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Abstract: The metal-catalyzed addition of carboxylic acids to alkynes is a very effective tool for the
synthesis of carboxylate-functionalized olefinic compounds in an atom-economical manner. Thus,
a large variety of synthetically useful lactones and enol-esters can be accessed through the intra- or
intermolecular versions of this process. In order to reduce the environmental impact of these reactions,
considerable efforts have been devoted in recent years to the development of catalytic systems able
to operate in aqueous media, which represent a real challenge taking into account the tendency of
alkynes to undergo hydration in the presence of transition metals. Despite this, different Pd, Pt, Au,
Cu and Ru catalysts capable of promoting the intra- and intermolecular addition of carboxylic acids
to alkynes in a selective manner in aqueous environments have appeared in the literature. In this
review article, an overview of this chemistry is provided. The synthesis of β-oxo esters by catalytic
addition of carboxylic acids to terminal propargylic alcohols in water is also discussed.

Keywords: aqueous catalysis; alkynes; carboxylic acids; alkynoic acids; hydrocarboxylation reactions;
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1. Introduction

The transition metal-catalyzed heterofunctionalization of alkynes by addition of nucleophiles
to the C≡C bond has emerged in recent years as a versatile synthetic tool in organic chemistry [1–3].
In particular, the addition of carboxylic acids to alkynes, reaction also referred in the literature as
hydro-oxycarbonylation or hydrocarboxylation of alkynes, represents a straightforward way to obtain
different types of olefinic esters with atom economy [4–6]. Thus, the intramolecular version of the
process, i.e., the cycloisomerization of alkynoic acids, produces unsaturated lactones (Scheme 1) which
are common structural motifs found in natural products and biologically active molecules, as well as
valuable synthetic intermediates [7–10]. A large variety of transition metal complexes have been used
to catalyze these reactions through the π-activation of the carbon-carbon triple bond of the alkynoic
acid, the regioselectivity (exo or endo addition of the carboxylate to the C≡C bond leading to lactones A
or B, respectively) and stereoselectivity of the process being dependent on the metal employed, the
length of the hydrocarbon chain connecting the acid and alkyne units, and the terminal or internal
nature of the alkyne functionality [1–6]. Among the most commonly employed metals are Pd, Ag, Au
and Rh, including examples of heterogeneous systems [11], which have shown a high efficacy for the
selective preparation of 5-, 6-, and to a lesser extent, 7-membered ring lactones [1–6].
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separation, thus allowing the effective recycling of the catalytically active species, which is another 
key aspect in the Green Chemistry context [27]. However, despite the growing interest in aqueous 
catalysis, the use of this environmentally benign solvent in the hydrocarboxylation of alkynes been 
for long time neglected, probably due to the concerns of a competing hydration of the alkyne 
substrates to form carbonyl compounds, a process that is also catalyzed by transition metals [1–6,28]. 
In fact, in a general review on the “catalytic reactions of alkynes in water”, published by Chen and Li 
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operate selectively in aqueous environments have only appeared in the literature in recent years, 
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The intermolecular addition of carboxylic acids to alkynes also presents enormous interest since
the reaction products, i.e., enol esters (C or D in Scheme 2), are versatile building blocks in organic
synthesis and material science. For example, to name just a few of their myriad applications, they
are widely employed as mild acylating reagents [12,13], as monomers in diverse polymerization
reactions [14–16], as substrates in asymmetric hydrogenation for the generation of enantioenriched
alcohols [17–19], or as starting materials for different cross-coupling processes [20–22]. As for the
cycloisomerization of alkynoic acids, a huge number of catalytic systems involving late transition
metals have been described, with those based on ruthenium playing a prominent role [1–5]. However,
for a long time, this reaction was limited to terminal alkynes, since most catalysts failed to enable
the hydrocarboxylation of internal alkynes as a consequence of their greater steric hindrance, which
disfavours their coordination to the metal catalyst. At this point, it should be noted that a reduced
reactivity of internal vs. terminal C≡C bonds is also commonly observed in the cyclization reactions
of alkynoic acids, although in this case the problem is not so marked as the intramolecular process is
much more favoured from a thermodynamic point of view. Fortunately, recent works focused in the
design of increasingly active catalysts have made possible to overcome this limitation and some Ru-,
Pd-, Ag- and Au-based systems active with internal alkynes are now available [23].
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On the other hand, the increasing awareness of environmental concerns has stimulated the
development of metal-catalyzed reactions in aqueous media, since water is cheaper, safer and benigner
compared to the traditional petroleum-derived organic solvents [24–26]. In addition, the use of
water (or aqueous biphasic mixtures) allows in many cases an easy catalyst/product separation, thus
allowing the effective recycling of the catalytically active species, which is another key aspect in the
Green Chemistry context [27]. However, despite the growing interest in aqueous catalysis, the use of
this environmentally benign solvent in the hydrocarboxylation of alkynes been for long time neglected,
probably due to the concerns of a competing hydration of the alkyne substrates to form carbonyl
compounds, a process that is also catalyzed by transition metals [1–6,28]. In fact, in a general review
on the “catalytic reactions of alkynes in water”, published by Chen and Li in 2006, no examples of
hydrocarboxylation reactions were collected [28]. Catalytic systems able to operate selectively in
aqueous environments have only appeared in the literature in recent years, and are the subject of
the present review article. Intra- and intermolecular processes are covered, including examples of
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sequential transformations of synthetic interest. The access to β-oxo esters by the catalytic addition of
carboxylic acids to terminal propargylic alcohols in water is also discussed.

