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Abstract 

Although numerous studies have demonstrated the harmful effect of excessive fructose consumption at the 

systemic level, there is little information on its effects in the central nervous system. The purpose of the present 

work was to study the cellular alterations related to oxidative stress and protein quality control systems induced 

by a high-fructose diet in the brain of Syrian hamsters and their possible attenuation by exogenous melatonin. 

High-fructose intake induced type II diabetes together with oxidative damage, led to alterations of the unfolded 

protein response by activating the eIF2  branch, and impaired the macroautophagic machinery in the brain, 

favoring the accumulation of aggregates labeled for selective degradation and neurodegeneration markers such 

as β-amyloid (1 -42), tau-p-S199 and tau-p-S404. Melatonin attenuated the manifestation of type II diabetes and 

reduced oxidative stress, deactivated eIF2α and decreased tau-p-S404 levels in the brain of animals fed a high-

fructose diet. 

Keywords: high-fructose; brain; ER-stress; autophagy; neurodegeneration; melatonin. 
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INTRODUCTION 

Currently, obesity and diabetes mellitus have become a public health problem with a prevalence that is 

increasing at an alarming rate. Several hypotheses have been proposed to explain this phenomenon, such as 

lifestyle changes characterized by an increase in the consumption of processed foods and sugar-sweetened 

beverages, the main ingredients of which are usually sucrose or fructose corn syrup, coupled with reduced 

physical activity [1]. Recently, the World Health Organization (WHO) has recommended the consumption of 

free sugars, such as fructose and glucose, to not exceed 10% of the total daily caloric intake [2]. 

Fructose is a monosaccharide with the same empirical formula as glucose, but with a different structure. Fructose 

is usually found in its free form in fruits, vegetables and honey or forms a disaccharide with glucose called 

sucrose or common sugar. Although fructose is incorporated into glycolysis at different levels, the metabolism of 

both monosaccharides is different. Fructose is preferentially metabolized in the liver, while glucose is mainly 

metabolized in the brain [3]. Thus, although many studies have already demonstrated the harmful effect of 

excessive consumption of fructose at the multiorgan level, at present, there are few studies on its effects at the 

level of the central nervous system (CNS). 

Although fructose was initially used as a sweetener for diabetics because of its low glycemic index, clinical 

studies have shown that excessive consumption of fructose can lead to metabolic complications, such as type 2 

diabetes, insulin resistance (IR), obesity and major lactate production and lipid oxidation [1]. Due to these 

effects, several studies have correlated IR caused by high fructose intake with an increased risk of 

neurodegenerative diseases, such as dementia [4,5]. In fact, the relationship between IR in the brain and the 

development of Alzheimer's disease (AD) was recently identified [6-9], and studies on memory and cognition 

note an association between fructose consumption and cognitive impairment [10]. In addition, high and 

continued consumption of fructose has been shown to induce neuroinflammation and oxidative stress in the 

brain, both of which are involved in the pathogenesis of neurodegenerative diseases [11].  

Inflammation and oxidative stress particularly affect the brain by inducing morphological and functional changes 

associated with alterations of neuronal processes, such as synaptic function and plasticity, signal 

neurotransmission and metabolism, which ultimately lead to alterations in learning and memory [12]. The 

susceptibility of the brain to these neurobiological alterations induced by oxidative stress may be due to its high 

oxygen consumption, high energy demand, high abundance of polyunsaturated fatty acids and lipids, and 

relatively low antioxidant capacity [13]. It has been observed that increased oxidative stress in the brain can lead 



4 
 

to the accumulation of misfolded proteins such as α-synuclein in Parkinson's disease (PD) and β-amyloid protein 

in AD, and even a deterioration in the mechanisms of protein degradation [14]. 

Melatonin (N-acetyl-5-methoxytryptamine) is a pleiotropic neurohormone that is mainly produced by the pineal 

gland from tryptophan and controls various physiological processes associated with day-night cycles. Synthesis 

and release of melatonin into the bloodstream is regulated by exposure to dark stimulation, helping to 

synchronize circadian rhythms with light-dark cycles. In addition to its chronobiotic properties and ability to 

influence the neuroendocrine-reproductive axis that controls seasonal reproduction, melatonin also has important 

antioxidant properties. It is considered as one of the best natural antioxidants, acting directly as a free radical 

scavenger or indirectly by stimulating the gene expression and activity of antioxidant enzymes [15]. Due to this 

diverse range of physiological effects, therapeutic application of melatonin could neutralize the damage 

associated with obesity and neurodegenerative diseases [16]. 

