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Introduction
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1 I N T R O D U C T I O N

This thesis is the result of four years of theoretical and computational work aimed
at the development and application of chemical models that bridge the gap between
the outcome of quantum mechanical electronic structure methodologies and the con-
cept of chemical bonding in solids. The main contribution of the investigation is the
formalization of a novel scheme that extends the Chemical Pressure (CP) formalism
of Fredrickson et al. [33] towards the understanding and rationalization of the va-
riety of chemical interactions exhibited by all classes of crystalline materials. The
new perspective emerging from this thesis constitutes a unique alternative to cur-
rent approaches based on the analysis of the electronic wavefunction. Within the
chemical bonding-chemical pressure framework, covalent, metallic, ionic, hydrogen-
bond and non-covalent interactions can be simultaneously dealt with and clearly
identified following a simple computational strategy that allows quantitative anal-
ysis of any crystalline bonding network as well as its qualitative visual description
through intuitive chemical pressure maps.

Chemical bonding has shown to be an elusive concept already since the advent of
Quantum Mechanics in spite of being of paramount importance in all areas of Chem-
istry. This is mainly due to two practical reasons: it is not a perceptible property that
can be experimentally observed and there is not any particular quantum-mechanical
operator associated to it. From Lewis’ picture in 1916 [74] to recent topological
analysis of the electronic wavefunction, and through extensive developments within
Pauling’s view of The Nature of Chemical Bond [94, 95], our understanding of how
and why chemical elements are linked in molecules and solids has progressively
improved. The attempts to reconcile the intuitive chemical picture of Lewis elec-
tron pairs and the octet rule with the outcome of Schrödinger’s electronic equation
was very well illustrated by Silvi and Savin in their seminal analysis of the topol-
ogy of the Electron Localization Function (ELF) [116]. More recently, in the context
of a new bonding descriptor able to provide simultaneous visualization of covalent
and non-covalent interactions, de Silva and Corminboeuf [19] critically reviewed the
main developments concerning the quantum-mechanical analysis of chemical bond-
ing. Methods related to the Natural Bond Orbital analysis of the one-particle density
matrix [32, 105], and those based on the topology of most common scalar fields, as
the electron density [2], the ELF [7], and the reduced density gradient [62] were
briefly examined stating their drawbacks and main attributes. All these methods di-
rectly rely on one part of the solution of Schrödinger’s equation, the wavefunction,
whereas the other one, the energy, has not received explicit attention yet to the best
of our knowledge. It will be of interest to find out in the following chapters how the
energy eigenvalue of Schrödinger’s electronic equation lead to a definition of chem-
ical pressure that allows the characterization of the chemical bonding displaying
similarities with previous scalar fields and in particular with the ELF.
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4 introduction

A word of caution here is necessary to avoid confusion with the term chemical
pressure. It is mostly used to describe how various atomic sizes affect physical
properties. This concept has a long history in tackling structural distortions due
to elemental substitutions in solids [13, 14, 20, 66, 81, 118]. It is noticed that the
local pressures acting upon an atom are induced by the constraints of a crystal
lattice where the bond distances are not the ideal ones. From the chemical point
of view, the insertion of, for example, oxygen atoms in a metallic sub-lattice can
be seen as a similar effect as the application of hydrostatic pressure due to the
reduction of volume and/or the structural changes both produce in the solid [121].
This idea is supported by a topological analysis of the electron density dealing with
the anions (O2− ions) as a source of chemical pressure [123]. In principle, we can
understand from these studies that there exist an equivalence between the local
chemical pressure and the macroscopic thermodynamic pressure. However, as far
as we know, a quantitative account of this relationship has not been reported so far.

In this thesis, we will deal with a novel and broader perspective of chemical pres-
sure. With a rigorous growing expansion, the new formalism has recently emerged
as a useful methodology [33] in Solid State Chemistry with a number of success-
ful applications such as the anticipation of structures for intermetallic compounds
[27], detection of soft modes driving second-order phase transitions [25], predicting
structural instabilities [33, 34], and providing intuitive interpretations of the cohe-
sion of crystalline solids [34]. The Chemical Pressure scheme is coupled to Density
Functional-type calculations(DFT-CP) [8, 25, 34] to analyze the local pressures aris-
ing in crystal structures from the interactions of atomic size and electronic effects.
Using simply the distribution of the minimized electronic energy along a grid of vox-
els in which the unit cell is partitioned, this methodology is able to provide the local
pressure in each of these voxels just evaluating how their energy changes as the vol-
ume of the voxels departs from the equilibrium value. From these thermodynamic-
like local pressures, chemical pressure maps can be built illustrating how high and
low pressures are overall associated, respectively, with electron core and valence
regions, thus providing a wealth of information on the existing and potential new
interactions between the atomic constituents of the solid. This novel approach will
be carefully examined in this document and constitutes a totally new alternative
route far from previous and current extensions of chemical bonding methods based
on the electronic wavefunction.

It is interesting to point out that well-established theoretical formalisms on the
chemical bonding can be used to endorse our ideas. Support is also provided by
other topological approaches, as the application of ELF in crystalline solids [16,
116], which shares a number of equivalent features regarding images of covalent,
molecular, metallic or ionic bonding (examples will be presented in different chap-
ters of this thesis). For our purposes, it is to be noticed that the basic quantum
mechanical view of Ruedenberg and co-workers [28, 29, 106] provides an adequate
scenario for interpreting in a straightforward way all the chemical pressure maps
we will present in the following pages.

As a simple example, Fig. 1.1 displays the 2D chemical pressure map of a sin-
gle CO2 molecule and the corresponding 1D profile along the internuclear bonding
path. Although the necessary details for a complete understanding of this figure
will be given later, it is now relevant to see how the molecular space is partitioned
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into chemically meaningful regions by the black isoline of zero chemical pressure.
The positive chemical pressure located in the regions close to the nuclear positions
(core), the kinetic energy pressure in Ruedenberg’s words, is related to the so-called
promotion state (a promolecule representation of the system built with atomic-like
electronic densities consistent with the molecular solution), whereas the negative
chemical pressure is related to the interference of atomic orbitals (valence region).
The fact that this bonding decomposition can be associated with regions in the 3D
space is one advantage of Ruedenberg’s formalism concerning our chemical pres-
sure application to chemical bonding. Ruedenberg likes to use the uncertainty prin-
ciple in his reasoning. Thus, an increasing/decreasing of the electron localization
leads to an increasing/decreasing of the kinetic energy helping to understand the
mechanism of binding in the valence region. There, electrons are not so localized as
in the cores, and the kinetic energy lowering in this internuclear region is the main
contribution to the bonding according to Ruedenberg’s formalism.

Figure 1.1: Chemical pressure (CP) analysis of a CO2 molecule. (a) 2D cross-section of the
CP map calculated for the molecule. A black contour is shown for CP=0. (b) 1D
profile of CP map along the axis of the CO2 molecule. Atomic units are used.

Interestingly enough, the core and valence regions in our 1D and 2D plots of
the CO2 molecule displayed in Fig. 1.1 are clearly differentiated, respectively, with
positive and negative CP values. In addition to the core regions, positive pressures
are also surrounding the CO2 molecule in our map, whereas the negative pressure
is split in zones associated with C-O bonds and O lone pairs. It should be noticed
that at ambient conditions the average pressure in our maps has to be approximately
zero (10−5 GPa) since we deal with systems in mechanical equilibrium.

Overall, in order to achieve the final thorough description of the chemical interac-
tions within a given crystalline solid, the investigation has to be organized in two
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steps. The first one concerns the solution of the Schrödinger’s electronic equation
of the crystal. The second one is the determination of the local chemical pressures
in each of the voxels in which the crystalline unit cell is partitioned. The guiding
thread of the thesis reflects these steps in the ongoing structure of this document.

Besides this introduction, Part II deals with the methodological aspects (chapter 2)
and the computational details (chapter 3) of both electronic structure and chemical
pressure calculations. In chapter 2, we will briefly present the basis of the den-
sity functional theory approximation starting with elementary concepts of quantum
chemistry. There are a number of computational methodologies aimed at solving
the Schrödinger electronic equation in crystalline solids. Most of these methods
only require the positions of the atoms in the unit cell and their atomic numbers.
They lead to the so-called first principles methodologies. The density functional
theory (DFT) is one of the most effective formalism to perform such a total energy
first principles calculations. This formalism is based on a set of equations, Kohn-
Sham equations, that need to be solved in a self-consistent way. In this chapter, we
will give an overview of DFT and how we can solve the Kohn-Sham equations and
their extension in solids through the Bloch’s theorem. The second part of chapter
2 describes the fundamentals of the DFT-Chemical Pressure analysis, including the
theoretical ideas. The DFT-CP method was originally developed to deal with com-
plex intermetallic structures whose formation appeared to be driven by conflicts
between electronic and atomic size effects [8, 33]. As we have already mentioned,
the DFT-CP approach has been recently used for predicting the vibrational proper-
ties of solids [25] and exploring the stability of complex intermetallics [27, 42], but
never was considered for tackling chemical bonding ideas as in the present thesis.

Part II finishes with chapter 3, where we describe the different computational
procedures of the theoretical calculations that can be grouped again in two main
parts. First, the electronic structure calculations, including geometrical optimization,
are considered with especial emphasis on convergence issues involving the energy
cutoffs and k-point grids. The computational procedure of different calculations
using several computational packages, such as ABINIT [39, 41] and VASP [12, 70, 71],
will also be presented in this chapter. Second, the detailed strategy for constructing
the raw data for the Chemical-Pressure program is also shown. The DFT-CP scheme
contains two main computational programs necessary to carry out the CP analysis
from the results of ABINIT calculations: CPmap and CPintegrate. The former creates
the chemical pressure maps that are visualized with the program VESTA 3 [82] while
the latter integrate the pressures around each atom and project them onto spherical
harmonics which are then visualized with the MATLAB code. In addition, the results
of CPmap program can be presented in one-, two-, and three-dimensional profiles.

Besides, we have used other codes for various purposes. The gibbs code [10] was
used in the computation of equation of state (EOS) fits to static first principles E(V)
data and predict quantities such as the bulk modulus and its pressure derivatives.
Bond critical points and electron density at critical points were obtained using the
program CRITIC2 [91]. The topological analysis of the electron density was carried
out using the Bader partitioning method [2] under the Henkelman group code [119]
to compute atomic volumes and charges. This chapter includes some hints about
the previously mentioned codes.
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Part III contains only chapter 4 devoted to the study of the effect of hydrostatic
pressure, up to 50 GPa, on the structural and vibrational properties of cesium uranyl
tetrachloride (Cs2UO2Cl4). This system is complex enough to illustrate the details
of how the optimized energy and wavefunction of a crystalline solid are computed
and analyzed including also a critical comparison with available experimental data.
In our study of Cs2UO2Cl4, we seek to fulfill a two-fold objective. Firstly, we pre-
tend to provide detailed information on the response of the monoclinic structure
of cesium uranyl chloride complex to hydrostatic pressure conditions up to 50 GPa.
We believe that these novel results can arouse enough interest since they contribute
to broad the fundamental knowledge of UO2-based compounds. Secondly, a micro-
scopic interpretation of the evolution with pressure of the U–O stretching modes is
carried out to unveil relationships between the corresponding frequencies and force
constants, atomic charges and bond distances associated with the uranyl cation. Our
analysis also predict that Badger’s rule is invalid in its traditional form, thus sup-
porting other previous conclusions in this direction [112, 113, 120].

In Part IV, the most important contribution of this thesis is developed in two
chapters. Chapter 5 describes how the DFT Chemical Pressure (DFT-CP) method
can form the basis of the visualization of the forces within chemical bonds. Actu-
ally, our main research interests are different from those leading to current studies
within the CP formalism since we are focused on the nature of the chemical bond.
We disclose how the CP approach turns to be an outstanding tool to identify and
visualize the various types of chemical bonding networks not only for prototype co-
valent, molecular, metallic, and ionic solids, but also for more complex crystals dis-
playing simultaneously localized or/and delocalized multiple covalent bonds along
with van der Waals interactions, and hydrogen bonds. Rather than focusing on a
quantitative description of the chemical bonding by means of indexes and descrip-
tors of the chemical pressure scalar field and its topology, chapter 5 will almost
exclusively address the visualization of bonding patterns in crystalline solids. The
main and basic goal is to show that the chemical pressure formalism is an efficient
tool to identify and characterize the chemical bonding in a wide variety of chemi-
cal systems, from covalent to ionic crystals, passing through metallic and molecular
compounds with van der Waals and H-bond interactions. Our 1D, 2D, and 3D maps
reveal the existence of the most common chemical entities involved in the cohesion
of crystalline systems: core and valence regions, bonding and lone electron pairs,
and ionic, atomic or molecular subsystems within a crystal, including the visualiza-
tion of weak interactions domains too. Over a series of molecular and crystalline
examples, specific features in the CP maps are identified as genuine for each of the
different types of bonding interactions. We will begin our survey with a look at
how covalent bonds are reflected in our chemical pressure maps of three different
isolated molecules, H2, CO2 and S8. To this basic study of systems with just one
type of chemical bonding will be added two infinite systems, 2D graphene layer and
C-diamond. Then, we will move to molecular crystals where van der Waals interac-
tions occur alongside covalent bonds, as in graphite, in the low pressure phase of
carbon dioxide, CO2-I, and in solid sulfur. H-bonds will be examined in the ice-Ih
phase of water. Metals will then be discussed later in the series of the 15-group
elements As, Sb, and Bi, as well as bcc-Na, before we finish our journey along the
different types of chemical bonding with the rock-salt structure of ionic NaCl.
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In chapter 6, we discuss the origin of the CP features shown in chapter 5 in terms
of the energetic contributions to the total CP. The chemical pressure approach al-
lows for the partitioning of the total chemical pressure into its potential and kinetic
energy contributions. In addition, the major contributions to the potential energy,
Hartree, exchange-correlation, and local pseudopotential, can be mapped separately.
In this way, the source of both negative and positive pressure appeared at the dif-
ferent chemical entities, like atomic cores, bonds, electron lone pairs, localized and
non-localized weak interactions, can be then understood. In this chapter, we analyze
the chemical bonding terms of the same crystalline solids that have been previously
presented in chapter 5 exploring the separate maps of the kinetic and potential en-
ergy contributions. Interestingly, we will see how our analysis leads to particular
signatures associated with covalent, metallic, ionic, van der Waals, and H-bond in-
teractions.

In chapter 7, we study the Anions in Metallic Matrices (AMM) model proposed
by Vegas et al. [123] in the light of the DFT-CP formalism. In the AMM model, the
crystal structure of an inorganic compound is viewed as a metallic matrix playing
the role of a host lattice controlling the actual positions of the anions. The atomic
arrangement in metals leaves empty spaces where we can find inhomogeneities
of the electron density [87]. The degree of electron pair localization can be easily
determined and displayed graphically by methods such as the electron localization
function (ELF) [7]. It was reported by Vegas et al. [122] that the ELF is able to identify
in a metallic parent structure (Ca) the positions which are occupied by the O atoms
in the corresponding inorganic compound (CaO). This is just one example among
many others including other pairs such as Na/NaX (X=F, Cl, Br) and BaSn/BaSnO3.
In this chapter, we will show how the DFT-Chemical Pressure formalism is able to
extend the capability of ELF in the same chemical structures that were presented in
the work of Vegas et al. [122]. Interestingly, we will see that minima of CP in the
metallic matrices are located at the positions that are occupied by the oxygen atoms
in the related oxides. Finally, we will present another examples involving alkali and
alkali halides crystals.

Overall, our main contribution in this thesis is the presentation of a new tool able
to identify and visualize chemical bonding in a wide variety of chemical systems
in terms of the basic energetic components involved in the cohesion of crystalline
solids. Although electronic structure and chemical bonding formalism constitute the
main guiding thread of the document, the thesis has been written trying to organize
in an independent manner some of the chapters. Depending on the interest of the
reader, each part in which this thesis is divided can be read separately.
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2 T H E O R E T I C A L B A S I C S

contents
2.1 Electronic structure calculations 11
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2.1.5 Functionals for exchange and correlation 17

2.1.6 To solve Kohn-Sham equations 18

2.1.7 Energy band theory 18
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2.2.7 Mapped and non-mapped contributions to chemical pressure (CP) 30

The fundamental tenet of density functional theory (DFT) is that any property of a
system of many interacting particles can be viewed as a functional of the ground

state electron density, that is in principle to say that the electron density gathers
all the information of the system. DFT is presently the most popular quantum
mechanical method for modeling the electronic structure of large molecules and
complex materials. It is nowadays routinely applied to analyze chemical problems
concerning, among others, molecular structure and chemical reactivity in organic,
organometallic, and inorganic chemistry.

Let us now briefly present the basic concepts from quantum mechanics that un-
derlie density functional theory. In this section, our goal is to give a clear, brief,
introductory presentation of the most basic equations important for DFT.

2.1 electronic structure calculations

2.1.1 The Schrödinger equation

The ultimate goal of most appproaches in solid state physics and quantum chemistry
is the solution of the time-independent, non-relativistic Schrödinger equation

ĤΨi(r1, ...., rN,R1, ....,RM) = EiΨi(r1, ...., rN,R1, ....,RM), (2.1)

11
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where Ĥ is the Hamilton operator for a molecular system consisting of M nuclei
and N electrons whose positions are denoted by rN and RM, respectively. Ĥ adopts
the following form representing the total energy

Ĥ =−
1

2

N∑
i=1

∇2i −
1

2

M∑
A=1

1

MA
∇2A −

N∑
i=1

M∑
A=1

ZA
riA

+

N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB
RAB

.

(2.2)

In the above equation, A and B denote M nuclei while i and j denote the N
electrons of the system. MA is the mass of nucleus A with nuclear charge ZA. TheMass is expressed as

multiple of the mass
of an electron,
atomic units.

first two terms of Eq. 2.2 define respectively the kinetic energy of the electrons and
nuclei. The remaining three terms describe the attractive electrostatic interaction
between the nuclei and the electrons and the repulsive potential due to the electron-
electron and nucleus-nucleus interactions, respectively.

2.1.2 The Born-Oppenheimer approximation

The Born-Oppenheimer approximation allows us to decouple the electronic and
ionic motions. Since the number of electrons and ions in a system is very large, an
exact quantum mechanical solution of this problem is very complicated. The idea is
that the mass of a nucleus is much larger than the mass of an electron, then nuclei
move much slower than the electrons. As a result, it is considered that electrons
move in a field of fixed nuclei. That way, the kinetic energy of these fixed nuclei is
zero and the potential energy due to nucleus-nucleus repulsion is almost constant.
Thus, the Hamiltonian given in Eqs. (2.1-2.2) can be further simplified to

Ĥelec = −
1

2

N∑
i=1

∇2i −
N∑
i=1

M∑
A=1

ZA
riA

+

N∑
i=1

N∑
j>i

1

rij
= T̂ + V̂Ne + V̂ee, (2.3)

which and V̂ee operators denote the attractive potential exerted on the electronsV̂Ne in Eq. 2.3 is
called the electronic

Hamiltonian. T̂ is
the kinetic energy

operator while V̂Ne
is also often termed

the external
potential, Vext, in

DFT.

due to the nuclei and the electron-electron repulsion, respectively. Consequently,
the Schrödinger equation can be expressed as

ĤelecΨelec = EelecΨelec, (2.4)

whose solution is the electronic wavefunction Ψelec and the electronic energy
Eelec. Then, the total energy can be defined as

Etot = Eelec + Enuc, (2.5)

where Enuc is the constant nuclear repulsion term,
M∑
A=1

M∑
B>A

ZAZB
RAB

.
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2.1.3 The Hohenberg-Kohn theorems

The modern formulation of density functional theory originated in a famous paper
written by Hohenberg and Kohn in 1964 [51]. These authors showed that all prop-
erties of the system can be considered to be unique functionals of the ground state
density. Shortly following in 1965, the other classic work of this field by Kohn and
Sham [68] appeared, whose formulation of density functional theory has become
the basis of much of present-day methods for treating electrons in atoms, molecules,
and condensed matter. DFT applies to any system of interacting electrons in an
external potential Vext(r), in which the Hamiltonian can be expressed

Ĥ = −
1

2

∑
i

∇2i +
∑
i

Vext(ri) +
1

2

∑
i 6=j

1

| ri − rj |
. (2.6)

2.1.3.1 First Hohenberg-Kohn theorem

About 40 years after Thomas-Fermi approximation, the approach of Hohenberg and See [67, 78] for
further informationKohn appeared to prove for the first time that the electron density can be used to

solve the Schrödinger equation (Eq. 2.1) [51]. This first theorem states that "the
external potential Vext(~r) is (to within a constant) a unique functional of ρ(~r); since, in
turn Vext(~r) fixes Ĥ we see that the full many particle ground state is a unique functional
of ρ(~r)". The proof of this statement concludes also that the ground state density
ρ0 is uniquely specified from the external potential Vext. Thus, ρ0 contains the
following information

ρ0 → N,ZA,RA → Ĥ→ Ψ0 → E0. (2.7)

The total ground state energy (E0) can be divided into three main components
which are consequently a functional of the ground state electron density (ρ0)

E0[ρ0] = T [ρ0] + Eee[ρ0] + ENe[ρ0], (2.8)

where T and Eee are respectively the kinetic energy and the electron-electron
interaction which are universal quantities since their form is independent of N, RA
and ZA. These independent terms can be saved into a new term, the Hohenberg-Kohn
functional FHK[ρ0]. On the other hand, now, the nuclei-electron attractive interaction
is defined as ENe[ρ0] =

∫
ρ0(~r)VNed~r. In that way, Eq. 2.8 can be written as

E0[ρ0] = FHK[ρ0] +

∫
ρ0(~r)VNed~r, (2.9)

Although the explicit expressions for both functionals of FHK term are unknown,
the Eee[ρ] functional contains information about the electron-electron interaction

Eee[ρ] =
1

2

∫ ∫
ρ(r1)ρ(r2)

r12
dr1dr2 + Encl[ρ], (2.10)

where the first term id defined as the classical Coulomb part J[ρ] while Encl[ρ]
is the non-classical part representing the self-interaction correction and exchange
correlation.
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2.1.3.2 Second Hohenberg-Kohn theorem

We have shown that the ground state density determines all the properties. Also
it contains information about the nuclear position and its charge. In this second
theorem, the authors show how to be sure that a certain density (ρ) is really the
ground state density we need. This theorem states that the energy E0 obtained from
the functional FHK[ρ] will be the lowest energy only if the density ρ is the ground
state density ρ0. In other words, the energy of a trial density (ρ̃) represents an upper
limit to the E0

E0 6 E[ρ̃] = T [ρ̃] + Eee[ρ̃] + ENe[ρ̃], (2.11)

Following the variational principle, the E0 can be written as

E0 = min
Ψ→N

〈
Ψ
∣∣∣T̂ + V̂Ne + V̂ee

∣∣∣Ψ
〉

. (2.12)

In other words, according to Eq. 2.12, the minimization problem is carried out
through all the allowed antisymmetric N-electron wavefunctions to determine the
ground state wavefunction that yields the lowest energy. This variational principle
can be also applied to density functional theory through performing two different
minimization steps. Then, the E0 can be expressed asSee [67] for further

information

E0 = min
ρ→N

(
F[ρ] +

∫
ρ(~r)VNed~r

)
, (2.13)

where the universal functional F[ρ] is defined as

F[ρ] = min
Ψ→ρ

〈
Ψ
∣∣∣T̂ + V̂ee

∣∣∣Ψ
〉

. (2.14)

Hence, for a given density, and upon minimization, the ground state density andF[ρ] differs from
FHK[ρ] only in that

it is defined for all
densities come from

the antisymmetric
wavefunction Ψ.

the ground state energy are obtained from Eq. 2.13.

2.1.4 Kohn-Sham approach

In this section, we will present some basic expressions reported by Kohn and Sham
[68] approaching the hitherto unknown universal functional obtained from Hohnberg-
Kohn theorems (See Eqs. 2.8-2.10). As seen in the previous section, the universal
functional F[ρ] can be divided into three main terms as

F[ρ] = T [ρ] + J[ρ] + Encl[ρ]. (2.15)

As we have discussed before, the only known term is J[ρ] which represents the
classical Coulomb interaction while the other two contributions, kinetic energy and
the non-classical term due to self-interaction correction and electron correlation ef-
fects, still lie in the dark.
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The most known reason for failing of Thomas-Fermi model and others is the
simple functional expression for the kinetic energy. Then, Kohn and Sham set out
to find another way to approach the accurate kinetic energy. The intelligent idea of
Kohn and Sham was to calculate as much as possible of the true kinetic energy and
then the remainder can be approximated.

