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Abstract

Let F be a finite field and let G be a finite group. We show that
if C is a G-code over F with dimF (C) ≤ 3 then C is an abelian group
code. Since there exist non-abelian group codes of dimension 4 when
charF > 2 (see the examples in [1]), we conclude that the smallest
dimension of a non-abelian group code over a finite field is 4.

Introduction

All groups and fields considered in this paper are supposed to be finite. Let
F be a field and let G be a group. Following [2] we say that a linear code C
over F is a (left) G-code if its length is equal to n = |G| and there exists a
one-to-one mapping ν : {1, . . . , n} → G such that{

n∑
i=1

aiν(i) : (a1, . . . , an) ∈ C

}
is a (left) ideal in FG. We will also say that this (left) ideal is permutation
equivalent to the code C.

A code C is called an (abelian) group code if there exists an (abelian)
group G such that C is a G-code.

It was shown in [2] that any one-dimensional group code over a field F
is an abelian group code (moreover it is a C-code for a cyclic group C). It
seems natural to ask about the lowest dimension of a non-abelian group code.

Since examples of non-abelian group codes of dimension 4 are known [1],
a full answer to the above question is given in the main result of this paper.

Theorem 1. Let C be a G-code over a finite field F for a finite group G. If
dimF (C) ≤ 3 then C is an abelian group code.

The paper is organized as follows. In section 1 we introduce some neces-
sary notation and some auxiliary results are proved. In section 2 we prove
Theorem 1.
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1 Preliminaries

Let F be a field. We denote its multiplicative group by F ∗. Let Mn,k(F )
be the vector space of n× k matrices over F , and let Mn(F ) be the algebra
of all n × n-matrices over F for any integers n, k ≥ 1. We will use the
notation GLn(F ), Dn(F ), Tn(F ) and UTn(F ) respectively for the group of
all invertible n× n-matrices, all invertible diagonal n× n-matrices, the group
of all invertible upper triangular n× n-matrices and the group of all upper
unitriangular n× n-matrices, i.e. upper triangular matrices with diagonal
elements equal to 1, over the field F .

Let us write A ≤ B to express that A is a subgroup of the group B, while
A�B means that A is a normal subgroup in B. Z(G) and Z(R) will denote
the centers of the group G and of the ring R, respectively. We denote, for
short, the set {m,m+ 1, . . . , n} by m,n for any integers m ≤ n.

We recall the best known sufficient condition for all G-codes to be abelian.

Theorem 1.1 ([2, theorem 3.1]). Let G be a finite group. Assume that G has
two abelian subgroups A and B such that every element of G can be written
as ab with a ∈ A and b ∈ B. Then every G-code is an abelian group code.

We say that a group G has an abelian decomposition G = AB if it satisfies
the condition of this theorem.

For any finite group G and any subgroup N ≤ G we consider the element
NΣ =

∑
u∈N u ∈ FG. We will use the following properties of NΣ: NΣ =

uNΣ = NΣu for every u ∈ N , and NΣ ∈ Z(FG) if and only if N �G.
For two finite groups G, H of the same order n and for any one-to-one

mapping ϕ : G → H we define its natural extension ϕ̃ : FG → FH by the
rule

ϕ̃

(∑
g∈G

agg

)
=
∑
g∈G

agϕ(g).

If I, J are left (right, two-sided) ideals in the group rings FG and FH,
respectively, and there exists a one-to-one mapping ϕ : G → H such that
ϕ̃(I) = J , we say that I and J are permutation equivalent.

We say that a subgroup U ≤ G acts trivially (from the left) on some set
X ⊆ FG if ux = x for every u ∈ U and x ∈ X. Our proofs are based on
Theorem 1.1 and on the following observation.