2. Intramolecular Processes

2.1. Cycloisomerization of Preformed or In Situ Generated Alkynoic Acids

The first example of such reactions in an aqueous environment was described by Hidai and
co-workers in 1996 employing the mixed-metal cubane-type cluster complex [PdMo3S4(tacn)3Cl][PF6]3

(1; tacn = 1,4,7-triazacyclononane) as catalyst [29]. Thus, they found that, in combination with NEt3,
1 was able to transform dipropargylmalonic acid 2 into the enol lactone 3 in water at room temperature
(Scheme 3). Unfortunately, although the rate and yield of the reaction were very similar to those
observed in acetonitrile, this latter solvent was selected by the authors to study the scope of the process.
In this regard, different 5-, 6- and 7-membered ring lactones could be obtained from the corresponding
alkynoic acids with complex 1, which showed an enhanced reactivity in comparison with classical
mononuclear Pd(II) sources, such as [PdCl2(PhCN)2] or Na2[PdCl4]. In line with this, despite the
presence of three molybdenum atoms in the structure of 1, the catalytic reactions were assumed to
proceed only at the palladium center.

Catalysts 2017, 7, 328  3 of 23 

 

including examples of sequential transformations of synthetic interest. The access to β-oxo esters by 
the catalytic addition of carboxylic acids to terminal propargylic alcohols in water is also discussed. 

2. Intramolecular Processes 

2.1. Cycloisomerization of Preformed or In Situ Generated Alkynoic Acids 

The first example of such reactions in an aqueous environment was described by Hidai and 
co-workers in 1996 employing the mixed-metal cubane-type cluster complex [PdMo3S4(tacn)3Cl][PF6]3 
(1; tacn = 1,4,7-triazacyclononane) as catalyst [29]. Thus, they found that, in combination with NEt3, 1 
was able to transform dipropargylmalonic acid 2 into the enol lactone 3 in water at room 
temperature (Scheme 3). Unfortunately, although the rate and yield of the reaction were very similar 
to those observed in acetonitrile, this latter solvent was selected by the authors to study the scope of 
the process. In this regard, different 5-, 6- and 7-membered ring lactones could be obtained from the 
corresponding alkynoic acids with complex 1, which showed an enhanced reactivity in comparison 
with classical mononuclear Pd(II) sources, such as [PdCl2(PhCN)2] or Na2[PdCl4]. In line with this, 
despite the presence of three molybdenum atoms in the structure of 1, the catalytic reactions were 
assumed to proceed only at the palladium center. 

 
Scheme 3. Cyclosiomerization of dipropargylmalonic acid 2 in water using a cluster catalyst. 

More recently, other palladium-based catalysts for the cyclization of alkynoic acids in aqueous 
media have been described. In particular, García-Álvarez and co-workers disclosed that 
transformation of γ-alkynoic acids into five-membered ring enol-lactones (5-exo-dig cyclization) can 
be conveniently and selectively achieved in pure water, and under aerobic conditions, by using 
catalytic amounts of the dinuclear Pd(II) derivative trans-[PdCl2{µ2-N,S-(PTA)=NP(=S)(OEt)2}]2 (4) 
(Scheme 4) [30]. This catalyst features a bridging iminophosphorane-type ligand derived from the 
well-known hydrophilic phosphine PTA (1,3,5-triaza-7-phosphaadamantane) [31,32], which 
facilitates its solubility in water. 

 
Scheme 4. Cycloisomerization of different γ-alkynoic acids in water catalyzed by a  
dinuclear Pd(II) complex. 

Scheme 3. Cyclosiomerization of dipropargylmalonic acid 2 in water using a cluster catalyst.

More recently, other palladium-based catalysts for the cyclization of alkynoic acids in aqueous
media have been described. In particular, García-Álvarez and co-workers disclosed that transformation
of γ-alkynoic acids into five-membered ring enol-lactones (5-exo-dig cyclization) can be conveniently
and selectively achieved in pure water, and under aerobic conditions, by using catalytic amounts
of the dinuclear Pd(II) derivative trans-[PdCl2{µ2-N,S-(PTA)=NP(=S)(OEt)2}]2 (4) (Scheme 4) [30].
This catalyst features a bridging iminophosphorane-type ligand derived from the well-known
hydrophilic phosphine PTA (1,3,5-triaza-7-phosphaadamantane) [31,32], which facilitates its solubility
in water.
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As shown in Scheme 4, the reactions proceeded cleanly at r.t. (room temperature) without
formation of any by-product derived from the hydration of the C≡C bond of the substrates or
from the hydrolysis of the (Z)-γ-alkylidene butyrolactone products. The process was operative with
γ-alkynoic acids containing both terminal and internal C≡C bonds, although for the latter a much
longer reaction time was needed (24 instead of 0.5–2 h). It is also worth noting that (i) this catalytic
system could be recycled up to 10 consecutive runs for the cyclization of the model 4-pentynoic acid
(cumulative TON (turnover number) of 982), and (ii) it could be applied in the desymmetrization of
bispropargylic carboxylic acids 5, affording enol-lactones 6 containing an intact propargylic side arm
in excellent yields.