In Hartree-Fock scheme, the wavefunction of a reference system of N non-interacting
electrons moving in the effective potential VHF can be considered as a single Slater
determinant ΦSD. The Hartree-Fock exact kinetic energy for such system is defined See chapter 1 of this

Ref. [67]as

THF = −
1

2

N∑
i

〈
χi

∣∣∣∇2
∣∣∣χi
〉

. (2.16)

Thus, a Hamiltonian of a non-interacting reference system can be constructed
using an effective potential VS(r) term as follows

ĤS = −
1

2

N∑
i

∇2i +
N∑
i

VS(r). (2.17)

The ground state density of the real, interacting system can be exactly recovered
from the KS orbitals by choosing an appropriate effective potential VS for the fol-
lowing expression

ρS(r) =

N∑
i

∑
s

∣∣∣ϕi(r, s)
∣∣∣
2
= ρ0(r). (2.18)

Kohn and Sham suggested to use the same expression of Hartree-Fock method
to exactly determine the kinetic energy of a non-interacting reference system. In Electrons of

non-interacting
system behave like
uncharged fermions
so they do not
interact with each
other.

that way, the remainder of the true kinetic energy along with the non-classical con-
tribution can be gathered in a new defined term, the so-called exchange-correlation
energy.

2.1.4.1 Kohn-Sham equations

Let’s try now to summarize the Khon-Sham method in some expressions. Recall the
Hartree-Fock expression for the kinetic energy on a non-interacting system, then
the kinetic energy of non-interacting system of the same density as the real, interact-
ing one can be described using the Kohn-Sham orbitals ϕi instead of the HF spin
orbitals χi as

TS = −
1

2

N∑
i

〈
ϕi

∣∣∣∇2
∣∣∣ϕi
〉

, (2.19)

The true kinetic energy still has a remainder part, TC, that can not be exactly
obtained. Kohn and Sham introduced the functional of Eq. 2.15 using the exchange-
correlation contribution as

F[ρ] = TS[ρ] + J[ρ] + EXC[ρ]. (2.20)
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In other words, the exchange-correlation energy can be defined as

EXC[ρ] ≡ (T [ρ] − TS[ρ]) + (Eee[ρ] − J[ρ]) = TC[ρ] + Encl[ρ]. (2.21)

Now, the big question is how can we define the appropriate value of the VS of the
real system?. In order to answer this, the energy of the real, interacting system can
be written in terms of Eqs. 2.19-2.20:

E[ρ] =TS[ρ] + J[ρ] + EXC[ρ] + ENe[ρ]

= −
1

2

N∑
i

〈
ϕi

∣∣∣∇2
∣∣∣ϕi
〉

+
1

2

N∑
i

N∑
j

∫ ∫ ∣∣∣ϕi(r1)∣∣∣2 1
r12

∣∣∣ϕj(r2)
∣∣∣
2
dr1dr2

+ EXC[ρ] −

N∑
i

∫ M∑
A

ZA
r1A

∣∣∣ϕi(r1)
∣∣∣
2
dr1,

(2.22)

The minimization of this energy expression by applying the variational principleSee [92] for further
details. gives the final KS one-electron equation

(
−
1

2
∇2 +

[ ∫
ρ(r2)

r12
dr2 + VXC(r1) −

M∑
A

ZA
r1A

])
ϕi

=
(
−
1

2
∇2 + Veff(r)

)
ϕi = εiϕi.

(2.23)

The Kohn-Sham orbital of one-electron non-interacting reference is determined
by:

f̂KSϕi = εiϕi, (2.24)

where the Kohn-Sham operator f̂KS defined as

f̂KS = −
1

2
∇2 + VS(r). (2.25)

Comparing Eq. 2.23 with Eq. 2.25, it is very clear that Veff and VS have the same
expression

VS(r) ≡ Veff(r) =
∫
ρ(r2)

r12
dr2 + VXC(r1) −

M∑
A

ZA
r1A

, (2.26)

where the first and third terms stand for Hatree (VHartree) and external potential
(Vext), respectively. The potential VXC is due to the exchange-correlation energy
and it can be defined as

VXC ≡
δEXC
δρ

. (2.27)
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Up to this point we have established that the Kohn-Sham method would lead
to the exact ground state density and energy. The only term approximated in this
method is the exchange-correlation energy EXC and the corresponding potential
VXC. Presently, the central challenge of the modern density functional theory is to
have better approximations for these two contributions to get closer the really exact
energy.

2.1.5 Functionals for exchange and correlation

There are several approximations to estimate the exchange and correlation energy
to solve the Kohn-Sham equations. Let’s briefly present the basis of some of these
functionals. Further details regarding to explicit forms for approximation function-
als, we refer to some special works [67, 78, 100]

2.1.5.1 Local density approximation (LDA)

This was the first approximation developed by Kohn and Sham [68], which gives
good results in the electronic structure calculations of molecular and solid crystals.
LDA assumes that the electron density in space is similar to that of a uniform elec-
tron gas. Therefore, at each point, the exchange-correlation energy εXC(ρ) of a
homogeneous electron gas of density ρ(r) can be used to approximate the EXC[ρ] of
a system using the expression:

EXC[ρ] =

∫
εXC(ρ(r))ρ(r)d

3r, (2.28)

Then Eq. 2.27 can be found as

VXC =
d

dρ
(εXC(ρ(r))ρ(r)) = µXC(ρ(r)), (2.29)

where µXC(ρ) is the exchange-correlation part of the chemical potential of homoge-
neous electron gas.

2.1.5.2 Generalized gradient approximation (GGAs)

In many cases, LDA is adequate. However, when higher accuracy is needed, one
need to go further beyond the LDA. GGA expands the exchange-correlation func-
tional over the gradient of the density. The GGA often gives better results than
LDA for structural properties but it overcorrects the LDA bond distances and over-
estimates by about 2% the experimental values. In addition, it is not sufficient for
strongly correlated materials. There are many functionals that are in use today.
Perdew et al. [97] proposed one functional, PBE, in which some features of his
previous one [99] kept unchanged.

2.1.5.3 Hubbard model: DFT+U method

This method has been widely used to calculate the correct ground state of strongly
correlated materials such as transition metal oxides and systems containing f-electrons
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like lanthanides and actinides elements. The idea of this method has been derived
from the Hubbard model [53]. The additional U term measures the strength of the
on-site Coulomb interactions for the localized d and f electrons. DFT+U corrects the
failure of its normal form by constructing an orbital-dependent functional in which
the localized electrons (d or f) are well separated from the delocalized ones (s and
p) since the latter are well described by usual DFT. One promising way to improve
these is to use the so-called LDA+U and GGA+U schemes [24, 136]. In this type
of calculations, the spherically averaged screened Coulomb energy (U) and the ex-
change energy (J) do not enter separately. It is only the difference (U− J) which is
meaningful and important for the total LDA/GGA energy functional, entering in
the so-called effective Hubbard term Ueff.

One expression for LDA+U can be written as

ELDA+U = ELDA −
U

2
Nd(Nd − 1) +

1

2
U

∑
i,ji 6=j

ninj, (2.30)

where ni and nj are d (or f) occupancies. Nd =
∑
i

ni is the total number of d (or f)

electrons.

2.1.6 To solve Kohn-Sham equations

At this point, we come back to the Kohn-Sham equations and how to solve them to
obtain the different physical properties such as energy, forces, stresses, and eigen-
values. So, once we get the effective potential Veff described in Eq. 2.26 we use it
to solve the KS one-electron equation 2.23 to determine the orbitals. Consequently,
these orbitals are used to determine the ground state electron density and hence
the total energy from the expressions 2.18 and 2.22,respectively. Since the Veff de-
pends on the density, the KS one-electron equations must be solved iteratively. This
procedure is summarized in the flow chart in Fig. 2.1.

2.1.7 Energy band theory

We have now established how we can solve the Kohn-Sham one-electron equation
iteratively (See Fig. 2.1). The knowledge of eigenvalues and eigenfunctions, re-
spectively εi and ϕi, of the Kohn-Sham equation 2.24 is necessary to understand
different properties of periodic and crystalline solids. Let’s summarize how to solve
this one-body problem using DFT for the periodic solid systems.

2.1.7.1 Bloch’s theorem

In periodic structures, atomic positions are repeated in space through applying the
cell translations in all directions. The solution of KS equation for such complicated
systems is highly facilitated by introducing Bloch’s theorem [11]. In periodic crys-
tals, the effective potential (Veff) is periodic and it depends on the crystal structure
and its atomic composition, this is called the crystal potential. The latter term is
accompanied by other two terms; electronic energy bands and energy gaps. The
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Initial Guess
ρ(r)

Calculate Effective Potential

Veff (r) =
∫ ρ(r2)

r12
dr2 + VXC(r1)−

M∑
A

ZA

r1A

Solve Kohn-Sham Equations(
− 1

2∇2 + Veff (r)
)
ϕi = εiϕi

Evaluate the electron Density & Total Energy
ρ(r) =

∑
i
|ϕi(r)|2 −→ Etot[ρ(r)] = .....

Converged?

Output Quantities
ρ0(r), Ei[ρ0(r)] −→ Forces, Stresses, Eigenvalues, ....

Yes

No

Figure 2.1: Schematic representation of the self-consistent solution of Kohn-Sham equa-
tions.

former represents the allowed energy levels while the latter represent the forbidden
regions for electrons. The crystal potential can be defined using a lattice vector R:

Veff(r+ R) = Veff(r). (2.31)
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Bloch’s theorem states that the wave function of an electron moving in a periodic
potential should have a form

Ψk(r) = e
ik·ruk(r), (2.32)

where k is a vector of real numbers called the crystal wave vector, r is position, and
uk is a periodic function with the same periodicity as the crystal lattice, which isSee Ref. [78, 100]

for further details of
the theorem proof.

uk(r+ R) = uk(r). (2.33)

For each k-vector, there are several different Bloch waves, i.e. several energy
eigenvalues εnk, where n is the band index. Hence, the εnk versus k is understood
as the band structure of a solid. So far the k-vector can be anywhere from the
reciprocal space. Then, k + G satisfies Bloch’s theorem since eik·r = ei(k+G)·r ,
where G is a reciprocal lattice vector. Hence, all possible Bloch waves occur for
k-values within the first Brillouin zone of the reciprocal lattice.

2.1.7.2 k-points & Brillouin zone

In principle, the values of k should be chosen to lie in the first Brillouin zone (BZ).
The first BZ, or simply BZ, is a uniquely defined primitive cell in reciprocal space.
In a periodic system, the solution of Bloch waves are characterized by the behav-
ior of a single BZ. In other words, according to Bloch’s theorem, the one-electron
wavefunction for a periodic system can be expressed in terms of plane waves as

Ψn,k(r) =
∑
G

Cn,k+Ge
i(k+G)·r, (2.34)

where the sum runs over the reciprocal lattice vector G. The wavefunction for each
value of k can be expanded over a discrete infinite plane wave basis set. This in-
finite plane wave basis set can be truncated to include only those plane waves of
kinetic energy lower than a threshold value, the so-called cut-off energy (Ecutoff).
The Ecutoff must be well converged, since such truncation depends on its value.

2.1.8 Pseudopotential approximation

The basic idea of a pseudopotential is to simplify the description of complex systems
by replacing the strong Coulomb potential of the non-valence electrons of an atom
and it’s nucleus by an effective potential. Soft pseudopotentials are those with large
cut-off radius, that are more rapid, less accurate, and less transferable. Such ap-
proximation is widely used in studying different physical and chemical properties
of solids. The pseudopotential approximation was first proposed by Hellmann [47],
who introduced the first use of pseudopotential in solids [48].

The development of solid-state pseudopotentials underwent a series of evolutions
before 1970. The development of pseudopotentials is clearly described in the review
of Heine and Cohen [15, 46]. Let’s try now to briefly summarize the basis of the
two most common forms of pseudopotentials: Norm-conserving pseudopotentials
(NCPPs) and Projector augmented waves (PAWs).
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2.1.8.1 Norm-conserving pseudopotentials

As mentioned by Hammann et al. [43], the good pseudopotential must fulfill the
following requirements:

• Pseudo- and all-electron valence eigenvalues match for an atomic reference
state.

• Pseudo- and all-electron wavefunctions match outside certain core cut-off ra-
dius rc.

• The integrated charge for each wavefunction match inside rc

Since the valence pseudofunction satisfy the orthonormal conditions, the Kohn-
Sham equations can be defined by

(f̂KSPS − εi)ϕ
PS
i = 0, (2.35)

with f̂KSPS obtained in the same way using Eq. 2.25 and 2.26 where the Vext in the
latter equation is replaced by the pseudopotential.

2.1.8.2 Projector augmented waves

Blöchl developed the so called projector augmented waves (PAW) method [12] which
combines two advantages over the conventional pseudopotentials method. It allows
all-electron calculations and requires a small number of plane waves, i.e. reduced
cutoff energy. Thus, it is one of the most accurate methods with the efficiency of the
pseudopotential methods.

At this point, the total energy, for example, in the NCPPs approximation can be
given by [135]

Etot =
1

2

∑
j

oj

∫
|∇Ψ̃j|2 + EXC[ρe] +

∑
µ

Enlµ

+

∫
ρe

∑
µ

Vlocµ (r− Rµ) +
1

2

∫
ρeVH +

∑
µ<ν

ZµZν

Rµν
,

(2.36)

where ψ̃j and oj stand for the valence pseudofunction and its occupation, respec-
tively. The first term is positive definite form of the kinetic energy density. The
second term is the exchange-correlation energy for the valence electrons. The en-
ergy of the nonlocal part of the pseudopotential, the third term of Eq. 2.36, is given
by

Enlµ =
∑
j

∑
`

∫
Ψ̃∗jV

nl
µ` (|r− Rµ|)ζ`Ψ̃j, (2.37)

where Vnlµ` is the `th component of the nonlocal part of the pseudopotential. ζ`
defines the projection operator on angular momentum `. The fourth and fifth
terms represent the electronic interaction with the local part of the pseudopotential
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(Vlocµ (r− Rµ)) and with themselves that can be defined as one-half of Hartree po-
tential (12VH). The last term represents the ion-ion repulsion. Due to the long-range
nature of the last three terms of Eq. 2.36, the evaluation of these terms requires
some care. For further details, we refer to these books [63, 78].

2.2 dft-chemical pressure analysis

The DFT-Chemical Pressure (DFT-CP) formalism describes the local pressures in
a crystal structure that arise from the atomic size and electronic effects of its con-
stituents. The method is based on the division of the unit cell into voxels using the
electron density and potential energy grids determined by a DFT calculation. The
net pressure is evaluated as an average over the voxels of the unit cell. The evalua-
tion of CP maps require only energy potentials and energy densities of a crystalline
solid readily obtained from plane-wave DFT codes, from which the minimized elec-
tronic energy is distributed along the points of a voxel grid. Overall, the new CP
formalism constitutes a unique alternative to approaches based on the analysis of
the electronic wavefunction: not only does it differentiate meaningful chemical enti-
ties such as atomic cores, chemical bonds, lone pairs, ions, and atomic or molecular
units within a crystal for solids, but it frames them in terms of local forces leading
to the equilibrium structure. In general, the CP map involves a positive pressure
near the atomic cores and a negative pressure along the bonds and in the interstitial
spaces.

In this chapter, we are concerned to show the main features of the CP method-The computational
package is available

at the author’s
research group’s
homepage:http:

//www.chem.wisc.

edu/~danny.

ology as well as its theoretical background as regards the calculation of the local
pressures within a solid crystal structure. Besides, we will show the basis of imple-
mented methods used to enhance the accuracy of the results of the CP methodology.
Some issues associated with the interpretation of the pressure maps will be dis-
cussed by the end of this chapter.

2.2.1 Chemical Pressure from µ2-Hückel model

A simple theoretical approach to exploring the combined effects of electronic and
atomic size is offered by the Chemical Pressure analysis proposed by Fredrickson
et al. [33, 44]. The dense atomic packing in intermetallic structures can lead to
strong correlations between interatomic distances. Such correlations make it diffi-
cult to independently optimize all the bonding distances. The atomic size affects
reaching the ideal distances (Figure 2.2b) which requires shortening neighboring
contacts with little electronic support, and consequently a tension arises. This fact
was termed as electronic packing frustration (EPF). Such tension would be expected to
result in chemical pressure (CP) along the non-ideal interatomic distances.

To illustratic the basics of this approach, the classic Hückel model will be used
[54, 55]. The DFT-CP uses the ability to decompose the total energy into a sum over
a spatial distribution of contributions to the energy, in this case bonds and onsite

http://www.chem.wisc.edu/~danny
http://www.chem.wisc.edu/~danny
http://www.chem.wisc.edu/~danny
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Figure 2.2: Non-ideal interatomic distances resulting from electronic packing frustration
(EPF). (a) The electronic packing frustration model. (b) The correlation between
the interatomic distance needed to be compressed (A) and expanded (B). The
chemical pressure at a contact is obtained as the slop of the energy vs distance
curve at that contact. Quoted from Ref. [26] with the kind permission of the
American Chemical Society.

terms. The total energy can be expressed as a sum of on-site and bonding interaction
terms [33, 73]:

Eµ2−Hückel = γµ2 + EHückel =
∑
i

∑
j

(γH2ij + (
∑
n

onc
∗
n,icn,j)Hij), (2.38)

where γ is a proportionality constant and EHückel is the sum of the electrons
energy from a simple Hückel calculation. cn,j is the coefficient of atomic orbital
j in crystal orbital n, and on is the occupancy of that crystal orbital. Since the
total energy is related to pressure by P = −∂Etotal/∂Vcell, the pressure can be
distributed in the following way:

P = −
∂E

∂V
= −

∑
i

∑
j

∂

∂V
(γH2ij + (

∑
n

onc
∗
n,icn,j)Hij)

=
1

Norb

∑
i

∑
j

pij

(2.39)

where Norb is the number of orbitals in the crystal, and pij is the pressure be-
tween two interacted orbitals i and j. In other words, the total pressure, within
this method, can be expressed as an average of the CP contributions of bonding
interactions.
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2.2.2 Chemical Pressure from DFT

The simple Hückel method has several advantages, such as accuracy, and trans-
parency between geometry and electronic structure, in investigating EPF and the
creation of the CP analysis. However, it would be expected to fail in the more
complex crystal structures displaying many symmetry-distinct sites. To realize the
meaning of the DFT-Chemical Pressure analysis, let us extensivly show the theoreti-
cal basis of this method and how the CP results are extracted from the output of an
electronic structure calculation.

We start with the total energy expression of the Kohn-Sham DFT which can be
similarly decomposed, like in the Hückle model, into spatial contributions to the
energy [34, 78]:

EDFT =

∫∫∫
cell

(
1

2

∑
j

oj|∇ψj|2 + (νlocal +
1

2
νHartree

+ εXC)ρ(~r)

)
dV + EEwald + Eα + Enonlocal,

(2.40)

where oj is the occupancy of the one electron eigenfunction ψj. The terms un-
der the integral correspond respectively to the kinetic energy of the system, the
interaction energy of the electrons with the local components of the atomic pseu-
dopotentials, the electron-electron interaction energy, and the exchange-correlation
energy. The last three terms in the integral are the main local contributions to the
potential energy which is measured relative to a reference state of a homogeneous
exchange-correlation free electron gas containing the ion cores. The energy of that
reference state is given by the sum of the first two terms outside the integral while
Enonlocal represents the interaction energy of the electrons with the nonlocal com-
ponents of the pseudopotential. An additional term, E−kT .Entropy may be added
to correct the total energy from the band occupancies smearing at the Fermi level.
The terms outside the integral are difficult to be apportioned over specific region of
space.

The DFT total energy has several components, many of which can be represented
as the integral over an energy density function, ρenergy. These mappable terms al-
low us to define kinetic (ρkinetic), Hartree (ρHartree), local pseudopotential (ρpsp)
and exchange-correlation (ρXC) energy densities. In addition, the total energy con-
tains remainder terms such as Ewald and non-local contributions involved in the
valence electron-pseudopotential interaction. These are treated as a homogeneous
background energy to create an energy map whose integral over the unit cell gives
the correct total energy [26]:

EDFT =

∫∫∫
cell

ρenergy(~r)dV + Eremainder, (2.41)
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Since the method divides the unit cell into a high number of finite volume ele-
ments, voxels, a sum over the voxel energies can be then used in place of the intgral,

EDFT '
Nvoxel∑
n

ρenergy(~rn)Vvoxel + Eremainder

=

Nvoxel∑
n

En + Eremainder,

(2.42)

where Nvoxel is the number of voxels, in which the unit cell is partitioned, each
of volume Vvoxel, i.e. Vcell = Nvoxel · Vvoxel. En is the total mapped energy as-
sociated with every voxel, and Eremainder contains the total non-mapped energy
contributions.

This spatial resolution of the total energy allows a similar decomposition of the
(internal) pressure:

P = −
∂EDFT
∂Vcell

= −
∂

∂Vcell

(Nvoxel∑
n

En + Eremainder

)

= −

Nvoxel∑
n

∂En

Nvoxel∂Vvoxel
−
∂Eremainder
∂Vcell

= −
1

Nvoxel

Nvoxel∑
n

∂En

∂Vvoxel
+ Premainder

=
1

Nvoxel

Nvoxel∑
n

Pn + Premainder,

(2.43)

where the macroscopic internal pressure is represented by an average (rather than
sum, reflecting that pressure is an intensive property) over a pressure grid, with a
homogeneous background pressure, Premainder (arising from the Eremainder term
of the energy), being added uniformly to all points of the pressure grid.

The key step in this calculation of partial derivatives of the voxel energies with
respect to a grid’s voxel volume is to give a chemical pressure of a specific voxel
(Pn). In practice, these voxel pressures can be obtained by taking the difference in
energies calculated for that voxel in structures that are slightly expanded (+) and
contracted (-), isotropically:

Pn ' −
E+n − E−n

V+
voxel − V

−
voxel

. (2.44)

Each of the energy density terms gives a corresponding contribution to the voxel
pressures, meaning that individual maps can be made for, say, the kinetic energy
and local pseudopotential components to the chemical pressure. The average over
these grid pressures yields the system pressure, which for a material at equilib-
rium with its surrounds [102] will equal the external pressure. At zero pressure,
this means that regions with negative and positive chemical pressure features of a
system should cancel each other to fill the mechanical equilibrium condition.
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2.2.3 CP maps with grid unwarping

In our application of this analysis, we have obtained a strong CP features near
the atomic core regions while the interstitial regions are much more shallow, as was
discussed before by Berns et al. [8]. Such extreme magnitudes of CP causes a number
of problems in the interpretation of the CP results. These core pressures make it
difficult to detect other subtle features in the interatomic regions and the pressure
directionality near the core region. A central question that was answered by Berns
et al. [8], that if these strong CP oscilations near the atomic core regions represent
the atomic interactions or are instead a result of the pseudopotential models used in
the generation of the CP maps. Isolated systems, in which the interactions between
atoms are absent, were studied for different atoms in large unit cells. The CP maps
show a common features that the atomic positions are decorated by intense pressure
near the atomic cores (See Figure 2 in Ref. [8]). An example for the effect of the
unwarping method on the CP features is presented in Fig. 2.3 in which CP maps of
the bcc-Na unit cell involving different number of valence electrons are shown.

(a) VO

(b) SC

Figure 2.3: The DFT-CP maps calculated for bcc-Na crystal. Cross sections through the
plane (101) (left) without (right) with applying the unwarping process near the
atomic core regions. VO and SC refer to the valence-only and semi-core pseu-
dopotential of Na, respectively. Black contours drawn for CP = 0 to indicate
transitions between negative and positive CP values.

Moreover, The isotropic intense pressures arising near the atomic cores should be
reduced in a way to allow more subtle features to be visible. This can be achieved
by including an additional step in the DFT-CP method: unwarping procedure. Ac-
cording to Berns et al. [8], the unwarping procedure is based on calculating the
voxel pressure in terms of its nearby atom j. To determine the closest atomic core
to a certain voxel, several methods can be used, such as Hirshfeld method [50] that
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will be described later in this chapter. The voxel centers in the expanded (~r+n) and
contracted (~r−n) structures are then shifted in terms of their nearby atom’s position
in the equilibrium structure. Then the pressure of voxel can be calculated in terms
of eq. 2.44 can be written as following:

Pn ' −
{ρ+energy(∆~r

◦
n +~r+j ) − ρ

−
energy(∆~r

◦
n +~r−j )}V

◦
voxel

V+
voxel − V

−
voxel

, (2.45)

where ρ+energy and ρ−energy are the energy density of the expanded and con-
tracted structure. In the application of this method, it will be more complicated to
calculate the energy density at ∆~r◦n+~r+j and ∆~r◦n+~r−j since will often lie in between
the grid points. An estimated value can be obtained using the trilinear interpolation.
The error in the total energy obtained by the integration over the voxel grid is very
small and can be added homogeneously to the CP map.

