Group codes of dimension 2 and 3 are abelian

Cristina García Pillado, Santos González, Victor Markov, Olga Markova and Consuelo Martínez

Abstract

Let F be a finite field and let G be a finite group. We show that if \mathcal{C} is a G-code over F with $\operatorname{dim}_{F}(\mathcal{C}) \leq 3$ then \mathcal{C} is an abelian group code. Since there exist non-abelian group codes of dimension 4 when char $F>2$ (see the examples in [1]), we conclude that the smallest dimension of a non-abelian group code over a finite field is 4 .

Introduction

All groups and fields considered in this paper are supposed to be finite. Let F be a field and let G be a group. Following [2] we say that a linear code \mathcal{C} over F is a (left) G-code if its length is equal to $n=|G|$ and there exists a one-to-one mapping $\nu:\{1, \ldots, n\} \rightarrow G$ such that

$$
\left\{\sum_{i=1}^{n} a_{i} \nu(i):\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{C}\right\}
$$

is a (left) ideal in $F G$. We will also say that this (left) ideal is permutation equivalent to the code \mathcal{C}.

A code \mathcal{C} is called an (abelian) group code if there exists an (abelian) group G such that \mathcal{C} is a G-code.

It was shown in [2] that any one-dimensional group code over a field F is an abelian group code (moreover it is a C-code for a cyclic group C). It seems natural to ask about the lowest dimension of a non-abelian group code.

Since examples of non-abelian group codes of dimension 4 are known [1], a full answer to the above question is given in the main result of this paper.
Theorem 1. Let \mathcal{C} be a G-code over a finite field F for a finite group G. If $\operatorname{dim}_{F}(\mathcal{C}) \leq 3$ then \mathcal{C} is an abelian group code.

The paper is organized as follows. In section 1 we introduce some necessary notation and some auxiliary results are proved. In section 2 we prove Theorem 1.

1 Preliminaries

Let F be a field. We denote its multiplicative group by F^{*}. Let $M_{n, k}(F)$ be the vector space of $n \times k$ matrices over F, and let $M_{n}(F)$ be the algebra of all $n \times n$-matrices over F for any integers $n, k \geq 1$. We will use the notation $\mathrm{GL}_{n}(F), \mathrm{D}_{n}(F), \mathrm{T}_{n}(F)$ and $\mathrm{UT}_{n}(F)$ respectively for the group of all invertible $n \times n$-matrices, all invertible diagonal $n \times n$-matrices, the group of all invertible upper triangular $n \times n$-matrices and the group of all upper unitriangular $n \times n$-matrices, i.e. upper triangular matrices with diagonal elements equal to 1 , over the field F.

Let us write $A \leq B$ to express that A is a subgroup of the group B, while $A \triangleleft B$ means that A is a normal subgroup in $B . Z(G)$ and $Z(R)$ will denote the centers of the group G and of the ring R, respectively. We denote, for short, the set $\{m, m+1, \ldots, n\}$ by $\overline{m, n}$ for any integers $m \leq n$.

We recall the best known sufficient condition for all G-codes to be abelian.
Theorem 1.1 ([2, theorem 3.1]). Let G be a finite group. Assume that G has two abelian subgroups A and B such that every element of G can be written as ab with $a \in A$ and $b \in B$. Then every G-code is an abelian group code.

We say that a group G has an abelian decomposition $G=A B$ if it satisfies the condition of this theorem.

For any finite group G and any subgroup $N \leq G$ we consider the element $N_{\Sigma}=\sum_{u \in N} u \in F G$. We will use the following properties of $N_{\Sigma}: N_{\Sigma}=$ $u N_{\Sigma}=N_{\Sigma} u$ for every $u \in N$, and $N_{\Sigma} \in Z(F G)$ if and only if $N \triangleleft G$.

For two finite groups G, H of the same order n and for any one-to-one mapping $\varphi: G \rightarrow H$ we define its natural extension $\tilde{\varphi}: F G \rightarrow F H$ by the rule

$$
\tilde{\varphi}\left(\sum_{g \in G} a_{g} g\right)=\sum_{g \in G} a_{g} \varphi(g) .
$$

If I, J are left (right, two-sided) ideals in the group rings $F G$ and $F H$, respectively, and there exists a one-to-one mapping $\varphi: G \rightarrow H$ such that $\tilde{\varphi}(I)=J$, we say that I and J are permutation equivalent.