Syrian golden hamsters are small rodents that have many features that resemble human physiology, such as diet 

and metabolism [17,18]. They are obesity prone and develop insulin resistance when fed a high-fat/high-

carbohydrate diet [19,20]. Unlike rats and mice, hamsters develop hypercholesterolemia and 

hypertriglyceridemia when fed fat- and cholesterol-rich diets. Furthermore, they have cardiovascular and hepatic 

systems similar to those of humans [21] and can thus be a useful model for studying diet-induced alterations [22-

25].  

Taking into account the limited information available regarding the effects of high carbohydrate diets, especially 

in the form of high-fructose, at the level of the CNS, the main objective of the present work was to study the 

cellular alterations related to oxidative stress and protein quality control systems in the brain of Syrian hamsters 

fed a high-fructose diet to identify potential therapeutic targets. We also tested their possible attenuation by 

exogenous administration of melatonin.  

MATERIALS AND METHODS 

Animals and reagents 

Sixteen 8-week-old male Syrian hamsters (Mesocricetus auratus) were purchased from Charles River 

Laboratories (Barcelona, Spain). Animals were housed two per cage in the vivarium of the University of Oviedo 

under a 14:10 h dark-light cycle at 22 ± 2 ºC and received tap water and food ad libitum. After a 2-week 

acclimatization period, the animals were randomly divided into four experimental groups with four mice per 

group (n = 4) as follows: Normal diet (ND): hamsters from this group received a normal diet for rodents with the 



5 
 

following macronutrient composition: 14.3% protein, 48% carbohydrate, 4% fat (Teklad 2014 Global Rodent 

Maintenance Diet); Normal diet + melatonin (ND+M): hamsters from this group received a normal diet and a 

daily dose of 500 μg melatonin / kg body weight in a saline solution with 0.5% ethanol administered via a 

subcutaneous injection between the shoulder blades; Fructose diet (FD): hamsters in this group received a high-

fructose (60%) diet for rodents with the following composition of macronutrients: 18.3% protein, 60.4% 

carbohydrate, 5.2% fat (TD89247, Teklad); and Fructose diet + melatonin (FD+M): hamsters in this group 

received a high-fructose diet and a daily dose of 500 μg melatonin / kg body weight in a saline solution with 

0.5% ethanol administered via a subcutaneous injection between the shoulder blades. The macronutrient energy 

ratio in both types of diet is divided as follows: 20 percent of calories come from proteins, 67 percent of calories 

are from carbohydrates and 13 percent of calories are from fats. 

The experiment was carried out for 10 weeks, and melatonin was administered daily to the ND+M and FD+M 

groups half an hour after lights off (ZT14.5). Thus, melatonin administration coincided with the onset of the 

nocturnal melatonin peak. The ND and FD groups received vehicle (0.5% ethanol: saline in proportion to its 

body weight). After the respective treatments, hamsters were fasted for 24 hours before sacrifice by decapitation, 

blood samples were collected and the brains were dissected, frozen and stored at −80 °C until further use. 

Body and blood parameters 

Body weight was recorded at the beginning and at end of the experiment, and food intake was measured per cage 

twice weekly. Brain weight was also recorded, and the blood parameters (glucose, insulin, HDL-cholesterol, 

LDL-cholesterol and uric acid) were analyzed by routine laboratory tests at the Laboratory of Veterinary 

Analysis Dr. Barba (Madrid, Spain). 

Tissue processing and protein quantification 

The brain of each hamster was homogenized in RIPA buffer (50 mM Tris/HCl pH 8.0, 150 mM NaCl, 0.5% 

doxycholate, 1% NP40, 0.1% SDS, 1 mM PMSF). The homogenates were centrifuged at 900 ×g for 6 minutes at 

4 °C. Supernatants containing proteins were collected, aliquoted and frozen at −80 °C until further analysis. The 

Bradford method was used to quantify the protein concentrations of brain homogenates [26]. 

Lipid peroxidation (LPO) 

Malondialdehyde (MDA) and 4-hydroxyalkenes, such as 4-hydroxy-2(E)-nonenal (4-HNE), are end products 

derived from the peroxidation of polyunsaturated fatty acids and related esters and provide an adequate index of 
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oxidative damage to lipids [27]. For LPO determination, we used the 1-methyl-2-phenylindole colorimetric 

method (586 nm) [28]. The results are expressed as μmol MDA + 4-HNE / g protein. 

