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Abstract—A novel Near-Field Focusing approach based on the
use of artificial Neural Networks is proposed. It is able to provide
the set of weights or feeding values that must be applied to
the elements of an array so that the global radiation/reception
pattern is focused on one or more predefined positions in the
near environment. Due to the use of a properly trained Neural
Network, it is able to work fast enough for real time applications,
such as wireless energy and information transfer where moving
devices may require quick adaptation of the radiated field
distribution, and hence of the weights applied to the array.
Moreover, the training procedure using examples generated with
a convenient electromagnetic analysis tool allows taking into
account both the radiation pattern of the elements of the array
and the coupling effects between them.

Index Terms—Near Field, focusing, multifocusing, neural net-
works, mutual coupling, wireless energy transfer.

I. INTRODUCTION

NEAR Field Focusing (NFF) has received increased at-
tention in the last years as a technique for concentrating

the energy radiated by an antenna on a predefined spot in
the near-field region, reducing the energy wasted in other
positions of the space where it is not required. This idea
is key in novel paradigms such as Wireless Energy Transfer
(WET), as well as other applications such as RFID [1], [2],
medical hyperthermia [3], imaging, etc. [4]. In its more usual
implementation, the Conjugate-Phase (CP) approach [1], [5],
[6], it is extremely simple and robust and provides an excellent
solution for problems that require concentrating the energy on
one spot. However, among some minor drawbacks, an impor-
tant limitation may be found: it is limited to one focal point.
Some interesting beam steering methods have been proposed
[7], but some applications may also require considering more
than one focal point, concentrating the energy on an area or
a combination of both points and areas as pointed out in [8],
[9], where radiation nulls may be additionally requested.

Near Field Multifocusing (NFMF) is solved making use
of optimization techniques aiming at the minimization of a
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proper cost function designed according to the specifications.
Using this approach, more applications for NFF arise, spe-
cially simultaneous Wireless Energy and Information Transfer
(WEIT) including the possibility of sending information to
some devices while transferring energy to some other devices,
so that the position of each device represents a focal point.

The price to pay for a increased focusing performance is
time-cost, as far as the optimization process typically requires
much more time that the CP approach. This could become
an important limitation in applications such as WEIT where
target devices might be moving, and hence the corresponding
focal point and the time required to calculate the new weights
to be applied to focus on the new positions might be excessive.

Neural Networks (NN) [10] have been used successfully
in Far Field (FF) synthesis problems in antenna arrays [11],
[12] showing an interesting performance, specially considering
that once trained they are able to work without relevant time-
cost. They concentrate all the computing time in the previous
training step, providing solutions almost in real time once
trained. In this paper we propose the use of a trained NN to
obtain the weights that must be applied to an array so that it is
able to multifocus or to generate a Near Field (NF) distribution
complying with the specifications and without an excessive
delay that might be unacceptable for many applications.

II. STATEMENT OF THE PROBLEM

Let us consider a NF application where an antenna array
with N elements is used to focus on one or more points. The
position of each element of the array is defined by the vector
~r′n = {x′n, y′n, z′n}, n = 1 . . . N . Under the assumption of ideal
isotropic elements without coupling or interaction between
them, the field radiated by the N elements of the array at
any position ~r = {x, y, z} of the NF region is given by

E(~r) =

N∑
n=1

wn
e−jk|~r−

~r′n|

|~r − ~r′n|
(1)

where wn ∈ C is the complex weight applied to the n-th
element of the array, k = 2π/λ, and λ is the wavelength.
An optimization scheme is used in [9] improving [8] to
focus simultaneously on a predefined set of P points with
positions given by ~rp = {xp, yp, zp}, p = 1 . . . P , considering
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(1) as a sufficient approach for most applications. However,
the radiation pattern of each element may be included by
modifying the sum, so that it becomes

E(~r) =

N∑
n=1

wnfn(~r, ~r′n)
e−jk|~r−

~r′n|

|~r − ~r′n|
(2)

where fn(~r, ~r′n) is a factor accounting for the radiation pattern
of the n-th element, placed in ~r′n, towards the direction defined
by ~r, and defining the field component represented by (2). A
matrix-version of (2) is used to consider the field at different
positions of the near-field region, so that

e = S ·w (3)

where e = [E(~r1), E(~r2) . . . E( ~rM )]T is a column vector
containing the values of the field at the M considered po-
sitions, ~rm,m = 1 . . .M , of the near-field region; w =
[w1, w2, . . . , wN ]T is a vector with the weights applied to each
element of the array; S is a matrix with elements sn,m =

fn(~rm, ~r′n)
e−jk| ~rm− ~r′n|

| ~rm− ~r′n|
; and (.)T stands for the transpose.