Although in a limited number of examples (only six substrates were explored), the group
of Nakamura also demonstrated the capacity of the NCN-pincer Pd(II) derivative 7 (Figure 1) to
promote the high-yield formation of five-membered ring lactones from both γ- and β-alkynoic acids
(5-exo-dig and 5-endo-dig cyclization, respetively) in pure water [33]. Complex 7 easily generates
hydrogen-bonding-based supramolecular gels, with well-organized Pd-arrays, in organic solvents.
For the catalytic reactions, which were performed at 70 ◦C and in the presence of Et3N (3 mol %),
a water-insoluble xerogel prepared from 7 in toluene was employed (0.5 mol % Pd content).
Interestingly, the Pd-gel catalyst could be recovered by filtration and reused three times in the
cyclization of 4-pentynoic acid without loss of catalytic activity. However, it should also be mentioned
that, contrary to the case of the dinuclear Pd(II) complex 4, when a bispropargylic carboxylic acid
was employed as substrate, partial hydration of propargylic side arm of the enol-lactone product
was observed.
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Selective 5-exo-dig cyclization of pentynoic acids RC≡CCH2CH2CO2H (R = aryl or heteroaryl
group) to afford the corresponding (Z)-γ-alkylidene butyrolactones could also be achieved, in water at
50 ◦C, using the related amphiphilic NCN-pincer Pd(II) complex 8 (2 mol %) (Figure 1) in combination
with Et3N (6 mol %) (yields in the range 38–94% after 1–6 h) [34]. Complex 8 self-assembles in aqueous
solution forming bilayered vesicles which were found to be essential for the promotion of the catalytic
process (markedly lower yields were obtained when the same reactions were performed in organic
solvents or employing the amorphous complex 8 in water).

On the other hand, despite the well-known ability of platinum compounds to promote the
cycloisomerization of polyunsaturated organic molecules [35,36], this metal has been much less
used than palladium to catalyze the cyclization of alkynoic acids [37]. In this regard, the work
published by Alemán, Navarro-Ranninger and co-workers merits highlighting [38]. These authors
evaluated the catalytic behaviour of a broad family of anticancer platinum(II) and platinum(IV)
amino-complexes (9a–j and 9k–o, respectively; see Figure 2) in the cycloisomerization of 4-pentynoic
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acid into 5-methylene-dihydrofuran-2-one (5-exo-dig cyclization), finding that both the oxidation
state of the metal and the stereochemistry of the complex are key factors for the reaction to proceed
efficiently. Thus, while the cis-platinum(II) derivatives 9a–e showed a high reactivity in acetone at
r.t., their trans-platinum(II) counterparts 9f–j and the Pt(IV) species 9k–o (regardless of their cis or
trans configuration) turned out to be practically inactive.
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In addition, they also demonstrated the possibility of using water (or even blood plasma) as
solvent. In fact, the scope of the catalytic reaction was explored in water using complexes 9a,b [38,39].
Thus, as shown in Scheme 5, different 5- and 6-membered ring lactones could be synthesized with
these complexes, although mixtures of regioisomers were systematically formed starting from internal
alkynes. On the other hand, it is also worth noting that the attempt made to generate a seven-membered
ring lactone with this type of catalysts failed.
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Gold compounds are currently recognized as the most effective systems for the electrophilic
π-activation of unsaturated carbon–carbon bonds [40,41], and, in 2006, Michelet and co-workers
demonstrated for the first time their usefulness in the cycloisomerization of acetylenic acids [42].
The same group was also a pioneer in the use of gold catalysts in aqueous environments.
In particular, in 2008, they reported on the tolerance of the heterogeneous system Au2O3