We show in Figure 2.3 a and b how the CP distribution changes upon applying
the unwarping procedure. Our results show that the final pressures in both cases
(with and without unwarping) are same and equal to zero. The correction leads
to a significant change in the CP maps. The strong core-like features around the
atomic positions are replaced with flatter and less isotropic features. This allows
more subtle features to come to the foreground.

On the other hand, applying the unwarping procedure to voxels in the intersti-
tial regions will be more complicated since the energy density features might be
expected to show a reasonable change with the volume of the structure. The pre-
vious mentioned vectors of eq. 2.45, ∆~r◦n +~r+j and ∆~r◦n +~r−j , will be needed to
be weighted as the atoms will shift to different positions in the expanded and con-
tracted structures. Hirshfeld method [50] can be used to determine these weights as
will be described below. Such weighing factor is not important at all for voxels near
atomic core regions where the electron density changes in a very small range as the
structure is expanded or contracted.

2.2.4 Hirshfeld approach in grid unwarping between atoms

In Hirshfeld method, the electron density at every voxel can be distributed among
several atoms depending on their free-atom (FA) densities at certain distances from
the nuclear positions. These contributions are then translated into relative weights
in terms of the true electron density distribution between the atoms. Hirshfeld
weight wj,n for the effect of an atom j on a voxel n is expressed as following:

wj,n =
ρFAj (~r◦n)∑allatoms

x ρFAx (~r◦n)
, (2.46)

These weights are used by a voxel to maintain its equilibrium position as the
cell expanded and contracted in the calculation of CP maps. Then the voxel posi-
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tion in the extracted and contracted structures are calculated in the following way
respecting the effect of the nearby atomic centers:

~r+n =

allatoms∑
j

wj,n ·
(
∆~r◦n,j +~r+j

)
, (2.47)

~r−n =

allatoms∑
j

wj,n ·
(
∆~r◦n,j +~r−j

)
, (2.48)

In the application of this procedure between the atomic centers, the voxel centres
are no longer uniformly distributed, and the their volumes vary throughout the
structure. Following the special treatment for the voxels located at the interstitial
spaces, Eq. 2.45 slightly changes to:

Pn ' −
ρ+energy(~r

+
n)V

+
n − ρ−energy(~r

−
n)V

−
n

V+
voxel − V

−
voxel

, (2.49)

where V+
n and V−

n are the volume of voxel n in the expanded and contracted
structures, while V+

voxel and V−
voxel represent the average voxel volumes in the two

structures.
The unwarping procedure results in a less isotropic CP features near the atomic

cores. The CP maps become more intuitive to detect the variations in CP near
the nuclei and in the interstitial spaces. This also will be reflected through the
integration of the atomic pressure its directionality.

2.2.5 Integration of CP around atoms

The results of the unwarping method are characterized by a region of positive pres-
sure surrounding the nuclei embedded in a background of negative pressure (See
Figure 2.3). The integration of the CP around the atom’s position reveals the direc-
tionality and the overall pressure exerted on each atom. The method determines the
pressures experienced by each atom along different directions. Now, we will show
the integration procedure in details as proposed by Engelkemier et al. [26]. The first
step is to project the CP distributions around an atom onto spherical harmonics:

alm =
1

Nvoxels,atom

∑
n

wn,atomPvoxel,nYl,m(θn,φn), (2.50)

where wn,atom is the fraction of voxel n’s pressure attributed to specific atom,
Nvoxels,atom =

∑
n
wn,atom is the number of voxels associated to this atom, and

(θn,φn) are the spherical angular coordinates of voxel n from the nucleus posi-
tion as origin. The projection alm can be used to construct the CP anisotropy,
CPanisotropy(θ,φ), of the atom as follows:

CPanisotropy(θ,φ) =
6lmax∑
l=0

l∑
m=−l

almYl,m(θ,φ), (2.51)



2.2 dft-chemical pressure analysis 29

where lmax is the highest index for spherical harmonics included in the integra-
tion and m values are automatically generated in terms of the predefined lmax . m = -l, (-l+1), ...,

(l-1), l.For convenience, the spherical harmonics for l = 0 is given as Y0,0 = 1√
4π

, then the
projection a00 is calculated using Eq. 2.50

a00 =
1

Nvoxels,atom

∑
n

wn,atomPvoxel,n
1√
4π

= Patom
1√
4π

, (2.52)

where Patom is the nominal average pressure experienced by the atom. The
anisotropy function is then calculated according to eq. 2.51 as follows

CPanisotropy(θ,φ) = Patom
1√
4π
· 1√
4π

+ .... =
Patom

4π
+ ...... (2.53)

Now, the net pressure along each direction, Patom(θ,φ), can be calculated from
the previous equation by multiplying the anisotropy function by 4π, i.e.

Patom(θ,φ) = 4π ·CPanisotropy(θ,φ). (2.54)

The numerical values of Patom(θ,φ) can be then easily represented graphically
using radial plots. The integrated CP surface around each atom is plotted to a
point with spherical coordinates (θ,φ) is proportional to the magnitude of the CP
experienced by the atom along that direction. The color of the surface indicates
the sign of the pressure. Black for negative and white for positive pressures. The
negative pressure is located along directions through which the contraction would
be favorable, while the positive pressure reflects the priority to expand.

2.2.6 Contact volumes based on Hirshfeld approach

The pressure between two atoms is given by

Pcontactjk =

Nvoxels∑
n

wjk,nPn, (2.55)

where wjk,n is the fraction of voxel n’s pressure associated to the region of inter-
action between the two atoms. In homogeneous systems that include only one atom
type, the following simple scheme can be used to determine the proper weight for
every voxel’s pressure,

wjk,n =


1, if atoms j and k are two closest to voxel n
1
m , if m contacts are tied in above criterion
0, if j or k are not two atoms closest to voxel n

 (2.56)

In heterogeneous systems which display different atom types, the previous weight-
ing scheme should consider the differing effects of different atom types. To fulfil this
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task, the sizes of the free-atom (FA) electron densities must be considered in deter-
mining the weights.

wjk,n ∝ ρFAj (~rn) · ρFAk (~rn). (2.57)

The weighting scheme of Eq. 2.56 could then be expressed in terms of the free-
atom electron density of the two atoms as follows:

wjk,n =


1, if ρFAj (~rn)ρ

FA
k (~rn) is largest for j, k pair

1
m , if m contacts are tied in above criterion
0, if ρFAj (~rn)ρ

FA
k (~rn) is not largest for j, k pair

 (2.58)

In addition, several structures were studied by Berns et al. [8] to illustrate theThe distance-based
and

Hirshfeld-inspired
integration

approaches based on
the weighting

scheme of eq. 2.56
and

2.58,respectively.

results of performing the two different integration methods. It was concluded that
the use of this improved scheme, Hirshfeld-inspired contact volumes, incorporate
the differing influence of different atom types in the construction of contact volumes
and the integration of interatomic pressures.

2.2.7 Mapped and non-mapped contributions to chemical pressure (CP)

As described in the previous sections, the DFT total energy can be divided into
two main parts, one is the mapped energy (En) which contains the energetic con-
tributions that can be mapped over the voxel grids, such as kinetic energy (KE),
exchange-correlation energy (XC), local pseudopotential energy (Local PSP), and
Hartree energy. The other part is the non-mapped energy (Eremainder) which con-
tains energetic contributions that are not easily traced to specific points in space,
such as the Ewald energy and nonlocal components of the potential energy (See eq.
2.42).

The voxel energy can be expressed in terms of the contributions as follows

En = Ekinetic,n + Elocal,n + EHartree,n + EXC,n, (2.59)

Each contribution to the voxel energy En can be computed separately in the fol-
lowing way [34]:

Ekinetic,n = ρkinetic,nVn, (2.60)

Elocal,n = νlocalρnVn, (2.61)

EHartree,n =
1

2
νHartreeρnVn, (2.62)

where ρn and ρkinetic,n are the electron density and the kinetic energy density
at voxel n of volume Vn. EXC,n is determined from the exchange-correlation func-
tional as εXC(ρn)Vn.
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The pressure distribution of each energetic contribution to the total mapped en-
ergy over the voxel grids can be then calculated in a similar way used in eq. 2.44:

Pj,n = −
E+j,n − E−j,n

V+
voxel − V

−
voxel

, (2.63)

where j is one of the four mapped terms, KE, Local PSP, Hartree, and XC. The total
mapped pressure at each voxel Pn is given by the following expression

Pn =

4∑
j=1

Pj,n, (2.64)

According to eq. 2.43, the total (internal) pressure P can then be expressed as
follows

P =
1

Nvoxels

Nvoxels∑
n

4∑
j=1

Pj,n + Premainder. (2.65)

In the application of this decomposition of the total mapped energy En, we have
created separate CP map for each contribution independently. Over the course of
our analysis of the contributions to chemical pressure, we have examined the source
of the positive and negative CP regions within the crystalline space. Also we have
investigated the behavior of CP contributions of various types of chemical bonding,
including localized and delocalized covalent bonds.
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3.1 electronic structure calculations

Electronic structure calculations were performed under the formalism of the density
functional theory using plane waves basis sets and the pseudopotential scheme as
implemented in standard computational packages. Several approximations for the
exchange-correlation energy were tested depending on the case of study. All unit
cell geometries and atomic positions were optimized. Besides, the structural relax-
ation was performed for the systems until the maximal forces on the atoms were
less than 10−5 Hartree/Bohr. The total energy was converged with respect to cut-
off energies and Monkhort-Pack k-point grids to at least 10−4 Hartree/formula unit.
In this thesis, we used two computational packages to fulfill our aims. More details
are given in the following sections.

3.1.1 The Vienna Ab initio Simulation Package (VASP)

To illustrate electronic structure calculations using the VASP [12, 70, 71] code, the ce-
sium uranyl tetrachloride crystal is selected. We examined different DFT+U levels of
calculation following previous reported analysis in solid UO2 [22, 130], with explicit
comparisons with available experimental and theoretical data [128, 137]. Along with
this particular parameter of the uranium-based crystal, our computational study
includes the projector-augmented wave (PAW) pseudopotential scheme and test-
ing several exchange-correlation functionals. Brillouin-zone integrals were approxi-
mated using Γ -centered Monkhorst-Pack meshes [83] where the numbers of subdivi-
sions along each reciprocal lattice vector ~bi were given byNi = max(1.15× | ~bi|+0.5).
The wavefunction was expanded in plane waves up to a cutoff energy of 520 eV to
ensure convergence of the total energy.The final computational parameters were
selected after careful comparison with the available experimental data.

33
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Lattice parameters and atomic positions were optimized at selected pressures in
the range of 0 − 50 GPa. This is followed by single-point calculations using the
optimized parameters at each pressure. The resulting lattice parameters, volumes,
total energies, bond distances, and bond angles were extracted for all the geometries
to be represented in 1D plots or to be used in further calculations. The charge
density for each geometry is obtained as well to be analyzed topologically.

3.1.2 ABINIT package

We used ABINIT program [39–41] to prepare the raw data for the DFT-CP analysis.
All the calculations were performed using the LDA exchange-correlation functional
of Goedecker, Teter, and Hutter [38] and the Hartswigen-Goedecker-Hutter (HGH)
pseudopotentials provided by the package [45]. The geometrical optimization was
performed at zero pressure via Broyden-Fletcher-Goldfarb- Shanno minimization
technique [30]. This is followed by three single-point calculations spanning a small
volume range of 3% around the corresponding equilibrium crystal structure. ABINIT
offers options for the output of electron densities, kinetic energy density, the total
Khon-Sham potential, and two of its components, Hartree and exchange-correlation
potentials. These outputs are given in real space by using a chosen Fast Fourier
Transform (FFT) grid in which the unit cell is partitioned into voxels.

In order to get the required data mentioned above for CP analysis, one needs to
add the following input variables to the normal single-point input of ABINIT:

ngfft xx xx xx # The size of the fast Fourier transform in three dimensions.

# Otherwise ABINIT will sometimes choose different grids for each scale.

ndtset 3 # Number of data sets to be treated.

scalecart1 3*1.005 # Expanded until cell volume.

scalecart2 3*1.000 # Equilibrium unit cell volume.

scalecart3 3*0.995 # Contracted unit cell volume.

prtpot 1 # Print the Kohn-Sham potential output file.

prtvha 1 # Print the Hartree potential output file.

prtvhxc 1 # Print the sum of the Hartree and XC potential output file.

usekden 1 # Compute the kinetic energy density during the self-consistently loop.

prtkden 1 # Print the kinetic energy density in real space output file.

prtwf 0 # Do not print the wavefunction output.

# These are large and not used in the calculation.

Once we obtain these output files, with the suffix _POT, _VHA, _VHXC, and _KDEN, we
can run the CP program to generate the CP maps. This is the general procedure we
used to prepare the input data for the CP analysis of all the systems studied in this
thesis. The same computational strategy can be followed for any other crystalline
system.

3.2 chemical presure calculations

At this point, we have provided how to obtain the main data for the CP program [8]
to create the CP maps. Several versions of the DFT-CP program have been published.
All the results presented in this thesis were obtained using the last version, Version
3.0 [25]. In this section, we show how to run the CP programe and how to control
different input parameters to obtain the desired CP results.



3.2 chemical presure calculations 35

The interactive mode of the CP program is used to select the mapped energy
components. Then, the first step is to run the CP program and identify the required
inputs, i.e. the outputs of ABINIT. There are two ways to create the CP maps:

• USING THE DEFAULTS
By default, The CP program uses the core unwarping method to create the
total CP map in which all the energetic components, kinetic (KE), local pseu-
dopotential (Local PSP), Hartree , and exchange-correlation energy (XC), are
mapped. Besides, the non-mapped components, Ewald and non-local contri-
butions of the pseudopotential energy term, are treated as a homogeneous
background energy, as previously discussed in section 2.2.2. The preferred
partitioning scheme is the Hirshfeld scheme described in section 2.2.4, which
is used by default along with the highest spherical harmonics onto which the
CP will be projected (l=6). In this case, the CP program will ask for the free-
atom electron density profiles (ρFAj ) that must be named with a special format.
If we use hydrogen as an example, the name of the file would be H_rho_r.txt.
This can be found at the ABINIT website. The above mentioned procedure can See http://www.

abinit.org/

downloads/all_

core_electron

be achieved by responding to the following queries:

What is the prefix of your Abinit _o_ files ?

What is the name of your Abinit outfile?

Choose a name for your CP output files:

Would you like to use the defaults? [yes/no]

Then the user will be asked for the atomic density profiles:

Reading files. Please wait a moment to enter profile names...

Enter the name of the Hirshfeld profile for atom #1 (X, Y equivalent sites):

where X and Y will be changed to the atomic symbols and the number of
equivalent sites in the unit cell, respectively.

• OTHER OPTIONS
Instead of having only one CP map for all the mapped and non-mapped en-
ergetic contributions, CP program can also produce one CP map for each en-
ergetic term of the total mapped energy defined in Eq. 2.59 by using the
non-defaults of CP program. In this way, a new list of queries (see below) will
appear. The user is required to respond one by one.

Thus, it is possible to select energetic contributions which are mapped, to turn
off the core unwarping step, to select another way to handle the non-mapped
energy, or even to change the partitioning scheme. It is worth to mention that
one may choose to printout other additional maps in the .xsf format which
can be visualized by VESTA program [82].

Whatever the options the user chooses to run the CP program, the CP calculations
will output several files with different types of information. Below, the contents of
the output files are briefly described.

• -cplog is the log file that contains the numerical values of CP for all the ener-
getic contributions and the integrated CP around each atomic center.

http://www.abinit.org/downloads/all_core_electron
http://www.abinit.org/downloads/all_core_electron
http://www.abinit.org/downloads/all_core_electron
http://www.abinit.org/downloads/all_core_electron
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Map kinetic energy? [1=Yes] [2=Thomas-Fermi]

Map local energy? [1=Yes]

Map Hartree energy? [1=Yes]

Map exchange-correlation energy? [1=Yes]

Use core unwarping (recommended)? [1=Yes]

Restore symmetry (recommended)? [1=Yes]

Add unmapped pressure homogeneously? [1=Yes]

Substract it homogeneously instead? [2=Yes]

Ignore it instead (not recommended)? [3=Yes]

Partition scheme? [1=Hirshfeld] [2=Distance]

Percent tolerance? [1=Default]

Max l for spherical harmonics? [6=Default]

Use datasets other than 1 through 3? [1=Yes]

Output potential maps as XSF files? [1=Yes]

Output total energy maps? [1=Yes]

Output map of new voxel volumes? [1=Yes]

Output voxel weight maps? [1=Yes]

• -CP.xsf is the resulting CP map that can be visualized with VESTA program.

• -geo contains the Cartesian coordinates of atoms within a unit cell, in Angstrom.

• -cell contains the lattice parameters of the unit cell, in Angstrom.

• -coeff contains the numerical values of the integrated CP for all possible
spherical harmonics depending on the maximum value that has been defined.

Now, the CP calculations are completed and it is time to analyze the results.

3.3 analyzing chemical pressure results

The output of DFT-CP program, -CP.xsf, can be analyzed and represented in many
different ways. One-, two- and three-dimensional plots can be used. In this thesis,
we use the three types to represent and discuss our results. The 1D profiles show
clearly how the CP varies, say between two atoms or along certain direction. The 2D
CP maps, sometimes called cross-sections, can include atoms and bonds with color
indicating the value of the pressure at each point in space over a certain pressure
range. For wide CP ranges, it is important to rescale the CP range to a narrower one
to allow the more subtle features of these maps to be visible. The CP distributions
within a unit cell can also be visualized with isosurfaces in 3D plots. In the latter,
we use white and black colors for positive and negative CP, respectively.

Moreover, the rest of the outputs mentioned above can be used to analyze theA copy of
figuretool.m

template has been
sent to us by Prof.

Daniel C.
Fredrickson.

anisotropy within a solid. The integrated CP around the atomic centers are visual-
ized by MATLAB program using figuretool.m template. To run this template in MATLAB,
the prefix of the CP outputs should be defined in the "CPfile" parameter of the fig-
uretool.m file. In addition, by reading the -CP.xsf with VESTA, the portion of the unit
cell that you would like to visualize must be selected, and exported as an .xyz file.
The latter is then introduced in the "template" parameter of the figuretool.m. The
anisotropy is represented using the same colors of the isosurfaces in the 3D plots.
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3.4 other packages

Other programs were used for different purposes. Below, we give short notes about
the usage of these additional packages in our work.

3.4.1 GIBBS program

The equation of state (EOS) is a thermodynamic equation describing properties of
solids with respect to changes in the macroscopic variables (p,V , T ). GIBBS [10] can
analyze the output of electronic structure calculations using a set of energy-volume
(E–V) data using a selected form of EOS. The equilibrium volume, bulk modulus
(B0) and its pressure derivative (B′0), both evaluated at zero pressure, were obtained
by fitting the 4

th order static Birch-Murnaghan EOS [9] to the calculated (E–V) data
set. We applied this method to the (E–V) data obtained from the electronic structure
calculations of Cs2UO2Cl4 crystal under hydrostatic pressure.

The 4
th order Birch-Murnaghan EOS takes the form

E = E0 +
3

8
V0B0f

2{(9H− 63B′0 + 143)f
2 + 12(B′0 − 4)f+ 12}, (3.1)

p =
1

2
B0(2f+ 1)

5/2{(9H− 63B′0 + 143)f
2 + 9(B′0 − 4)f+ 6}, (3.2)

B =
1

6
B0(2f+ 1)

5/2{(99H− 693B′0 + 1573)f
3

+ (27H− 108B′0 + 105)f
2 + 6(3B′0 − 5)f+ 6},

(3.3)

where H = B0B
′′
0 + B

′
0
2 and f is the finite Eulerian strain in terms of a reference

volume Vr, in our case the zero pressure volume.

f =
1

2

[(
Vr

V

)2/3
− 1

]
. (3.4)

3.4.2 Bader charge analysis code

An intuitive way developed by Bader [2] to divide the molecules into atoms which
is based on the zero flux surface of the gradient of the electron density. As within
the molecular systems, atoms can be separated in crystalline solids, and the electron
population enclosed in these basins are calculated to evaluate the charge for each
atom.

We used the Henkelman group code [119] which is based on the Bader partition-
ing method [2] for doing a topological analysis of the electron density for all the
optimized structures of Cs2UO2Cl4 crystal at each pressure in the range of 0− 50
GPa to compute atomic volumes and charges. The program can read in the charge
densities output of VASP code (CHGCAR). This charge densities are included in two
separate outputs of VASP: the core charge and the valence charge which are written
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to AECCAR0 and AECCAR2, respectively. Then, the total charge can be obtained by sum-
ming these two charge densities files using the chgsum.pl script using the command:

chgsum.pl AECCAR0 AECCAR2

The total charge is written to CHGCAR_sum which in used directly in the Bader
charge analysis through the command

bader CHGCAR -ref CHGCAR_sum

Several output files are generated by the program. The atomic volume and the
charge are written to ACF.dat. These data was used in 1D representations or even
in for a further calculations. This analysis was carried out for all the optimized
structures of Cs2UO2Cl4 crystal at each pressure. For further details about the
output files of the Henkelman group code, we refer to the author’s website [49].

3.4.3 CRITIC2 code

CRITIC2 [91] is a program for the topological analysis of real space scalar fields
of solids. It can be used in searching for critical points and basin integration us-
ing the Bader’s theory. In this thesis, we used CRITIC2 to study the bond critical
points and electron density at the critical points for the output of VASP calculations
of Cs2UO2Cl4 crystal at each pressure. More information can be found on the
program web page [17].
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An extensive investigation of pressure effects on the structural properties of crys-
talline cesium uranyl chloride was performed by means of first-principles cal-

culations within the density functional theory framework. Total energies, equilib-
rium geometries and vibrational frequencies were computed at selected pressures
up to 50 GPa. Zero pressure results present good agreement with available experi-
mental and theoretical data. Our calculated equation of state parameters reveal that
Cs2UO2Cl4 is a high compressible material, similar to other ionic compounds with
cesium cations, and displays a structural anisotropic behavior guided by the uranyl
moiety. An unexpected variation of the U–O bond length, dUO, is detected as pres-
sure is applied. It leads to a dUO-stretching frequency relationship that can not be
described by the traditional Badger’s rule. Interestingly enough, it can be explained
in terms of a change in the main factor controlling dUO. At low pressure, the charge
transferred to the uranyl cation induces an increasing of the bond length and a red
shift of the stretching frequencies, whereas it is the mechanical effect of the applied
pressure above 10 GPa the dominant factor that leads to a shortening of dUO and a
blue shift of the stretching frequencies.

4.1 introduction

Uranium-based compounds are important in the treatment of nuclear waste or as
effective fuel materials especially for the light water reactors. Uranyl complexes
attracts experimental and theoretical attention due to the decisive role they play in
the migration mechanisms of this radioactive element through the groundwater and
soil [18]. In the last years, uranyl chloro complexes have been particularly studied
using quantum-mechanical simulations and diverse spectroscopic techniques [18,
58, 80, 112, 113, 120, 137, 138]. The nature of the chemical bonding in Cs2UO2Cl4
was deeply studied by Zhurov et al. [137, 138] using experimental X-ray diffraction
electron densities. Vallet et al. [120] carried out a rigorous analysis of quantum me-
chanical calculations of uranyl complexes in gas phase and in a water solvent with
different Lewis base ligands, providing interesting correlations between stretching
frequencies, uranyl charges, and U–O bond lengths.

X-ray diffraction and infrared and Raman spectroscopies have also been used to
investigate how stretching frequencies correlate with U–O bond lengths in a vari-
ety of uranyl chloro complexes with emphasis in the evaluation of stretching force
constant (k1) and interaction force constant (k12) involved in the UO2 moiety [3,
112, 113, 120]. In the experimental work of Schnaars and Wilson [112, 113], it was
observed that Badger’s rule [3] fails in actinyl complexes since a shorter distance is
not always accompanied by a higher stretching force constant. Failure of Badger’s
rule was firstly detected by Vallet et al. in uranyl complexes with hydroxide ligands
[120]. It is to be concluded that "a great deal of caution must be afforded ... when
making inferences in regard to bond distances and bond strengths" from vibrational
frequencies of uranyl-based compounds [112, 113].

