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Review Article

Mechanical stretch modulates cell migration in the lungs
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Abstract: Cell migration is a core process to preserve homeostasis. Release of chemotactic signals induces 
changes in cell cytoskeleton to facilitate migration. This includes the rearrangement of cytoskeleton, 
genomic reprogramming and the modification of the surrounding extracellular matrix (ECM) to allow 
the motion of cells through. In the special case of repair after acute lung injury, cells must migrate while 
exposed to an increased mechanical stretch caused either by an increased work of breathing or positive-
pressure ventilation. Interestingly, the cell response to this increased mechanical load can modify virtually all 
the mechanisms involved in cell migration. In this review we explore the interplay between stretch and the 
machinery responsible for cell migration. A translational approach to find new therapies in acute lung injury 
must take into account these interactions in order to develop effective treatments that promote lung repair.
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Introduction

Cell migration is an essential process during organ 
development, growth and tissue repair (1). To be effective, 
migration must be a carefully orchestrated phenomenon 
that involves cell signaling, remodeling of the extracellular 
matrix (ECM) to allow the passage of cells, motion of 
cells and engraftment in a new niche. Moreover, this 
process has consequences not only on the behavior of the 
migrating cell, but also in its environment. There is a large 
variety of molecular mechanisms behind these processes, 
including receptor activation, changes in the proteins of the 
cytoskeleton, release of mediators, genetic reprogramming 
and activation of transcription factors (2). In the special case 
of acute lung injury, cell migration plays key roles from the 
onset of the initial damage to the final steps of tissue repair (3). 

Moreover, the lungs are submitted to a continuous 
mechanical stress during ventilation. Although the 

magnitude of the forces and their distribution during 
spontaneous breathing are well tolerated, the excessive 
mechanical stretch during positive-pressure ventilation is 
a pathogenetic factor leading to the so-called ventilator-
induced lung injury (VILI) (4). There is emerging evidence 
that some of the molecular mechanisms responsible for 
migration can be modulated by mechanical stretch. As 
avoidance of VILI or induction of tolerance to mechanical 
stretch helps to limit additional injury to the lungs and 
may improve the outcomes in ventilated patients (5), 
understanding these mechanisms is essential to develop 
effective cell-targeted or cell-based strategies to promote 
tissue healing. 

An overview of cell migration

Efficient cell migration behavior implies not only 
physical and chemical crosstalk within the population 
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of migrating cells, but also some sort of communication 
mediated by diffusible factors and the ECM where cells 
are embedded. Both intrinsic and extrinsic variables are 
integrated to achieve a common goal: a combination of 
actin polymerization and actomyosin contraction which 
eventually leads to cytoskeleton rearrangement, structural 
reorganization and morphological polarization. 

Chemotaxis

Cell migration is driven by gradients of biochemical signals, 
released from the sites of injury. These molecules bind to 
specific receptors triggering intracellular responses. Most 
soluble factors, including chemokines and growth factors, 
induce CDC42 and RAC activation to promote actin 
polymerization, leading to cell polarization and protrusion 
formation. In neutrophils, phosphoinositide 3-kinase (PI3K) 
activity increases phosphatidylinositol 3,4,5-triphosphate 
[PtdIns(3,4,5)P3] levels at the front. This generates binding 
sites for PH domain-containing proteins, like activators of 
the RAC, leading to actin polymerization and protrusion (6). 

Moreover, chemotactic factors are responsible for the 
activation of transcriptional programs that define the 
migration phenotype. For instance, local production of the 
cytokine UPD activates the JAK-STAT pathway in nearby 
cells. In particular, UPD binds to a transmembrane receptor, 
activating the tyrosine kinase JAK which phosphorylates 
both itself and the UPD receptor. This enables STAT 
binding to the receptor complex, and its phosphorylation. 
Ult imately,  phosphorylated STAT dimerizes  and 
translocates to the nucleus to activate transcription and 
promote cell motility. Mutations affecting any component 
of the JAK-STAT pathway disrupt cell migration (7).

Cellular changes

Different pathways orchestrate the polarization of cells 
during migration at two levels. Firstly, a polarity axis 
emerges, allowing to distinguish the front from the rear. 
At the front, actin polymerization leads to the formation 
of membrane protrusions, filopodia and lamellipodia. This 
cytoskeletal rearrangement is generally induced by RAC 
and CDC42. At the rear, the RHO family of small GTPases 
mediates actomyosin contraction. Release of cell-to-ECM 
adhesions is further required to enable cell movement (8). 
Secondly, and considering migration as a collective event, 
cells are divided into two categories, depending on their 
relative location within the cell cluster. Leader cells at the 

front of the migratory mass determine the direction and 
speed of the migration. Precisely because of their peripheral 
location, leader cells are more expose to external agents, 
like chemoattractants, and exert an essential role in ECM 
remodeling. Follower cells, behind the leaders, strongly 
depend on cell-to-cell adhesion mediated by cadherins and 
can influence leaders behavior (9).

