the cation to
anion radii ratio is: rc/ra ≤ 1/

√
2 ≈ 0.707. Using the av-

erage topological radii along the B–O and Si–O bonds we
find rB/rO = 0.489 and rSi/rO = 0.727. Thus, a simple
rigid ion argument correctly predicts the existence of O–
O bond paths on the BO−5

4 tetrahedra and their absence
on the SiO−4

4 tetrahedra.
There is evidence supporting that the O–O bond paths

are not a quirk in the aiPI wavefunction. As we have re-
marked before, both aiPI and crystal98 agree on the
prediction of O–O bonding in a collection of representa-
tive oxide crystals. For instance, according to both tech-
niques, they will be present in MgO but not in CaO due
to the different cation to anion ratio size.30 The aiPI to
crystal98 ρb(O–O) ratio varies between 60% to 130%
for the representative set of crystals already cited. This
may amount to a significative difference, but it must be
taken into account that the gaussian bases used on the
crystal98 calculations are commonly not saturated and
optimized differently for each crystal instead. This pro-
duces a nonnegligible error bar on the low density regions
that varies from a crystal to another. We need, accord-
ingly, a different test on the O–O density trends.

We have already seen, in the case of M–O bonding,
that the bond properties of small molecules, when ex-
trapolated to the distances found in crystals, can serve
as a valid reference for the crystalline regime. We will
try again this strategy to further analyze O–O bond
critical points. Several reference molecules have, conse-
quently, been selected: O2, O3, H2O2, O2F2, and the pla-
nar and non-planar configurations of C(NO2)−3 . Hartree-
Fock (HF) calculations have been done at the theoretical
(C(NO2)−3 ) or experimental (the rest of molecules) equi-
librium geometries. In the case of O2, we have done HF
calculations on the 3Σ−g ground state from 0.8 to 4.2 Å,
taking great care to keep the same electronic state at
all distances. The effect of basis sets has been analyzed
extensively, but only the best results using a TZV+(3d)
basis consisting of a triple zeta valence,75,96 diffuse sp
functions97 and three d polarization functions,98 will be
discussed here (a TZV+(1d) basis set in the case of
C(NO2)−3 ). Correlation effects, up to a CI-SD level, were
found to have a negligible influence on the topology of
the electron density of O2.

The O–O bond properties calculated on a collection
of crystals and gas phase molecules are presented in Ta-
ble IV. The results shown there clearly indicate that the
occurrence of O–O bond critical points is not uniquely
due to the O–O distance. The trinitromethanyde ion,
C(NO2)−3 , provides a clear illustration of this point. The
shortest O–O distance is 2.084 Å between the two oxy-
gens in a NO2 group, but there is no bond path among
them. The electron density gradient vector field of the
molecule, depicted in Fig. 5, shows how each N basin in-
terposes as a barrier between the two oxygens in its NO2

group, preventing the existence of a bond path among
them. The oxygens in different NO2 groups, however,
have no such limitation and even though their distance
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TABLE IV: Topological properties of O–O bond critical points in a collection of crystals and gas phase molecules. Crystal
calculations have been done with the aiPI method at the experimental geometries, using a large STO basis set. Molecular
calculations have been done at the experimental geometry using a HF/TZV+(3d) method, except the trinitromethynide ion,
for which the geometry has been optimized at the HF/TZV+(1d) level using both a D3h (planar) and a D3 (non-planar
configuration. Distances (dOO) are given in Å, bond densities (ρb) in e/Å3, bond Laplacians and curvatures (∇2ρb and λ3(b))
in e/Å5, ellipticities in %, and angles in degrees. In those crystals where there is no O–O bond, dOO corresponds to the shortest
O–O distance.

System dOO ρb ∇2ρb λ3(b) ε O–b–O
α-Al2O3 Ref.99 2.361 0.28222 4.82771 7.20722 1.79 179.56

2.464 0.21608 3.89050 5.62176 4.27 180.00
2.606 0.14988 2.87932 3.96931 5.97 178.54

BaO Ref.100 (3.917)
CaO Ref.100 (3.402)
CaTiO3 (Cmmm) Ref.101 (3.273)
CaTiO3 (Pbnm) Ref.101 3.350 0.02510 0.56632 0.61187 71.51 180.00
CaTiO3 (Pm3m) Ref.99 (2.715)
Danburite Ref.14 2.325 0.31272 5.04725 7.66895 3.35 179.38