Pressure is an interesting thermodynamic variable if we look for structure-property
correlations (see for example Ref. [102]). By applying pressure, we can significantly
modify the interatomic distances and the local environment of the uranyl moiety in
Cs2UO2Cl4, in a similar way as in previous studies with different ligands and coun-
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teractions [58, 80, 112, 113, 115, 120]. In spite of the strong nature of the U–O multi-
ple bond, small but meaningful variations of its bond length could be observed un-
der the pressure conditions attained in diamond anvil cell experiments. Quantum-
mechanical simulations constitute an attractive alternative to recreate these condi-
tions and provide valuable information on how structural changes affect force con-
stants, charge transfer, and stretching frequencies of the uranyl moiety. However,
in the case of solid Cs2UO2Cl4, we are not aware of any previous theoretical or
experimental investigation on its behavior under hydrostatic pressure.

To fulfill our purpose, first-principles electronic structure calculations were per-
formed to optimize all the structural degrees of freedom of the monoclinic unit cell
of Cs2UO2Cl4 at selected pressures in the 0 − 50 GPa range. We have a long-term
experience in quantum-mechanical simulations of the behavior of materials under
high-pressure conditions, from the determination of isothermal equations of state
in simple binary compounds [75, 103] to the detailed description of phase transition
mechanisms [107] and the structural prediction of novel materials [77]. In addition,
two main factors were analyzed to rationalize the values of the symmetric stretch-
ing frequency of the uranyl moiety: charge and U–O bond length. In our previous
work on the vibrational modes in uranyl aquo complexes, we have seen that all
the frequencies, except the stretching modes associated with the U–O bond, have
values below 400 cm−1 [58]. It has been repeatedly reported that depending on
the medium and equatorial ligand type, the frequencies of the stretching modes can
oscillate between 800 − 900cm−1 [58, 112, 113, 115, 120]. As our interest is in the
U–O chemical bond, we will focus on the variation of the stretching frequencies
with respect to pressure, and how force constants, Bader charges, and bond lengths
correlate with the observed trend.

4.2 crystal structure

The experimental crystal structure for Cs2UO2Cl4 complex has been previously re-
ported [128, 137, 138]. Cs2UO2Cl4 has a monoclinic structure, space group C2/m,
with Z = 2. There are four independent atoms, one of each type, with seven free
coordinates and four parameters defining the volume and shape of the crystal for
a total of eleven degrees of freedom. The structure can be described as formed by
[UO2Cl4]2− complex anions and Cs+ cations. The complex anion consists of six
ligands bound to the metal center in a pseudo-octahedral geometry. The axial posi-
tions are occupied by the two oxo ligands, while the four chloride ligands reside in
the equatorial plane (See Fig. 4.1 and 4.2). The complex anion has a D4h symmetry
in aqueous solution. In a crystal, the uranium atom resides on a special position
with C2h site symmetry, C2 axis goes along b direction and σh plane is parallel to
the ac plane, resulting in a strictly linear conformation of the uranyl moiety and the
four chlorine atoms located in the same plane. Deviations from the higher symme-
try are small. The experimental angle between chlorine plane and uranyl is 89 .4◦

and between Cl–U bonds is 87 .2◦. All the U–O bonds are parallel to each other,
perpendicular to b-axis and point approximately in the [201] direction forming an
angle of 49 .5◦ with the a-axis that is very close to a half the β monoclinic angle.
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Figure 4.1: b-axis projection of the unit cell of Cs2UO2Cl4 (U = yellow, O = red, Cl = green,
Cs = blue).

Figure 4.2: Complex anion environment in Cs2UO2Cl4.

The crystal packing can be described as a very distorted hexagonal close-packed
structure where one third of sites are occupied by the complex anion and two thirds
are occupied by cesium cations. In Figure 4.1, it is seen the stacking of successive
layers of anions and cations parallel to the [1 1 0] plane. Also, hexagonal layers of
mixed anions and cations are formed parallel to the [2̄01] plane. These layers contain
also the uranyl bond. Each anion is surrounded by six cations in the plane and six
additional ones in contiguous layers leading to a total twelve coordination. The
computational details concerning the electronic structure calculations in this system
were described in section 3.1.1.
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4.3 results and discussion

4.3.1 Crystal structure and equation of state

The equilibrium volume, lattice parameters (a, b, c, and β) and selected bond lengths
and angles obtained with several approximations at zero pressure are summarized
in Table 4.1. In this table, the results under LDA+U and GGA+U were obtained
choosing a value of Ueff = 3.49 eV, which is lower than values used in previous
works on UO2 [64, 101, 114]. When compared with the experimental values [138] of
a, b, c, and the monoclinic angle β, (11.788, 7.641, 5.769Å, and 100.44◦, respectively),
our GGA (PBEsol)+U [98] results show a very good agreement. It is also the best
level of calculation if we look at the U–O bond length (dUO = 1.775 Å calculated
and 1.774 Å experimental value from Zhurov et al. [138]), which is a key parameter
in our discussion of the next section. Other interatomic distances and angles agrees
very well with the corresponding experimental data, thus keeping the whole point
group symmetry around the uranyl moiety. Although other levels of calculation
also show a consistent description of the Cs2UO2Cl4 structure, our results will refer
only to this PBEsol+U level of calculation.

The overall effect of pressure on the volume and unit cell parameters can be seen
in Figure 4.3. The unit cell volume of Cs2UO2Cl4 exhibits a high compressible
trend with a reduction of about 50% in the 0 − 50 GPa range. EOS parameters, B0
= 16 .5 GPa and B′0 = 4 .9, characterize a molecular-ionic class of compound with
a high incompressible UO2 dication in a quite open structure with empty space
(low electron density) among cations and anions. It is noticeable that our calculated
B0 value lies in the range of other binary cesium halides. For example, the zero
pressure bulk modulus in CsCl is 16 .7 GPa [132].

Lattice parameters a and c decrease by about 15% in the 0 − 50 GPa pressure
range, while b changes to a greater extent, by about 25% of reduction, the zero
pressure value. Thus, the easy axis to compress in Cs2UO2Cl4 is the b-axis, which
is perpendicular to the uranyl bond. Also, we obtained an increase in the value of
the monoclinic angle (β) of 8%, that can be ultimately related with the orientation
of the uranyl moiety in the unit cell. Overall, the calculated response of Cs2UO2Cl4
under hydrostatic pressure shows that the structural anisotropy of this material is
quite significant.

4.3.2 Internal complex geometry under pressure

Pressure affects the local geometry by changing interatomic distances and bond
angles. The main bond lengths, dUO, dUCl, and dCsO are examined in Fig. 4.4. As
expected, globally the distances decrease as hydrostatic pressure is applied. In the
whole 0− 50 GPa pressure range, the U–O, U–Cl, and Cs–O distances reduced by
0.010, 0.188 and 0.953 Å, respectively. The variations of dUO induced by different
environments in previous works are of the same order: 0.010 Å[112], 0.012 Å[113],
0.013 Å[115], and 0.020 Å[58]. However, rather surprisingly, dUO increases by 0.006
Å in the low pressure regime (up to approximately 10 GPa).

An examination of the electron density at the bond critical points (bcp’s) shows
values of 0.063 for U–Cl, 0.316 for U–O, and 0.0078 e/bohr3 for O–Cs at zero pres-



46 chemical bonding in cs2uo2cl4 complex under pressure

Ta
bl

e
4.

1:
C

om
pa

ri
so

n
be

tw
ee

n
ze

ro
pr

es
su

re
ca

lc
ul

at
ed

an
d

ex
pe

ri
m

en
ta

ld
at

a
(R

ef
.

[1
3

8
])

of
la

tt
ic

e
pa

ra
m

et
er

s
(Å

),
vo

lu
m

e
(Å
3

),
sh

or
te

st
bo

nd
U

–O
(d
U
O

),
U

–C
l(

d U
C
l
),

an
d

C
s–

O
(d
C
s
O

)
di

st
an

ce
s

(Å
)

an
d

C
l-

U
-O

(ω
1

)
an

d
C

l-
U

-C
l(
ω
2

)
bo

nd
an

gl
es

(◦
).

a
b

c
β

V
d U
O

d U
C
l

d C
s
O

ω
1

ω
2

LD
A

1
1
.5

6
7
.3

3
5
.7

0
1
0
2
.0

4
7
2
.4

1
.8

0
3

2
.6

1
8

3
.0

2
9
0
.6

9
2
.4

LD
A

+U
1
1

.5
2

7
.4

7
5
.6

6
1
0
1
.5

4
7
6
.8

1
.7

7
0

2
.6

5
3

3
.0

9
9
0
.6

9
3
.0

PB
E

1
2
.2

6
7
.8

4
5
.9

8
1
0
0
.9

5
6
5
.0

1
.8

1
5

2
.6

7
8

3
.3

5
9
0
.8

9
3
.1

PB
E+

U
1
2
.3

6
7
.8

9
5
.9

5
9
6
.8

5
7
6
.5

1
.7

8
0

2
.7

1
7

3
.7

4
9
0
.9

9
2
.9

PB
Es

ol
1
1
.8

8
7
.5

7
5
.8

3
1
0
1
.5

5
1
3
.7

1
.8

0
8

2
.6

4
1

3
.1

8
9
0
.7

9
2
.9

PB
Es

ol
+U

1
1
.8

8
7
.6

8
5
.7

9
1
0
0
.0

5
2
0
.8

1
.7

7
5

2
.6

7
8

3
.3

2
9
0
.7

9
3
.3

Ex
p.

1
1
.7

9
7
.6

4
5
.7

7
1
0
0
.4

5
1
1
.0

1
1
.7

7
4

2
.6

7
1

3
.3

2
9
0
.3

9
2
.9



4.3 results and discussion 47

Figure 4.3: Normalized cell parameters and unit cell volume of Cs2UO2Cl4 with respect to
hydrostatic pressure according to our calculations.

sure. These results are in accordance with experimental data [138] and cluster calcu-
lations [120]. When pressure increases, both U–Cl and O–Cs electron densities at the
bcp increase monotonously. However, in the case of U–O, the electron density at its
bcp decreases to a minimum value of 0.312 e/bohr3 at 10 GPa and then shows the
increasing trend as pressure increases up to 50 GPa (See Fig. 4.5). Moreover, these
results are consistent with the behavior displayed by our bond length data in Fig.
4.4. These facts are fully consistent with a weakening of the U–O bond manifested
by frequency parameters in the low pressure regime, as we will see below.

To explain this fact, we have to go further into the behavior of other distances
and the effect of electrostatic interactions. We have observed that 77% of the total
shortening of Cs–O bond length occurs in the 0− 10 GPa region, where dCsO de-
creases by 0.481 Å. Similar behavior is obtained for the U–Cl distance, about half
the change takes place up to 10 GPa with a reduction of 0.082 Å. As discussed by
Vallet et al. [120], a drop in the ligand-U distance correlates with a lengthening of
the U–O distance due to the electrostatic repulsions between the yl-oxygens and the
negatively charged chloride ligands. Moreover, as we will discuss in detail later,
it should be also emphasized that as pressure is applied the charge transferred to
the uranyl moiety increases. This effect tends to enlarge the U–O and can be only
compensated at high enough pressures by the effect of other atoms approaching the
oxygen atom.

The rest of the internal coordinates were optimized for each point of the grid.
In order to test this hypothesis we have made electronic structure calculations in a
model system comprising an in vacuo UO2Cl4 cluster with two Cs atoms located in
the line O–U–O above and below the chlorines plane. The cluster calculations were
performed using the Gaussian09 code [35] with two functionals, B3LYP (hybrid) [6,
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Figure 4.4: Relevant bond lengths (Å) in Cs2UO2Cl4 with respect to hydrostatic pressure.

72] and PBE (GGA) [97], Dunning augmented double-z basis were used for Cs, O
and Cl atoms. For U atoms a 60 electron pseudopotential was used in combination
with a double-z basis.For a fixed U–Cs distance, decreasing U–Cl distance in the
range from 2.4 to 2.8 Å in steps of 0.01 Å leads to longer U–O bond as expected
as shown in Fig. 4.6. For a fixed U–Cl distance, decreasing U–Cs distance in the
range from 4.0 to 5.5 Å in steps of 0.02 Å also lead first to a longer U–O bond
(electrostatic attractive effect) but at certain distance the behavior is reversed (Pauli
repulsion). The obtained curve in Fig. 4.7 shows the same qualitative behavior as
the one seen in Fig. 4.4 for dUO with respect to pressure in the crystal. This supports
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Figure 4.5: Electron density e/bohr3 at the critical bond points at several pressures.

our hypothesis of competing factors determining the final U–O bond distance in the
crystal.

The angle between the U–Cl and U–O bonds (ω2 or ω3) is negligibly affected
by pressure, thus remaining close to 90◦ in the 0 − 50 GPa range. On the other
hand, the two supplementary Cl–U–Cl angles in the equatorial plane (ω1 and ω4)
change by about 21◦ over the whole pressure range as shown in Fig. 4.8. It is
energetically preferable to change the equatorial angle maintaining the uranyl bond
perpendicular to it. When the pressure increases and the cell is compressed, the
repulsion forces between chloride atoms can be minimized increasing one Cl–U–Cl
angle and decreasing the other one making the b-axis the preferred compression
direction. It is remarkable that close to 10 GPa all ωi − p curves cross with a value
of 90◦.

4.3.3 Badger’s rule and vibrational frequency under pressure

The local distortions induced by pressure lead to changes in the U–O bond strength
that can be quantified evaluating parameters associated to the symmetric and an-
tisymmetric stretching modes of the uranyl moiety. Frequencies were calculated
using the finite displacement method with a step of 0.008 Å and four displacements
at all the optimized equilibrium geometries. Typical values of ν1 and ν3 in the
UO2Cl4 complex anion lie within the 831− 842 cm−1 and 900− 922 cm−1 ranges,
respectively [112, 113]. Our calculated crystalline vibrational frequencies of the sym-
metric and antisymmetric modes at zero pressure are 818 cm−1 (832 cm−1) and 979
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Figure 4.8: Main bond angles of the UO2Cl4 complex anion in the Cs2UO2Cl4 crystal with
respect to hydrostatic pressure. See text for definition of ωi symbols.

cm−1 (922 cm−1). Deviations with respect to experimental values [112] (in brackets)
are lower than 2% and 7%, respectively.

Overall, the pressure evolution of these frequencies shows a typical slightly sub-
linear trend being the splitting between ν1 and ν3 almost constant along the pres-
sure range of our study. When we plot the stretching frequencies against dUO (See
Fig. 4.9), we have found two branches-like behavior for both frequencies. In each
branch the expected relationship between shorter bond and increased frequency is
found. We have noticed that the jump from one branch to the other occurs at the
dUO value obtained around 8 GPa. This result is a manifestation of the dUO-p
behavior previously discussed (See Fig. 4.4-bottom).

We have calculated the stretching force constant, k1 , and the interaction force
constant, k12 , from the computed frequencies [112] (See Fig. 4.10). k1 is a measure
of the strength of the U–O bond, whereas k12 describes the interaction between
the two yl-oxygen atoms. The actual expressions relating k1 and k12 with ν1 and
ν3 can be found elsewhere (See for example eq. (3) and (4) of Ref. [4] or the
supplementary material of Ref. [112]). Here, it is important to point out that besides
the mass dependences, k1 and k12 roughly depend respectively on the sum and
difference of these frequencies. Our calculated values fall in the range of 7 .06 − 7 .95
for k1 and -0 .804−-0 .900 for k12 over the selected pressure range. The values of
Schnaars and Wilson in a variety of UO2-based compounds [112, 113] span across
6 .58 to 6 .82 and -0 .18 to -0 .27 for k1 and k12 , respectively.

In plutonyl complex anions, the interaction force constant shows values as low
as -0 .53 [112]. With respect to our calculated values, the difference in k12 is easily
explained in terms of the higher computed value of ν3 and the sensitivity of the
model to the input frequencies. Besides, it is to be pointed out that our negative
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Figure 4.9: Frequencies of the symmetric (lower curve, left axis) and antisymmetric (upper
curve, right axis) stretching modes of uranyl with respect to dUO.

k12 values are consistent with the inverse trans influence experienced by dioxo
actinyl compounds that generates negative (ν1-ν3) differences. Although k12 has
a relatively small change in the computed pressure range, it exhibits a maximum in
a zone close to the jump in the frequencies branches discussed above.

A formal relationship between dUO and k1 can be described with the Badger’s
rule [3], expressed here as

k
−1/3
1 = A−1/3(dUO − B) , (4.1)

where A and B are the fitting parameters. This rule implicitly contains the more
general rule that a shorter bond has a larger stretching force constant. Derived
relationships were used by Bartlett and Cooney to predict U–O bond lengths from
stretching frequencies with varying success [4]. We have observed that our data can
not be described by a unique Badger’s relationship (see top and bottom straight lines
in Fig. 4.10-right). Interestingly enough, we see, however, that these two Badger
linear trends describe accurately the correlation between dUO and k1 . From our
fittings, we obtained 0 .65 and 1 .00 mdyn Å2 , to be compared with the universal
Badger parameter (A = 1 .86 mdyn Å2) [85, 129]. Thus, our data does corroborate
previous results on studies of dioxo actinyl compounds regarding Badger’s rule
failure [112, 113, 120].

Nevertheless, it is possible to explain this anomalous behavior of Badger’s rule
by means of a deeper analysis of the two main factors affecting frequencies and
distances as pressure is applied. The first factor is the pure mechanical effect that
produces an overall shortening of interatomic distances in the crystal. The second
one acts in the opposite direction as far as the dUO distance is concerned. It is
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Table 4.2: Atomic charges (q, e) and atomic volumes (Ω, Å3) for Cs2UO2Cl4 crystal.

U O Cl Cs UO2

q 2.756 -0.878 -0.685 0.871 1.000 Present
2.751 -0.923 -0.605 0.774 0.905 Exp. [138]

Ω 17.04 19.13 32.64 37.26 55.30 Present
16.17 18.99 31.39 37.73 54.15 Exp. [138]

the charge transferred to the UO2 moiety. The idea is to separate both factors and
evaluate the fulfillment of Badger’s rule without considering charge transfer effects.
Before this analysis is introduced, we recall to previous results on the charge transfer
in uranyl hydrated species [115] along with our own results at this regard.

4.3.4 Charge transfer to uranyl ion under pressure

As formerly illustrated by Siboulet et al. [115], the charge transferred to the uranyl
dication is a good parameter to explain changes in the U–O bond length and stretch-
ing frequencies involved in the uranyl moiety. At zero pressure, our topological
analysis of the electron density leads to a total charge of the Cs2UO2Cl4 unit cell of
0 .0001 e, and a unit cell volume calculated from separate atomic volumes of 520 .75
Å3 . These values are consistent with the neutral character of the cell and with the
optimized cell volume. Our calculated charges and volumes are close to those ob-
tained from the topological analysis carried out by Zhurov et al. using experimental
charge densities of the same crystal at 20 K (See Table 4.2). This experimental study
gives a total charge of uranyl of +0 .905 e, while we obtain a value of 1 .00 e. For
this moiety we previously obtained a value of 0 .996 e for the same complex in
water solution [58].

4.3.5 Charge and frequency versus pressure

The effect of pressure on the charge transferred to uranyl, calculated as the differ-
ence between the uranyl formal charge (+2) and the calculated one, is presented in
Fig. 4.11. The uranyl charge decreases as the pressure increases. The charge trans-
ferred to uranyl increases by 25% of its zero pressure value when pressure increases
up to 50 GPa.

Let us propose now an analysis of Badger’s rule using k1-dUO data coming from
results involving only the pure mechanical effects on frequencies and distances. A
simple yet reasonable procedure consists of removing the reduction in frequencies
and the increasing in distances induced by the charge transferred to the uranyl moi-
ety. At a given pressure, ν1(p) and dUO(p) can be described with these expressions:

νs(p) = ν1(0) +∆ν1(p); ∆ν1(p) = ∆ν
M
1 (p) +∆νCT1 (p),

dUO(p) = dUO(0) +∆dUO(p); ∆dUO(p) = ∆dMUO(p) +∆dCTUO(p),
(4.2)

where the superscripts M and CT stand respectively for the contributions due
to pure mechanical and charge transfer effects. We can use the proposed slopes
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Figure 4.11: Bader charge transferred versus pressure. R2 = 0.996 and the slope corresponds
to 0.005 GPa per electron transferred.

reported by Siboulet et al. [115] for the charge transfer effect in the frequency, -300
cm−1, and the distance, +0.16 Å, both per electron transferred to the uranyl moiety.
Taking the charge transferred at zero pressure as the reference value, we can ob-
tain the contributions to the frequencies and distances at different pressures using
the above slopes and the calculated relationship between pressure and charge trans-
ferred displayed in Fig. 4.11. With this information we can evaluate new frequencies
and distances only affected by the pure mechanical effect using the following expres-
sions:

νM1 (p) = ν1(0) + ∆ν
M
1 (p) ; dMUO(p) = dUO(0) + ∆dMUO(p) (4.3)

Similar equations can be written for ν3 providing the basic data, along with dMUO
values, for a new analysis of Badger’s rule. Results are included in Fig. 4.10, and
illustrate how the fulfillment of this rule is achieved. Successfully, a single straight
line can now describes the correlation between the force constant and the bond
length (See Fig. 4.10-right). From this fittings, we have obtained for the Badger
parameter A = 1 .30 mdyn Å2 .

We have also considered the behavior of uranyl charge and the symmetric stretch-
ing Raman frequency versus the U–O distance as shown in Fig. 4.12. The frequency-
distance relationship shows three different regimes: (i) the symmetric stretches νs
decreases around 4 cm−1 at low pressures up to 5 GPa, (ii) from 5 to 10 GPa the
blue shift is around 8 cm−1 , and (iii) an increase around 40 cm−1 is observed in the
high pressure range from 10 to 50 GPa. At both low and high pressure ranges, the
shorter the bond length the larger the Raman frequency. However, at 8 GPa (dUO
= 1 .778 Å), the blue shift, of about 8 cm−1 in νs, appears without bond length



56 chemical bonding in cs2uo2cl4 complex under pressure

Figure 4.12: Bader charge transferred (cross, left axis) and Raman frequency (circle, right
axis) versus uranyl bond length.

variation. A linear correlation between the U–O distance and the Raman-active vi-
brational frequency with a slope of 20 cm−1/pm was proposed by Siboulet et al.
[115] when different aquo uranyl complexes were considered. A similar behavior
can be derived from our calculations in crystalline Cs2UO2Cl4 but in two different
pressure regions.

In the low pressure regime the decrease in the Raman frequency (and the accom-
panied increase in bond length) is associated with a decrease in the uranyl charge,
that is the same behavior found by Siboulet et al. Our ∆νs/∆dUO ratio is only
around 10 cm−1 . The lower slope can be attributed to a greater ∆dUO value than
expected from the charge transferred to the uranyl dication. This effect is caused by
an enhancement of attractive electrostatic interactions of the Cs cations that display
a very rapid reduction of their distances to the yl-oxygen atoms in the low pressure
regime, as we have seen in Fig. 4.4. However, at pressures higher than 10 GPa the
charge transfer is not a good parameter to correlate with distances and symmetric
stretching frequencies: an increase in the Raman frequency (and the accompanying
bond length decrease) occurs in spite of the increase of the charge transferred to
UO2 . This is due to a pure mechanical effect of hydrostatic pressure that reduces
the dUO distance, strengthening the U–O bond, and leads to a blue shift in the
stretching frequencies. What is more, dCsO distances enter in the repulsive regime
and this interaction starts pushing rather than pulling the U–O bond.
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Traditionally, the concept of chemical pressure (CP) has been invoked to un-
derstand the new behavior of materials emerging when chemical elements are

replaced by others of different size, though quantitative accounts of this effect are
rarely reported. Recently, a quantum mechanical definition has been proposed to
construct real space CP maps of molecules and crystals from the output of DFT cal-
culations [33]. The characterization of bonding interactions in molecules and materi-
als is one of the major applications of quantum mechanical calculations. Numerous
schemes have been devised to identify and visualize chemical bonds, including the
electron localization function, quantum theory of atoms in molecules, and natural
bond orbital analysis, whereas the energetics of bond formation are generally ana-
lyzed in qualitative terms through various forms of energy partitioning schemes. In
this chapter, we illustrate how this approach reveals the chemical bonds through the
forces of attraction and repulsion acting between the atoms.