Additionally, a very simple and effective method to take
into account coupling effects between the elements of the array
consists on making use of a coupling matrix A [13], [14] with
elements ai,j , i, j = 1 . . . N representing the influence of the
j-th element in the effective weight applied to the i-th element.
Equation (3) then may be rewritten as

e = S ·A ·w (4)

Provided that the coupling matrix A is calculated accurately,
(4) is a quite realistic representation of the behavior of the
array in the near-field region. Some interesting methods for the
calculation of the coupling matrix have been proposed, some
of them leading to high accuracy results. In the results pre-
sented in this paper we have chosen the Method of Moments
[15], able to create a quasi-realistic model accounting for the
real properties of the radiating structure without any need of
measured data. Once the coupling matrix is calculated, (4) may
be used in [9] to relate the weights applied to the array and
the corresponding NF distribution, instead of the formulation
actually used in [9]. However, time requirements remain high
due to the iterative nature of optimization tools.

III. NEURAL NETWORKS AS A FAST NEAR FIELD
FOCUSING METHOD

Neural Networks [10] are the most popular Machine Learn-
ing tool in the scientific literature due in part to their ease of
use and their excellent results in solving learning-by-examples
problems. They have been used with success in a large number
of applications, including the synthesis of FF patterns in an-
tenna arrays [16], [11], [12]. Among the interesting capabilities
of NNs, they displace the computational time and cost to a
previous training stage when the NN learns the behavior of
the system to be modeled, e.g. a given antenna array, before
being used for operation, and then, once trained, they operate
extremely fast and with a very reduced computational cost.

In the most general case, NNs are designed to model a
function that relates inputs and outputs through the use of

combinations of neurons, that basically are linear combinators
of their inputs followed by an activation function. This acti-
vation function is usually chosen to make use of the principle
of Universal Approximation [10], that states that any function
may be approximated with arbitrary accuracy provided that
certain activation functions are chosen (typically gaussian or
sigmoid functions) and a large enough number of neurons are
used. For synthesis purposes, a two-layer NN with gaussian
functions in the first layer and linear functions in the output
layer has been shown to be highly effective [12].

The key of the accurate modeling of the problem by the NN
is the training stage. A set of inputs and their corresponding
outputs must be presented to the NN so that it is able to
learn the relationship between both. For the NFF problem
we expect the NN to receive the target NF distribution and
to output the set of weights to be applied to the array, so a
set of training patterns must be constructed. To do so, (4)
may be used generating a set of P random weight vectors,
{w}r, r = 1 . . . P , and obtaining the corresponding set of
field samples vectors {e}r. It is important to notice that
most NN implementations are unable to deal with complex
values, and both field sample and weight values must be
decomposed into their real and imaginary parts, being the
actual training patterns {ẽ, w̃}r with ẽ = [<(eT ) =(eT )]T
and w̃w = [<(wT ) =(wT )]T being extended versions of e
and w obtained by stacking their real and imaginary parts.
These patterns are analyzed by the NN until it is properly
trained, and it is able to perform synthesis tasks.

The method presented in [9] defines a target field distribu-
tion consisting on a unitary value for the samples correspond-
ing to the spots where focus is required, and null values for
any other sample. This is a very flexible procedure that allows
specifying multiple spots, arbitrary volumes, etc. Although
the resulting target distribution is obviously unreachable, it
has been found to be quite effective for NFF purposes. In
the NN-based approach proposed in this paper the same
design procedure will be used for specifying a NF distribution
according to the NFF requirements.