2.374 0.27661 4.56888 6.79706 6.19 178.98
2.405 0.25536 4.36646 6.32111 15.09 178.72
2.420 0.24550 4.22524 6.10181 13.11 178.41
2.430 0.23957 4.14210 5.95601 12.06 178.31
2.474 0.21716 3.95629 5.29305 44.55 176.29
2.655 0.13362 2.48964 3.45335 12.13 178.21
2.793 0.09373 1.79897 2.45253 10.33 179.15
3.192 0.03327 0.70730 0.91093 3.52 180.00
3.210 0.03361 0.73790 0.85261 88.98 175.45
3.831 0.00648 0.15640 0.17255 4.96 173.70

Li2O Ref.100 (3.266)
MgO Ref.100 2.977 0.07288 1.22060 1.61606 21.48 180.00
SiO2 (Tridymite) Ref.101 (2.515)
SiO2 (α-Cristobalite) Ref.99 3.962 0.00418 0.10338 0.12098 45.78 177.36
SiO2 (α-Quartz) Ref.99 3.299 0.02490 0.53186 0.68368 5.17 179.84

3.563 0.01242 0.28051 0.34630 2.34 179.30
3.578 0.01221 0.27834 0.33136 21.81 176.71

SiO2 (β-Cristobalite) Ref.99 (2.616)
SiO2 (β-Quartz) Ref.99 3.420 0.01856 0.40390 0.50463 5.61 180.00

3.477 0.01586 0.34943 0.43378 2.02 178.14
SrO Ref.100 (3.649)
TiO2 (anatase) Ref.99 1.892 0.70115 15.74348 24.93740 0.27 179.95

2.050 0.43932 11.97492 16.36836 33.40 179.56
3.473 0.00756 0.01253 0.02506 0.00 137.85

TiO2 (rutile) Ref.102 2.536 0.17930 3.50806 4.67155 43.41 180.00
3.325 0.02166 0.53788 0.62560 14.78 180.00

ZnO Ref.103 (3.209)
ZrO2 (cubic) Ref.100 2.545 0.18207 3.25165 4.60648 15.29 180.00
O2 (g) 1.208 3.63513 −22.08444 47.08056 0.00 180.00
F2O2 (g) 1.217 3.60353 −24.45509 47.62489 0.72
O3 (g) 1.278 2.96936 −8.97505 29.35337 11.10
H2O2 (g) 1.452 1.91704 −2.75818 27.67977 5.25
C(NO2)−3 (planar) 2.453 0.17165 3.22675 4.65489 12.07
C(NO2)−3 (nonplanar) 2.689 0.10126 1.91329 2.42346 39.02

(2.453 Å) is larger than within a NO2 group, the molecule
presents three O–O bonds. Similarly, the topological
analysis of simple and highly symmetric crystalline struc-
tures has made clear that the occurrence of secondary
anion–anion bond critical points (or cation–cation bonds
in some cases) is regulated by the ratio of topological
radii along the main cation–anion bond paths.11,46,47 The
analysis of low symmetry crystals or molecules is more
difficult, but the same principles should apply and we
could say that the occurrence of secondary bonds be-
tween two atoms is controlled not by the distance but

rather by the size of the nearest neighbors’ basins around
both atoms.

On the other hand, the electron density at the O–O
bond critical point decays exponentially with the O–O
distance, as we can see in Fig 6. This behavior is closely
followed by molecules and crystals, for distances from
1.2 to 3.2 Å, and for bonds whose densities range from
5 to 0.005 e/Å3. As we had expected, the behavior of
the bond in the O2 molecule with the distance passes
through the actual values of the other molecules and crys-
tals, therefore representing an appropriate model for the
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FIG. 5: Electron density gradient vector field of C(NO2)−3 at
the optimal HF/TZV+(1d) planar geometry. In addition to
the expected C–N and N–O bond critical points, the molecule
presents O–O bonds connecting neighbor NO2 groups, and
ring points within each ONCNO pentagon. It is readily seen
that O–O bonds occur only between NO2 groups, as the N
basin extends through the two oxygens in each NO2 group.
The topology of the non-planar optimal configuration is iden-
tical, albeit less simple to visualize.
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FIG. 6: Electron density at the O–O bonds, in a collection of
molecules and crystals, represented against the O–O distance.
The electron density for the O2 molecule has been obtained
on a wide range of distances rather than at a single geometry
like in the case of the other systems. The ρb value for the
crystals has been represented by the best fit exponential law,
ρb(rOO) = A exp(−αrOO), where A = 33.692 e/Å3 and α =
2.0569 Å−1. Notice the logarithmic scale used on the vertical
axis.
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FIG. 7: Laplacian of ρb(O–O) for a collection of molecules
and crystals. The value of ∇2ρb of the O2 molecule has been
obtained in a range of internuclear distances, and it provides
an approximate model for all the compounds.