5.1 introduction

Chemical bonding has long been an elusive concept from the point of view of Quan-
tum Mechanics [86]. This is mainly due to two practical reasons: (1) it is not a
perceptible property that can be experimentally observed directly (but is instead
inferred from interatomic distances, bond enthalpies, and perhaps electron density
maps), and (2) there is not any particular quantum- mechanical operator associated
to it.

To fill this gap between chemical experience and theory, a number of approaches
have been developed to analyze bonding in the results of quantum mechanical calcu-
lations. These have generally focused either on (1) identifying signatures of bonding
in the wavefunctions [31, 56, 57, 79, 127, 133, 134, 139, 140], density matrices [21, 32,
36, 104, 105], electronic density [2, 62], or some derivative function [7, 69, 108–110,
116, 125], or (2) decomposing the energy of an interaction in physically meaning-
ful terms [23, 52, 126]. In this chapter, we show that these two approaches can be
merged in the recently developed chemical pressure (CP) method, yielding schemes
in which bonds are evident in the balance of attractive and repulsive forces acting
within a structure [33].

The foundations for an energy-map based approach to visualizing bonding has
been emerging in the context of solid state chemistry, with the development of the
chemical pressure (CP) formalism [33]. Through the spatial decomposition of macro-
scopic pressure into local, interatomic components, this CP approach leads to visual
schemes that anticipate structural transformations in intermetallic compounds [65],
highlight of potential soft phonon modes that drive second-order phase transitions
[25], predicting structural instabilities [33, 34], and provide intuitive interpretations
of the cohesion of crystalline solids [34]. Using simply the distribution of the mini-
mized electronic energy along a grid of voxels in which the unit cell is partitioned,
this methodology is able to provide the local pressure in each of these voxels just
evaluating how their energy changes as the volume of the unit cell departs from
the equilibrium value. From these thermodynamic-like local pressures, chemical
pressure maps can be built illustrating how high and low pressures are overall asso-
ciated, respectively, with electron core and valence regions, thus providing a wealth
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of information on the existing and potential interactions between the atomic con-
stituents of the solid.

The energies obtained from quantum mechanical calculations have also inspired
the development of analytical tools. The total energies calculated for a compound
can be partitioned in a variety of ways [23, 52, 126]. One of the most fruitful of these
approaches was pioneered by Ruedenberg in the 1960s analyzing the physical origin
of the chemical bond, examining how the separate kinetic and potential energy
contributions lead to the cohesion between atoms in a covalent system [28, 29, 106].
In these studies, a compelling story emerged based on the classic conflict between
the potential energy’s drive to localize electrons around the atomic nuclei, and the
kinetic energy costs of localization: the ability of electrons to delocalize over a pair
of atoms in a bond lowers the kinetic energy penalty to concentrating the electrons
near the nuclei. These conclusions have since been reaffirmed by other authors and
increasingly accurate calculations [1, 37, 111].

So far, the CP approach has mainly been applied to explaining structural phe-
nomena, but the maps generated are also rich in information regarding chemical
bonding. In this chapter, we will see how the chemical pressure method can pro-
vide an new alternative route to visualizing chemical bonding quite distinct from
previous and current extensions of chemical bonding methods based on the elec-
tronic wavefunction.

5.2 structural and computational details

5.2.1 Crystal structure

The electronic structure calculations were carried out following the method de- Unless specified,
atomic units are
always used.

scribed in section 3.2 of chapter 3. Covalent bond has been studied in isolated
molecules, H2, CO2 and S8 and also two- and three-dimensional carbon units of
respectively graphene and diamond. Besides, we explored the CP distributions in
systems displaying covalent and weak intermolecular interaction such as van der
Waals and hydrogen bonding. The former is usually found in graphite and molec-
ular crystals of S8 and CO2 while the latter is exiting between water molecules
(Ice-Ih). Metallic bonding has been studied in crystals of Na (bcc) and along group
15 elements; As, Sb, and Bi. Finally, we show the CP in the ionic crystals like NaCl.
Further details, including the space groups as well as optimized cell parameters are
given below in Table 5.1.

5.2.2 Computational details

Further details regarding to DFT calculations, including the cut-off energies and
Monkhort-Pack k-point grids [83], are provided in Table 5.2. The semi-core (SC)
potential for sodium was used in case of metallic sodium and ionic sodium chloride
because the valence-only (VO) pseudopotential did not provide a simultaneously
coherent picture for both crystals. The active valence space contains 9, 7, 4, 6, 6 and
1 electrons for Na, Cl, C, S, O and H, respectively, and 5 electrons for the group 15
elements As, Sb, and Bi. Graphene

calculations were
performed using a
graphite unit cell
with a long c-axis to
avoid interlayer
interactions.
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Table 5.2: Main computational parameters used in ABINIT and CP computational packages.

Ecutoff k-point grid FFT-grid

H2 100 1×1×1 180×180×180

CO2 170 1×1×1 225×225×225

S8 80 1×1×1 240×240×240

C-graphene 80 11×11×2 40×40×360

C-diamond 100 8×8×8 45×45×45

S8 60 4×4×4 192×192×192

CO2-I 220 6×6×6 150×150×150

C-graphite 80 11×11×4 40×40×108

H2O-Ih 140 4×4×4 150×150× 144

Na 300 6×6×6 36×36×36

As 30 6×6×2 45×45×120

Sb 30 5×5×2 45×45×108

Bi 30 5×5×2 45×45×108

NaCl 70 6×6×6 54×54×54

5.3 results

In formalism described in chapter 2, we saw how the DFT internal pressure is
amenable to being resolved onto maps. As this internal pressure contains all contri-
butions establishing the equilibrium geometry of the structure, the bonding forces
leading to the cohesion of solids and molecules should in some way be visible in
these maps. Looking at the expression of the chemical pressure in Eq. 2.44, we
can foresee some general answers as to how these forces should manifest in the CP
maps. In regions of space where CP is negative, a reduction of the system’s volume
would lower the local energy. This scenario suggests that the ion cores are packed
too sparsely around the electrons. This is in contrast to areas of positive CP, where
increasing the system’s volume is needed for a lowering in local energy. Electrons
are not so comfortable in these regions, as the ion cores seem to be packed around
them too densely. The electron density in regions wishing a reduction of volume
is responsible for the attraction between chemical nuclei while that in the positive
pressure zones acts to drive the nuclei apart. Thus, overall, we can expect low chem-
ical pressures associated with bonds and attractive interactions, whereas positive
chemical pressures would be related to core electrons and repulsive interactions.

5.3.1 H2 molecule

To begin seeing how bonding forces are revealed by CP maps, we start with H2,
the simplest neutral molecule. This system is particularly interesting as it has no
core electrons, and the electronic factors determining the interatomic distance will
emerge entirely from the valence electrons. A look at the 2D slice through the CP
map in Fig. 5.1 reveals that these forces are not uniformly distributed: a continuous
closed region of negative pressure contains the two H nuclei, with the values being
especially low (blue) close to the two nuclei along the bonding path. The positive
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pressures, however, are located further outwards from the nuclei, beyond the black
contour corresponding to CP=0. Overall, then, the forces leading to the cohesion be-
tween the H atoms are concentrated between that nuclei (reminiscent of the cartoon
of electrons acting as glue holding the atoms together), with the drawbacks of bond
formation being felt further out from the bonding region.

Several connections can be perceived between this CP map and the physics of
chemical bond formation described by Ruedenberg [106]. In terms of the attractive
region, note that the strongest attraction is not directly at the midpoint of the inter-
atomic contact, but is instead concentrated near the two nuclei on opposite sides of
the midpoint. This is a manifestation of the relationship between kinetic and poten-
tial energy encoded in the virial theorem: the spreading of the wavefunction across
the two nuclei lowers the kinetic energy cost of tightening the wavefunction around
the nuclei. A deeper potential energy is thus attained for those electrons close to
either of the nuclei in the space between atoms.

The positive chemical pressure located away from the bonding region close to theA promotion state is
a promolecule

representation of the
system built with

atomic-like
electronic densities
consistent with the
molecular solution.

nuclear positions (core), the kinetic energy pressure in Ruedenberg’s words, can be
understood in as promotion effect. In these outer regions, the potential is more like
that of the free atoms; the deviations from the free-atom wavefunctions then, locally,
are perceived as a destabilizing perturbation.

While these two opposing effects cancel each other out at the equilibrium geom-
etry, they are distributed in very different ways. The attractive CP region is small
but contains relatively large magnitudes, with the range of negative CP values being
between -0.85 and 0.00 a.u. (1 a.u. = 29422 GPa). The repulsive region, on the other
hand, consists essentially of the rest of space, with very small values being spread
over this expansive volume, between 0.00 and 0.02 a.u.

Another way of visualizing these features, which will become useful for the more
complicated structures below, is through isosurfaces, as shown in Fig. 5.1-b. Here,
isosurfaces of one selected positive and one selected negative CP value, +0.006 a.u.
(white) and -0.01 a.u. (black), respectively. In this image the cylindrical symmetry
of the molecule is apparent, with the negative CP isosurface

enclosing a volume containing the two nuclei as expected from the 2D plot. The
positive isosurface, on the other hand, highlights the concentration of positive CP at
the two ends of the molecule (resembling the anti-bonding molecular orbital) and
in a ring dividing the molecule into two equal parts containing one H atom each.

The way in which these positive and negative CP features control the H–H bond
distance can be visualized by following the evolution of the CP isosurfaces over a
range of H–H distances. This process is carried out in Fig. 5.2, with isosurfaces at
± 0.009 a.u. for distances between 0.65 and 0.85 Å.

At 0.85 Å, plot is dominated by the negative CP features, with only the slightest
of dots of positive CP on the opposite sides of the molecule. The overall negative
CP experienced by the molecule (average = - 0.7389 a.u.) reflects that the distance is
longer than the ideal. As the distance is decreased, the negative CP surface remains
largely unchanged, with the major difference being the growth of the positive CP
lobes on the back sides of the bond. By 0.70 Å, well past the equilibrium distance
of 0.77 Å, a ring of positive pressure begins to become apparent around the waist
of the molecule. Finally, at 0.65 Å, the positive CPs growth to the point that the
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(a) (b)

Figure 5.1: Chemical pressure plots of a single H2 molecule. (a) 2D map of a plane contain-
ing the two H nuclei. (b) 3D isosurfaces with CP = +0.006 (white) and CP = -0.01
(black).

Figure 5.2: Chemical pressure distributions within a single H2 molecule at several H–H
distances. 3D isosurfaces with CP = +0.008 (white) and CP = -0.008 (black). The
H–H distances denoted below each map are in Å.

negative CP region begins to shrink, qualitatively agreeing with the overall positive
pressure now calculated for the molecule.

5.3.2 More complicated molecules: CO2 and S8

As we move beyond H2 , one major difference is going to be the introduction of core
electrons for heavier atoms. To some extent, the effects of the core electrons will be
folded into the pseudopotentials we use for the atoms. Such features are illustrated
by case of the CO2 molecule (See Fig. 5.3). As can seen most easily in the CP profile
across the molecule in the right panel, the deep wells of negative CP occur along the
C–O contacts serving as the attractive component of the C–O interactions. Similar
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to the case of H2, the deepest minima do not lie at the center of the bonding region,
but instead occur closer to the nuclei on the two sides of the bond. This time the
minimum closer to the oxygen atom is significantly deeper, perhaps reflecting the
oxygen atom’s higher electro-negativity and the polarity of the bond.

Figure 5.3: (a) 2D chemical pressure map of CO2 molecule. (b) 1D profile of chemical
pressure along the bonding line of a CO2 molecule.

Several other new features are also apparent here. While in H2 the positive CPs
were spread out through the external area of the molecule, now they are concen-
trated into peaks centered on the C and O nuclei. The pseudopotential cores and
perhaps the inner regions of the C 2s and O 2s orbitals now represent the major
restoring force acting against the bonding regions’ call for the contraction of the
molecule. In addition, smaller positive CPs also occur the outskirts of the molecules,This behavior is

always seen for
isolated molecules.

decaying toward zero at far distances.
Another new entity appearing in CO2 is well of negative CP projecting from the O

atoms outwards along the axis of the molecule. In shape and orientation, these neg-
ative CP lobes resemble the sp- hybridized lone-pairs that are commonly drawn for
the CO2 molecule. Given our common association of lone- pairs with repulsion, as
in the valence shell electron-pair repulsion (VSEPR) model, assignment of negative
CP to a lone-pair is at first surprising. However, what this picture suggests that the
lone-pair region in fact helps drive the contraction of the molecule. One explanation
for this could be in how the electrons of the C-O bonds are distributed. They are
focused in the C–O bonding region, opening access to the core on the opposite side
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of the O atoms. The enhancement of this effect upon the contraction of the molecule
would then lead to the negative CPs in the O lone-pair region. This view gives an
alternative interpretation of the usefulness of the VSEPR model: electron pairs tend
to maximize their distance from each other to support access to cationic core from
different angles, rather than due to direct Coulombic repulsion between them.

Figure 5.4: Chemical pressure plots of a S8 molecule. (a) 2D cross- section along the plane
intersecting the eight S-S bonds. Black curves: CP=0 contour. (b) 3D isosurfaces
with CP=+0.02 (white) and CP= -0.17 (black).

The generality of these features for covalent systems can be seen in our last molec-
ular example, the S8 crown molecule (which we will soon examine in the context
of crystalline sulfur). Taking a horizontal cross section through the molecule’s boat-
like geometry yields the 2D CP map of Fig. 5.4-a. Each S–S contact appears with
blue dumbbell of negative CP similar to that observed for H2, but with the minima
now closer to the bond centers. In the 3D plot, these negative pressure features now
manifest as black peanut-like shapes representing the S–S bonds, as well as a black
lobe pointing outwards from each S atoms coinciding in space with the expected po-
sitions of sp2- hybridized lone-pairs. The strongest positive pressures are associated The intense positive

pressure is always
indicated by red in
the 2D plot and
white surfaces in the
3D plot

with electron densities around the nuclear positions. Along with the core regions, a
positive chemical pressure zone appears inside the boat S8 configuration revealing
the existence of steric repulsions. As with H2 and CO2, the CP distributions allow
not only a visualization of the chemical bonds, but put them in the context of a
balance of forces within the molecule.
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Figure 5.5: 1D CP profiles along the four different S–S paths in the S8 boat configuration.

5.3.3 Systems built from covalent bonds: Graphene and Diamond

The themes we saw above continue uninterrupted when we build up from simple
molecules to infinite lattices connected through covalent bonds. One simple example
is graphene, in which a single honeycomb net of carbon atoms is held together
through σ bonds and a delocalized π system. The 2D and 3D CP maps in Fig. 5.6
show the now familiar negative CPs along the bonded contacts, with the CP features
necking at the bond centers. Around each C center, this creates a trefoil pattern of
negative CP mirroring their sp2-hybridization.

The most of the positive CP is localized around C nuclear positions, largely filling
in whatever space is leftover by the C–C σ bonds. These positive CP features create
a cloud of positive pressure above and below the carbon layer. Indeed for a CP
value of +0.01 a.u., a continuous non-planar surface tracing out the atomic positions
is obtained. Just at the centers of the hexagonal rings, a white hills of positive CP
emerge also reflecting steric repulsion at the ring centers similar to that we detected
before for the S8 molecule.

Curiously, no appreciable negative CP is detected here for the π interactions along
the graphene layer. Just above and below the C atoms, pits in the positive CP
isosurface can be detected. These depressions may reflect the stabilization of the π
electrons as π overlap allows them to grip more tightly to the C cores. The overlap
of these regions with the positive CP components of the σ interactions would then
prevent strong negative CP features from appearing at these points.

The CP map of the C-diamond, the quintessential covalent solid, can be under-
stood in a similar fashion (Fig. 5.7). Negative CP features are again focused in the
bonding regions along the C–C contacts, with positive CP poking out from the cores
into the spaces between the bonds. As is shown with a [110] cross-section, the neg-
ative CPs between the C atoms show peaks close to the cores as in graphene. These
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Figure 5.6: Chemical pressure plots of graphene. (a) 2D map of the [0 0 1] plane containing
the C atoms. (b) 3D isosurfaces with CP = +0.01 (white) and CP = -0.6 (black)
with black curves: CP=0 contour.

are somewhat dwarfed, however, by a new feature: a CP minimum directly at the
bond center, which is less understandable from the Ruedenberg model of bonding.

Figure 5.7: Cross-sections chemical pressure distributions of the diamond polymorph of C
through [1 1 0] plane.

The origin of this CP pattern can be discerned by separately plotting the energetic
contributions of the mapped energy as will be discussed in the next chapter.

5.3.4 Systems displaying both intra- and inter-molecular interactions: Graphite,
CO2 and S8

In the examples we have thus far considered, the atoms of the structures have been
linked together through covalent bonds. For molecules or the graphene sheets we
discussed, these would rarely occur in isolation, but would instead interact with
other molecules in their surroundings through non-covalent forces, such as van der
Waals forces. Moving to molecular crystal structures offers an opportunity to ex-
plore the how such intermolecular interactions are manifested in the CP function
(recognizing the well-known limitations of using DFT to treat van der Waals inter-
actions).

Each carbon atom has an electronic configuration of 1s2 2s2 2p2. In graphite, the
2s, 2px and 2py electrons form three sp2 hybridized orbitals directed 120◦ apart on a
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layer plane. The 2pz electron, on the other hand, delocalizes in a π-orbital symmetry.
Such type of electron delocalization could be identified by negative pressure (black
waves) between the graphite layers (Fig. 5.8a), whic we assumed that is associated
to the weak van der Waals forces between the layers.

Figure 5.8: Chemical pressure plots of graphite. (a) 3D isosurfaces with CP=+0.07 (white)
and CP=-0.02 (black). (b) 2D map of the [0 0 1] plane containing C atoms.

Let’s start with the graphite structure, built from ABA stacking of graphene layers
held together with weak van der Waals intralayer interactions. The CP map of
graphite is shown both as a cross-section through a single layer and with isosurfaces
for 3D structure in Fig. 5.8. Within the individual layers, the CP distribution is very
similar to that of the isolated layer, emphasizing the secondary nature of the inter-
layer interactions. Each C atom has three wells of negative CP, one directed toward
each of its C neighbors in the sheet (See Fig. 5.9). The remaining space around
the C core is taken up by positive CP, corresponding to regions of space where the
deviations from the wavefunction away from the atomic orbitals of a free atom are
not compensated by bond formation.

The major differences between the CP features of graphene and graphite are in-
stead appearing at the surfaces of the layers. In graphene, the spaces above and
below the graphene layer exhibit positive CPs, again arising from the perturbations
to the C atoms to allow C–C bond formation. In graphite, this situation changes,
with negative CPs now occurring between the sheets. The presence of negative
pressure in this interlayer region is reassuring, as it suggests an attractive force is
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Figure 5.9: 1D profile of chemical pressure distributions along the C–C covalent bond.

holding the layers together. Perhaps more interesting, though, is the way in which
it is distributed. As in the covalent bonds seen earlier, the negative CP is concen-
trated not at the mid-points between the interacting atoms, but instead closer to the
atomic centers; in this case, the isosurfaces show black surfaces that stick close to
the upper and lower sides of each layer. This suggests a small degree of covalency
to the interaction, the source of the band dispersion along the interlayer direction.

The molecular crystals of S8 (homonuclear) and CO2 (heteronuclear) have been
chosen to be compared with their isolated forms. In both cases, the CP maps (see
Figs. 5.10 and 5.12) are able to identify the S8 rings and CO2 linear molecules
within their respective unit cells. In the case of the 2D dimensional plots, the zero
pressure isoline constitutes a clear boundary that encloses the nuclear positions.
They are identified by positive (red) chemical pressure. In the case of S8, the CP is
represented in the same equatorial plane intersecting S–S bonds as in our previous
example of the isolated molecule. Therefore, we really observe projections of the CP
from these nuclear positions and the S–S bonds. The latter are identified by dark
blue small lobes between the S nuclei (see Fig. 5.10b).

One important difference with respect to the molecule is that no positive pressure
is found inside and outside the rings, being the CP values in these regions around
-0.02 a.u. We noticed that, as in graphite, S8 rings are located in a similar stacking
with S atoms on top and below the centers of the S8 boat configuration as shown in
Fig. 5.11. As a result, weak interactions between the S8 units could be identified by
the negative CP in this region.

As regards CO2, we observed regions of negative pressure associated again with
the C–O bonds and the O lone pairs. Outside the CO2 units, the background of
CP, as in the S8 molecular crystal, is negative and also close to -0.025 a.u.. Similarly,
this is probably an indication of the weak but attractive interactions between the
molecular-like units of these crystals. The 3D plots allow visualizing the planes
chosen for the 2D representations and clearly show the bonding within the S rings
and in the CO2 molecules.
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(a)

(b)

Figure 5.10: Chemical pressure maps of the S8 molecular crystal structure through a plane
(a) intersecting S–S bonds and parallel to the planes containing the two sets
of four S atoms of the S8 boat configuration (b) containing three consecutive S
atoms.

The comparison with ELF results (See Fig. 5.12b) shows that the analogies are
more than aparent. The ELF topology of CO2 polyomorphs has been discussed in
details by Contreras-García et al. [16]. ELF is also able to identify CO2 units with
basins associated with C and O cores, the double C–O bonds, and the O lone pairs.
We would like to highlight that the importance of this similitude is in the origin of
the scalar field used in the representations. Whereas the ELF is a function based on
the electron density, the chemical pressure is based on the energy.

5.3.5 Chemical pressure of the hydrogen bond: ice-Ih

We now turn to another type of intermetallic interaction, the hydrogen bond. These
interactions have often considered as being primarily electrostatic in nature, with
the partial positive charge of a H atom in an X- H bond (X = O, N, F, or other
electronegative atom) being attracted to the lone-pair of a nearby atom. This pic-
ture, however, has been enriched by theoretical calculations such experimental data
as NMR couplings constants, which show that hydrogen bonds have a substantial
quantum mechanical component, most easily understood in terms of the partial do-
nation of the lone-pair into the X-H σ∗ orbital. This element of covalency in the
hydrogen bond is readily seen in the CP maps, as we will now demonstrate using
the low pressure Ih phase of ice.
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(a)

(b)

Figure 5.11: Stacking between the S8 units in molecular crystal structure (a) projection along
c-axis. (b) through bc plane.

In this structure, the oxygen atoms exhibit the typical four-fold coordination by H
atoms forming a distorted tetrahedral in which two hydrogen atoms are covalently
bonded while other two come from neighboring water molecules. This is displayed
in the 3D plot of Fig. 5.13. If we look at the white lobe corresponding to one of
the central oxygens of the selected blue plane, we observe two black lobes emerging
from it toward the closer H atoms, while a black disk marks appears at the more
distance H atoms. The former represent covalent bonds similar to those we have
seen for other molecules.

A 2D cross-section of the CP map allows us to look more deeply into the CPs
of the O-H and O· · ·H interactions (See Fig. 5.13a-top). The red color is associated
with the high pressure regions surrounding the oxygen position, while the O-H· · ·O
lines are mostly faint blue indicating negative CP. More importantly, the intensity
of the blue color in the O-H· · ·O regions becomes darker when we move from the
H-bond to the covalent H–O bond. We noticed that the negative pressure associated
with the H-bond does not touch the oxygen position as the covalent bond does. The
position of the H nucleus is inside the dark blue lobe of the covalent bond.

The relative scales of these interactions are more clearly illustrated in a 1D profile
of the CP function along a O-H· · ·O path (Fig. 5.13b). Here, the covalent bond ap-
pears as a deep double well of negative pressure, with the H atom situated toward
the outside of one of these wells. The hydrogen bond region is much more shallow,
and almost resembles and extension of the negative CP of the covalent bond into
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(a)

(b)

Figure 5.12: Chemical pressure maps and ELF of the CO2-I molecular structure of carbon
dioxide. (a) 2D [1 1 0] plane containing nuclei of C and O atoms of CO2 units
(left) 3D isosurfaces with CP = +0.5 (white) and CP = -0.3 (black) (right). (b)
3D isosurfaces with ELF = 0.8.

the intermolecular region. In the oxygen side of the hydrogen bond there is a shoul-
der of positive pressure. The source of these CP features can be detected through
examining separately each energetic contribution to the chemical pressure as will
be discussed in the next chapter.