Superoxide dismutase and catalase activities  

Superoxide dismutase (SOD) activity (EC 1.15.1.1) was determined from the protocol of Martín et al. [29].   

This enzyme inhibits hematoxylin auto-oxidation to the colored compound hematein, which absorbs at 560nm. 

The results are expressed as enzymatic units / mg protein, taking into an account that one SOD unit is equivalent 

to 0.039 absorbance units. Catalase (CAT; EC 1.11.1.6) activity was assayed using the method from Lubinsky 

and Bewley [30] using H2O2 as the substrate. Disappearance of the substrate was measured by 

spectrophotometry (240 nm). The results are expressed as μmol H2O2 / mg protein*minute. 

Total antioxidant capacity 

The total antioxidant capacity (TAC) was assessed by a modification [31] of the 2,2'-azinobis (3-

ethylbenzothiazoline)-6-sulfonic acid (ABTS•+) cation radical method [32]. The decay of the ABTS•+ radical was 

measured at 730 nm. The results are expressed as mg Trolox equivalents / mg protein.  

20S proteasome activity 

The activity of the 20S proteasome was assessed using a 20S proteasome activity assay kit (APT280; Chemicon, 

Merck Millipore, Billerica, MA, USA) based on the detection of the fluorophore 7-amino-4-methylcoumarin 

(AMC) after its cleavage from the labeled substrate LLVY-AMC by the chymotrypsin-like activity of the 

proteasome. Free AMC was detected by fluorometric quantification (380/460 nm). The results are presented as 

μM AMC / mg protein. 

Western blot immunoassay 

Tissue homogenates (100 μg of protein per sample) were mixed with Laemmli buffer (Bio-Rad Laboratories, 

Hercules, CA, USA) and denatured by boiling at 100°C for 5 minutes. The samples were fractionated using 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) at 200 V and subsequently transferred 

onto polyvinylidene fluoride (PVDF) membranes at 350 mA (Immobilon TM-P; Millipore Corp., Bedford, MA, 

USA). 

The membranes were blocked with 5 or 10% (w / v) nonfat dry milk dissolved in TBS-T (50 mM Tris-HCl, pH 

7.5, 150 mM NaCl and 0.1% Tween-20) for 1 hour at room temperature. Subsequently, membranes were 

incubated with the following primary antibodies overnight at 4°C: anti-IRE1α (3294), anti-phosphorylated-eIF2α 



7 
 

(3398), anti-ubiquitin (3933), anti-β-amyloid 1-42 (14974) and anti-α-synuclein (2642) from Cell Signaling 

Technology (Danvers, MA, USA); anti-ATF-6α (sc-22799), anti-cathepsin D (sc-6486) and anti-beclin-1 (sc-

10086) from Santa Cruz Biotechnology (Santa Cruz, CA, USA); tau Phosphorylation site-specific antibodies p-

S199, p-T205, p-S396, and p-S404 (44779G) from Invitrogen (Waltham, MA, USA); anti-LAMP2A (ab18528) 

from Abcam (Cambridge, UK); anti-LC3 (PD014) from MBL (Naka-ku Nagoya, Japan); and anti-p62 

(H00008878-M01) from Abnova (Walnut, CA, USA), each previously diluted 1:1,000 in TBS (50 mM Tris-HCl, 

pH 7.5, 150 mM NaCl) containing 1% (w / v) nonfat dry milk and 0.02% sodium azide. After three 10 minutes 

washes in TBS-T, the membranes were incubated with the corresponding horseradish peroxidase-conjugated 

secondary antibody (Sigma-Aldrich, St. Louis, MO, USA) diluted 1:10,000 in TBS containing 1% (w / v) nonfat 

dry milk for 1 hour at room temperature, followed by three 10 minute washes in TBS-T. 

The membranes were developed using a chemiluminescent substrate (WBKLS0500, Merck Millipore, Billerica, 

MA, USA) according to the manufacturer’s protocol. The protein levels were quantitated using Image Studio 

Lite 5.2.5 software (LI-COR Biotechnology, Lincoln, NE, USA). The results were normalized to Ponceau S and 

are expressed as a percentage of the experimental group ND. 

Statistical analysis 

All of the results are presented as the mean values ± standard deviations (SD) of the means, derived from at least 

three separate experiments. The results were analyzed by bidirectional analysis of variance (ANOVA) to study 

the effects of diet and treatment with melatonin, followed by a Bonferroni post hoc test. Differences were 

considered statistically significant when p <0.05. Statistical analyses and histograms were performed using 

GraphPad Prism 6 software (GraphPad Software, La Jolla, CA, USA). 