Lemma 1.2. Let F be a field and let G, H be two groups of the same order
n < ∞. Suppose that there exist two normal subgroups N � G and K � H
such that G/N ∼= H/K. If N acts trivially on some (left, right, two-sided)
ideal I ∈ FG, then I is permutation equivalent to some (left, right, two-sided)
ideal of the ring FH.
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Proof. Let s = |G/N | and denote by g1, . . . , gs a complete set of represen-
tatives of G modulo N , thus G/N = {g1N, . . . , gsN} and G =

⋃s
i=1 giN .

Fixing the isomorphism f : G/N → H/K we can choose a representative
system {hi} of the group H modulo K such that f(giN) = hiK , i ∈ 1, s.
For each pair of numbers i, j ∈ 1, s let k(i, j) be defined by the equality
giNgjN = gk(i,j)N . Then we have gigj = gk(i,j)uij for some uij ∈ N and
also hihj = hk(i,j)vij for some vij ∈ K. Since |N | = |K| = n/s we can fix
a one-to-one mapping τ : N → K. Define ϕ : G → H as follows: for an
arbitrary x ∈ G, x belongs exactly to one class, x ∈ giN , of G modulo N .
Set ϕ(x) = hiτ(g−1

i x). Clearly ϕ is a well defined one-to-one map.
Suppose now that N acts trivially on an element x ∈ FG. If x =∑

g∈G agg then we obtain, comparing coefficients in x and u−1x, for u ∈ N ,
that ag = aug for every g ∈ G, so every element x ∈ I can be presented in
the form x =

∑s
i=1 bigiNΣ where b1, . . . , bs ∈ F . Note that ϕ̃(NΣ) = KΣ ∈

Z(FH) and ϕ̃(giNΣ) = hiKΣ . Since the mapping ϕ̃ is evidently F -linear,
it is sufficient to prove that if x ∈ I then hϕ̃(x) ∈ ϕ̃(I) and ϕ̃(x)h ∈ ϕ̃(I)
for any h ∈ H. As we have seen, we can write x =

∑s
i=1 bigiNΣ, where

b1, . . . , bs ∈ F , so ϕ̃(x) =
∑s

i=1 bihiKΣ. If h ∈ hjK for (a unique) j ∈ 1, s,
then h = hjv for some v ∈ K, so

hϕ̃(x) = hjv(
∑s

i=1 bihiKΣ) = hjvKΣ(
∑s

i=1 bihi) = (
∑s

i=1 bihjhi)KΣ

=
∑s

i=1 bihk(j, i)vjiKΣ =
∑s

i=1 bihk(j,i)KΣ

= ϕ̃(
∑s

i=1 bigk(j,i)NΣ) = ϕ̃(
∑s

i=1 bigjgiu
−1
ji NΣ) = ϕ̃(gjx) ∈ ϕ̃(I).

A similar calculation shows that ϕ̃(x)h = ϕ̃(xgj) with the same element gj
as above.

Evidently Lemma 1.2 remains valid is we consider the right action instead
of the left action.

We have also the following

Lemma 1.3. Suppose that a normal subgroup N of a finite group G acts
trivially (from the left or from the right) on some ideal I of the group ring
FG and that G/N has an abelian decomposition. Then I is permutation
equivalent to an ideal of a group ring FA for some abelian group A.

Proof. Consider the group H = G/N × C where C is a cyclic group of
order |N |. By Lemma 1.2 I is permutation equivalent to some ideal Ĩ of
the group ring FH. However the group H has an abelian decomposition so
Ĩ is permutation equivalent to some ideal in the group ring of an abelian
group.
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Corollary 1.4. If the derived subgroup G′ of a finite group G acts trivially
(from the left or from the right) on some ideal I of the group ring FG then I
is permutation equivalent to an ideal of the group ring FA for some abelian
group A.

Proof. The statement follows from Lemma 1.2 since the groupG/G′ is abelian
and thus it has an abelian decomposition.

Now we can deduce one statement of [2] from Lemma 1.2.

Corollary 1.5 ([2, Corollary 2.2]). If C is a one-dimensional left group code
over some field F then it is a H-code for some cyclic group H.