5.3.6 Metallic bonding: Na, As, Sb and Bi

It is well-known that the valence electron density of a metal can be thought of as
derived from a homogeneous electron gas within the free electron model. With
this in mind, we should not expect negative chemical pressure in specific localized
regions of the metal but in a plateau dominating the interstices around the atomic
positions of positive chemical pressure. As illustrated in Fig. 5.14 (left), there is a
circular isoline of a zero value enclosing the Na nuclear positions. The spherical
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(a)

(b)

Figure 5.13: Chemical pressure plots of water in the Ice-Ih phase. (a) 3D isosurfaces with
CP = +0.1 (white) and CP = -0.016 (black) and 2D [1 1 0] plane containing nuclei
of water molecules with H– O covalent bonds and H· · ·O hydrogen bonds. (b)
1D profile of CP versus distance along covalent and hydrogen bonds.



76 chemical bonding in the light of chemical pressure concept

symmetry of the chemical entities associated with the Na atoms can be detected in
both 2D and 3D CP maps and correspond to Na cores. For a low positive value
of CP +0.02 a.u., the isosurface encloses an sphere centered at the nuclear position
of Na as illustrated in Fig. 5.14 (right). The plateau region of negative chemical
pressure can also be clearly visualized.

Figure 5.14: Chemical pressure plots of metallic Na in the bcc structure. (Right) 3D isosur-
faces in the conventional cell with CP = 0.02 (white). (Left) 2D [1 0 1] plane at z
= 0 in the conventional cell.

The expected increasing metallic character as we go down along the group 15 is
explored by analyzing the CP plots of As, Sb, and Bi (See Fig. 5.15). For the overal
comparison, it is convenient to use a single CP scale for the three crystals. Thus,
the intensity and variation of the blue color in the intestitial space provide a first
visual indication of the trend in the metallic character along this series. As expected,
the observed sequence of increasing metallicity is As, Sb, and Bi. Besides, Fig. 5.16

shows the trend of CP along the nearest neighbor (nn) and next nearest neighbor
paths.

These trends can be used as a basis for a CP-based definition of metallicity. To
give a quantitative account, we have tested the validity of two different indexes of
metallicity. The first index was proposed by Silvi and Gatti [117] and measures the
delocalization within a metallic structure as the ELF difference between the max-

Figure 5.15: DFT-CP cross sections through the [1 1 0] plane in As, Sb, and Bi (from left to
right).
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(a)

(b)

Figure 5.16: Chemical pressure versus distance of metallic crystals As, Sb, and Bi along (a)
the nearest neighbor (b) next nearest neighbor paths.

ima and first-order saddle point of the valence basins. This index can be adapted
and reformulated for these specific compounds using chemical pressure values as
follows:

∆(CP) = CPnn −CPnnn, (5.1)

where CPnn and CPnnn are the absolute values of the lowest chemical pressure
values along the nearest neighbor and next nearest neighbor paths, respectively.
Accordingly, we have obtained decreasing ∆(CP) values of 0.0082, 0.0074 and 0.0038
a.u. for As, Sb, and Bi, respectively. The chemical pressure difference is the lowest
in Bi since the delocalization is the highest, in agreement with the greatest metallic
character as we go down along the elements of group 15.
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Figure 5.17: Chemical pressure plots of ionic NaCl in the rocksalt structure. (Right) 3D
isosurfaces with CP = +0.026 (white) and CP = -0.026 (black). (Left) 2D [0 1 0]

plane at y = 0.

The second index was recently proposed by Jenkins [61]. According to the the-
ory of atoms in molecules (AIM), the bond metallicity can be determined from the
electron density (ρ) properties at the bond critical point (bcp) using the ratio:

ξ(rbcp) =
ρ(bcp)

∇2ρ(bcp) , (5.2)

This can be written within the chemical pressure framework as follows:

ξ(CP) =
CPnn

∇2CPnn
(5.3)

Interestingly, this ratio gives an ascending order of 0.165, 0.244 and 0.299 for As,
Sb, and Bi, respectively, thus confirming the expected metallic trend.

5.3.7 Ionic bonding: NaCl

The zero CP isoline is able again to identify the meaningful chemical species in the
ionic rock-salt structure of NaCl. Cations and anions are visualized with spherical
shapes according to our 2D and 3D plots. The highest positive pressure is localized
at the Na+ positions, whereas the positive CP value associated with Cl− is lower.
This result is within the expectations for a higher electron density on the cation
compared to the one on the anion. The interstitial space has low and negative CP
values. In the 3D plot, it is however observed that the drop in CP from the zero value
isoline follows an isotropic behavior, with spherical black isosurfaces surrounding
the concentric isosurfaces of positive pressure (See Fig. 5.17).
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6.1 introduction

We have proposed the use of chemical pressure (CP) concept as a convenient tool
to identify different chemical bonding networks in crystalline solids display-

ing various forms of localized and non- localized interactions, including covalent,
ionic, metallic, van der Waals and hydrogen bonding as described in chapter 5. This
was achieved by coupling the chemical pressure analysis within the framework of
the density functional theory (DFT-CP program). In this chapter, we examine sepa-
rately each energetic contribution to the chemical pressure map in a straightforward
way to understand the source of the positive and negative CP regions within the
crystalline unit cell space. We observed that the four meaningful energetic contribu-
tions to the chemical pressure, the kinetic, exchange-correlation, local pseudopoten-
tial, and Hartree, show characteristic features just around the nuclei and along the
bonding paths showing a flat behavior in the interstitial space. This analysis reveals
systematic trends that allows us to draw some general conclusions. Overall, kinetic
chemical pressure is positive and dominates the core regions whereas the local pseu-
dopotential contribution is responsible for the localized covalent bonding. It is also
worth to emphasize that lone pair regions exhibit negative values of chemical pres-
sure for the four mapped contributions surrounded with a zero value isoline only
in the kinetic energy and local pseudopotential maps. Our analysis leads to an inter-
esting analogy between metallic and ionic systems, both displaying the same trends
for the local pseudopotential and the total chemical pressure one-dimensional pro-
files. Weak interactions and hydrogen bonding are identified by very low values
of all CP contributions around the center of the interaction path along with a dis-
tinctive behavior of the Hartree and local pseudopotential terms around the nuclei
positions.

6.2 results and discussion

6.2.1 Chemical pressure contributions of isolated Molecules: H2, CO2 and S8

We will follow almost the same sequence as of the previous chapter in discussing
separately the energetic contributions to the chemical pressure of the systems pre-
sented in chapter 5. Then we will start with the simplest molecule, H2 molecule, in
which the H core is empty. Figure 6.1a shows the pure CP maps of each contribution
separately.

The cross sections of each energetic contribution were plotted using the CP orig-
inal scale. The KE is mostly positive over the entire unit cell except in regions
associated with the bonding between the H nuclei. Hartree term is also positive
at each voxel of the unit cell, including a small region with negative value, nearly
zero, around the H2 molecule. Rescaling the four cross sections, it is shown that
the negative CP features (blue) near the nuclei are due to the XC and Local PSP
terms while intense positive pressure (red) is surrounding the H atoms and along
the bonding region is mainly from respectively KE and Hartree terms. Another way
to explore the CP maps of the main four mapped energetic contributions is to select
the maximum positive and minimum negative CP value in the four CP maps and
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(a) Original CP scale

(b) Rescaled

Figure 6.1: DFT-CP distributions calculated for isolated H2 molecule. (a) Cross sections of
the four separate energetic contributions through the nuclear positions using the
original scale. (b) Same cross sections in (a) but adjusted to a common scale.

rescale them as shown in Figure 6.1b. Then, it is easier to identify where the strong
positive and negative features come from. Since the four CP maps have a common
scale, the positive pressure (red) arises from the KE and Hartree terms while the
negative pressure (yellow-blue) is mainly due to the local potential and XC terms.

In Fig. 6.2, the covalent H–H bond appears as a deep double well of negative pres-
sure, with the H atom situated toward the outside of these wells. Positive Hartree
and negative XC components are opposite and cancel each other. However, KE term
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Figure 6.2: 1D plot displaying the variation of the total mapped CP and each mapped ener-
getic contribution with distance between the H nuclei

is almost zero at the bond center and also near the nuclei. Hence, the total mapped
CP comes mainly from the local potential contribution which is the most negative
term in the CP map. The negative pressure region was expected since the H core is
empty.

In case of isolated CO2 molecule, as shown in Fig. 6.3b, The high positive pressure
at the nuclei is because of the well localized electrons where the kinetic energy is
maximum. Besides, the local pressure is a non-positive function between the nuclei.
This implies that the potential becomes more negative as the cell contracts. Hence,
the local component provides a severe negative feature between the atoms while
both KE and Hartree components provide the more positive features at the atomic
positions. The total mapped CP along the CO2 molecule is very defined by KE and
local potential contributions since their maps display the most positive and most
negative pressure values, respectively. The bonding electrons and the lone pairs of
O are detected by intense negative pressure (blue). As done with the H2 molecule,
the cp maps of the energetic contributions were rescaled in Fig. 6.3b using the
maximum positive and the minimum negative CP values shown in the top panel.

The variation of CP with distance along the bonding path of the linear CO2
molecule is shown in Fig. 6.4. Near the atomic cores, the KE term is maximum while
the rest of the contributions are almost zero. Also Hartree contribution changes in a
positive scale indicating that it becomes more positive as the cell contracts since the
bonding electrons experience a higher repulsion forces at lower volume.

Orthorhombic sulfur displays S8 molecules with boat configuration in which a
pair of four S atoms forming a square are lying in two different planes [96]. In
Fig. 6.5a, we show a cross section of the resulting total mapped CP distributions
along a plane intersecting the S8 boat leaving four S atoms at each side of thatTotal mapped CP

(TMCP) is the total
CP without adding

the non-mapped
contributions to the

background.

plane. Also another cross section, including three S atoms connected by two covalent
bonds, is shown in the right panel. The bond between S atoms is marked by intense
negative pressure (blue). The most intense positive pressure is located at the nuclei
while a region of negative pressure, which is nearly zero, is centered inside the boat
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(a)

(b)

Figure 6.3: DFT-CP distributions calculated for isolated CO2 molecule. Cross-sections of
the energetic contributions to CP (a) using the original CP scale and (b) rescaled.
Black contours drawn for CP=0.0 to indicate transitions between negative and
positive CP values.
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Figure 6.4: 1D profile of the chemical pressure contributions along the linear CO2 molecule.

configuration. As seen in the previous isolated systems, the CP in the space faraway
from the molecule is positive and gradually decreases to zero as the distance from
the nuclei increases. Moreover, a region of negative pressure (green) is assumed to
be associated to the lone pairs of S (See Fig. 6.5a-right).

Now we will explore the source of these CP features in the light of the mapped
energetic contributions. Figure 6.5b shows how the CP changes between atoms. The
most intense CP is localized near the nuclei. The KE and Hartree components are
positive functions along the S–S bond while the local potential and XC components
show negative behavior. It seems that the weak negative pressure seen at the center
of the boat configuration of S8 molecule in Fig. 6.5a-right comes from both local
potential and XC components since their cross sections show negative pressure at
the same region (See Fig. 6.5b). Another possibility to explore the CP distribution
of each energetic component along three consecutive S atoms connected by two
bonds is shown in Fig. 6.5c. In these cross sections, the lone pairs of one S atom
are identified by negative pressure region in KE, XC and local potential components
while by positive Hartree pressure. The other lone pairs are located in another plane
nearly perpendicular to this.

In addition, we show in Fig. 6.6 the trend of the total mapped CP (TM CP) be-
tween two opposite S atoms passing through the center of the boat configuration.
Although it is seen of positive pressure in the total CP cross section in Fig. 5.4b,
the S8 boat configuration center is seen now of negative pressure. Hence, this cen-
ter is positive because of the homogeneous addition of the total non-mapped ener-
getic contributions (≈ +0.001) to each voxel in the cell. Examining the non-mapped
components, Ewald energy pressure is higher positive than non-local components.
Ewald energy represents the Coulomb repulsion between the ions in a crystal lattice
which becomes positive as the cell contracts.
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(a)

(b)

(c)

Figure 6.5: DFT-CP results of isolated S8 molecule. (a) Cross section of the total mapped
CP through (left) a plane intersecting S–S bonds (left) a plane containing three S
atoms connected by two covalent bonds. Cross sections of the CP contributions
through same plane (b) in a-left (c) in a-right. Isoline of zero pressure is added
to all the cross sections.
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Figure 6.6: Chemical pressure contributions along two bonded S atoms in S8 molecule.

6.2.2 Infinite 2D and 3D covalent lattices: Graphene & Diamond

In this part, we will discuss the CP features obtained in chapter 5 for these lattices
built from only covalent bonds displaying two- and/or three-dimensional bonding
networks. We will start with graphene. In Fig. 6.7a, we show a cross section of theGraphene was

represented as a
graphite unit cell

with a long c-axis
(10 Å) to avoid

interlayer
interactions.

total mapped CP map in which the in-plane C–C covalent bond is identified by a
region of intense negative pressure (blue) and the nuclei are decorated by intense
positive CP and separated by isoline of zero pressure from the background pressure.
We have noticed that the positive pressure located at the hexagon centers of the
graphene layer (See Fig. 5.6) disappear by ignoring the non-mapped contributions.

Figure 6.7b shows separate cross sections of the energetic contributions to the
CP. KE and Hartree terms are positive over the entire unit cell while XC and local
potential terms are negative. The maximum positive pressure is localed as usual at
the nuclei. The hexagon centers of each graphene layer show negative total mapped
CP which indicates a higher contribution from local potential and XC terms. The
CP between the graphene layers is positive and changes to nearly zero. Besides,
Figure 6.8 illustrates the interaction along the C–C bond. Here, again, the covalent
bond appears as a deep double wells of negative pressure, with positive pressure
at the nuclei. The positive pressure around the carbon cores arises from the kinetic
energy term whereas the negative pressure along the bonding path is mainly due
to the local potential. A sudden drop in the KE occurs on moving from the nuclei
outward, since the highest electron localization is located near the nuclei.

Diamond has a three-dimensional crystal structure in which the carbon bonding
involves sp3 (tetrahedral) hybridization. In the unit cell, each six carbon atoms form
a chair configuration. The total mapped CP map of diamond crystal is shown in
Figure 6.9a. A cross section taken through [1 0 1] plane containing chains of bonded
C atoms. The atomic positions are detected by intense positive pressure (red) which
are embedded in a background of positive pressure. Regions of negative pressure
are located between the C atoms and separated by isoline of zero pressure from the
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(a)

(b)

Figure 6.7: DFT–CP distributions calculated for isolated graphene (a) cross section of total
mapped CP taken perpendicular to c (b) similar to the cross section of part a
but for each energetic contribution. Black contours corresponding to CP=0.0 are
overlaid on the map.

Figure 6.8: 1D profile of the chemical pressure contributions along the C–C bond path
(solid) and perpendicular to graphene sheet (dashed).
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background. The left panel of Figure 6.9a shows a background of mostly blue color,
then we couldn’t recognize the variation of CP along the bonding and interstitial
spaces. In Figure 6.9a-right, We focus on the negative pressure features by rescaling
the pressure range from -0.032 to 0.1 a.u., the most intense positive pressure is
located around the atomic cores and lower positive pressure, close to zero, is located
is the interstices. On the other hand, the negative pressure is accumulated directly
between the C atoms and it appears as a region of three negative minima at the two
bond ends and its center.

(a)

(b)

Figure 6.9: Cross-sections of chemical pressure of diamond. (a) Total mapped CP of [1 0 1]
plane with pressure variation in the range of -0.032 to 0.100 a.u. and narrow
range. (b) Mapped energy taken through a plane containing three C atoms
connected by two bonds. Black contours corresponding to CP=0 are overlaid on
the map.

For the first time we observed a CP minimum directly located at the bond center.
The origin of this CP pattern can be discerned by separately analysing the CP contri-
butions (Fig. 6.9b). KE is mostly positive everywhere in the crystal structure except
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along the C–C bonding path which varies in a small negative CP scale. As usual,
maximum of KE is located at the nuclei (red) and changes to a flatter region around
the bond center. Hartree component is negative near the core while it becomes pos-
itive at the bond center and in the interstitial spaces which implies a more positive
value as the cell contracts. Both XC and local potential components are negative
functions along the bonding region. The local potential term has a third minimum,
of lower negative CP value, at the bond center. The odd behavior of the local PSP
and XC terms at the bond center can be related to the sp3 hybridization of carbon
atoms. In contrast to other systems, the XC term usually has a smaller negative
CP range (very close to zero) than the local potential over the entire unit cell and
also at each voxel. Figure 6.10 shows that around the bond center, the XC varies
in a more negative CP range than the local component, and this results in a mini-
mum of the TM CP at the bond center. The XC component is negative everywhere
except some positive interstitial regions while the local potential is positive in the
crystalline spaces.

Figure 6.10: 1D profile of the chemical pressure contributions along the C–C bond path in
diamond.

6.2.3 Crystals displaying both Intra- and Inter-molecular Interactions: Graphite, S8
& CO2

Moving to molecular crystal structures displaying non-covalent forces, such as van
der Waals forces, offers the opportunity to recognize the differing behavior of the
CP contributions of covalent and non-covalent interactions. In Figure 6.11a, we
show a cross section through [0 0 1] plane calculated for the Bernal-stacked bilayer
graphene, where half of the carbon atoms in the second layer sit on top of the
empty centers of hexagons in the first layer. Each graphite layer displays two types
of interaction: intralayer covalent C–C bond and interlayer weak van der Waals
interactions produced by delocalized π-electron densities. The total mapped CP
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(a)

(b)

Figure 6.11: DFT-CP distributions calculated for graphite (a) cross section of total mapped
CP in one layer (b) pure CP (without non–mapped terms) along two adjacent
in– and out–plane C atoms (c) separate cross sections of each contribution to
the mapped energy. Black contours corresponding to CP = 0 are overlaid on
the map

map of a plane containing one layer displays negative pressure (blue) along the
covalent C–C intralayer interactions with intense positive CP (red) at the nuclei.
Accordingly, the covalent bond is characterized by two negative pressure ends with
a lower negative at the bond center. The hexagonal pattern has an area of low
positive pressure surrounded by isoline of zero pressure value.

We have noticed that the total mapped CP at the hexagon center changes from low
negative to low positive on moving from isolated to molecular structure, respectively.
This change can be associated with the weak interactions exist between the layers
of graphite structure. Looking at the separate cross sections of the CP contributions
of Figure 6.11b, again, the positive pressure located around the carbon cores is due
to the KE term. The negative pressure located at the two ends of the C–C covalent
bond arises from the local PSP term. In contrast to Figure 6.7b, the CP maps of
KE and XC terms display similar features within same CP scale, whereas the local



6.2 results and discussion 91

and Hartree potentials vary in a wider CP range in case of graphene besides the
existence of both negative and positive CP at the hexagon centers of graphite layers.

Figure 6.12 illustrates the two types of interaction between the carbon atoms, in-
plane covalent bond (C1-C2) and out-plane weak van der Waals interactions (C2-C3).
We can observe, again, a maximum positive KE located at the nuclei and a double
deep wells of local potential is located very close to the core. While the opposing
effects of Hartree and XC terms cancel each other out.

Figure 6.12: 1D profile of the chemical pressure contributions along in-plane covalent bond
(C1–C2) and out- plane weak interactions (C2–C3) of graphite.

The weak interactions between the graphite layers, on the other hand, are char-
acterized by nearly flat CP region and close to zero (See Figure 6.11b dashed line).
The local potential shows a positive maxima of pressure with negative minima of
Hartree near the carbon cores. Interestingly, This is the first time to see the local
potential contribution varies in a positive CP scale. As seen in the previous systems,
covalent bonds are always characterized by a negative local potential term. It seems
to us that delocalized interactions will be also detected by positive value of local PSP
term. This assumption will be more stressed through other crystals in the following
sections.

Moving to the next system, molecular crystal of S8, we will discuss the contri-
butions to the CP and to be compared with the results discussed for the isolated
molecule. Figure 6.13 shows cross section of the total mapped CP through a plane
containing three consecutive atoms connected by two covalent bonds.

The CP map is characterized by regions of negative pressure surrounded by iso-
lines of zero pressure value and a background of positive pressure in which the
atoms are embedded. The regions of negative pressure (blue) are associated with
the S–S covalent bonds and the lone pairs of sulfur atom. Overall, this picture was
seen before in the isolated molecule (See Fig. 6.5), but some differences could be ob-
tained between the two figures. First, the covalent bond in the isolated molecule is
identified by more intense negative pressure (CP ≈ -0.45 a.u.). Second, the lone pair
of electrons of sulfur atom is embedded in a negative pressure background(orange)
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Figure 6.13: Cross-section of chemical pressure of molecular S8 crystal through a plane
containing three sulfur atoms bonded by two covalent bonds.

in the isolated molecule whereas they are surrounded by intense positive pressure
(yellow) in the molecular structure. Another point is that the whole molecule is sur-
rounded by a zero pressure isoline in the isolated structure separating the S8 ring
from the positive pressure background. We assume that this different environment
around the S8 molecule in isolated and molecular arrangement due to the weak van
der Waals forces between the S8 rings in the molecular structure.

We have noticed that the stacking between the S8 rings is nearly similar to that
between graphene layers in graphite structure. Projection along c-axis of the S8
rings is shown in Fig. 6.14 in which the S8 rings appear to have ABA stacking-type
in which one-quarter of the S8 atoms (red/blue) in one ring sit on top of the empty
space of octagones below/above it. The CP at the S8 ring center and in interstitial
spaces is nearly zero and it changes to negative pressure (≈ -0.02 a.u.) by adding
the non-mapped energy, this seen in graphite/graphene pair. These CP features are
assumed, again, due to the weak interactions between the S8 rings in the molecular
structure.

Figure 6.14: Stacking of the S8 units in the molecular crystal. Projection along c-axis.

Regarding the partition into contributions, we can observe, again, that KE and
Hartree terms are positive whereas local potential and XC terms are negative along
the covalent bonding path (see Fig. 6.15 a). The psuedopotential of sulfur contains
six electrons in the valence region, 3s2 3p4, then each sulfur atom has two lone
pairs of electrons. The lone pair of electrons of each sulfur atom can be identified
as a negative region of CP close to the nuclei. Hartree pressure is more positive
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as the cell contracts which indicates the repulsion between the bonding electrons.
However, the local potential is non- positive function along the S–S bond that implies
it becomes more negative as the cell contracts due to stronger interactions between
the bonding electrons with both nuclei, then the overlap between the potentials
increases.

(a)

(b)

Figure 6.15: Chemical pressure contributions of molecular crystal of S8. (a) Cross sections
through a plane containing three nuclei of each S8 unit for the major contribu-
tions to CP. (b) 1D plot of the CP contributions along the covalent S–S bonding
path. Black contours corresponding to CP=0 are overlaid on the map.

The relative scales of these interactions are more clearly illustrated in a 1D profile
of the CP function along the S–S path (See Fig. 6.15b). The CP varies in a flatter
region around the bonding center due to the lowering CP range of both local poten-
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tial and Hartree terms. As seen in graphite/graphene pair, in the isolated structure
(Fig. 6.5a), local and Hartree terms display a wider CP range.

Now, we move to another molecular structure, the linear CO2 structure. Figure
6.16 shows total mapped CP distributions of a plane containing four CO2 molecules,
plane [1 1 0]. As seen in solid S8, the total mapped CP map is characterized by a
green background whose color corresponds to positive pressure near to zero. The
negative pressure is accumulated in regions associated with the covalent bonding
and the lone pairs of oxygen atoms. We focus only on the pressure range from -0.8
to 2 a.u. (right panel), the covalent bonds and the lone pairs of electrons now appear
in dark blue color which corresponds to intense negative pressure.

Figure 6.16: Cross-sections of chemical pressure calculated for molecular CO2 crystal
through [1 1 0] plane.

The partition into CP contributions are shown in Figure 6.17a. We can observe,
again, that the positive pressure around the nuclei arises from the KE contribution
whereas the negative pressure along the bonding path and in the interstices due to
the Local PSP term. There are shoulders of positive pressure due to local PSP term
with negative Hartree contribution situated toward the outside of each well near the
two ends of the CO2 molecule. These features were seen between graphite layers
and also in molecular S8 crystals. These features could be associated with the weak
intermolecular interactions in the molecular structures.