We say that a subgroup $U \leq G$ acts trivially (from the left) on some set $X \subseteq F G$ if $u x=x$ for every $u \in U$ and $x \in X$. Our proofs are based on Theorem 1.1 and on the following observation.

Lemma 1.2. Let F be a field and let G, H be two groups of the same order $n<\infty$. Suppose that there exist two normal subgroups $N \triangleleft G$ and $K \triangleleft H$ such that $G / N \cong H / K$. If N acts trivially on some (left, right, two-sided) ideal $I \in F G$, then I is permutation equivalent to some (left, right, two-sided) ideal of the ring FH.

Proof. Let $s=|G / N|$ and denote by g_{1}, \ldots, g_{s} a complete set of representatives of G modulo N, thus $G / N=\left\{g_{1} N, \ldots, g_{s} N\right\}$ and $G=\bigcup_{i=1}^{s} g_{i} N$. Fixing the isomorphism $f: G / N \rightarrow H / K$ we can choose a representative system $\left\{h_{i}\right\}$ of the group H modulo K such that $f\left(g_{i} N\right)=h_{i} K, i \in \overline{1, s}$. For each pair of numbers $i, j \in \overline{1, s}$ let $k(i, j)$ be defined by the equality $g_{i} N g_{j} N=g_{k(i, j)} N$. Then we have $g_{i} g_{j}=g_{k(i, j)} u_{i j}$ for some $u_{i j} \in N$ and also $h_{i} h_{j}=h_{k(i, j)} v_{i j}$ for some $v_{i j} \in K$. Since $|N|=|K|=n / s$ we can fix a one-to-one mapping $\tau: N \rightarrow K$. Define $\varphi: G \rightarrow H$ as follows: for an arbitrary $x \in G, x$ belongs exactly to one class, $x \in g_{i} N$, of G modulo N. Set $\varphi(x)=h_{i} \tau\left(g_{i}^{-1} x\right)$. Clearly φ is a well defined one-to-one map.

Suppose now that N acts trivially on an element $x \in F G$. If $x=$ $\sum_{g \in G} a_{g} g$ then we obtain, comparing coefficients in x and $u^{-1} x$, for $u \in N$, that $a_{g}=a_{u g}$ for every $g \in G$, so every element $x \in I$ can be presented in the form $x=\sum_{i=1}^{s} b_{i} g_{i} N_{\Sigma}$ where $b_{1}, \ldots, b_{s} \in F$. Note that $\tilde{\varphi}\left(N_{\Sigma}\right)=K_{\Sigma} \in$ $Z(F H)$ and $\tilde{\varphi}\left(g_{i} N_{\Sigma}\right)=h_{i} K_{\Sigma}$. Since the mapping $\tilde{\varphi}$ is evidently F-linear, it is sufficient to prove that if $x \in I$ then $h \tilde{\varphi}(x) \in \tilde{\varphi}(I)$ and $\tilde{\varphi}(x) h \in \tilde{\varphi}(I)$ for any $h \in H$. As we have seen, we can write $x=\sum_{i=1}^{s} b_{i} g_{i} N_{\Sigma}$, where $b_{1}, \ldots, b_{s} \in F$, so $\tilde{\varphi}(x)=\sum_{i=1}^{s} b_{i} h_{i} K_{\Sigma}$. If $h \in h_{j} K$ for (a unique) $j \in \overline{1, s}$, then $h=h_{j} v$ for some $v \in K$, so