Changes in the ECM

As cells must migrate through the ECM, the physical 
properties of the latter notably influence the migratory 
strategy. Cells can use both proteolytic and non-proteolytic 
mechanisms for ECM processing. As stiffness increases, 
cells experience deformation that can induce conformational 
changes within the adhesion complexes. Focal adhesions 
mediate the interaction of cells with the ECM through 
integrins, a family of transmembrane proteins, and cytosolic 
proteins like actin fibers. Under forces, the adhesion 
complex adaptor protein CRK-associated substrate leads 
to exposure of phosphorylation sites for the SRC-family 
kinases which recruit other proteins to downregulate RAC1 
and repressor/activator protein 1 (RAP1) homologue 
activity (10). Also, increased activity of SRC-family 
kinases is linked to ECM degradation through increased 
expression of matrix metalloproteinases (MMPs) to favor  
movement (11).  In addition, other secreted ECM 
components modify its own composition and the nature of 
the engaged integrins.

Impact of stretch on cell migration

The lung parenchyma is submitted to mechanical stress in 
each breath. During acute lung injury, the increased work 
of breathing or the need for mechanical, positive-pressure 
ventilation can increase this mechanical load beyond the 
tolerance limits. This stretch modifies cell and matrix behavior, 
and all the processes related to migration can be affected.

Chemotaxis

Mechanical ventilation can trigger a mechanotransduction 
response in response to positive transpulmonary pressures, 
thus leading to the secretion of different active molecules 
that are involved in cell recruitment. The secretion of 
these chemoattractants in response to stretch by the lung 
parenchyma cells can result in a more severe lung injury 
developing biotrauma (12).
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Mostly inflammatory related, the balance in the release 
of pro- and anti-inflammatory cytokines directs the immune 
response, with IL-8 (MIP-2 in rodents) playing a central 
role as one of the most potent leucocyte chemoattractants. 
Additionally, pro-inflammatory cytokines like TNF-α or IL-
1, induce NF-kB activation, a main step in the transcription 
of genes involve in the innate immune response. As part 
of this response, adhesion molecules are expressed in 
the endothelium, which results in the extravasation of 
polymorphonuclear leucocytes and other immune cells 
few minutes after mechanical stimulus starts (13). Overall, 
neutrophilic infiltration is facilitated by mechanical stretch.

Fibroproliferation, once believed a late phenomenon, 
starts early as an attempt to form a collagen scar. In this 
context, pulmonary fibroblasts migrate to the damaged 
area, proliferate and secrete epithelial growth factors, which 
promote migration and proliferation (14), and deposition 
of components of the basement membrane (15). Moreover, 
these fibroblasts control the epithelial repopulation after 
injury through direct contact or by means of secreted 
factors (16). 

Cellular changes

External mechanical forces can drive changes in cell shape, 
mediated by remodeling of the cytoskeleton under the cell 
membrane. The mechanical insult is sensed by several cell 
surface adhesion receptors, such as integrins and cadherins. 
Integrins bind to ECM or focal adhesions while cadherins 
attach to the surrounding cells (17). These molecules bind to 
other cytoplasmic proteins such as talin or vinculin creating 
a filament network with F-actin. In response to a mechanical 
stimulus, actin filaments suffer important rearrangements, 
small GTPase RhoA is activated which in turn activates 
myosin II that is present in junctions cell-cell. It is well 
known that in this context vinculin can bind to an actin 
nucleation factor that attaches to the sides of actin filaments 
and favours the building of a framework structure (18). In 
addition HGF secreted by fibroblast can activate specific 
receptors in epithelial cells increasing vinculin levels favoring 
spreading and migration through Rac activation (19).

The mechanical stimulus also reaches the nucleus. There 
is a protein complex responsible for connect cytoplasm and 
nucleus, known as LINC complex (linker of nucleoskeleton 
and cytoskeleton) and contains among others nesprins, 
sun and lamins (20). Lamins are intermediate filament-like 
proteins that form a molecular scaffold on the nucleoplasmic 
side of the inner nuclear membrane anchoring to this and to 

peripheral DNA and chromatin (21). As a consequence of 
mechanical stress, lamins and the nuclear scaffold rearrange 
and modify nuclear organization and gene expression, 
promoting expression of a proliferation gene signature 
and epithelial proliferation through FAK-dependent (Ras 
pathway-mediated) ERK activation (22). 

ECM remodeling

The ECM plays a key role in cell migration. Damage in the 
ECM due to mechanical ventilation may be caused directly 
by the stretch and strain forces or by the inflammatory 
reaction produced by mechanotransduction of the stimuli 
by surrounding cells. This will alter the physical properties 
of the ECM, thus modifying cells ability to migrate.