RESULTS 

High-fructose diet alters glucose and lipids homeostasis 

Although there were no significant differences in food intake, body weight gain or brain weight at the end of the 

study (Table 1), we found obvious changes in the blood biochemistry. In comparison with animals fed the ND, 

hamsters subjected to the FD developed higher levels of blood glucose (p <0.001) (Fig. 1a), but no changes in 

insulin levels. In addition, melatonin treatment increased the insulin level in FD hamsters, whereas the glucose 

level was reduced (p <0.001) to the level found in the ND group (Figs. 1a and b). Furthermore, although we did 

not observe differences in the high-density lipoprotein cholesterol (HDL) concentration, FD hamsters showed 

higher levels of low-density lipoprotein cholesterol (LDL) (p <0.01) than ND hamsters that were normalized by 
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treatment with melatonin (p <0.01) (Fig. 1d). Finally, the uric acid levels, which showed no differences between 

ND and FD animals, decreased in the ND+M (p <0.001) and FD+M groups (p <0.05) (Fig. 1e). 

High-fructose diet induces oxidative stress in the brain 

To determine whether the high-fructose diet caused cellular alterations in the brain, we measured markers of 

oxidative damage and antioxidant defense in brain homogenates. Thus, FD hamsters showed higher LPO in the 

brain (p <0.05) than ND animals. Melatonin administration to ND hamsters resulted in no changes in LPO, 

whereas LPO significantly decreased in the FD+M group (p <0.05) (Fig. 2a). To evaluate the antioxidant status 

in brains from the four experimental groups, we determined the activity of antioxidant enzymes, SOD and CAT, 

and the total antioxidant capacity (TAC), which includes both enzymatic and non-enzymatic antioxidants. The 

three determinations were higher in FD animals (p <0.001) (Figs. 2b, c and d). Although melatonin treatment 

was able to counteract LPO in brains from FD animals, the SOD and CAT activities remained stable, while the 

TAC was reduced (p <0.001) (Fig. 2d). 

High-fructose adapts the unfolded protein response  

In many pathological situations, oxidative stress coexists with endoplasmic reticulum (ER) stress, favoring the 

accumulation of misfolded proteins. To study the possible presence of ER stress in the brains of hamsters fed 

with fructose, we measured the content of the key proteins involved in the activation of the three arms of the 

unfolded protein response (UPR): IRE1α, ATF-6α and eIF2α. We did not observe significant differences in the 

protein expression of (IRE1α), a protein responsible for monitoring ER homeostasis. Surprisingly, we found 

lower protein levels of activating transcription factor 6 in its active form (50 kDa-ATF-6α) in FD than in ND 

animals (p <0.05), showing no differences compared with the respective melatonin-treated group (Fig. 3). 

However, analysis of the eukaryotic-2α initiation factor (eIF2α) in its phosphorylated form at S51 revealed a 

greater activation of this pathway, which attenuates translation initiation and protein synthesis and induces 

protein degradation in the brains of FD hamsters (p <0.05). In addition, melatonin administration to FD hamsters 

was able to deactivate this pathway (p <0.05) (Fig. 3). 

High-fructose diet impairs degradative systems 

Given the possibility of the presence of unfolded or misfolded proteins in the brain of FD animals, we evaluated 

some cell quality control mechanisms responsible for eliminating these defective proteins, such as the ubiquitin-

proteasome system and autophagy. The ubiquitin-proteasome system results revealed no significant differences 

in 20S proteasome activity nor in the amount of ubiquitinated proteins (Fig. 4). Chaperone-mediated autophagy 
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(CMA) is another type of low capacity proteolytic degradation system. Protein expression of the specific marker 

lysosome-associated Membrane Protein Type 2a (LAMP-2A) indicated no significant differences in CMA 

between the four experimental groups (Fig. 5). 

Macroautophagy is a high-capacity lysosomal degradation process that is activated as a consequence of high 

cellular stress, such as bioenergetic failure or accumulation of protein aggregates. To study the viability of this 

lysosomal system, we analyzed the protein expression of cathepsin D and found that it was significantly higher 

in FD animals (p <0.01) (Fig. 6a). Expression of beclin-1, which is part of the complex inducer of vesicle 

nucleation, was higher in brains of hamsters fed with high fructose than in ND animals (p <0.05). Interestingly, 

melatonin administration to FD animals reduced the beclin-1 protein levels (p <0.01) (Fig. 6b). 