Proof. Consider a left ideal Fv ∈ FG corresponding to the code C. Then for
any g ∈ G we have gv = λ(g)v with λ(g) ∈ F ∗, so λ : G → F ∗ is a group
homomorphism. Take N = kerλ. Then G/N is isomorphic to the subgroup
im(λ) ≤ F ∗ which is cyclic as a subgroup of the cyclic group F ∗ [3, Theorem
5.1.9]. Let H be the cyclic group of order |G|. Then H contains a subgroup
K with |K| = |N | since |N | divides |G|, and Lemma 1.2 gives the required
property of C.

2 Proof of Theorem 1

In this section F denotes a finite field with charF = p and |F | = q = pr . G
is a finite group.

2.1 Ideals of dimension 2.

Proposition 2.1. Let I be an ideal in the ring FG such that dimF I = 2.
Then I is permutation equivalent to some ideal in a commutative group ring
over F .

Proof. Suppose first that I is a simple right FG-module. Then by Schur’s
lemma ([3, Proposition 17.1.1] or [4, Theorem 1.1.1]) its endomorphism ring
is a division ring D which is commutative by Wedderburn’s theorem [4, The-
orem 3.1.1]. Hence the left multiplication on I defines a homomorphism
G→ D∗ and the derived subgroup G′ is contained in its kernel. This implies
that G′ acts trivially on I from the left. Corollary 1.4 finishes the proof of
the proposition in this case.

Suppose on the contrary that I contains a one-dimensional right ideal
I0. Then there exists a basis v0, v1 of the vector space I such that v0 ∈ I0.
The right multiplication by an element g ∈ G is a linear operator on I
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whose matrix with respect to this basis belongs to T2(F ). Hence we have
a homomorphism f : G → T2(F ). Let N be the kernel of f . Then G/N is
isomorphic to some subgroup S of the group T2(F ).

Evidently T2(F ) = AB, where A = D2(F ) and B = UT2(F ). Since
|A| = (q − 1)2 and |B| = q, the conditions of the following lemma are
satisfied.

Lemma 2.2 ([5, Lemma 3] or [6, Lemma 3.2.9]). If the finite soluble group
G = AB is the product of two subgroups A and B with coprime orders,
then every subgroup S of G has a conjugate Sg with some g ∈ G such that
Sg = (Sg ∩ A)(Sg ∩B).

Since A and B are abelian, the group S has an abelian decomposition
and Lemma 1.2 can be applied with H = S × K for any abelian group K
such that |K| = |N |, and the proof in this case is finished using Theorem
1.1.

Remark 2.3. The proof of [2, Proposition 3.3] shows that there exist non-
abelian left group codes of dimension 2.

2.2 Ideals of dimension 3.

Lemma 2.4. Let R be an F -algebra. Suppose that I � R and dimF (I) =
3. If M is a two-dimensional simple submodule of IR then M is a fully
characteristic submodule of IR (i.e. f(M) ⊆ M for any f ∈ End(IR)), in
particular, M �R. If IR/N is a two-dimensional simple factor-module of IR
for some submodule N then N is a fully characteristic submodule of IR, in
particular, N �R.

Proof. Consider an arbitrary homomorphism f ∈ End(IR). Then either
f(M) = 0 or dim(f(M)) = 2. In the latter case M ∩ f(M) 6= 0 thus
M = f(M).

Similarly, let π : IR → IR/N be a natural epimorphism. Then πf(N) is a
submodule in IR/N and dim(πf(N)) ≤ 1, thus πf(N) = 0 and f(N) ⊆ N .
Applying these properties to the homomorphism of left multiplication by
any element of r we deduce that L � R and N � R under the specified
conditions.