IV. RESULTS

In order to test the proposed method, a planar antenna array
with 12 × 12 elements (N = 144) uniformly distributed and
centered in the plane z = 0, with separation 0.6λ between
them, is considered. The chosen individual radiating elements
are hemispherical dielectric resonator antennas (DRA) [17],
interesting due to their low losses but with relevant mutual
coupling effects when included in an array. For each element,
the radius of the hemisphere is 12.5 mm, and the relative
permitivity is εr = 9.8. The DRA is fed by a metallic pin
with radius 0.63 mm, height 6.5 mm and offset 6.5 mm.
The working frequency is 3.6 GHz in order to excite the
TE11 mode. The range of variation of S11 for the elements
is between -10.17 and -13.72 dB, being the maximum of the
rest of S parameters -12.35 dB, so the coupling effects are
relevant and have to be accounted for. An infinite ground plane
is considered in the simulation. MoM was used to obtain the
coupling matrix by calculating the currents induced at each
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element by the other elements when they are excited with a
voltage source [14], [13].

The near-field region around the antenna has been limited
to x ∈ [−7λ, 7λ], y ∈ [−5λ, 5λ] and z ∈ [0.5λ, 10λ], sampled
with a period λ/2 what leads to 12180 samples of the field
distribution. The NN consists on two layers, the first one with
1200 neurons with gaussian activation function, and the output
layer using linear activation function and 288 neurons (one for
each output, being each output the real or imaginary part of a
weight). A set of 5000 training patterns have been used each
one consisting on a set of 144 complex weights and using (4)
to calculate the corresponding NF distributions. The algorithm
used for training procedure was the standard Least Squares
for the lineal layer with k-means and pseudoinversion for the
gaussian layer [10].

Both the optimization method and the trained NN are used
to calculate the weights that must be applied to the array in
order to obtain a simultaneous focus on three focal points
at {2λ, 0, 7λ}, {−λ, 0, 4λ} and {−3λ, 0, 4λ}. The weights
obtained by each technique have been applied to (4) to calcu-
late the corresponding radiated field, that can be calculated
for any required position independently of the grid of the
environment used to train the NN or to define the target
distribution. Figure 1 shows the NF power density distribution
in the plane y = 0 where all the focal points have been
specified. The optimization method in [9] only generates two
-3dB focal spots; the third spot does not reach that level, and
one of the focal points lays out of the corresponding spot.
In opposition, the neural network is able to generate -3dB
focal spots containing the three focal points. Moreover, the
optimization has spent 102.28s, too much for most WET or
WEIT applications, while the neural network has spent 0.3s,
suitable for most cases. The calculations have been carried
out in a conventional PC with an Intel Core 2 Duo CPU, 2
GHz and 4 GB RAM, using Octave as programming tool,
and averaging 20 simulations for both methods. These results
agree with the complexity of both methods, provided that the
NN has a complexity of O(N) for N elements in the array
[18], while the Levenberg-Marquardt algorith used in [9] has
a complexity O(N3) per iteration [19].

The positions of the resulting maximum points also differ
from one method to the other. Figure 1 shows the speci-
fied focal points along with the obtained spots and maxi-
mum points. The optimization scheme is reaching maxima
on {1.8λ, 0, 5.1λ}, {−0.9λ, 0, 2.8λ} and {−2.8λ, 0, 3.1λ},
what represents an average distance 1.34λ between the focal
points and the maximum points, while the neural network
is getting maxima on {1.8λ, 0, 5.8λ}, {−1λ, 0, 3.3λ} and
{−2.8λ, 0, 3.7λ} what represents a lower average distance
0.75λ between the focal and maximum points. This improved
focusing accuracy is actually due to the use of (4) including
the radiating properties of the elements of the array and the
coupling effects in the formulation of the problem. In fact,
if (4) is used as formulation in the optimization method
instead of the non-coupling array used in [9], both methods
converge to the same solution being the advantages of the
neural network reduced to its fast operation once trained.
In this case, no differences may be appreciated in the field

(a)

(b)

Fig. 1: Example #1. Normalized Near Field power density at
y = 0 for the optimization scheme in [9] (a) and the neural
network (b). The symbols + and ◦ represent the focal and
synthesized maximum points respectively.

distribution generated by the array when using both methods
but the computation time is still high using the optimization
tool.