Microtubule-associated protein 1 light chain 3 (LC3) in its lipidated form (LC3-II) can serve as an 

autophagosomal marker. Our results showed that the diet rich in fructose produced an increase in LC3-I but a 

decrease in LC3-II levels (p <0.05) (Fig. 6d), demonstrating the presence of a smaller number of 

autophagosomes in the brain of FD hamsters. To determine the autophagic flux, we quantified the protein 

expression of sequestosome-1 (SQSTM1 / p62), which binds structures, protein aggregates or other toxic cellular 

waste and targets them for selective degradation by macroautophagy. We found an accumulation of p62 in the 

brain of DF hamsters (p <0.01) (Fig. 6e), confirming lower autophagic flux. The LC3-II and p62 protein levels 

were not affected by the melatonin treatment. 

High-fructose diet induces the accumulation of some neurodegenerative markers 

A common feature of many neurodegenerative disorders, such as AD and PD, is the presence of potentially toxic 

protein aggregates. To evaluate whether diets with a high content of fructose induced the accumulation of these 

types of aggregates in the brain, we analyzed some markers of neurodegeneration, such as β-amyloid (1-42), α-

synuclein, and tau phosphorylation, in our experimental model. Immunoblot analysis of β-amyloid peptide (1-

42), which is a central component of neuritic (senile) plaques, revealed a higher content of this toxic peptide in 

brains of FD hamsters than in brains of ND animals (p <0.01). In addition, melatonin was able to reduce β-

amyloid (1-42) in FD hamsters, but the difference showed no statistical significance (Fig. 7a). Immunodetection 

of α-synuclein, which is usually present in the presynaptic terminals, in the nuclear envelope, and in cytoplasmic 

inclusion bodies, such as the Lewy bodies, showed no significant differences in α-synuclein content between the 

four experimental groups. Despite this result, we observed a trend towards a higher level of α-synuclein protein 

accumulation in the brain of FD animals that was mitigated by melatonin (Fig. 7b). Finally, we studied tau 



10 
 

phosphorylation at the following residues: S199, T205, S396 and S404 whose deposits are pathological 

characteristics of several tauopathies. The levels of tau phosphorylated at S199 and S404 were significantly 

higher in the brain of FD rodents (p <0.01) (Figs. 7c and f), and melatonin treatment was able to reduce tau 

phosphorylation at S404 (p <0.01), but not at S199 (Fig. 7c). On the other hand, we observed that the protein 

levels of p-tau (T205) and p-tau (S396) in the brains from animals fed with FD were lower than those in ND 

animals (p <0.01), remaining unaltered by melatonin treatment (Figs. 7d and e). 

DISCUSSION 

Fructose is one of the most widely used sugars in the food industry, and it is used as a sweetener for processed 

foods. Among the consequences of high and continued consumption of fructose is the development of obesity 

and diabetes mellitus [1]. However, the CNS consequences from high fructose intake are poorly discussed in the 

scientific literature. We focused this study on investigating the possible cellular alterations at the cerebral level 

that may be associated with high-fructose consumption. At the same time, we tested the effects of exogenous 

administration of melatonin against these potentially harmful effects because melatonin is known to be a potent 

antioxidant and a modulator of metabolic pathways. 

Several studies have associated excessive fructose consumption with the occurrence of hyperuricemia, IR, 

dyslipidemia, hyperglycemia and increased plasma concentrations of triglycerides and LDL cholesterol together 

with a decreased concentration of HDL cholesterol [33-35]. To determine whether 10 weeks of exposure to a 

high-fructose diet could cause this type of systemic effects, we analyzed some of these blood parameters. 

Although no changes were observed in body weight and total daily food intake, probably due to the short-term 

exposure to this diet [36], the blood parameter results indicated the presence of a profile that was closely related 

to metabolic syndrome [37]. Fructose enhanced blood glucose levels without increasing insulin levels. Several 

studies seem to correlate this hyperglycemia with a predisposition to type II diabetes because fructose 

consumption may alter insulin secretion [38] by disrupting beta cell function in pancreatic islets due to an 

increase in hepatic diacylglycerol (DAG), a secondary messenger that is produced during the generation of 

triglycerides and that leads to IR by disrupting signal transduction from the insulin receptor [39]. In addition, this 

diet resulted in increased plasma LDL cholesterol, which has already been described in previous studies, and an 

increase in uric acid [40]. The high levels of LDL cholesterol may result from fructose intake-associated 

hyperlipidemia [33]. However, we did not observe hyperuricemia, which has been associated with the 

manifestation of cognitive deficits [41], probably due to the short duration of this high-fructose exposure. 

