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1 Introduction & summary

In the supergravity limit, the AdS/CFT dictionary maps operators of the boundary CFT to

supergravity fields in the bulk. It follows that one can infer the operator content of the CFT

from the Kaluza-Klein spectrum of the dual geometry. For a large class of backgrounds

this has been fully solved. These backgrounds are usually of Freund-Rubin type and the

internal manifold has a coset structure. While the calculations are often quite involved,

one can essentially use group theoretic methods to calculate the full spectrum [1–7].

– 1 –



J
H
E
P
1
0
(
2
0
1
6
)
0
9
6

When either of these simplifications ceases to apply, the situation becomes more in-

volved. The well-known AdS5 and AdS4 compactifications on Sasaki-Einstein five and

seven manifolds respectively are still of Freund-Rubin type, yet in the generic case the

internal manifold no longer carries a coset structure. However, since the dual field theory

is still a superconformal field theory, it is clear that the KK spectrum has to respect the

constraints imposed by superconformal symmetry. That is, the spectrum has to fit into

superconformal multiplets with the individual modes satisfying the bounds imposed by

unitarity. In [8–10] it was shown that the Sasaki-Einstein structure of the background is

sufficient to arrange fluctuations around a generic solution of this type into multiplets and

identify short multiplets with certain cohomology groups, thus allowing the calculation of

the superconformal index.

The situation gets more intricate when the geometry is not of Freund-Rubin type.

Here, a number of individual results are known such as [11–15]. To understand the various

complications, we should briefly sketch the general procedure. In order to obtain the

Kaluza-Klein spectrum, one has to first calculate the mass operators. That is if we consider

a fluctuation of some field B,

B(AdSd+1,M) = B(AdSd+1)⊗ Y (M), (1.1)

the linearised equations of motion for the fluctuation B(AdSd+1,M) will yield some dif-

ferential equation for B(AdSd+1) and Y (M) from which the mass of the mode B(AdSd+1)

follows in terms of the wave function Y (M). While the mass operators are fairly simple

to derive in the Freund-Rubin case,1 the calculations can get involved for arbitrary back-

grounds. The usual complications are the presence of an additional warp factor as well as

flux that is not just proportional to a volume form.

Nevertheless, the solution of the KK problem for more general backgrounds is of obvi-

ous interest. In this paper we will make some progress into this direction by studying a spe-

cific class of 1/8 BPS AdS3 compactifications of type IIB that are dual to two-dimensional

N = (0, 2) SCFTs with U(1) R-symmetry. These are generally warped and carry five-

form flux, yet the remaining fields are trivial. A first classification was made in [19]. For

subsequent work refining and extending these results see [20–24].

The backgrounds are of the form AdS3×AM7 with M7 a one-dimensional foliation over

a six manifold that is conformally Kähler. In other words, the general form of the metric is

ds2
10A = L2e2A

[
ds2(AdS3) + ds2

7

]
,

ds2
7 = e−4Ads2

6 +
1

4
(dz + P )2, (1.2)

and ds2
6 is Kähler. The curvature of the six manifold satisfies the non-trivial constraint

∆6R =
1

2
R2 −RmnRmn, (1.3)

1A detailed derivation of the mass operators of Freund-Rubin compactifications is given in [16]. The

essentials of harmonic decomposition are nicely summarized in [17]. Another very readable review of

Kaluza-Klein theory is [18].
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where ∆6 is the Laplacian on M6. The warp factor is fully determined in terms of the Ricci

scalar on M6, e−4A = 1
8R. The only non-trivial field is the five-form flux:

F5 = L4(1 + ?10A) vol(AdS3) ∧ F,

F =
n

2
J − 1

8
d
[
e4A(dz + P )

]
, (1.4)

where J is the Kähler form on M6. We introduce the one-form η = dz+P
2 and note that

dη = n
2ρ, the Ricci-form of M6. Similarly to the notation that is familiar from the Sasaki-

Einstein case [25, 26], we denote the dual vector as ξ = 2 ∂
∂z . The constant n satisfies

n = ±1. In the remainder of the paper we will set the AdS3 curvature radius L to one.

There is an interesting complication regarding the realization of the U(1) R-symmetry

on the string theory side of the duality that has been discovered in [27]. There, the authors

studied flows from four-dimensional N = 1 theories to two-dimensional ones via twisted

compactification on Riemann surfaces. Using c-extremization [28], the IR R-symmetries of

the two-dimensional theories were found to not only receive contributions from the R- and

flavor-symmetries of the four-dimensional theories but also from baryonic symmetries. It

follows that the R-symmetry of the two-dimensional theory cannot in general be realized

as an isometry of the background; instead it consists of an isometry and a “baryonic

contribution” to the R-symmetry. To understand the consequences for the study of Kaluza-

Klein spectra, let us consider fluctuations around AdS5 geometries in type IIB. These are

dual to mesonic operators and thus not charged under baryonic symmetries. Returning to

the question of Kaluza-Klein fluctuations around (1.2), analogy suggests that supergravity

fluctuations should be insensitive to the “baryonic contribution” to the R-symmetry. In

other words, for the purpose of Kaluza-Klein analysis it is sufficient to consider the part of

the R-symmetry that is generated by an isometry, which in the case at hand is known to

be the Killing vector ξ [19, 29]. Our results will justify this treatment.