$$
\begin{aligned}
h \tilde{\varphi}(x) & =h_{j} v\left(\sum_{i=1}^{s} b_{i} h_{i} K_{\Sigma}\right)=h_{j} v K_{\Sigma}\left(\sum_{i=1}^{s} b_{i} h_{i}\right)=\left(\sum_{i=1}^{s} b_{i} h_{j} h_{i}\right) K_{\Sigma} \\
& =\sum_{i=1}^{s} b_{i} h_{k}(j, i) v_{j i} K_{\Sigma}=\sum_{i=1}^{s} b_{i} h_{k(j, i)} K_{\Sigma} \\
& =\tilde{\varphi}\left(\sum_{i=1}^{s} b_{i} g_{k(j, i)} N_{\Sigma}\right)=\tilde{\varphi}\left(\sum_{i=1}^{s} b_{i} g_{j} g_{i} u_{j i}^{-1} N_{\Sigma}\right)=\tilde{\varphi}\left(g_{j} x\right) \in \tilde{\varphi}(I) .
\end{aligned}
$$

A similar calculation shows that $\tilde{\varphi}(x) h=\tilde{\varphi}\left(x g_{j}\right)$ with the same element g_{j} as above.

Evidently Lemma 1.2 remains valid is we consider the right action instead of the left action.

We have also the following
Lemma 1.3. Suppose that a normal subgroup N of a finite group G acts trivially (from the left or from the right) on some ideal I of the group ring $F G$ and that G / N has an abelian decomposition. Then I is permutation equivalent to an ideal of a group ring $F A$ for some abelian group A.

Proof. Consider the group $H=G / N \times C$ where C is a cyclic group of order $|N|$. By Lemma $1.2 I$ is permutation equivalent to some ideal \tilde{I} of the group ring $F H$. However the group H has an abelian decomposition so \tilde{I} is permutation equivalent to some ideal in the group ring of an abelian group.

Corollary 1.4. If the derived subgroup G^{\prime} of a finite group G acts trivially (from the left or from the right) on some ideal I of the group ring $F G$ then I is permutation equivalent to an ideal of the group ring FA for some abelian group A.

Proof. The statement follows from Lemma 1.2 since the group G / G^{\prime} is abelian and thus it has an abelian decomposition.

Now we can deduce one statement of [2] from Lemma 1.2.
Corollary 1.5 ([2, Corollary 2.2]). If \mathcal{C} is a one-dimensional left group code over some field F then it is a H-code for some cyclic group H.

Proof. Consider a left ideal $F v \in F G$ corresponding to the code \mathcal{C}. Then for any $g \in G$ we have $g v=\lambda(g) v$ with $\lambda(g) \in F^{*}$, so $\lambda: G \rightarrow F^{*}$ is a group homomorphism. Take $N=\operatorname{ker} \lambda$. Then G / N is isomorphic to the subgroup $\operatorname{im}(\lambda) \leq F^{*}$ which is cyclic as a subgroup of the cyclic group $F^{*}[3$, Theorem 5.1.9]. Let H be the cyclic group of order $|G|$. Then H contains a subgroup K with $|K|=|N|$ since $|N|$ divides $|G|$, and Lemma 1.2 gives the required property of \mathcal{C}.

2 Proof of Theorem 1

In this section F denotes a finite field with char $F=p$ and $|F|=q=p^{r} . G$ is a finite group.

2.1 Ideals of dimension 2.

Proposition 2.1. Let I be an ideal in the ring $F G$ such that $\operatorname{dim}_{F} I=2$. Then I is permutation equivalent to some ideal in a commutative group ring over F.

Proof. Suppose first that I is a simple right $F G$-module. Then by Schur's lemma ([3, Proposition 17.1.1] or [4, Theorem 1.1.1]) its endomorphism ring is a division ring D which is commutative by Wedderburn's theorem [4, Theorem 3.1.1]. Hence the left multiplication on I defines a homomorphism $G \rightarrow D^{*}$ and the derived subgroup G^{\prime} is contained in its kernel. This implies that G^{\prime} acts trivially on I from the left. Corollary 1.4 finishes the proof of the proposition in this case.

Suppose on the contrary that I contains a one-dimensional right ideal I_{0}. Then there exists a basis v_{0}, v_{1} of the vector space I such that $v_{0} \in I_{0}$. The right multiplication by an element $g \in G$ is a linear operator on I
whose matrix with respect to this basis belongs to $\mathrm{T}_{2}(F)$. Hence we have a homomorphism $f: G \rightarrow \mathrm{~T}_{2}(F)$. Let N be the kernel of f. Then G / N is isomorphic to some subgroup S of the group $\mathrm{T}_{2}(F)$.