Despite these observations, some of the results obtained in blood could be related to the appearance of IR. In 
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fact, several investigations have noted a strong correlation between the presence of IR and early onset of AD [6-

9]. This relationship is regarded to lead to an initial change in low grade neuroinflammation in AD. Thus, brain 

IR and AD have even been discussed in terms of type 3 diabetes [42,5]. It has also been suggested that 

hyperglycemia can increase the synthesis of β-amyloid protein and lead to dysfunction in synaptic transmission 

[43]. 

Increased fructose consumption has recently been associated with high oxidative stress in the brain, linking this 

relationship with the pathogenesis of neurodegenerative diseases [34]. Our results seem to corroborate this 

association, confirming the presence of oxidative damage in the brain of FD animals. In addition, one of the 

predisposing factors for increased oxidative stress is the manifestation of hyperglycemia [44], as we observed in 

FD hamsters. Even so, an antioxidant response against the high fructose diet-induced oxidative damage, 

including both enzymatic and probably non-enzymatic antioxidants, was trigged in the brain of FD rodents. In 

fact, the effect of melatonin treatment on redox parameters suggests that the antioxidant response induced by the 

high-fructose diet has a high component of non-enzymatic antioxidants, which may no longer be necessary in the 

presence of melatonin. 

Increased oxidative stress can contribute to alterations of homeostatic control mechanisms. Moreover, there is a 

direct relationship between oxidative stress and ER stress [45], and ER stress-induced apoptosis is implicated in 

the occurrence of AD and PD because of the postmitotic nature of neurons, which makes them more susceptible 

to these types of events [46]. Several studies have addressed the relationship between fructose and ER stress in 

the liver, but this relationship has been poorly studied in the brain. These studies showed that high-fructose diets 

activate the eIF2α and IRE1 pathways of the UPR, which are related to hepatic steatosis and IR [47]. In the 

present study, we detected changes that seem to indicate that fructose produces alterations in protein folding in 

the ER lumen and a consequent adaptation to ER stress in the brain, which includes triggering of an UPR that is 

characterized by the deactivation of the ATF-6 pathway and activation of the eIF2α pathway. 

Although when under ER stress, activation of the ATF-6α arm is not essential for the development and survival 

of neurons, its deactivation in DF animals may be a contributor to misfolded protein accumulation, activation of 

ER stress-induced apoptosis and the consequent onset of neurodegeneration. In fact, in animal models of PD, it 

was demonstrated that this pathway has a neuroprotective role against the loss of dopaminergic neurons [48,49]. 

On the other hand, high-fructose intake resulted in eIF2α activation. The eIF2α pathway attenuates translation 

initiation and protein synthesis and induces protein degradation, suggesting that this type of adaptive responses is 

triggered against the accumulation of abnormal proteins in the brain of FD animals. In spite of this, the 
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alterations in oxidative stress and ER stress induced in the brain by fructose appear to have no effects on the 

activation of mechanisms that degrade proteins on a molecule-by-molecule basis (proteasome and CMA), either 

because damaged proteins are not accumulated and these mechanisms are unnecessary or because they are 

overtaken, and then, other mechanisms with a greater capacity, such as macroautophagy, are activated. It has 

been proposed that the accumulation of advanced glycosylation endproducts (AGEs)-modified proteins derived 

from high-fructose consumption or chronic hyperglycemia [50] activates eIF2α [51] and leads to the activation 

of mechanisms for the identification and removal of damaged proteins, such as the ubiquitin-proteasome system 

and autophagy-lysosomal system. Thus, the age-related impairment of the proteolytic efficiency may exacerbate 

protein aggregation diseases, such as AD [52], in individuals with a high-fructose intake. However, these 

proteolytic systems may also be affected by other age-independent situations. For example, it has been shown in 

the liver that free fatty acid-induced oxidative stress leads to proteasome dysfunction, which mediates obesity-

induced ER stress and IR [53] and that, in our case, could increase accumulation of AGEs and led to the 

appearance of protein aggregates. In fact, we found a higher level of beclin-1 expression in FD animals, 

suggesting that fructose induces the accumulation of protein aggregates in the brain that cannot be degraded by 

unfolded monomer protein degradation systems and that induce the activation of high-capacity alternative 

mechanisms, such as macroautophagy. Despite this, we observed a lower expression of LC3-II, which may 

indicate decreased synthesis of autophagosomes (less autophagy induction) or increased fusion with lysosomes 

(greater autophagic flux).  