O–O bond.
The O2 molecule also provides an appropriate model

for the Laplacian of the electron density at the O–O bond
critical point, although it is less precise than in the case
of the bond density. We can observe in Fig 7 that the
bond character changes from mainly covalent (∇2ρb <
0) to mainly closed-shell like (∇2ρb > 0) as the O–O
distance passes from below to above 1.5 Å, respectively.
Accordingly, the O–O bond is clearly ionic (or closed-
shell) in most crystals, whereas it can be either covalent
or ionic in the molecules.

The above results show, in our opinion, a clear evidence
in favor of the real occurrence of O–O secondary bonds in
many crystals, and they also show the continuity in the
bond properties of the O–O dumbbell from the molecular
to the crystal regime, the internuclear distance being the
main control parameter.

Several authors, on the other hand, have raised
legitimate concerns about the physical meaning of
anion–anion bonding in crystals,59 “sterically interact-
ing” atoms57 or long-distance nonclassical bonds in
general.55,56,104

Abramov,59 for instance, based his main argument
on a particular decomposition of the lattice energy into
coulombic and short range repulsive terms by using
Bader’s basin charges within a simple electrostatic for-
mula that assumes point-like ions. According to this
partitioning scheme, the anion–anion interactions (or the
cation–cation ones) could only destabilize the crystal by
raising the Coulomb energy. It must be noticed, however,
that atomic basins are far from being spherical and point-
like, and that quite important multipolar interactions do
exist, as it has been demonstrated by Popelier.105,106 A
thorough analysis of whether the local distribution of
electron density of the anion–anion interaction line rep-
resents a bonding or antibonding net contribution in the
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energetic sense could be done using Berlin’s methods.107

Such analysis has been used extensively, to the best of our
knowledge, only on simple diatomic molecules108–112 and
its generalization to more complex molecules and even
crystals could be described as a nightmare (see however
Ref.113).

Cioslowski et al.55–57,104 have tried to classify long dis-
tance, weak topological bonds into true chemical bonds
(like those appearing in van der Waals interactions114

and hydrogen bridges,115,116 for instance) and interac-
tions appearing only for “steric reasons”. The O–O bond
in the planar configuration of the trinitromethanyde ion,
C(NO2)−3 , is proposed as a typical example of molecule
with steric interactions.57 It could be argued, however,
that the “steric crowding” is eliminated in the nonpla-
nar optimal geometry of C(NO2)−3 by the rotation of the
NO2 groups around the C–N axes, but the fact is that
the O–O bonds do not disappear by this relaxation of the
symmetry (see Table IV). In addition, as we have shown
previously, the topological properties of O–O bond paths
display a clear continuity from their occurrence as strong
bonds in many molecules to the weak second and longer
range interactions appearing in many crystal oxides, the
effective bond order being determined by the O–O dis-
tance.

More fundamentally, the occurrence of closed-shell
weak bonds in molecules and crystals has been discussed
by Bader.117 After examining the atomic and local theo-
rems governing atomic interactions, Bader concludes that
the presence of a (3,−1) critical point of the electron
density and its associated atomic interaction line in a
stationary state of a molecule or crystal is both neces-
sary and sufficient for the two atoms to be bonded to
one another in the usual chemical sense of the word. In
addition, “there are no repulsive contributions to the to-
tal potential energy locally nor from atoms or ions within
a system” and “only an excess electronic kinetic energy

can lead to repulsions within the system”, the electronic
potential energy being always stabilizing.117 Finally, even
though the Lewis model of bonding in terms of the for-
mation of one pair of electrons per bond is clearly unable
to deal with bonding in closed-shell systems, this idea
can be generalized to include less than complete pair-
ing. Accordingly, closed-shell interactions (either weak
or strong) and shared interactions are, both, due to the
pairing of the densities of opposite spin electrons.

VI. CONCLUSIONS

To conclude, we want to stress the usefulness of
comparing high quality electron densities from experi-
ments and theoretical calculations to further improve our
knowledge of chemical bonding in the light of the new
paradigm provided by the Atoms in Molecules Theory.
An universal indication of a bonding interaction between
two atoms, for short as well as long distances is the oc-
currence of a bond critical point and its associated bond
path connecting both atoms. The extrapolation of bond
properties from small molecules to the solid state regime
appears as a promising auxiliary technique that should
be further explored.
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