towards the presence of water during the cycloisomerization of 2-phenyl-4-pentynoic acid into
5-methylene-3-phenyl-dihydrofuran-2-one (92% yield performing the reaction in MeCN-H2O (6:1)
at r.t. with 2.5 mol % of Au2O3 for 3 h; 95% yield when acetonitrile was employed alone under
identical reaction conditions) [43]. Since then, a number of gold-based catalysts capable of operating
in pure water or in aqueous biphasic mixtures have been described, most involving functionalized
N-heterocyclic carbenes (NHC) as auxiliary ligands. In this regard, the groups of Michelet, Cadierno
and Conejero developed the zwitterionic Au(III)-NHC complex 10b which proved to be active in the
cycloisomerization of a broad range of γ-alkynoic acids under biphasic toluene/water conditions
(Scheme 6) [44]. Remarkably, the participation of a silver(I) co-catalyst, usually employed in catalytic
gold chemistry to generate vacant coordination sites on the metal through chloride ligands abstraction,
was not required. Also of note is the fact that, despite the well-known ability of gold complexes
to promote the hydration of alkynes, competitive hydration processes were not observed under
the biphasic conditions employed, even during the cycloisomerization of bispropargylic substrates.
However, it should be noted that, if pure water is used as solvent, partial hydrolysis of the lactone
products takes place, making the use of biphasic conditions more advantageous. In general, the
reactions proceeded in air under very mild temperature conditions (r.t.), except with those substrates
containing internal C≡C bonds which showed a markedly lower reactivity and required of heating at
80 ◦C. Concerning the regioselectivity of the process, 5-membered ring enol-lactones were selectively
formed when terminal C≡C bonds were involved in the cyclization process. On the other hand,
although the 5-exo-dig cyclization was also the preferred reaction pathway with internal alkynes,
mixtures containing the corresponding 5- and 6-membered ring lactones were in some cases obtained.
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This initial work with 10b was subsequently extended to other Au(III) and Au(I) complexes
containing related zwitterionic NHC ligands bearing 3-sulfonatopropyl, and 2-pyridyl, 2-pycolyl or
pyridylethyl substituents (10a,c and 11a–c in Figure 3) [45]. All of them proved to be catalytically
active, even with Au loadings of only 0.1 mol %, showing in general performances similar to that
of 10b. Interestingly, all these gold-carbenes showed a very high recyclability (up to 10 consecutive
runs) by simple phase separation (the gold catalyst remained in the aqueous phase while the lactone
product was completely dissolved in the toluene one). In this regard, some differences were observed
between the Au(I) and Au(III) species, the recyclability of the latter being much more effective due to
their higher stability in the aqueous medium (the Au(I) derivatives 11a–c undergo with time partial
decomposition into catalytically inactive Au(0) nanoparticles; a process also observed with 10a–c but
which takes place much more slowly).
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Figure 3. Structure of the zwitterionic Au(III)- and Au(I)-NHC complexes 10,11a–c.

A good recyclability was also reported by Pleixats and co-workers for the sol-gel immobilized
Au(I)-NHC complex 12 (Scheme 7) [46]. This organometallic hybrid silica material proved to be active
in the cycloisomerization of different γ-alkynoic acids at room temperature using, as in the previous
example, a toluene/water biphasic system and in the absence of silver salts. However, due to the
heterogeneous nature of 12, longer reaction times and a wrist-type shaker stirring (which allows a
good mixing of the immiscible layers and the insoluble catalyst) were in this case required to obtain the
enol-lactone products in high yields (no reaction was observed using conventional magnetic stirring).
Concerning the regioselectivity of the process, five-membered enol-lactones were selectively formed
starting from substrates with terminal alkyne units, while a mixture of the 5- and 6-membered ring
lactone products was obtained from an internal diyne (Scheme 7).

For its part, the group of Krause described the preparation of the ammonium salt-tagged
Au(I)-NHC complexes 13a–f (Figure 4) and their application in the selective 5-exo-dig cyclization
of γ-alkynoic acids bearing a terminal alkyne unit in pure water, or in aqueous triethylammonium
buffer solution [47]. The catalytic reactions proceeded cleanly at r.t., in short time spans (0.5–6 h),
employing 2.5 mol % of these complexes, with yields higher in general when the buffer solution was
employed as the reaction medium (partial decomposition of the gold complexes was observed in
pure water). Once again, no Ag(I) co-catalysts were needed and the catalysts could be reused after
extraction of the lactone product from the aqueous solution with diethyl ether (up to 5 times).
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Interestingly, starting from the internal alkynoic acid 14, a synthetic route to obtain the
furanocoumarin-functionalized lactone 15, an epimer of the natural product clausemarine A, could be
developed by Krause and co-workers [47]. As shown in Scheme 8, formation of the lactone ring was
successfully achieved by cycloisomerization of 14 with 1 mol % of 13b in an aqueous triethylammonium
buffer solution containing THF (tetrahydrofuran) as co-solvent.
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Scheme 8. Synthesis of 2-epi-clausemarine A.

Besides the Au-NHC complexes commented above, the PTA-derived iminophosphorane-Au(I)
derivative 16 (Figure 5) proved to be also an active and selective catalyst for the 5-exo-dig cyclization
of 4-pentynoic acid in water (89% yield after 30 min at r.t. with 1 mol % of 16) [48]. However, this
particular catalyst showed a higher reactivity in the eutectic mixture 1ChCl/2Urea (ChCl = choline
chloride; 99% yield after 15 min under identical reaction conditions) and, consequently, its scope was
explored only in this alternative and biorenewable reaction medium.
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In addition to palladium, platinum and gold, cheaper copper catalysts have also been used in
the cycloisomerization of alkynoic acids in aqueous media. Thus, while studying the CuBr-catalyzed
cycloaddition of alkynes with azides in tBuOH/H2O mixtures, Mindt and Schibli observed the
formation of enol-lactone by-products when employing γ-alkynoic acids as substrates, so they decided
to explore separately the cyclization of these compounds [49]. Their results are shown in Scheme 9.
Performing the reactions with 10 mol % of CuBr at r.t., different γ-alkynoic acids containing both
terminal and internal C≡C units could be efficiently transformed into the corresponding γ-alkylidene
butyrolactones. However, in some cases, γ-keto acids were selectively obtained due to the rapid
hydrolysis of the lactone products under the aqueous conditions employed. On the other hand,
the attempts made to extend the scope of this aqueous protocol to six- and seven-membered ring
enol-lactones by cyclization of 5-hexynoic acids and 6-heptynoic acids, respectively, failed. It should
be noted, however, that the former could be cyclizated by carrying out the reactions in acetonitrile
instead of the tBuOH/H2O mixture.
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More recently, CuBr was also employed to promote the cyclization of a variety of
β-hydroxy-γ-alkynoic acids 17 [50]. As shown in Scheme 10, the reactions proceeded cleanly in pure
water under microwave (MW) irradiation at 100 ◦C, leading to the regio- and stereoselective formation
of the five membered ring Z-enol-lactones 18 without observing hydrolysis products. In addition,
the beneficial effect of water was evidenced by the authors, who obtained markedly lower yields when
performing the same reactions in classical organic solvents such as THF or acetonitrile. The same
must be said of the use of MW irradiation, since lower yields were also observed when conventional
oil-bath heating or ultrasound irradiation was employed. The process was quite general, tolerating
a broad range of substitution patterns on the substrate skeleton. However, it should be noted that
when an alkynoic acid featuring a hydrogen atom and a phenyl group, as the R3 and R4 substituents,
was employed in this reaction, the spontaneous dehydration of 18 to form a 5-alkylidene-furan-2-one
product took place.
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Scheme 10. Cu(I)-catalyzed cyclization of β-hydroxy-γ-alkynoic acids in water under microwave
(MW) irradiation.