Cells have to maintain an adequate lysosomal system to form autolysosomes and execute autophagy. The post-

translational processing of cathepsin D to its mature form indicates a developed endosomal-lysosomal system. 

Since the brain of FD animals showed increased expression of mature cathepsin D, it can execute the last phases 

of the autophagic process. Furthermore, this upregulation of lysosomal cathepsins is probably a protective 

response to reduce the toxicity of diet-derived AGEs-modified proteins [54]. However, p62 accumulation 

demonstrated decreased autophagic flux, confirming that the decrease observed in LC3-II is due to decreased 

synthesis of autophagosomes. Taken together, these results indicate that FD induces an impairment of 

macroautophagy, which leads to the accumulation of p62-labeled aggregates in the brain. Although it has already 

been described that fructose supplementation alters the autophagic mechanism at various levels in the liver and 

white adipose tissue [55,56], to our knowledge, this is the first report demonstrating this alteration in brain. 

It has been suggested that high-fructose diets may directly or indirectly increase the risk of neurodegeneration or 

cerebral dysfunction in animal models by increasing oxidative stress, which together with the proteolytic 
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dysfunction, favors the accumulation of abnormal proteins [57]. Despite the short time of exposure to the high-

fructose diet, we observed an accumulation of beta-amyloid peptide (1-42), which is a hallmark of AD, because 

this isoform is less soluble than others [58]. In addition, even though this change was not statistically significant, 

the α-synuclein content was also higher in the brain of FD hamsters.  

Tau protein is mainly found in CNS neurons and stabilizes microtubules, but when it is hyperphosphorylated tau 

protein loses its effectiveness and starts to accumulate. In AD, this protein is abnormally phosphorylated at 

serines and threonines, such as at S396, S404 and T205 [59]. Although the brain of FD animals showed 

decreased expression of tau p-S396 and tau p-T205, tau phosphorylation at S404, a critical site for microtubule 

assembly, and at S199, which is involved in the formation of neurofibrillary tangles [60,61] were increased in 

the brain of DF animals. These results suggest that excessive consumption of fructose could favor the occurrence 

of primary events of AD. 

It has been suggested that melatonin may exert a beneficial role on the early stages of high fructose-induced 

metabolic syndrome [62]. Our data support this hypothesis since administration of melatonin attenuated the 

blood metabolic changes caused by excessive fructose intake, increased insulin levels and reestablished glucose 

and LDL levels. However, we must consider that the fundamental difference between nocturnally active rodents 

and diurnally active human lead to substantial differences between these organisms in relation to melatonin. 

While melatonin has generally been found to be antidiabetic in rodents, the opposite is true in human, at least at 

the levels of glucose tolerance and insulin secretion, which are reduced by melatonin even in normoglycemic 

health young adults [63-65]. These findings are underpinned by the effects of a gain of function mutation ("G 

allele") of the melatonin receptor gene MTNR1B, which is prodiabetic, after overexpression in pancreatic beta 

cells [66,67]. Nevertheless, it seems possible that fructose toxicity in both humans and rodents may be similarly 

counteracted by melatonin in the human, not at the level of insulin secretion but by antagonizing the 

proinflammatory and prooxidant effects of fructose and their secondary consequences. In fact, in FD animals, 

melatonin treatment was able to reduce oxidative stress. However, melatonin administration to FD animals 

maintained the SOD and CAT levels, but reduced the TAC, suggesting that the antioxidant response induced by 

high-fructose diets includes the production of non-enzymatic antioxidants that are no longer necessary when 

melatonin is administered. In addition, melatonin deactivated the eIF2α arm of the UPR. Thus, its beneficial 

actions seem to primarily avoid the accumulation of abnormal proteins. Therefore, cells do not need to activate 

beclin1-mediated autophagy. Although melatonin treatment did not improve either autophagosome formation or 



14 
 

reduce the p62 levels, we observed a slight reduction in the β-amyloid (1-42), α-synuclein and tau-p-S404 levels, 

supporting the neuroprotective role of melatonin against these accumulations [68,69].  