Evidently $\mathrm{T}_{2}(F)=A B$, where $A=\mathrm{D}_{2}(F)$ and $B=\mathrm{UT}_{2}(F)$. Since $|A|=(q-1)^{2}$ and $|B|=q$, the conditions of the following lemma are satisfied.

Lemma 2.2 ([5, Lemma 3] or [6, Lemma 3.2.9]). If the finite soluble group $G=A B$ is the product of two subgroups A and B with coprime orders, then every subgroup S of G has a conjugate S^{g} with some $g \in G$ such that $S^{g}=\left(S^{g} \cap A\right)\left(S^{g} \cap B\right)$.

Since A and B are abelian, the group S has an abelian decomposition and Lemma 1.2 can be applied with $H=S \times K$ for any abelian group K such that $|K|=|N|$, and the proof in this case is finished using Theorem 1.1.

Remark 2.3. The proof of [2, Proposition 3.3] shows that there exist nonabelian left group codes of dimension 2 .

2.2 Ideals of dimension 3.

Lemma 2.4. Let R be an F-algebra. Suppose that $I \triangleleft R$ and $\operatorname{dim}_{F}(I)=$ 3. If M is a two-dimensional simple submodule of I_{R} then M is a fully characteristic submodule of I_{R} (i.e. $f(M) \subseteq M$ for any $f \in \operatorname{End}\left(I_{R}\right)$), in particular, $M \triangleleft R$. If I_{R} / N is a two-dimensional simple factor-module of I_{R} for some submodule N then N is a fully characteristic submodule of I_{R}, in particular, $N \triangleleft R$.

Proof. Consider an arbitrary homomorphism $f \in \operatorname{End}\left(I_{R}\right)$. Then either $f(M)=0$ or $\operatorname{dim}(f(M))=2$. In the latter case $M \cap f(M) \neq 0$ thus $M=f(M)$.

Similarly, let $\pi: I_{R} \rightarrow I_{R} / N$ be a natural epimorphism. Then $\pi f(N)$ is a submodule in I_{R} / N and $\operatorname{dim}(\pi f(N)) \leq 1$, thus $\pi f(N)=0$ and $f(N) \subseteq N$. Applying these properties to the homomorphism of left multiplication by any element of r we deduce that $L \triangleleft R$ and $N \triangleleft R$ under the specified conditions.

Consider the left and right action of G on I. We fix two group homomorphisms $\varphi, \psi: G \rightarrow \mathrm{GL}(I)$ defined as follows:

$$
\forall g \in G, v \in I, \varphi(g)(v)=g v, \psi(g)(v)=v g^{-1} .
$$

Note that for any elements $g, h \in G$ and $v \in I$ the associativity law implies

$$
\varphi(g) \psi(h)(v)=\varphi(g)\left(v h^{-1}\right)=g v h^{-1}=\psi(h)(g v)=\psi(h) \varphi(g)(v) .
$$

Hence $a b=b a$ for any $a \in \varphi(G)$ and $b \in \psi(G)$.
Proposition 2.5. Let I be an ideal in the ring $F G$ such that $\operatorname{dim}_{F} I=3$. Then either $\varphi(G)$ or $\psi(G)$ has an abelian decomposition.

Proof. First suppose that I_{R} has a two-dimensional simple submodule L or a two-dimensional simple factor-module I_{R} / N. In the first case take a basis v_{1}, v_{2}, v_{3} of I such that $v_{1} \in L$ and $v_{2} \in L$. Then it follows from Lemma 2.4 that for any $g \in G$ the operator $\varphi(g)$ on I_{R} is defined by a matrix of the form

$$
\Lambda=\left(\begin{array}{c|c}
\Lambda_{0} & \bar{v} \\
\hline 0 & 0
\end{array}\right)
$$