The use of a model including coupling effects provides an
improved efficiency in power transfer that can be estimated
by measuring the power density in the focal points when
the transmitted power is the same in both methods. The gain
obtained in those points Gε may be estimated as

Gε =
PCD
P ID

(5)

where PCD is the power density at a focal spot considering
coupling effects and P ID is the power density at the same
spot under ideal conditions (no coupling is considered). For
the results obtained in this experiment, the gain at each focal
point has been found to be 2.34, 1.06 and 1 respectively.
Obviously, if coupling effects are taken into account in the
optimization tool both methods reach the same solution and
hence the same gain. Table I summarizes the axis lenght for the
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Focal point {2λ, 0, 7λ} {−λ, 0, 4λ} {−3λ, 0, 4λ}
Axis length Opt 1.64λ, 0.28λ 2.57λ, 0.98λ 2.97λ, 0.76λ
ρ Opt (dB) 7.75 2.49 1.62

Axis length NN 4.85λ, 1.22λ 2.74λ, 0.84λ 2.97λ, 0.94λ
ρ NN (dB) 0.64 1.08 0.55

TABLE I: Example #1. Results using optimization and NN.
The power density ratios are obtained using the same radiated
power.

-3dB focal spots, and the ratio ρ between the power density at
the maximum points and the power density at the focal points.

In a second example, only one focal point has been con-
sidered so that a comparison between the proposed neural
network and the CP method may be achieved. The CP ap-
proach only can deal with one focal point, but it is very fast.
The main point for comparison is the ability of the proposed
neural method to account for the coupling effects. The focal
point has been placed in the position {2λ, 0, 7λ}. The same
array considered for the first example has been used here, as
well as the same NN trained for that array. The normalized
NF power density obtained with both methods is represented
in Fig. 2. It may be noticed that a better fit is obtained using
the neural method, whose actual synthesized maximum point
is at {1.8λ, 0, 5.9λ} while the maximum point synthesized
by the CP method is at {1.8λ, 0, 5.5λ}. The use of the neural
tool accounting for propagation losses and coupling effects has
reduced the focal shift from 1.51λ to 1.11λ. The difference
between the power in the maximum point and the focal point
is 1.29dB using the CP method and 0.57dB using the NN. The
spot axis lengths in the CP method are 4.59λ and 0.9λ while
the lengths in the NN method are 4.78λ and λ. The gain Gε
has also been evaluated, resulting a value of only 1.1 for this
case as both methods get spots including the focal points. It
is interesting (but not surprising) to notice that the CP method
has been found to be faster than the NN, with an average time
of 0.1s over 20 simulations (complexity O(N)) while the NN
has required an average time of 0.27s. The obvious conclusion
is that the CP approach is still very convenient in cases where
couplings are not relevant and only one focal point is specified
but a very fast response is required, while the NN approach
is very competitive in the case of multifocus with relevant
couplings that must be considered in a fast system.

A third comparison may be performed by considering the
NN method used for multifocus presented in Fig. 1b and the
CP approach presented in Fig. 2a, as both examples share one
focal point. Even though both methods are targeting different
specifications, the results obtained in the previous experiments
for the common focal point may be compared. It is interesting
to point out how the focal shift reduction by the NN leads
to a lower ratio between the power level at the maximum
point and at the focal point, 0.64dB, while the CP was getting
1.29dB, even when the array focusing capabilities are divided
into three spots. Recall that the -3dB spot axis lengths were
{4.85λ, 1.22λ} for the NN and {4.59λ, 0.9λ} for the CP.

(a)

(b)

Fig. 2: Example #2. Normalized Near Field power density at
y = 0 for the CP method (a) and the neural network (b). The
symbols + and ◦ represent the focal and synthesized maximum
points respectively.

V. CONCLUSION

A novel approach to Near Field Focusing based on the use
of a properly trained Neural Network has been presented. It
is intended as a fast synthesis method able to operate in real
situations where real-time calculations are required. Although
the most conventional approach to NFF, Conjugate-Phase, is
usually very fast, it cannot deal with multiple specifications,
while an optimization approach, able to account for multiple
focal points at the same time, is not fast enough to be used in
real scenarios where focusing might be specified on moving
devices defined by moving focal points. The neural approach
takes advantage of its properties to show the benefits of both
previous techniques. Additionally, it is able to account for real
properties of the array based on a formulation that might be
also used in optimization schemes and that includes both the
radiation pattern of each element of the array and coupling
effects in the structure. As a limitation to be addressed in
future developments, most implementations of NNs are not
able to handle additional constraints in the solutions, what
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means that they are not able to provide phase-only solutions
for the weights to be applied to the array as optimization
tools have been shown to be. Anyway, NNs represent an
interesting step forwards in the way to implementing real
wireless energy transfer systems on applications with different
devices involved placed in the near-field regions, even when
some of them are moving.
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