This scaffold is composed of macromolecules such 
as collagen, elastin, hyaluronan (the most common 
glycosaminoglycan) and proteoglycans that are responsible 
for the flexibility, mechanical strength and water content of 
the lung parenchyma. These components can interact with 
different elements, influencing cell proliferation, matrix 
deposition and inflammatory response.

The turnover of matrix macromolecules is controlled 
by MMPs, a family of zinc-containing endopeptidases 
that degrade the different components of the ECM. They 
are classified, according to their substrate, as gelatinases  
(MMP-2 and 9), stromelysins (MMP-3, -10 and -11), 
collagenases (MMP-1, -8 and -13), matrilysins (MMP-7 
and -26) and membrane MMPs (MMP-14, -15, -16, -17, 
-24 and -25). These enzymes can also interact with other 
molecules such as inflammatory mediators, growth factors 
or membrane receptors, regulating cell-cell and cell-matrix 
interactions (23).

Changes in the balance between deposition and turnover 
of the different components will modify the mechanical 
properties of the matrix, which can lead to injury and 
eventually severe lung disease. 

Mechanical ventilation leads to damage in the ECM: 
initially, stretch and strain forces causes fragmentation of 
the glycosaminoglycans, leading to distortion of the scaffold 
structure and eventually edema (24). Later, different types of 
MMPs are released and activated, which can have opposing 
functions. For example, MMP-9 degrades collagen IV, 
which further disrupts the matrix, but it is also associated 
with liberation and activation of protective cytokines (25). 
In opposite, MMP-8 promotes acute inflammation, but 
also its resolution in a later stage (26,27). This shows the 
complex relation between lung injury and MMP activation.
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Once the mechanical damage stops, the wound healing 
process begins. This is characterised by an excessive deposition 
of the components of the matrix, specially type I collagen, 
which increases matrix stiffness. The stiffened scaffold 
enhances resident cells migration and exogenous cells invasion 
towards the damaged zones. This behaviour is mediated 
mainly by integrins, which sense variations in the stiffness 
and induce remodelling of the cytoskeleton, generation of 
invadosomes and lamellae, and MMPs production, changes 
that increase de migratory phenotype (28).

Clinical implications

Basic, translational and clinical research have helped to 
identify a variety of pathogenetic mechanisms that lead to lung 
injury. Unfortunately, many of them are core homeostatic 
processes, so that any intervention aimed to modulate them 
may lead to a large number of adverse effects and unwarranted 
consequences. Moreover, mechanical stretch, if excessive, 
may promote further damage, triggered by the very same 
biochemical routes. With this in mind, it is easy to explain 
the lack of translation of the majority of the research in the 
field. For instance, acute inflammation may contribute to lung 
injury, but anti-inflammatory or immunosuppressive drugs 
may further interfere with repair (29). 

In opposite, enhancement of repair may represent 
a novel, safer approach. The mechanisms underlying 
lung repair are only partially known, but cell migration 
is a key process in all of them (3). As the majority of the 
cases of acute lung injury in which repair may be relevant 
are submitted to mechanical ventilation, understanding 
the interaction between stretch and cell migration is 
of paramount importance to improve the outcomes of 
these patients. Moreover, the increased availability of 
extracorporeal gas exchange devices allows the clinicians 
to limit or even completely abolish lung stretch with 
preservation oxygenation and CO2 removal, but the optimal 
settings are still unknown (30). 

There are several strategies to manipulate cell migration. 
Regarding chemotaxis, blockade of the recruitment of 
inflammatory cells have been extensively studied (31-33). 
Avoidance of neutrophilic infiltration decreases lung damage 
in the majority of experimental models using chemokine 
antagonists. However, the risk of immunosuppression limits 
its application in patients. Moreover, there is emerging 
evidence that neutrophils may be essential for later repair, 
thus limiting the usefulness of these therapies (34,35). 
Targeting of cell machinery responsible for migration 

has been also tested, mainly using growth factors such as  
KGF (36). Again, the positive results in experimental studies 
have not been translated to the clinical practice (37). 

Finally, ECM remodeling has been aimed by different 
therapies. Similarly to manipulation of the inflammatory 
response, the use of MMP inhibitors has been protective 
against lung injury in experimental models of acute injury 
(27,38). However, some of these enzymes are required for 
modulation of the inflammatory response or later repair (39), 
and their absence has been related to worse outcomes.

Conclusions

The dual role of the majority of the responses during acute 
lung injury difficulties the translation of the experimental 
findings to the clinical practice. Blockade of early 
pathogenetic responses may impair the healing process and, 
in opposite, early promotion of cell migration can cause 
further damage to the lung parenchyma. In this complex 
scenario, identification of specific pathways with single 
effects seems an extremely difficult challenge. Therefore, 
deep knowledge of the underlying mechanisms, in complex, 
clinically relevant experimental models, and precise timing 
of the interventions are required before reaching the goal 
of an effective therapy to change the clinical course of acute 
lung injury.
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