where $\Lambda_{0} \in \mathrm{GL}_{2}(F), \alpha \in F^{*}$ and \bar{v} is a column of size 2 .
Note that Λ_{0} defines an automorphism of L so as in the proof of Proposition 2.1 such matrices belong to some subfield $D \subset M_{2}(F)$. It follows that the group $\varphi(G)$ is contained in the group

$$
H_{1}=\left\{\left(\begin{array}{c|c}
d & \bar{v} \\
\hline 00 & \alpha
\end{array}\right): d \in D^{*}, \alpha \in F^{*}, \bar{v} \in M_{2,1}(F)\right\}
$$

which has a decomposition $H_{1}=A B$, where

$$
\left.\left.\begin{array}{c}
A=\left\{\left(\begin{array}{c|c}
d & 0 \\
& 0 \\
\hline 0 & 0
\end{array}\right) \alpha\right.
\end{array}\right): d \in D^{*}, \alpha \in F^{*}\right\},
$$

Since $\operatorname{dim}_{D}\left(M_{2}(F)\right)=4 / \operatorname{dim}_{F}(D)$ must be an integer, $\operatorname{dim}_{F}(D) \in\{1,2\}$. Thus the groups A and B are abelian and have orders $\left(q^{i}-1\right)(q-1), 1 \leq i \leq 2$, and q^{2} respectively, so $|A|$ and $|B|$ are coprime. By Lemma 2.2 we obtain an abelian decomposition of the group $\varphi(G)$.

Similarly, if there is a one-dimensional two-sided ideal N such that I_{R} / N is simple then we can take a basis v_{1}, v_{2}, v_{3} of I such that $v_{1} \in N$. Thus the group $\varphi(G)$ is contained in the group

$$
H_{2}=\left\{\left(\begin{array}{c|c}
\alpha & \bar{v}^{\prime} \\
\hline 0 & d \\
0 & d
\end{array}\right): d \in D^{*}, \alpha \in F^{*}, \bar{v}^{\prime} \in M_{1,2}(F)\right\},
$$

where again $D=\operatorname{End}\left(I_{R} / N\right)$ so D is a field. But the group H_{2} has an abelian decomposition $H_{2}=A B$, where now

$$
\begin{gathered}
A=\left\{\left(\begin{array}{c|cc}
1 & \alpha_{1} & \alpha_{2} \\
\hline 0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right): \alpha_{1}, \alpha_{2} \in F\right\}, \\
B=\left\{\left(\begin{array}{c|cc}
\alpha & 0 & 0 \\
\hline 0 & d
\end{array}\right): d \in D^{*}, \alpha \in F^{*}\right\} .
\end{gathered}
$$

Again the conditions of Lemma 2.2 are satisfied so we again obtain an abelian decomposition of the group $\varphi(G)$.

From now on we assume that I_{R} does not have two-dimensional simple submodules or factor-modules.

For any right module M its socle $\operatorname{Soc}(M)$ is defined as the sum of all simple submodules of M, and the following series of submodules can be constructed (see e.g. [7, §1.9]):

$$
\begin{equation*}
0=M_{0} \subseteq M_{1} \subseteq \ldots, \text { where } M_{i+1} / M_{i}=\operatorname{Soc}\left(M / M_{i}\right), i=0,1, \ldots \tag{2.1}
\end{equation*}
$$

This series is transfinite in general but if M is a finite module then $M_{t}=M$ for some $t \geq 0$.

This series is called socle series or Loewy series of the module M. The least number t such that $M_{t}=M$ (if it exists) is called the socle length or the Loewy length of the module M and will be denoted by $l_{s}(M)$. It is easy to see by induction that all the submodules belonging to Loewy series are fully characteristic.

Consider the following cases.
Case 1. $l_{s}\left(I_{R}\right)=1$.
Then we have two possibilities.
If I_{R} is simple then the arguments used in the proof of Proposition 2.1 are valid and imply that $\varphi(G)$ is an abelian group.

If $I=I_{1} \oplus I_{2} \oplus I_{3}$ where each I_{k} is one-dimensional, $k=1,2,3$, then evidently $\psi(G) \subseteq F^{*} \times F^{*} \times F^{*}$, so $\psi(G)$ is commutative.