For its part, the group of Jiao described the cyclization of the propargylic Meldrum´s acids 19
into the (Z)-γ-alkylidene butyrolactones 20, in a basic aqueous environment, through the combined
use of Cu(OAc)2 and FeCl3 (Scheme 11) [51]. A clear cooperative effect of the two metals was
observed, the yields decreasing drastically when Cu(OAc)2 or FeCl3 was used as the sole catalyst.
The process most probably involves the in situ generation of a γ-alkynoic acid intermediate through
a hydrolysis/decarboxylation sequence. On the other hand, although the mechanism could not
be unambiguously established, it was assumed that the Cu2+ ion is the one responsible for the
activation of the alkyne unit during the final cycloisomerization step, with Fe3+ probably facilitating
the intramolecular nucleophilic addition of the carboxylate on the C≡C bond by coordination to the
carbonyl group.
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2.2. Tandem and Cascade Processes Involving the Cycloisomerization of an Alkynoic Acid 

The aminolysis of lactones is a common transformation in organic synthesis which allows their 
direct conversion into linear amides [54,55]. The combination of this reaction with the 
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huge number of nitrogen-containing heterocyclic compounds, through different cascade processes, 
by appropriate selection of the functionalized amine partner [56–59]. In this context, Liu and 

Scheme 11. Cu/Fe-cocatalyzed synthesis of lactones from propargylic Meldrum’s acids.

Further studies by the same group showed that the same catalytic reactions can be more
conveniently carried out employing AgNO3 (5 mol %) instead of the Cu/Fe system [52]. The reactions,
performed at 100 ◦C in a H2O/DMF (N,N-dimethylformamide) mixture under air, afforded regio- and
stereoselectively the (Z)-γ-alkylidene butyrolactone products 20 in 45–87% isolated yields after ca. 1 h.
Remarkably, no co-catalysts or bases were in this case needed. On the other hand, transformation of
the related Meldrum´s acids 21 into lactones 22, containing an all-carbon quaternary center at the C-4
position, was also described by Ahmar and Fillion using catalytic amounts of Ag2CO3, and mixtures
THF/H2O or toluene/H2O as the reaction media (Scheme 12) [53]. Again, the 5-exo-dig cyclization
products were exclusively formed and the reactions proceeded cleanly in the absence of base. However,
we must note that mixtures of E/Z isomers were in most cases obtained starting from those substrates
containing an internal C≡C bond.

Catalysts 2017, 7, 328  11 of 23 

 

 

Scheme 11. Cu/Fe-cocatalyzed synthesis of lactones from propargylic Meldrum’s acids. 

Further studies by the same group showed that the same catalytic reactions can be more 
conveniently carried out employing AgNO3 (5 mol %) instead of the Cu/Fe system [52]. The 
reactions, performed at 100 °C in a H2O/DMF (N,N-dimethylformamide) mixture under air, afforded 
regio- and stereoselectively the (Z)-γ-alkylidene butyrolactone products 20 in 45–87% isolated yields 
after ca. 1 h. Remarkably, no co-catalysts or bases were in this case needed. On the other hand, 
transformation of the related Meldrum´s acids 21 into lactones 22, containing an all-carbon 
quaternary center at the C-4 position, was also described by Ahmar and Fillion using catalytic 
amounts of Ag2CO3, and mixtures THF/H2O or toluene/H2O as the reaction media (Scheme 12) [53]. 
Again, the 5-exo-dig cyclization products were exclusively formed and the reactions proceeded 
cleanly in the absence of base. However, we must note that mixtures of E/Z isomers were in most 
cases obtained starting from those substrates containing an internal C≡C bond. 

 

Scheme 12. Silver-catalyzed cyclization of the propargylic Meldrum’s acids. 