These interactions are more clearly illustrated in the 1D profile of the CP along
the bonding path (See Fig. 6.17b). Overall, the CP distributions in both isolated and
molecular CO2 are very similar. One important difference that could be related to
the weak interactions in the molecular crystal is the positive pressure of the local
PSP term which is not shown in the isolated structure. The total mapped CP is more
negative in the isolated structure. The KE pressure dominates at the nuclei. Hartree
and XC contributions are opposing and cancel each other out along the bond path.
Hence, the TM CP is determined by local PSP and KE terms.
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(a)

(b)

Figure 6.17: Decomposition of the CP distribution of solid CO2 into contributions. (a) Cross
sections of CP contributions through [1 1 0] plane with black contours drawn
for CP = 0 to indicate transitions between negative and positive CP values. (b)
1D plot of CP contributions along the O–C–O bond path in molecular CO2
crystal.

6.2.4 Chemical pressure contributions in hydrogen bond: Ice-Ih

Let’s turn to explore the CP contributions in another type of weak interactions, the
hydrogen bond, in the ice-Ih phase. We have shown in the previous chapter that the
CP formalism can detect and identify localized and delocalized interactions in ice-Ih
(Fig. 5.13a). Here, we will discuss in more details the source of these CP features
and how it could be used to differentiate between covalent and non-covalent bond.
In Figure 6.18a, we show a cross section of the total mapped CP distribution in
the ice-Ih phase. The H atom is embedded in a negative pressure region (blue)
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whereas O nucleus is detected by intense positive pressure (red). Every H2O unit is
separated by an isoline of zero pressure from a positive background. The hydrogen
bond consists of two opposite pressure regions on moving from H nucleus, negative
and positive pressure.

(a)

(b)

Figure 6.18: DFT-CP distributions calculated for ice-Ih. (a) Cross section of TM CP distribu-
tion through [1 1 0] plane at distance zero from origin. (b) Decomposition the
CP distribution into its major contributions.
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As regards the partition into contributions shown in Fig. 6.18b, it is clear that
the KE map shows that intense positive pressure is located at the oxygen nucleus
whereas it drops suddenly, nearly to zero, in the nucleus of hydrogen atom. The XC
term is almost negative over the entire unit cell except in the regions between the
chains of water units, it is flat and close to zero value. The local potential contribu-
tion is negative a long the covalent H–O bond and gradually decreases to zero at the
middle of the hydrogen bond. Hartree map displays the opposite behavior of the
local PSP contribution in which covalent interactions are characterized by positive
pressure whereas hydrogen bond with negative pressure.

The relative scales of these interactions are more clearly illustrated in a 1D profile
of the CP function along a O–H· · ·O path (Fig. ??). In the oxygen side of the
hydrogen bond there is a shoulder of positive pressure due to the local term with
negative Hartree contribution compensated with the increasing positive kinetic core
part. This distribution was seen in previous systems displaying weak intermolecular
interactions (See Figs. 6.12, 6.17b).

6.2.5 Partition of chemical pressure in crystals displaying metallic bonding: Na, As,
Sb & Bi

In this section, we will turn to another type of chemical bond, the metallic bond.
We will show here the partition of the CP distributions of some simple metallic
compounds such as Na, As, Sb and Bi crystal structures into its main major contri-
butions. It is well known that atoms are held together by metallic bond within a sea
of delocalized electrons in metallic crystals.

Let’s start with the sodium in bcc structure. According to the free electron model, Using the semi-core
PSP for Na which
contains 9 active
electrons in the
valence region.

the valence electron density in a crystal structure of a metallic solid is obtained from
the ideal gas in which electron-electron interactions are completely neglected. This
could be seen as a CP plateau in the interstitial spaces between the Na cores. This
behavior is seen also in the contributions as shown in Fig. 6.19a. We can observe
that the intense CP features are accumulated near the nuclei (See Fig. 6.19b). The
positive pressure around the sodium cores arises from the local PSP term whereas
the negative pressure is due to the Hartree contribution.

Interestingly, we see now a new trend of the CP contributions for the metallic
bond which differs from the covalent bond trend, but at the same time, it is analogue
to the contributions trend of weak interactions, as seen in graphite and ice-Ih. The
total mapped CP is positive around the Na–Na path due to local potential and
kinetic energy terms (See Fig. 6.19b). This pressure

becomes negative
when adding the
non-mapped
pressure to the
background as
shown in Fig. 5.14

We have also studied the metallicity in some selected elements of the group 15
of the periodic table, such as As, Sb, and Bi. In the previous chapter, we have
discussed how the CP formalism can be used as a tool to identify and calculate an
index for metallicity in solid crystals (See eq. 5.1–5.3). Here, we will discuss the
partition of CP distributions into contributions to understand the source of these
features. Overall, the positive CP features around the nuclei arise mainly from
the local PSP contribution along with the KE term and compensated by negative
Hartree contribution. The total KE pressure contribution decreases on moving to Bi. KE pressure in As is

0.00352283 a.u. =
103.645 GPa

This can be understood as an indication to the increasing delocalization of electrons,
Ruedenberg’s point of view. In view of the 1D profiles along the nearest neighbor
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(a)

(b)

Figure 6.19: DFT-CP results of metallic bcc-Na structure. (a) Partition of CP into its major
contributions through [1 0 1] at z = 0 with black isolines corresponding to CP=0.
(b) 1D plot of the CP of contributions along the two closest Na atoms path.

path (See panels b in Figs. 6.20–6.22), the KE contribution decreases around the
nuclei, but, at the same time, it increases at the center to a positive value in Bi. This
is accompanied by a decrease in the local PSP term due to stronger interactions as
the cell is contracted.

Moreover, The nuclei are decorated by negative pressure of Hartree contributions
with a very small positive value located between the nearest atoms. XC, on the
other hand, is non-positive function over the entire unit cell of As and Bi, while it
exhibits positive regions around the nucleus of Sb. Interestingly, KE maps of Sb and
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(a)

(b)

Figure 6.20: (a) Cross sections of the CP contributions through the [1 1 0] plane calculated
for As crystal. (b) 1D plot of the CP contributions along the nearest neighbor
path.

Bi show that the outermost shell surrounding the nuclei in red are distorted into an
egg shape. This occurs against the negative pressure in the bonding region as seen
in cross sections of KE (Fig. 6.20–6.22).
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The trend of the local pseudopotential and Hartree terms along the metallic atoms
was seen before in crystals display weak intermolecular interactions. It seems to us
that the change of the local potential from non-positive function to positive one in
the metallic solids is because of the delocalization of the valence electrons and then
the weak attraction of these electrons with the nuclei.

(a)

(b)

Figure 6.21: (a) Cross sections of the CP contributions through the [1 1 0] plane calculated
for Sb crystal. (b) 1D plot of the CP contributions along the nearest neighbor
path.
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(a)

(b)

Figure 6.22: (a) Cross sections of the CP contributions through the [1 1 0] plane calculated
for Bi crystal. (b) 1D plot of the CP contributions along the nearest neighbor
path.
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6.2.6 Chemical pressure contributions in crystals displaying ionic bonding: NaCl

Now, we will go over another type of bonding, the ionic bond. Here, we show the
DFT-CP analysis of in the ionic crystals of NaCl. The semi-core pseudopotentials of
metals are available at the ABINIT website. We will also discuss the effect of usinghttp:

//www.abinit.

org/downloads/

psp-links/

psp-links/hgh

such high number of electrons in the valence region on the CP features. In Fig. 6.23a
and b, we show the total mapped CP distributions of the B1-phase of NaCl applying
the valence-only (VO) and semi-core (SC) versions of the atomic pseudopotentials
of Na which contain respectively 1 and 9 electrons in the active valence region.

(a)

(b)

Figure 6.23: Cross sections of the total mapped CP distributions of NaCl taken perpendic-
ular to c-axis at z = 0 using (a) valence-only (VO) and (b) semi-core pseudopo-
tential of Na. In part b-right, we focus on the range -2× 10−4 to 0.18.

In the resulting CP map of using the VO pseudopotential, we can observe that the
region surrounding the sodium atom is very flat and of negative pressure, nearly
zero, whereas the chloride cores are decorated with spherical shells that change
in color from blue (negative) to red (positive) and back to blue on moving from
the nuclei outward. On the other hand, turning to the SC pseudopotential, the CP
features changes to more intense positive pressure. These intense positive pressures
(red) can be associated to the semi-core active 2s2 2p6 electrons of sodium atom.
These core-like features change the maximum positive pressure from 0.18 to 4.27
a.u. in VO and SC, respectively. The CP features around the chloride cores are still

http://www.abinit.org/downloads/psp-links/psp-links/hgh
http://www.abinit.org/downloads/psp-links/psp-links/hgh
http://www.abinit.org/downloads/psp-links/psp-links/hgh
http://www.abinit.org/downloads/psp-links/psp-links/hgh
http://www.abinit.org/downloads/psp-links/psp-links/hgh
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same seen in the VO CP map. This could be shown by focusing only on the pressure
range -2× 10−4 to 0.18, the CP scale of the VO CP map, as shown Fig. 6.23b-right.

Let’s now examine the source of these CP features through the mapped energetic
contributions (See Figure 6.24a and b). We noticed that the local potential is a non-
negative function over mostly the entire unit cell in contrast to negative behavior in
the previous mentioned systems.

(a)

(b)

Figure 6.24: Cross sections of energetic contributions to the mapped DFT-CP calculated for
NaCl (a) valence–only (VO) (b) semicore pseudopotential of Na.

The most intense positive features (red) are localized near the nuclei of Cl, that
is when VO results. However, this changes in using semicore pseudopotential of
Na, a higher positive CP localizes around Na. In any case, local potential term is
the most positive contribution to the total mapped CP (TM CP) while Hartree share
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with a greater extent in the negative part. Actually, we are interested in the negative
CP region associated with bonding, so we analyze the variation of CP contributions
along the Na–Cl bond (see Figure 6.25a-b).

(a)

(b)

Figure 6.25: 1D profiles of chemical pressure distribution along the Na–Cl bond (a) valence–
only (VO) (b) semicore pseudopotential of Na.
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The crystal structure of an inorganic compound consists of a metallic matrix play-
ing the role of a host lattice in which the nonmetallic atomic constituents are

located, the Anions in Metallic Matrices (AMM) model stated. Actual positions of
these guest atoms can be microscopically interpreted in terms of the topological fea-
tures of the electron density of the metallic sub-lattice. Besides the electron density,
the electron localization function (ELF) has also provided successful support to the
AMM model in a variety of examples. A particular interesting case is the one of the
Ca fcc (face centered cubic) and sc (simple cubic) phases that show ELF attractors at
the same positions where oxygen nuclei are located, respectively, in the rock salt (B1)
and cesium chloride (B2) phases of CaO. Similar results were also observed for the
pairs Ca/CaF2 and BaSn/BaSnO3. Interestingly enough, we will illustrate in this
chapter how the DFT-Chemical Pressure (DFT-CP) approach provides a straightfor-
ward interpretation of these findings. Our results display similarities with the ELF
plots but using the energetic perspective of the CP approach. From the analysis of
different geometries for the metallic structure, CP maps are able to reveal a corre-
spondence between negative (attractive) pressure regions and the positions of the
anions in different inorganic compounds containing the same metallic sub-lattice. In
this way, the CP map of a Ca-fcc structure with the same dimensions of the CaO-B1

phase is seen to show minima (equivalent to ELF-attractors) of negative pressure
at the atomic positions of oxygen in the CaO-B1 phase. The same has obtained in
the case of Ca-sc when the dimensions of the CaO-B2 phase are used. Moreover,
the CP analysis in a high pressure phase of BaSn (with the same structure as in the
BaSnO3 perovskite) shows attractors of negative pressure at the O-atom positions
occupied in the perovskite structure, thus showing an octahedral-like isosurface of
negative chemical presure around each Sn-atom. Other examples involving fcc-Na
and the associated B1 phases of different sodium halides will be also discussed in
this chapter.

7.1 introduction

The literature on the theories and formalisms describing chemical bonding in inor-
ganic crystal structures is very extensive. There are many contributions that can
be classified into either classical or quantum models. The approach of Pauling has
been the paradigm for predicting and rationalizing the crystal structures of ionic
compounds in the last century [93, 95]. The limitations of the ionic model, which
have led to a number of misconceptions about the crystal structure and the bond-
ing network, were discussed by O’Keeffe & Hyde [88] using an alternative approach.
These authors put the emphasis on a description of the crystalline structure based on
considering the anions into a packed cation array. Interestingly enough, von Schner-
ing et al. [124] introduced the term electride after an extensive quantum mechanical
treatment of a high pressure modification of cesium, and denoted this phase as
Cs+e−. Thus, the emphasis was again on a negative charge, in this case the valence
electron localized in the empty space of the structure that can be seen as acting as a
pseudo-anion.

Besides, considering the metallic matrix of an inorganic compound as a host lattice
for non-metallic atoms, the Anions in Metallic Matrices (AMM) model shows that



7.2 structural and computational details 109

the electron density of this metallic sub-lattice induces the final positions of the non-
metallic atoms in the crystal. This idea was a result of a number of studies that
take into account not only a dense packing of atoms, as in metals and/or alloys,
but also more open skeletons such as AlX3 structures (X = F, Cl & OH) [123]. The
AMM model found support from several theoretical calculations as those reported
for PB (zincblende-type) [84] and for the high pressure phases of Na and K [76].
In these structures, the valence electrons of the metal are found to be localized in
interstitial positions and, as in the work of von Schnering et al. [124], they are named
as pseudoanions and the metal is called an electride. Moreover, and directly related
with the study presented in this chapter, a more recent analysis of the electron
localization function (ELF) of different elemental calcium phases, e.g. fcc and sc, at
the volumes of the NaCl-type (B1) and CsCl-type (B2) structures of CaO, reveals
the correspondence between the positions of the localized electron density in the
interstitial positions of the metal and the positions of the oxygen atoms in the two
structures of CaO. Among other examples that include the couples BaSn/BaSnO3
and Na/NaX (X: F, Cl, Br), these crystals will be the focus of a study in this chapter
using the CP formalism.

7.2 structural and computational details

At zero pressure, two phases of solid calcium are known. The low-temperature
phase II has a fcc structure with a = 5.588 Å. The high-temperature phase I crystal-
lizes in a bcc structure with a = 4.48 Å at 721 K [59]. The Clapeyron dP/dT slope
for the II-I phase transition provides a transition pressure of 19.5 GPa at 300 K with
a volume reduction of 2% and a = 3.559 Å at 26.6 GPa. By increasing pressure at
the same temperature, a phase transition to a new phase III was observed at 32 GPa
with a volume reduction of 8% [90]. This phase III crystallizes in a simple cubic
structure with a = 2.615 Å at 39 GPa. This pressure induced phase transition was
also confirmed in the range 31− 35 GPa and 300 K [90, 131]

Moreover, calcium oxide transforms from the B1 (NaCl-type) to the B2 (CsCl-type)
structure in the range 60-70 GPa with a volume decrease of 11% [60]. Calcium oxide
shows a unit cell parameters of 4.80 and 2.64 Å for B1 and B2 phase, respectively.
The elemental calcium structures are preserved in the corresponding CaO phases.
In the B1 and B2 phases, the calcium sub-lattice displays, respectively, the fcc and sc
structures. However, a CaO phase with a bcc-Ca sub-lattice has not been reported
yet.

Regarding the BaSn/BaSnO3 pair, BaSn undergoes a transition from the CaSi- to
CsCl-type structure at high pressure [5]. It is this high pressure phase of BaSn, with
a primitive cubic unit cell and a lattice constant of 4.07 Å, the structure considered in
our study. At ambient pressure, sodium adopts the (bcc) crystal structure. However,
we have studied fcc-Na structure, since this is the sub-lattice of sodium atoms in
the rock-salt phases of the sodium halides. In fact, the fcc structure in alkali halides
has been found for example in potassium which transforms from the bcc crystal
structure to fcc at 11 GPa [89].

The electronic structure calculations of all the compounds presented in this chap-
ter were carried out following the same procedure described previously in chapter
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3. All the calculations employed the semi-core pseudopotential when it is available. See http:
//www.abinit.

org/downloads/

psp-links/

psp-links/hgh

The number of valence electrons for the corresponding atoms are collected in Table
7.1 along with the main computational parameters.

7.3 metallic sub-lattices

7.3.1 fcc-Ca

The ELF was firstly computed for a fcc-Ca lattice with the experimental lattice pa-
rameter determined at ambient conditions (a = 5.521 Å). The results show localized
pair electrons at the atomic positions of fluoride anions in CaF2 fluorite. However,
when the volume of the unit cell is reduced to the theoretical value of the B1 struc-
ture of CaO (a = 4.829 Å), ELF also shows attractors at the positions of the O atoms
in the B1 phase of CaO (see Ref. [123]).

Figure 7.1: Chemical pressure analysis of fcc-Ca in the volume of CaO. (a) A [0 0 1] cross-
section of the CP map and (b) the same map in (a) with CP range between 0.00
and -0.04 a.u..

In our study using the CP formalism, the raw data was obtained for each unit
cell through the same electronic structure calculations as in the ELF case. The cross
section of the CP map distribution for fcc-Ca in the volume of B1-CaO phase is
displayed in Fig. 7.1 using two different scales. A similar picture was obtained at the
equilibrium volume of fcc-Ca. The pressure value of each point in space is indicated
by a color code depending on the scale. The total pressure range is from 0.683 to
-0.065 a.u. (1 a.u. = 2.94219× 104 GPa). Most of this pressure range is concentrated
around the nuclei, the Ca has a spherical shell structure with color changing from
blue (intense negative) to red (intense positive) and yellow (zero). This high variety
of pressure values around the nuclei positions can be related to the semi-core 3s2

3p6 electrons of the Ca atom. As displayed in the sub-figure using only a negative
scale for the chemical pressure, the cores display an overall positive pressure that is
gradually and radially decreasing as we depart from the nucleus. Once we arrive at
a zero CP value then negative and more constant chemical pressure values surround
the spherical CP positive values associated with the atomic positions.

In Fig. 7.2, we show 3D plots of the chemical pressure of fcc-Ca at its equilibrium
lattice parameter using different values for the positive and negative CP isosurfaces.

http://www.abinit.org/downloads/psp-links/psp-links/hgh
http://www.abinit.org/downloads/psp-links/psp-links/hgh
http://www.abinit.org/downloads/psp-links/psp-links/hgh
http://www.abinit.org/downloads/psp-links/psp-links/hgh
http://www.abinit.org/downloads/psp-links/psp-links/hgh
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The negative isosurfaces are exactly at the same positions as the ones obtained with
the ELF.

Figure 7.2: Chemical Pressure 3D isosurfaces of fcc-Ca lattice with isosurface value of (a)
CP=±0.0278 and (b) CP=+0.0278 (white) and -0.0275 (black). Numerical values
are in a.u..

There are minima critical points in the interstitial space that can visually detected
using VESTA-program. In addition, 1D plots for different directions in the unit cell
show how the chemical pressure between two adjacent Ca atoms changes along the
Ca–Ca contacts. For example, when we move along the unit cell diagonal connecting
two Ca atoms at the corners, the 1D CP profile exhibits roughly three minima (see
insets of Fig. 7.3). The minima in the center of the cell (between 4 and 5 Å) are
related to the position of oxygen in the B1 structure of CaO, whereas the other two
minima in each sub-figure are related to the position of fluorine in CaF2. The fact
that the two minima in the upper sub-figure have a lower CP value is related to the
higher lattice parameters of CaF2 when compared with B1-CaO. In this case, we can
conclude that the positions of the CP minima in the equilibrium fcc-Ca structure
allow us to anticipate that the lattice parameter of CaF2 is higher than the one of
B1-CaO.

7.3.2 sc-Ca

Similar results were obtained for sc-Ca phase. In the work of Vegas et al. [123], the
ELF was calculated at a=3.498 Å (equilibrium volume at 0 GPa) and at a volume
where the induced B2 phase has emerged (a=2.645 Å at 26 GPa). In the latter, an
ELF attractor is located at the cell center which is coincident with the position of the
oxygen atom in B2-CaO.

Concerning our calculations, we show in Fig. 7.4 how the 3D CP maps display a
localization of negative CP at the same position in the center of the cube only when
the volume of the B2-CaO structure is considered. At the equilibrium volume of
sc-Ca, the situation is not so clear and the negative CP value at the center of the
cube is much higher. We can see these results with more detail in the 1D plots of
Fig. 7.5 CP.

As in fcc-Ca, we observe that the chemical pressure along the Ca–Ca path is very
flat. This is the common behavior in the interstitial space in metals (see also sections
5.3.6-6.2.5). The difference in the negative chemical pressure region between the two
volumes is the lower CP value obtained for the sc-Ca lattice at the reduced volume.
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Figure 7.3: 1D profiles of chemical pressure along the diagonal of (a) fcc-Ca lattice and (b)
the same lattice of (a) at the volume of its oxide phase.

Figure 7.4: Chemical pressure analysis of sc-Ca lattice. 3D isosurfaces of CP=±0.066 a.u. for
(a) the equilibrium volume and (b) the CaO volume.

It is also observed that the distance at which the flat region of negative CP begins
is around 1 Å for the equilibrium volume of sc-Ca. This distance is slightly lower
for the structure with a reduced volume. The same results were obtained for fcc-Ca
and suggest the possibility of defining an ionic radius for the metallic cations using
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Figure 7.5: 1D profiles of chemical pressure along the diagonal of sc-Ca structure at (a) the
equilibrium volume and (b) a reduced volume corresponding to the B2 phase of
CaO.

the distance defined above. Interestingly enough, the Pauling’s ionic Ca2+ radius is
0.99 Å.

7.3.3 BaSn

In case of BaSn, ELF calculations show equivalent results as the ones we have dis-
cussed for fcc- and sc-Ca structures. Vegas et al. [123] found ELF attractors at the
centers of the six phases of the cubic unit cell, which are the positions of the oxygen
atoms in the BaSnO3 perovskite structure. Thus, an octahedron of ELF attractors
surround the tin atom located at the center of the cubic unit cell.

Results from our CP calculations provide regions of negative CP at the same
positions of the ELF attractors when we use the equilibrium lattice parameter of
BaSnO3 (see Fig. 7.6). It is clear that the CP formalism is able to identify the
positions of the anions in the metallic sub-lattices.
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Figure 7.6: Chemical pressure distribution of BaSn crystal lattice. 3D white and black iso-
surfaces of CP=0.00 and CP=-0.0125 a.u., respectively.

Figure 7.7: Cross-sections of the chemical pressure map for BaSn through [0 0 1] plane at (a)
z=0 and (b) z=0.5 from the origin.

Figure 7.8: 1D profile of the chemical pressure distribution of BaSn crystal lattice along one
face diagonal between two Ba atoms.

In terms of the 2D CP maps, we obtain a qualitative description of the metallic
cores similar to the one of fcc- and sc-Ca. When we use a scale of negative values,



116 chemical pressure in metallic matrices

it is clearly seen that these metallic cores have a spherical shape with an average
positive CP. Again, the high positive CP (dense red) surrounding the Ba atomic po-
sitions is due to the semi-core 5s25p6 electrons. For Sn, as the semi-core option is
not available, the CP values surrounding its nucleus do not produce a clear positive
region, except for circular crown that can be used to delimit the Sn4+ size. Accord-
ing to the distances from the nuclei up to the zero CP isoline, the Ba2+ and Sn4+

radii are estimated as 1.29 and 0.90, respectively. These values are in fair agreement
with the corresponding Pauling’s ionic radii of 1.35 Å and 0.71 Å. Which is to be
emphasized is that in the flat negative CP region, the minima (dense blue) appear
at the cubic face centers (see Fig. 7.7). These minima can be characterized in the
1D CP profile connecting two Ba atoms along a face diagonal. In Figure 7.8, such a
profile is plotted for a BaSn metallic lattice with the same dimensions as in BaSnO3
perovskite.

7.3.4 fcc-Na

We studied metallic sodium with the fcc structure because this is the matrix sub-
lattice in the B1 phase of NaX (X=F, Cl, Br) ionic crystals at room conditions. Results
in this section can be compared with those described for bcc-Na in sections 5.3.6-
6.2.5. Chemical pressure maps were obtained at the corresponding volumes of NaF,
NaCl, and NaBr. In Fig. 7.9, the 3D plots with negative and zero CP isosurfaces are
displayed for the three crystals. We have kept the relative size of their unit cells in
order to make the results comparable with each other. In all the cases, it is observed
the characteristic spherical shape of the metallic Na+ cation. Regions of negative
CP are located at the center of the cube, at the centers of the edges, and at the eight
equivalent positions represented by (14 , 14 , 14 ). It is interesting to notice that the same
qualitative view is obtained regardless the dimensions of the unit cell.