This study provides new relevant information on the early effects of high-fructose diets on the brain that, in the 

long term, will lead to a possible neuropathological manifestation. We found that early events of excessive 

fructose intake produced similar symptoms to type II diabetes and, in the brain, alterations in the redox system 

and in the mechanisms of detection and degradation of abnormal proteins, giving rise to early neurodegenerative 

alterations. Our data also showed the beneficial effect of melatonin on primary neurodegeneration events caused 

by excessive fructose consumption. 
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FIGURE LEGENDS 

Fig. 1 Blood levels of glucose (A), insulin (B), high density lipoprotein (HDL) (C), low density lipoprotein 

(LDL) (D) and uric acid (AU) (E) in the four experimental groups: hamsters fed a normal diet (ND) and high-

fructose diet (FD), untreated (control) and treated with melatonin. The results are expressed in mg / dL of blood 

plasma. Statistical comparisons: * vs. control; # vs. ND. The number of symbols marks the level of significance: 

one for p <0.05, two for p <0.01 and three for p <0.001 

Fig. 2 Lipid peroxidation (LPO) (a), superoxide dismutase activity (SOD) (b), catalase activity (CAT) (c) and 

total antioxidant capacity (TAC) (d) in brains of the four experimental groups: hamsters fed a normal diet (ND), 

high-fructose diet (FD), untreated (control) and treated with melatonin. Data are expressed as the mean ± 

standard deviation. * vs. control; # vs. ND. The number of symbols marks the level of significance: one for p 

<0.05, two for p <0.01 and three for p <0.001 

Fig. 3 Representative immunoblot for Ire1α, ATF-6α, and p-eIF2α in the brain of hamsters fed a normal diet 

(ND) and high-fructose diet (FD), untreated and treated with melatonin. The histograms show the optical 

densities from three independent experiments. Data are expressed as the means ± standard deviation. Statistical 

comparisons: * vs. control; # vs. ND. The number of symbols marks the level of statistical significance: one for 

p <0.05, two for p <0.01 and three for p <0.001 

Fig. 4 20S proteasome activity (a) and ubiquitin detection by western blot (b) in the brain of hamsters fed a 

normal diet (ND) and high-fructose diet (FD), untreated and treated with melatonin. The histogram shows the 

optical densities from three independent experiments. Data are expressed as the means ± standard deviation. 

Statistical comparisons: * vs. control; # vs. ND. The number of symbols marks the level of statistical 

significance: one for p <0.05, two for p <0.01 and three for p <0.001 

Fig. 5 Representative immunoblot for LAMP2A in the four experimental groups: hamsters fed a normal diet 

(ND) and high-fructose diet (FD), untreated (control) and treated with melatonin. The histogram shows the 

optical densities from three independent experiments. Data are expressed as the means ± standard deviation. 

Statistical comparisons: * vs. control; # vs. ND. The number of symbols marks the level of statistical 

significance: one for p <0.05, two for p <0.01 and three for p <0.001 

Fig. 6 Histograms showing the optical densities from three independent western blot experiments against 

cathepsin D (a), beclin-1 (b), LC3-I (c), LC3-II (d), and p62 (e) in the brain of hamsters fed a normal diet (ND) 

and high-fructose diet (FD), untreated and treated with melatonin. Values are the means ± standard deviation. 
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Statistical comparisons: * vs. control; # vs. ND. The number of symbols marks the level of statistical 

significance: one for p <0.05, two for p <0.01 and three for p <0.001 

Fig. 7 Histograms showing the optical densities from three independent western blot experiments against β-

amyloid (a), α-synuclein (b), p-tau (S199) (c), p-tau (T205) (d), p-tau (S396) (e), and p-tau (S404) (f) in the 

brains of hamsters fed a normal diet (ND) and high-fructose diet (FD), untreated and treated with melatonin. 

Data are expressed as the means ± standard deviation. Statistical comparisons: * vs. control; # vs. ND. The 

number of symbols marks the level of statistical significance: one for p <0.05, two for p <0.01 and three for p 

<0.001 

 

 

 



Table1. Effect of diet and treatment with melatonin on body and intake parameters. 

Normal Diet Fructose Diet 

Control  Melatonin Control  Melatonin 

Intake (g/day) 14,5 ± 0,05 13,3 ± 0,8 14,3 ± 0,05 14,3 ± 0,10 
Weight increase (g) 63,1 ± 10,4 57 ± 14 50 ± 15 46,2 ± 30,6 

Brain weight (g) 1,77 ± 0,05 1,75 ± 0,09 1,87 ± 0,06 1,86 ± 0,05 
Data are expressed as the mean ± standard deviation. 
