Consider the left and right action of G on I. We fix two group homomor-
phisms ϕ, ψ : G→ GL(I) defined as follows:

∀g ∈ G, v ∈ I, ϕ(g)(v) = gv, ψ(g)(v) = vg−1.
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Note that for any elements g, h ∈ G and v ∈ I the associativity law implies

ϕ(g)ψ(h)(v) = ϕ(g)(vh−1) = gvh−1 = ψ(h)(gv) = ψ(h)ϕ(g)(v).

Hence ab = ba for any a ∈ ϕ(G) and b ∈ ψ(G).

Proposition 2.5. Let I be an ideal in the ring FG such that dimF I = 3.
Then either ϕ(G) or ψ(G) has an abelian decomposition.

Proof. First suppose that IR has a two-dimensional simple submodule L or
a two-dimensional simple factor-module IR/N . In the first case take a basis
v1, v2, v3 of I such that v1 ∈ L and v2 ∈ L. Then it follows from Lemma 2.4
that for any g ∈ G the operator ϕ(g) on IR is defined by a matrix of the form

Λ =

(
Λ0 v
0 0 α

)
where Λ0 ∈ GL2(F ), α ∈ F ∗ and v is a column of size 2.

Note that Λ0 defines an automorphism of L so as in the proof of Propo-
sition 2.1 such matrices belong to some subfield D ⊂M2(F ). It follows that
the group ϕ(G) is contained in the group

H1 =

{(
d v

0 0 α

)
: d ∈ D∗, α ∈ F ∗, v ∈M2,1(F )

}
which has a decomposition H1 = AB, where

A =


 d

0
0

0 0 α

 : d ∈ D∗, α ∈ F ∗
 ,

B =


 1 0

0 1
β1

β2

0 0 1

 : β1, β2 ∈ F

 .

Since dimD(M2(F )) = 4/ dimF (D) must be an integer, dimF (D) ∈ {1, 2}.
Thus the groups A andB are abelian and have orders (qi−1)(q−1), 1 ≤ i ≤ 2,
and q2 respectively, so |A| and |B| are coprime. By Lemma 2.2 we obtain an
abelian decomposition of the group ϕ(G).

Similarly, if there is a one-dimensional two-sided ideal N such that IR/N
is simple then we can take a basis v1, v2, v3 of I such that v1 ∈ N . Thus the
group ϕ(G) is contained in the group

H2 =


 α v′

0
0

d

 : d ∈ D∗, α ∈ F ∗, v′ ∈M1,2(F )

 ,
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where again D = End(IR/N) so D is a field. But the group H2 has an abelian
decomposition H2 = AB, where now

A =


 1 α1 α2

0
0

1 0
0 1

 : α1, α2 ∈ F

 ,

B =


 α 0 0

0
0

d

 : d ∈ D∗, α ∈ F ∗
 .

Again the conditions of Lemma 2.2 are satisfied so we again obtain an abelian
decomposition of the group ϕ(G).

From now on we assume that IR does not have two-dimensional simple
submodules or factor-modules.

For any right module M its socle Soc(M) is defined as the sum of all
simple submodules of M , and the following series of submodules can be
constructed (see e.g. [7, §1.9 ]):

0 = M0 ⊆M1 ⊆ . . . , where Mi+1/Mi = Soc(M/Mi), i = 0, 1, . . . (2.1)

This series is transfinite in general but if M is a finite module then Mt = M
for some t ≥ 0.

This series is called socle series or Loewy series of the module M . The
least number t such that Mt = M (if it exists) is called the socle length or
the Loewy length of the module M and will be denoted by ls(M). It is easy
to see by induction that all the submodules belonging to Loewy series are
fully characteristic.

Consider the following cases.

Case 1. ls(IR) = 1.
Then we have two possibilities.

If IR is simple then the arguments used in the proof of Proposition 2.1
are valid and imply that ϕ(G) is an abelian group.

If I = I1 ⊕ I2 ⊕ I3 where each Ik is one-dimensional, k = 1, 2, 3, then
evidently ψ(G) ⊆ F ∗ × F ∗ × F ∗, so ψ(G) is commutative.