Case 2. $l_{s}\left(I_{R}\right)=2$.
Then we again have two possibilities.
If $\operatorname{dim}_{F} \operatorname{Soc}\left(I_{R}\right)=1$ then $I_{R} / \operatorname{Soc}\left(I_{R}\right)=V_{1} \oplus V_{2}$ where V_{1} and V_{2} are simple right R-modules. Hence there exists a basis v_{1}, v_{2}, v_{3} of I_{R} such that $v_{k}+\operatorname{Soc}\left(I_{R}\right)$ generates V_{k} over $F, k=1,2$. Then any matrix in $\psi(G)$ has
the form

$$
\left(\begin{array}{ccc}
\alpha & \beta_{1} & \beta_{2} \\
0 & \alpha_{1} & 0 \\
0 & 0 & \alpha_{2}
\end{array}\right)
$$

where $\alpha, \alpha_{1}, \alpha_{2} \in F^{*}, \beta_{1}, \beta_{2} \in F$. This implies that $\psi(G)$ is contained in the group $\mathrm{D}_{3}(F) M$, where

$$
M=\left\{\left(\begin{array}{ccc}
1 & \beta_{1} & \beta_{2} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right): \beta_{1}, \beta_{2} \in F\right\}
$$

and so again $\psi(G)$ has an abelian decomposition by virtue of Lemma 2.2.
If $\operatorname{dim}_{F} \operatorname{Soc}\left(I_{R}\right)=2$ then $\operatorname{Soc}\left(I_{R}\right)=I_{1} \oplus I_{2}$ for some one-dimensional right ideals. Taking a basis v_{1}, v_{2}, v_{3} such that $v_{1} \in I_{1}$ and $v_{2} \in I_{2}$ we obtain the following matrix for any operator in $\psi(G)$:

$$
\left(\begin{array}{ccc}
\alpha_{1} & 0 & \gamma_{1} \\
0 & \alpha_{2} & \gamma_{2} \\
0 & 0 & \alpha_{3}
\end{array}\right)
$$

where $\alpha_{1}, \alpha_{2}, \alpha_{3} \in F^{*}, \gamma_{1}, \gamma_{2} \in F$. This implies that $\psi(G)$ is contained in the group $M \mathrm{D}_{3}(F)$, where

$$
M=\left\{\left(\begin{array}{ccc}
1 & 0 & \gamma_{1} \\
0 & 1 & \gamma_{2} \\
0 & 0 & 1
\end{array}\right): \gamma_{1}, \gamma_{2} \in F\right\}
$$

and so again $\psi(G)$ has an abelian decomposition by virtue of Lemma 2.2.
Case 3. $l_{s}\left(I_{R}\right)=3$.
In this case we have the Loewy series $0=I_{0} \subset I_{1} \subset I_{2} \subset I_{3}=I$, where I_{1} and I_{2} are two-sided ideals in R. Taking a basis v_{1}, v_{2}, v_{3} of I such that $v_{1} \in I_{1}, v_{2} \in I_{2} \backslash I_{1}$ and $v_{3} \in I_{3} \backslash I_{2}$ we can assume that $\varphi(G)$ and $\psi(G)$ are contained in the group $\mathrm{T}_{3}(F)$.

A direct computation shows that $\left|\mathrm{UT}_{n}(F)\right|=q^{\frac{n(n-1)}{2}},\left|\mathrm{D}_{n}(F)\right|=(q-1)^{n}$ and that $\mathrm{D}_{n}(F) \mathrm{UT}_{n}(F)=\mathrm{T}_{n}(F)$ for any $n \geq 1$. Using Lemma 2.2 we can assume without loss of generality that

$$
\varphi(G)=\left(\varphi(G) \cap \mathrm{D}_{3}(G)\right)\left(\varphi(G) \cap \mathrm{UT}_{3}(G)\right)
$$