Figure 7.9: Chemical pressure analysis of fcc-Na at the equilibrium volumes of its corre-
sponding ionic crystal. 3D white isosurfaces of CP=0.00. Black isosurface of (a)
CP=-0.044 a.u. at the volume of NaF, (b) CP=-0.021 a.u. at the volume of NaCl,
and (c) CP=-0.017 a.u. at the volume of NaBr. The cell parameter a is given in
Å.

This result is also obtained when the 2D maps of the [0 0 1] plane of the fcc-Na
unit cell is analyzed (see Fig. 7.10). Using the zero pressure isoline as a measure
of the size of Na+, the radii calculated along the edges slightly increases from NaF
(0.77 Å) and NaCl (0.84 Å) to NaBr (0.87 Å), following a similar rate as their cor-
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responding lattice parameters. As we will see in other results, the similarities are
greater between NaCl and NaBr than when NaF is involved. Nevertheless, we can
conclude that the CP maps are quite independent on the lattice parameters.

Figure 7.10: Chemical pressure cross-section of [0 0 1] plane of fcc-Na at the corresponding
equilibrium volumes of NaF, NaCl, and NaBr crystals. Black curves for CP=0.0.

7.4 oxide and halide crystals

In this section, we present the CP distributions within the corresponding oxide and
halide structure of the systems mentioned above. The CP features in both cases
can be compared to recognize the overall effect of the anion occupation on the CP
distribution in the metallic sub-lattice.

7.4.1 B1-CaO

In B1-CaO structure (a=4.829 Å), the oxygen atoms are now occupying the positions
of negative CP isosurfaces at the centers of the edges of the cubic unit cell previously
shown in Fig. 7.2. Negative CP isosurfaces at (14 , 14 , 14 ) positions are still present (see
Fig. 7.11) with a value of -0.063 a.u.. It is illustrative to compare this value with those
obtained at the same positions in fcc-Ca at two different lattice parameters in order to
distinguish the effects of a reduction of the volume (macroscopic pressure) and the
presence of oxygen in the lattice. At the fcc-Ca equilibrium volume (a=5.521 Å), the
CP value is -0.0275 a.u., whereas a value of -0.0422 a.u. was obtained when we use
the same lattice parameter (a=4.829 Å) as in the B1-CaO structure. We noticed that,
according to its equation of state, this is the lattice parameter of fcc-Ca at around 10
GPa. It is clear that there is an equivalent effect of the macroscopic pressure and the
insertion of oxygen atoms into the fcc-Ca lattice. The first one induces a reduction in
the value of CP at the (14 , 14 , 14 ) positions from -0.0275 to -0.0422 a.u., and the second
one a further lowering of CP to the final value of -0.063 a.u. in B1-CaO.

In Fig. 7.11, the Ca and O atoms are surrounded by white isosurfaces of zero
pressure value. According to the CP results, the ionic radius for Ca2+ in B1-CaO is
0.90 Å compared to 1.02 Å in the fcc-Ca sub-lattice (see Fig. 7.2). These two values
are in a good agreement with the Pauling’s ionic radius of Ca2+ which is 0.99 Å.
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This comparison leads to the conclusion that the Ca atom nearly keeps the same
size in oxide crystal as in the metal.

Figure 7.11: Chemical pressure distribution within B1-CaO crystal. (a)3D isosurfaces of
CP=0.0 (white) and -0.063 (black) a.u.. Balls in blue and red represent Ca and
O atoms, respectively.

On the other hand, we present in Fig. 7.12 the [0 0 1] cross-sections of CP for the
B1-CaO crystal. In these CP maps, and for a clear comparison, we adjusted the CP
range to that one used for the CP maps of the fcc-Ca presented in Fig. 7.1. We see
clearly how the CP features around the Ca core are mostly preserved in the oxide
phase of Ca. Besides, the distance from the Ca nucleus to the zero pressure black
isoline, which is equivalent to the white 3D isosurface, is almost the same in both
crystal structures.

Figure 7.12: Cross-sections of chemical pressure for B1-CaO crystal through [0 0 1] plane.
The CP range is adjusted to (a) (-0.065–0.683) and (b) (-0.04–0.00) a.u..

7.4.2 B2-CaO

Similar results were obtained in the B2-CaO crystal structure. In Fig. 7.13-a, we
show the 3D isosurfaces of CP in which the minimum obtained in the metallic sub-
lattice is now occupied by the oxygen atom (see Fig. 7.4). A very flat negative CP
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(a)

(b)

Figure 7.13: Chemical pressure distribution within B2-CaO crystal. (a)3D isosurfaces of
CP=0.0 (white) and -0.1 (black) a.u.. Balls in blue and red represent Ca and O
atoms, respectively. (b) 1D profile of CP along the unit cell diagonal (Ca–O–
Ca).

appears around the centers of the cube faces. This can be observed in terms of the
1D profile of the CP along the cube diagonal (Ca–O–Ca path) in Fig. 7.13-b. The
minimum seen in the inset of Fig. 7.5-b is now replaced by a maximum representing
the oxygen nucleus. Besides, the distance from the Ca nucleus up to the zero isoline
is 0.83 Å compared to 0.87 Å and 1.05 Å in metallic sc-Ca lattice at the same volume
of B2-CaO and its equilibrium volume, respectively. These values are very close to
those obtained in the fcc structure of Ca and CaO.

7.4.3 BaSnO3

We have shown that in the BaSn sub-lattice, minima of CP are located at the cube face
centers, i.e. the psoitions of oxygen atoms in BaSnO3. In a similar way, we compare
the 2D and 3D plots for BaSn and BaSnO3 to see the effect of the oxygen atoms
on the CP features of the main metallic sub-lattice. In Fig. 7.14, we show that the



120 chemical pressure in metallic matrices

minima seen in the BaSn crystal (with a octahedron-like shape) are now replaced
by the oxygen atoms surrounded by zero pressure isosurfaces (white). Also, it is
noticed that the spherical positive CP surrounding the Sn nucleus in BaSn lattice is
now distorted into oval-shapped regions of positive CP located between the Sn–O
contacts in BaSnO3 crystal.

Figure 7.14: Chemical pressure distribution within BaSnO3 crystal. 3D isosurfaces of
CP=0.00 (white) and -0.032 (black) a.u.. Balls in green, gray, and red repre-
sent Ba, Sn, and O atoms, respectively.

Figure 7.15: 2D chemical pressure maps for BaSnO3 crystal. The maps are taken through
[0 0 1] plane at (a) z=0.0 (b) z=0.5 adjusted to the same CP range. A black
contour is shown for CP=0.0.

Concerning the ionic radii of Ba2+ and Sn4+, we obtained values of 1.13 Å and
0.90 Å, respectively. The latter was measured from the Sn nucleus up to the zero
CP isoline along the Sn–O contacts. Similarly to Ca/CaO pair, the atomic size of
Ba2+ decreases a little in the oxide crystal. In the 2D CP maps of Fig. 7.15, it is seen
clearly how the CP features around the Ba atom are roughly kept in BaSn/BaSnO3
(see Fig. 7.7).
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7.4.4 Na-halide crystals

Moving to the last example of this discussion, we studied the B1 phases of NaX
(X=F, Cl, Br) to compare with the results previously presented for the fcc-Na at the
equilibrium volume of the NaX crystals. We observed an equivalent CP behavior
in the three cases. So we will show the 2D and 3D plots of CP distributions only
for NaF crystal (see Fig. 7.16). The 2D CP map of NaF shows mostly the same
CP features around the Na nucleus as in its metallic sub-lattice (see Fig. 7.10). In
addition, as seen in B1-CaO (see Fig. 7.11), the negative CP isosurfaces obtained at
(14 , 14 , 14 ) positions in the metallic Na sub-lattice (see Fig. 7.9), can be also seen within
the NaF crystal with a lower CP value (-0.086 a.u.). In this case, as we used the same
lattice parameter for fcc-Na and B1-NaF, the lowering in the CP from -0.044 to -0.086
is entirely due to a pressure effect of the fluor sub-lattice.

(a) (b)

Figure 7.16: Chemical pressure calculated for fcc-NaF. (a) 2D CP map along [0 0 1] plane
including both atom types. Black isolines of CP=0.0 are loaded to the 2D map.
(b) 3D isosurfaces of CP=0.00 (white) and CP=-0.086 (black).

We illustrate the CP profiles along the Na–X paths in the 1D plot of Fig. 7.17. It is
interesting to notice how the differences in these profiles can be related to different
electronegativities of the halide atoms. For example, the maximum CP near the Na
nucleus increases along the sequence Br, Cl, and F. The attached zoom in for the
distance range 0.6-1.4 Å shows that the CP along the Na–F path varies with lower
CP values than the other halides. Besides, the CP behavior of NaCl and NaBr is very
similar, although the trend F, Cl, and Br is maintained. The calculated ionic radii of
Na+ in the three crystals are 0.70, 0.76, and 0.78 Å for respectively NaF, NaCl, and
NaBr. These values are very close to those calculated in the metallic sub-lattice. All
these results point to similar CP features of the metallic sub-lattice in both the metal
and the halide crystals, thus supporting the Anions in Metallic Matrices model of
Vegas et al..
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Figure 7.17: 1D profiles of the CP along the Na-X bond (X = F, Cl, Br). Zoom in for a
selected distance is attached.

Considering also the metal and metal-oxide systems, we can say at this point that
the CP formalism is not only able to reproduce similar results to those obtained
with the ELF as regards the AMM model but it also provides quantitative criteria
to measure the effect of the anions when introduced in the metallic sub-lattice. For
example, the evaluation of CP values at particular positions or atomic/ionic radii
can be used for that purpose if they are calculated at different lattice volumes of
the metallic sub-lattice and the corresponding metal-anion compound. Future work
along this direction is necessary to account for a clear relationship between macro
and local pressures in inorganic compounds.
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8 C O N C L U S I O N S

The purpose of this chapter is to summarize our main contributions and to put some
concluding remarks for the results presented in this thesis.

In part II, we have briefly presented the basic concepts of quantum chemistry
related to the density functional theory (DFT) approximation. Principles of Kohn–
Sham equations and how to solve these equations to calculate different physical
properties were also discussed. This is followed by a detailed presentation of the
Chemical Pressure (CP) approach that can be used to characterize and visualize the
local pressures within a crystal structure. This dense chapter shows the complete
idea for the DFT-Chemical Pressure formalism that we have applied in this thesis.
The second chapter of this part concerns the computational procedure of both the
electronic structure calculations and the chemical pressure analysis done for all the
systems studied in the following chapters.

In part III, we examined the behavior of Cs2UO2Cl4 under hydrostatic pressure.
This compound is quite compressible and exhibits a structural anisotropy mainly
controlled by the orientation of the uranyl moiety. dUO, dUCl, and dCsO distances
decrease roughly by 0.01, 0.20, and 0.95 Å in the 0− 50 GPa pressure range, thus pro-
viding information on the strengths of bonds and interactions, and also on the main
mechanisms of volume reduction under applied pressure. Our calculated equation
of state parameters are new to the best of our knowledge, and deserve experimen-
tal measurements to be contrasted with. In addition to structural data, vibrational
stretching frequencies were calculated in order to analyze their correlation with U–
O bond lengths and the charge transferred to UO2. According to our calculations,
dUO shows two opposite trends under hydrostatic pressure: an unexpected increase
of 0.006 Å in the low pressure regime followed by a quasi-linear decreasing trend up
to 50 GPa. We obtain different force constants for uranyl bonds of the same length,
which confirms that Badger’s rule is invalid in its traditional form. We found a plau-
sible interpretation in terms of which is the main factor controlling dUO-stretching
frequency relationships. The charge transferred to uranyl is a key factor in the low
pressure region resulting in a red shift trend for the Raman symmetric stretching
frequency. Pressure-induced shortening of distances dominates the ν1-dUO trend at
pressures above 10 GPa. In this high pressure region, the mechanical effect leads to
Cs–O interactions to enter in the repulsive region enhancing the shortening of the
U–O distance, which results in a blue shift trend for the Raman frequency. Interest-
ingly enough, in both regimes, independent Badger’s linear relationships are found,
though a unique correlation covering the whole pressure range can also be obtained
when charge transfer effects are removed.

In part IV, we presented how the DFT Chemical Pressure (CP) method can form
the basis of the visualization of the forces within chemical bonds. Over a series of
molecular and crystalline examples, specific features in the CP maps have become
associated with different types of bonding interactions. Focused concentrations of
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negative pressures along an interatomic contact (countered by positive pressures
near the cores) correlate strongly with the presence of covalent bonds, while weaker
intermolecular interactions, such as van der Waals attraction and hydrogen bonds,
were reflected in much shallower negative CP features. Model systems for metallic
and ionic bonding, meanwhile, exhibite much less directional interactions, with the
major balance of forces being between positive CPs around the ion cores and a
background negative pressure representing the long-range electrostatic forces. In
each of these systems, but most particularly the covalent cases, the CP features
provided images quite similar to those that would be obtained with another method
for visualizing bonding features: the electron localization function. With the CP
approach, however, these features now have clear interpretations in terms of forces
calling for the expansion and contraction of the structures, which can be investigated
in more detail by separately plotting different energetic contributions to the CP
map, such as the kinetic and potential energy terms. The pictures that result for
the covalent bond closely align with the model for the chemical bond described in
detail by Ruedenberg and coworkers for simple molecular systems such as H2, and
offer the opportunities for similar levels of insight to be attained for more complex
systems.

Besides, in chapter 6, we discussed the origin of the CP features in the studied sys-
tems through going further in the analysis of the main energetic contributions which
can be separately mapped. In terms of the kinetic energy and the main contribu-
tions to the potential energy (Hartree, local pseudopotential, exchange-correlation,
and Ewald energy terms), we showed that the positive kinetic chemical pressure lo-
cated away from the bonding region close to the nuclear positions can be understood
in as a form of promotion effect. Away from the internuclear region, the potential
is more like that of the free atoms; the deviations from the free-atom wavefunctions
induced by the bonding region are then, locally, perceived as a destabilizing per-
turbation. Interestingly, we are able to recognize the differences between the weak
intermolecular interactions, van der Waals and hydrogen-bond. We showed that
negative CPs occur between the sheets of graphite and this is reassuring, as it sug-
gests an attractive force is holding the layers together. On the other hand, in the
hydrogen-bond region, the positive pressure stemming from the oxygen atom arises
from the potential energy, which contrasts sharply with the negative local contribu-
tion we have generally observed for covalent interactions. We presented, from the
point of view of CP analysis, the difference between metallic and covalent bonding.
It can be seen in the nature of the driving forces competing for the expansion and
contraction of the structure. For the covalent bond, this competition was essentially
between the enhanced stability of electrons concentrating near the cores along the
interatomic vectors against the kinetic energy costs that the wavefunctions feel away
from the bonding region. In the metal, however, the primary balance occurs instead
between the kinetic energy costs of squeezing the cores against the electrostatic at-
traction between the cores and the electron gas (which belongs to the Ewald term of
the total energy).

In part V, we explored the chemical pressures within different metallic sub-lattices
and the corresponding oxide/halide crystals such as Ca/CaO, BaSn/BaSnO3, and
Na/NaX (X=F, Cl, Br). Our results show that the CP approach can be used to obtain
similar information to that discussed by the AMM model based on the ELF results.
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Besides, we have shown that the addition of anions is nearly equivalent to the pres-
sure application in reduction of the lattice volume. The distance from the nucleus to
the zero CP isoline is a propose as a parameter for estimating ionic radii. When this
parameter is evaluated to calculate the radii of cations in metals, halides, and oxides,
we obtained results in fair agreement with Pauling’s radii. The CP features in the
metallic sub-lattice are mostly preserved in the corresponding oxide/halide lattice.
Consequently, we found for example that the ionic radii are very similar in both lat-
tices, although more analysis and systems have to be considered before establishing
general conclusions. By the end of this part, we presented the CP distribution in the
halide systems showing how the effect along the Na–halide bonding paths shows
a reasonable trend with the atomic number of the halide. This behavior is chemi-
cally intuitive and deserves further investigation that could lead to a quantitative
relationship between chemical pressure and electronegativity.
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El propósito de este capítulo es resumir nuestras principales contribuciones y
añadir algunos comentarios finales sobre los resultados presentados en esta tesis.

En la parte II, hemos presentado brevemente los conceptos básicos de química
cuántica relacionados con la aproximación de la teoría del funcional de la densi-
dad (DFT). Discutimos también los principios que subyacen a las ecuaciones de
Kohn-Sham y cómo se resuelven estas ecuaciones para obtener la solución de la
ecuación de Schrödinger en un sistema cristalinos. A continuación llevamos a cabo
una presentación detallada del formalismoe de la Presión Química (CP) y su uti-
lización para caracterizar y visualizar las presiones locales dentro de una estructura
cristalina. Este capítulo es denso y muestra la idea completa del formalismo DFT-
Presión Química que hemos aplicado en esta tesis. El segundo capítulo de esta
parte trata el procedimiento computacional tanto de los cálculos de estructura elec-
trónica como del análisis de la presión química realizados para todos los sistemas
estudiados en esta tesis.

En la parte III examinamos el comportamiento del Cs2UO2Cl4 bajo presión hidrostática.
Este compuesto es bastante compresible y presenta una anisotropía estructual princi-
palmente controlada por la orientación del grupo uranilo. Las distancias dUO, dUCl,
y dCsO disminuyen aproximadamente 0.01, 0.20, and 0.95 Å en el rango de presión
0 − 50 GPa, proporcionando información sobre la fortaleza de los enlaces e inter-
acciones, y también sobre los mecanismos principales de la reducción de volumen
bajo la aplicación de presión. los parámetros de nuestra ecuación de estado calcu-
lada son, hasta donde sabemos, nuevos y merecerían ser contrastados con medidas
experimentales. Además de los datos estructurales, se calcularon frecuencias vibra-
cionales de tensión con el fin de analizar su correlación con la longitud de enlace
U–O y con la carga transferida al UO2. Según nuestros cálculos, dUO presenta dos
tendencias opuestas al aplicar presión hidrostática: un aumento inexperado de 0.006
Å en el regimen de presiones bajas seguido por una disminución aproximadamente
lineal en el rango de presiones altas hasta 50 GPa. Hemos obtenido constantes de
fuerza diferentes para enlaces uranilo de la misma longitud, lo que confirma que la
regla de Badger no es v álida en su forma tradicional. Hemos encontrado una in-
terpretación verosímil en términos del factor principal que controla la relación entre
dUO y la frecuencia de tensión. La carga transferida al uranilo es un factor clave en
la región de baja presión, lo que resulta en un desplazamiento al rojo en la frecuen-
cia Raman de tensión simétrica. La relación ν1-dUO a presiones por encima de 10
GPa está dominada por el acortamiento de las distancias inducido por la presión.
En esta región de alta presión, el efecto mec ánico lleva a las interacciones Cs–O a
entrar en la región repulsiva, favoreciendo el acortamiento de la distancia U–O, lo
que resulta en un desplazamiento al azul de la frecuencia Raman. Es interesante
señalar que hemos encontrado, en los dos regímenes, relaciones lineales de Badger
independientes, aunque puede obtenerse una correlación única abarcando el rango
entero de presiones si se eliminan los efectos de la transferencia de carga.

En la parte IV hemos mostrado cómo el método DFT de la presión química (CP)
puede constituir una base para la visualización de las fuerzas dentro de los en-
laces químicos. Utilizando una serie de ejemplos moleculares y cristalinos, se han
asociado ciertas características específicas en los mapas CP con diferentes tipos de
interacciones de enlace. Las concentraciones de presión negativa a lo largo de un
contacto interatómico (contrarrestadas por presiones positivas cerca de las regiones
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atómicas internas) se correlacionan con la presencia de enlaces covalentes, mientras
que las interacciones intermoleculares más débiles, tales como la interacción de van
der Waals y los enlaces de hidrógeno, se ven reflejadas en zonas de presión química
negativa menos profundas. Los sistemas modelo para el enlace metálico e iónico
presentan interacciones mucho menos direccionales, siendo el principal balance de
fuerzas el existente entre presiones químicas positivas cerca de los iones y una pre-
sión negativa de fondo que representa las fuerzas electrostáticas de largo alcance.
En cada uno de estos sistemas, pero particularmente en los casos covalentes, las
características de los mapas de presión química proporcionan imágenes bastante
similares a aquellas que se obtendrían con otro métodos de visualización del en-
lace químico como la función de localización electrónica. Con el enfoque CP, sin
embargo, esas características distintivas tienen ahora una interpretación clara en tér-
minos de fuerzas compitiendo por la expansión y contracción de las estructuras, que
pueden ser investigadas en mayor detalle representando por separado las diferentes
contribuciones energéticas al mapa CP, tales como los términos cinético y de energía
potencial. La imagen que resulta para el enlace covalente es cercana al modelo del
enlace químico descrito en detalle por Ruedenberg y colaboradores para sistemas
moleculares sencillos como el H2, y ofrece oportunidades para alcanzar similares
niveles de comprensión en sistemas más complejos.

Además, en el capítulo 6, hemos discutido el origen de las características obser-
vadas en los mapas CP de los sistemas estudiados, profundizando en el estudio de
las distintas contribuciones a la presión química que pueden representarse por sepa-
rado. Siguiendo a Ruedenberg, hemos mostrado, en términos de la energía cinética
y de las principales contribuciones a la energía potencial(Hartree, pseudopotential
local, cambio-correlación y energía de Ewald), que la presión química positiva de-
bida a la energía cinética positiva, localizada fuera de la región de enlace y cerca de
las posiciones nucleares, puede ser entendida como consecuencia del llamado pro-
motion state. Fuera de la región internuclear, el potencial es más parecido al de los
átomos libres; las desviaciones de las funciones de onda del átomo libre inducidas
por la región de enlace son, entonces, percibidas localmente como una perturbación
desestabilizadora. Resulta interesante comprobar que es posible reconocer las difer-
encias entre las interacciones intermoleculares débiles: van der Waals y enlace de
hidrógeno. Hemos mostrado que entre las láminas de grafito aparecen presiones
químicas negativas que sugieren la presencia de una fuerza atractiva manteniendo
las láminas unidas. Por otro lado, en la región del enlace de hidrógeno, la presión
positiva proveniente del átomo de oxígeno resulta de la energía potencial, lo que
contrasta fuertemente con la contribución local negativa que hemos observado gen-
eralmente en las interacciones covalentes. Presentamos, desde el punto de vista del
análisis CP, La diferencia entre el enlace metálico y covalente. Puede verse en la nat-
uraleza de Las fuerzas motrices que compiten por la expansión y contracción de la
estructura. En el enlace covalente esta competencia se produce esencialmente entre
la estabilidad inducida por la densidad electrónica que se concentran cerca de los
núcleos a lo largo de la dirección del enlace y el coste de la energía cinética asociado
con la función de onda en regiones alejadas de la zona de enlace. En los metales, sin
embargo, el balance se produce entre el coste energético debido al incremento de
la energía cinética alrededor de las posiciones nucleares y la atracción electrostática
entre los núcleos y el gas de electrones (término Ewald de la energía total).
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En la parte V exploramos las presiones químicas en diferentes metales y en
cristales de óxido/haluro tales como Ca/CaO, BaSn/BaSnO3, y Na/NaX (X = F, Cl,
Br) en donde estas subredes metálicas están presentes. Nuestro análisis muestra que
el enfoque CP puede utilizarse para obtener información similar a la discutida para
el modelo AMM utilizando los resultados de la ELF. Además, hemos demostrado
que el papel que juegan los aniones correlaciona con el de la aplicación de presión
externa. La distancia desde el núcleo hasta la isolínea de presión química cero se
propone como un parámetro para estimar el radio iónico. Cuando este parámetro
es utilizado para calcular los radios de los cationes en los metales, haluros y óxidos
de nuestro estudio, obtenemos resultados en acuerdo aceptable con los radios ióni-
cos de Pauling. Las características de la presión química en las redes metálicas se
conservan en su mayor parte cuando pasamos a los óxidos/haluros en donde están
presentes. En consecuencia, se encuentra que los radios iónicos son muy similares
en ambos tipos de sistemas, aunque se necesitan más sistemas y análisis antes de es-
tablecer conclusiones generales. Al final de esta parte, presentamos la distribución
de presiones químicas en los haluros de sodio mostrando cómo el efecto a lo largo
del camino de enlace Na-X correlaciona de forma razonable con el número atómico
del haluro. Este comportamiento es intuitivo desde el punto de vista químico y
merece que sea explorado con mayor profundidad con el objetivo de poder encon-
trar una relación entre la presión química y la electronegatividad.
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