Case 2. ls(IR) = 2.
Then we again have two possibilities.

If dimF Soc(IR) = 1 then IR/ Soc(IR) = V1 ⊕ V2 where V1 and V2 are
simple right R-modules. Hence there exists a basis v1, v2, v3 of IR such that
vk + Soc(IR) generates Vk over F , k = 1, 2. Then any matrix in ψ(G) has
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the form α β1 β2

0 α1 0
0 0 α2

 ,

where α, α1, α2 ∈ F ∗, β1, β2 ∈ F . This implies that ψ(G) is contained in the
group D3(F )M , where

M =


1 β1 β2

0 1 0
0 0 1

 : β1, β2 ∈ F

 ,

and so again ψ(G) has an abelian decomposition by virtue of Lemma 2.2.
If dimF Soc(IR) = 2 then Soc(IR) = I1 ⊕ I2 for some one-dimensional

right ideals. Taking a basis v1, v2, v3 such that v1 ∈ I1 and v2 ∈ I2 we obtain
the following matrix for any operator in ψ(G):α1 0 γ1

0 α2 γ2

0 0 α3


where α1, α2, α3 ∈ F ∗, γ1, γ2 ∈ F . This implies that ψ(G) is contained in the
group M D3(F ), where

M =


1 0 γ1

0 1 γ2

0 0 1

 : γ1, γ2 ∈ F

 ,

and so again ψ(G) has an abelian decomposition by virtue of Lemma 2.2.

Case 3. ls(IR) = 3.
In this case we have the Loewy series 0 = I0 ⊂ I1 ⊂ I2 ⊂ I3 = I, where
I1 and I2 are two-sided ideals in R. Taking a basis v1, v2, v3 of I such that
v1 ∈ I1, v2 ∈ I2 \ I1 and v3 ∈ I3 \ I2 we can assume that ϕ(G) and ψ(G) are
contained in the group T3(F ).

A direct computation shows that |UTn(F )| = q
n(n−1)

2 , |Dn(F )| = (q−1)n

and that Dn(F ) UTn(F ) = Tn(F ) for any n ≥ 1. Using Lemma 2.2 we can
assume without loss of generality that

ϕ(G) = (ϕ(G) ∩D3(G))(ϕ(G) ∩ UT3(G)).

If ϕ(G)∩UT3(G) is abelian then our claim is true. Suppose now that ϕ(G)∩
UT3(G) contains two non-commuting matrices

a =

1 α β
0 1 γ
0 0 1

 , a′ =

1 α′ β′

0 1 γ′

0 0 1

 ,
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for some α, β, γ, α′, β′, γ′ ∈ F . It is easy to check that the condition aa′ 6= a′a
is equivalent to the inequality

αγ′ 6= α′γ. (2.2)

Let X = (xij) be a matrix in ψ(G). Note that it is an upper triangular
matrix. The computation of aX − Xa and a′X − Xa′ gives the following
equations:

αx2,2 − αx1,1 = α′x2,2 − α′x1,1 = 0 (2.3)

αx2,3 + βx3,3 − βx1,1 − γx1,2 = α′x2,3 + β′x3,3 − β′x1,1 − γ′x1,2 = 0 (2.4)

γx3,3 − γx2,2 = γ′x3,3 − γ′x2,2 (2.5)

The inequality (2.2) implies that α 6= 0 or α′ 6= 0. Hence (2.3) gives
x1,1 = x2,2. Analogously, (2.5) gives x3,3 = x2,2. Now (2.4) gives an equation
system {

αx2,3 − γx1,2 = 0
α′x2,3 − γ′x1,2 = 0.

which has non-zero determinant by (2.2). This means that ψ(G) is contained
in the set of matrices 

x 0 y
0 x 0
0 0 x

 : x, y ∈ F

 ,

so ψ(G) is commutative.

Proof of Theorem 1. It follows immediately from Proposition 2.5 and Lemma
1.3.
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