If $\varphi(G) \cap \mathrm{UT}_{3}(G)$ is abelian then our claim is true. Suppose now that $\varphi(G) \cap$ $\mathrm{UT}_{3}(G)$ contains two non-commuting matrices

$$
a=\left(\begin{array}{ccc}
1 & \alpha & \beta \\
0 & 1 & \gamma \\
0 & 0 & 1
\end{array}\right), \quad a^{\prime}=\left(\begin{array}{ccc}
1 & \alpha^{\prime} & \beta^{\prime} \\
0 & 1 & \gamma^{\prime} \\
0 & 0 & 1
\end{array}\right)
$$

for some $\alpha, \beta, \gamma, \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime} \in F$. It is easy to check that the condition $a a^{\prime} \neq a^{\prime} a$ is equivalent to the inequality

$$
\begin{equation*}
\alpha \gamma^{\prime} \neq \alpha^{\prime} \gamma . \tag{2.2}
\end{equation*}
$$

Let $X=\left(x_{i j}\right)$ be a matrix in $\psi(G)$. Note that it is an upper triangular matrix. The computation of $a X-X a$ and $a^{\prime} X-X a^{\prime}$ gives the following equations:

$$
\begin{align*}
& \alpha x_{2,2}-\alpha x_{1,1}=\alpha^{\prime} x_{2,2}-\alpha^{\prime} x_{1,1}=0 \tag{2.3}\\
& \alpha x_{2,3}+\beta x_{3,3}-\beta x_{1,1}-\gamma x_{1,2}=\alpha^{\prime} x_{2,3}+\beta^{\prime} x_{3,3}-\beta^{\prime} x_{1,1}-\gamma^{\prime} x_{1,2}=0 \tag{2.4}\\
& \gamma x_{3,3}-\gamma x_{2,2}=\gamma^{\prime} x_{3,3}-\gamma^{\prime} x_{2,2} \tag{2.5}
\end{align*}
$$

The inequality (2.2) implies that $\alpha \neq 0$ or $\alpha^{\prime} \neq 0$. Hence (2.3) gives $x_{1,1}=x_{2,2}$. Analogously, (2.5) gives $x_{3,3}=x_{2,2}$. Now (2.4) gives an equation system

$$
\left\{\begin{aligned}
\alpha x_{2,3}-\gamma x_{1,2} & =0 \\
\alpha^{\prime} x_{2,3}-\gamma^{\prime} x_{1,2} & =0 .
\end{aligned}\right.
$$

which has non-zero determinant by (2.2). This means that $\psi(G)$ is contained in the set of matrices

$$
\left\{\left(\begin{array}{ccc}
x & 0 & y \\
0 & x & 0 \\
0 & 0 & x
\end{array}\right): x, y \in F\right\}
$$

so $\psi(G)$ is commutative.
Proof of Theorem 1. It follows immediately from Proposition 2.5 and Lemma 1.3.

Acknowledgement

The work of the third and the fourth authors was supported by RFBR grants 17-01-00895 and 16-01-00113, respectively. The work of the second and the fifth authors has been supported by the projects MTM2013-45588-C3-1-P from the Spanish Ministey of Economy and GRUPIN14-142 from the "Principado de Asturias".

References

[1] C. García Pillado, S. González, V. Markov and C. Martínez. Non-abelian group codes over an arbitrary finite field. Fundementalnaya i prikladnaya matematika, 20:1 (2015), 17-22 (in Russian), english translation: J. Math. Sci., 223:5 (2017), 504-507.
[2] J.J. Bernal, Á del Río and J.J. Simón. An intrinsical description of group codes. Designs, Codes and Cryptography, 51:3 (2009), 289-300.
[3] S. Lang. Algebra. 3rd edition. Springer, 2002.
[4] I. N. Herstein. Noncommutative Rings. Mathematical Association of America, 1968.
[5] B. Amberg and B. Höfling. On finite products of nilpotent groups. Arch. Math., 63:1 (1994), 1-8.
[6] A. Ballester-Bolinches, R. Esteban-Romero and M. Asaad. Products of Finite Groups. De Gruyter expositions in mathematics (vol. 53), Walter de Gruyter, 2010.
[7] C. Năstăsescu and F. van Oystaeyen. Dimensions of Ring Theory. University of Antwerp, Belgium, 1987.