2.2. Tandem and Cascade Processes Involving the Cycloisomerization of an Alkynoic Acid 

The aminolysis of lactones is a common transformation in organic synthesis which allows their 
direct conversion into linear amides [54,55]. The combination of this reaction with the 
cycloisomerization of alkynoic acids has been extensively studied in the last years giving access to a 
huge number of nitrogen-containing heterocyclic compounds, through different cascade processes, 
by appropriate selection of the functionalized amine partner [56–59]. In this context, Liu and 

Scheme 12. Silver-catalyzed cyclization of the propargylic Meldrum’s acids.

2.2. Tandem and Cascade Processes Involving the Cycloisomerization of an Alkynoic Acid

The aminolysis of lactones is a common transformation in organic synthesis which allows
their direct conversion into linear amides [54,55]. The combination of this reaction with the
cycloisomerization of alkynoic acids has been extensively studied in the last years giving access to a
huge number of nitrogen-containing heterocyclic compounds, through different cascade processes, by
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appropriate selection of the functionalized amine partner [56–59]. In this context, Liu and co-workers
developed an efficient and broad scope gold-catalyzed reaction for the synthesis of fused polycyclic
indoles 23 in water, starting from 2-(1H-indol-1-yl)alkylamines and alkynoic acids (Scheme 13) [60].
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The process involves the aminolysis of the in situ formed enol-lactones E to generate the
linear keto-amides F, which subsequently evolve into G via a gold-catalyzed N-acyliminium ion
formation/cyclization. Final intramolecular nucleophilic attack of the C-2 carbon of the indolic unit to
the iminium carbon yields the products 23. To facilitate the cyclization step leading to G, the addition
trifluoroactic acid was in some cases required. As shown in Scheme 13, the reactions proceeded in
short times under microwave irradiation, tolerating the presence of different functional groups.

The same group also described the coupling of 4-pentynoic acid with o-aminophenylmethanol in
water catalyzed by the cationic gold(I) complex [Au{PtBu2(o-biphenyl)}(MeCN)][SbF6] (Scheme 14) [61].
The reaction afforded the pyrrolo[2,1-b]benzo[d][1,3]oxazin-1-one 24 in 50% yield. However, we must
note that this value was much lower to that obtained in THF under identical reaction conditions
(91% yield), so it is not surprising that the generality of the process was studied in the latter solvent.
As in the precedent case, the reaction is initiated by the cycloisomerization of the alkynoic acid,
subsequent aminolysis of the enol lactone intermediate, and final cyclization of the resulting keto
amide catalyzed by the gold complex.
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In another vein, the group of Jiang developed an aqueous protocol for the one-pot synthesis of
phthalides 26 from terminal alkynes and o-iodobenzoic acid (Scheme 15) [62]. The process, which
involves the initial Sonogashira coupling of the substrates and subsequent stereoselective 5-exo-dig
cyclization of the resulting ethynyl-benzoic acid intermediates 25, was catalyzed by palladium
immobilized on carbon nanotubes (CNTs) in a DMF:H2O mixture. Unlike previous examples of
this tandem reaction, formation of isocoumarin by-products (6-endo-dig cyclization) was in this case
not observed, and no additives such as phosphine ligands or CuI were needed.
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Taking advantage of the ability of the dinuclear iminophosphorane-palladium(II) complex 4 to
promote the fast and selective transformation of bispropargylic carboxylic acids 5 into enol-lactones 6
(Scheme 4), García-Álvarez and co-workers could set up an unprecedented one-pot tandem process
combining the aforementioned reaction with a copper-catalyzed 1,3-dipolar cycloaddition of azides
with the terminal alkyne arm of the enol-lactone products (Scheme 16) [30]. To promote the 1,3-dipolar
cycloaddition step the polymeric Cu(I) catalyst [Cu{µ2-N,S-(PTA)=NP(=S)(OEt)2}]x[SbF6]x (27)
containing the same hydrophilic iminophosphorane ligand [63], in combination with the 2,6-lutidine
base, was employed. The tandem process proceeded in pure water under mild conditions, affording
the bicyclic triazol-enol-lactones 28 in excellent yields after a simple extraction with diethyl ether
(no chromatographic purification was needed).
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On the other hand, based on the capability of copper salts to promote the conjugate alkynylation
of electron-deficient olefins, the (Z)-γ-alkylidene butyrolactones 30 could be synthesized in a one-pot
manner starting from the corresponding terminal alkynes and the 5-alkylidene-Meldrun’s acids 29,
via in situ formation of the corresponding propargylic Meldrun’s acids (Scheme 17). The process
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was promoted by the Cu(OAc)2/FeCl3 combination discussed above for the cyclization of Meldrun´s
acids 19 (Scheme 11) [51].
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Finally, the combination of metal catalysis and biocatalysis has emerged in recent years as a
powerful tool for developing new synthetic methodologies merging the advantages of both disciplines
in terms of reaction scope and selectivity [64–66]. In this context, García-Álvarez, González-Sabín
and co-workers described very recently the one-pot conversion of 4-pentynoic acid into enantiopure
γ-hydroxyvaleric acid in aqueous medium, through the combined use of KAuCl4 and ketoreductases
(KREDs) (Scheme 18) [67]. The process involves the initial gold-catalyzed cycloisomerization of the
substrate, concomitant hydrolysis of the lactone to form levulinic acid, and final bioreduction of the
keto group of the latter. Remarkably, no isolation or purification steps were required, the reaction
medium coming from the metal-catalyzed reaction being directly employed in the enzymatic step. Also
of note is the fact that, just by selecting the adequate KRED, both enantiomers of the γ-hydroxyvaleric
acid could be obtained with excellent ee values.
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3. Intermolecular Processes

3.1. Catalytic Addition of Carboxylic Acids to Terminal and Internal Alkynes

Although the intermolecular hydro-oxycarbonylation of alkynes has been widely studied in
organic media [1–6], to date there are very few examples of this catalytic transformation described in
water. In this regard, Cadierno, Gimeno and co-workers evaluated in 2011 the catalytic potential of a
diverse family of ruthenium(IV) complexes, of general composition trans-[RuCl2(η3:η3-C10H16)(L)]
(31a–s in Figure 6), for the hydro-oxycarbonylation of terminal alkynes in aqueous medium [68].
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Figure 6. Structure of the bis(allyl)-ruthenium(IV) complexes 31a–s.

All these compounds were found to be active catalysts in the addition of benzoic acid to 1-hexyne
in pure water, providing the corresponding enol esters nBuC(OBz)=CH2 (Markovnikov addition
product) and (E/Z)-nBuCH=CH(OBz) (anti-Markovnikov addition products) in moderate to good
yields after 3–24 h of heating at 60 ◦C (with a Ru loading of 2 mol %). A high selectivity towards
the Markovnikov addition product was in general observed, except in the case of catalysts 31m–p
containing a labile amine or nitrile ligand which generated preferentially (E/Z)-nBuCH=CH(OBz),
albeit only in moderate yields. The best results in terms of activity and regioselectivity were obtained
with [RuCl2(η3:η3-C10H16)(PPh3)] (31a), which was able to generate the enol ester nBuC(OBz)=CH2

in 96% yield (by gas chromatography) after only 3 h of heating. However, from the data obtained,
no relationships between the steric and/or electronic nature of the auxiliary ligand L and the catalytic
activity observed could be drawn. On the other hand, it must be also highlighted that, with the
exception of [RuCl2(η3:η3-C10H16)(TPPMS)] (31b; TPPMS = 3-(diphenylphosphino)benzenesulfonate
sodium salt) and [RuCl2(η3:η3-C10H16){P(OR)3}] (R = Me (31i), Et (31j), iPr (31k)), these Ru(IV)
complexes are completely insoluble in water. Accordingly, in most of the reactions the catalyst
remained dissolved in the organic phase, forming an emulsion with water under stirring. In other
words, the reactions proceeded under the so-called “on-water” conditions [69,70]. In addition, when
the same reactions were carried out under homogeneous conditions using organic solvents, the results
were much worse in terms of yields (the regioselectivity remained unaffected), pointing out the marked
positive effect of water in the process. Although to a lesser extent, the beneficial effect of water in the
catalytic addition of carboxylic acids to terminal alkynes promoted by tethered arene-ruthenium(II)
complexes was also observed by Demonceau and co-workers, who obtained higher yields when
performing the reactions in moist vs. dry toluene [71].

The most active catalyst of the series, i.e., [RuCl2(η3:η3-C10H16)(PPh3)] (31a), showed also a wide
scope allowing the preparation of a large variety of enol esters 32 by selective Markovnikov addition
of different carboxylic acids to both aliphatic and aromatic terminal alkynes, as well as to 1,3-enynes
(Scheme 19) [68,72,73]. As a general trend, the reactions proceeded faster, and with higher yields,
when aliphatic terminal alkynes were employed as substrates. Also notable are the high functional
group compatibility showed by complex 31a and the absence of competing processes of hydration of
the alkynes.
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Scheme 19. Ruthenium(IV)-catalyzed Markovnikov addition of carboxylic acids to terminal alkynes.

Further evidence of the versatility of [RuCl2(η3:η3-C10H16)(PPh3)] (31a) was gained in the
reactions of the terminal diynes 33 with benzoic acid. Thus, as shown in Scheme 20, the corresponding
enynes 34 or the diesters 35 could be selectively synthesized with 31a just by adjusting the
diyne/benzoic acid ratio employed [68,72,73].
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The only limitation encountered with the ruthenium catalyst 31a is that it is completely inactive
with internal alkynes; substrates which, as commented in the introduction of this article, show a
much lower reactivity in these intermolecular hydrocarboxylation reactions. For this particular class
of alkynes, Cadierno, García-Garrido and co-workers developed very recently a protocol in water
employing the catalytic system [AuCl(PPh3)]/AgOAc [74]. Thus, as depicted in Scheme 21, a broad
range of trisubstituted enol esters 36 could be synthetized in good yields by addition of different
aromatic, aliphatic, heterocyclic and α,β-unsaturated carboxylic acids to internal alkynes symmetrically
substituted with aliphatic groups. Concerning the use of aromatic alkynes, they showed only a
residual reactivity towards benzoic acid and, when an aliphatic carboxylic acid was employed, a higher
temperature and catalyst loading were required to obtain the corresponding products in moderate
yields. Interestingly, compounds 36 were obtained in a stereoselective manner (only Z isomers) as the
result of the exclusive anti addition of the O-H bond of the carboxylic acid to the alkyne.
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3.2. Catalytic Addition of Carboxylic Acids to Terminal Propargylic Alcohols 

β-Oxo esters are useful intermediates in organic chemistry. For example, they have been 
employed in the synthesis of different pharmaceuticals [75–77], and can be easily transformed into 
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biologically active molecules [78,79]. Among the different synthetic approaches to β-oxo esters [80], 
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Scheme 21. Gold-catalyzed addition of carboxylic acids to symmetrically substituted internal alkynes.

The reactivity of some unsymmetrically substituted internal alkynes towards benzoic acid in
water was also explored using the catalytic system [AuCl(PPh3)]/AgOAc, the reations leading in most
of the cases to mixtures of regioisomers derived from the attack of acid to both carbon atoms of the
alkyne (complete Z-selectivity was again observed for both regioisomers). Only when the activated
internal alkynes 37 and 38 were employed as substrates a complete regioselectivity to enol esters 39
and 40, respectively, was observed (Scheme 22) [74].
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3.2. Catalytic Addition of Carboxylic Acids to Terminal Propargylic Alcohols

β-Oxo esters are useful intermediates in organic chemistry. For example, they have been
employed in the synthesis of different pharmaceuticals [75–77], and can be easily transformed
into the corresponding α-hydroxy ketones, which are structural units present in a large variety of
biologically active molecules [78,79]. Among the different synthetic approaches to β-oxo esters [80],
the ruthenium-catalyzed addition of carboxylic acids to terminal propargylic alcohols has emerged
as one of the most straightforward and atom-economical routes (Scheme 23). The process involves
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the Markovnikov attack of the carboxylic acid to an initially formed π-alkyne-ruthenium complex H,
which is followed by the intramolecular transesterification of the resulting intermediate I to form an
alkenyl derivative J. The final protonolysis of J releases the β-oxo ester product and regenerates the
catalytically active ruthenium species.
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Since the pioneering work by Mitsudo and Watanabe in 1987 [81], a number of ruthenium catalysts
for this transformation have been developed [80,82]. Among them, the bis(allyl)-ruthenium(IV)
complex [RuCl2(η3:η3-C10H16)(PPh3)] (31a) (Figure 6) proved to be active in water [68]. Thus, as shown
in Scheme 24, starting from different propargylic alcohols and benzoic acid, a family of β-oxo esters 41
could be synthetized in moderate to good yields employing identical experimental conditions to
those applied in the preparation of the enol esters 32 (Scheme 19). Although the scope of the reaction
concerning the carboxylic acid partner was not studied in much detail, the authors showed that it is not
restricted to benzoic acid since the addition of 2-chlorobenzoic acid, pentafluorobenzoic acid, heptanoic
acid and 3-cyclopentylpropionic acid to 1-phenyl-2-propyn-1-ol also afforded the corresponding β-oxo
esters in 47–90% yield.
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In an independent work, Cadierno, Gimeno and co-workers also explored the catalytic potential
of a series of arene-ruthenium(II) complexes containing different water-soluble phosphine ligands
(42–45a–d in Figure 7) [83]. All of them proved to the active in the addition of benzoic acid to
1-phenyl-2-propyn-1-ol in pure water, leading to the desired β-oxo ester, i.e., 1-phenyl-2-oxopropyl
benzoate, as the major reaction product. Among them, best results in terms of activity and
selectivity were obtained with the benzene derivative [RuCl2(η6-C6H6)(TPPMS)] (45a) (88% yield
of 1-phenyl-2-oxopropyl benzoate after 3 h of heating at 100 ◦C using a ruthenium loading of
2 mol %). Concerning the scope of this complex, a variety of secondary propargylic alcohols, as well as
prop-2-yn-1-ol, could be efficiently transformed. In contrast, tertiary propargylic alcohols resulted to
be more challenging substrates and only those featuring low sterically-demanding substituents led to
high conversions. On the other hand, 45a was operative with a large variety of aromatic carboxylic
acids, bearing different functional group such as halide, alkoxy, ketone or sulfonamide. The use
of heteroaromatic acids, with tetrahydrofuran, pyrrole, thiophene, indole or 2-oxo-2H-chromene
fragments, as well as aliphatic acids was also tolerated.
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4. Conclusions

Great attention is currently devoted to synthetic organic chemistry in water and research,
particularly in the field of aqueous catalysis, is increasing exponentially since water is the most
environmentally benign substitute for the volatile and toxic organic solvents commonly used in
laboratories and industries. In this contribution, we have summarized the developments achieved in
the field of metal-catalyzed additions of carboxylic acids to alkynes in aqueous media. Such processes
now represent powerful tools for the construction of synthetically useful lactones, enol esters and
β-oxo esters in an atom-economical manner. Throughout this review article, we have presented
different catalytic systems based on Pd, Pt, Au, Cu and Ru, capable of promoting selectively these
reactions in aqueous environments without observing the competing hydration of the alkyne substrates.
The vast majority of the works discussed herein have been published during the last ten years,
demonstrating clearly the current interest in this research field, which obviously remains open, with
many opportunities for new discoveries.
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