The comparison between (1.2) and the Sasaki-Einstein case is quite fitting. The seven

manifold is actually Cauchy-Riemann (CR). That is, the tangent bundle splits as

TCM7 = T 1,0 ⊕ T 0,1 ⊕ Cξ (1.5)

and the distribution T 1,0 is integrable, [T 1,0, T 1,0] ⊆ T 1,0. Note that all Sasakian manifolds

are CR. Just as Sasaki-Einstein manifolds can be defined as the base of a Calabi-Yau cone,

CR-manifolds can be considered as the boundary of some (possibly singular) complex vari-

ety [30–32]. This was also shown in [24], where eight-dimensional conical, complex geome-

tries that reduce to the above system (1.2) were explicitly constructed. As an illustration,

we note that the integrability condition satisfied by the tangent bundle of the CR manifold

follows directly from the familiar integrability condition satisfied by TCM8 = T 1,0
8 ⊕ T 0,1

8 .

Our strategy is then to generalize the methodology of the Sasaki-Einstein case [8–

10] to the case at hand. That is, there has to be a geometric equivalent of the unitarity

bounds satisfied by the two-dimensional N = 2 algebra [33–36]. Moreover, the bound

should be intimately related to the CR structure of the seven manifold and modes at the

bound should define some cohomology group reflecting the structure of the chiral ring.

Finally, the supergravity spectrum has to respect superconformal symmetry from which
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it follows that the spectra of the various mass operators should be related. For Freund-

Rubin compactifications over coset spaces this has been discussed in [37].2 Turning to

more explicit calculations, it is known that the differential equations governing the wave

functions often simplify considerably at the unitarity bound. This was used in [39] to

calculate the scalar spectrum of Y p,q manifolds [40] explicitly following earlier work [41–

43]. Finally, the spectrum of the AdS3×S3 × T 4 and AdS3×S3 ×K3 geometries dual to

the near horizon region of a D1-D5 intersection has been studied extensively in the early

days of the AdS/CFT correspondence [4, 5, 44–46]. While these carry three-form instead of

five-form flux and thus do not fall into the class of [19] considered here, the T-dual D3-D3

intersection with near horizon geometry AdS3×S3 × T 4 and five-form flux does [47, 48].

Returning to the geometries at hand and the CR structure on the internal seven

manifold, we note that the decomposition (1.5) also extends to the cotangent bundle,

T ∗CM7 = Ω1,0 ⊕ Ω0,1 ⊕ Cη. (1.6)

Since the distribution is integrable, it follows that the exterior differential can be decom-

posed in the same way,

d = ∂b + ∂̄b + η ∧£ξ (1.7)

and that ∂̄2
b = ∂2

b = 0. That is, ∂̄b is the (0, 1) component of d. It is referred to as the

tangential Cauchy-Riemann operator. The situation proceeds in analogy to the case of

complex geometry. The sequence

. . .
∂̄b−→ Ωp,q−1 ∂̄b−→ Ωp,q,

∂̄b−→ Ωp,q+1 ∂̄b−→ . . . (1.8)

is exact and allows us to define the Kohn-Rossi cohomology groups Hp,q

∂̄b
(M7). In the Sasaki-

Einstein case, the wave functions saturating the unitarity bound are holomorphic in the

sense of the tangential Cauchy-Riemann operator3 and short multiplets correspond thus

to equivalence classes in Kohn-Rossi cohomology. There are equivalent statements on the

Calabi-Yau cone [8, 9, 49].

We will obtain similar results for spin 2 modes in the graviton spectrum and general

fluctuations of the axio-dilaton. In section 2 we prove that the mass operator governing

these is bounded and that the bound is saturated if the wave function is holomorphic. More-

over, the states have the correct quantum numbers to be chiral primaries or descendants

thereof respectively, showing that a subset of the chiral ring is isomorphic to H0,0

∂̄b
(M7).

In section 4 we find that any wave function appearing in the spectrum of the axio-dilaton

— holomorphic or not — gives rise to two fluctuations of the dilatino which have the cor-

rect quantum numbers to be superpartners of the axio-dilaton mode. These results are

summarized in figure 1.

An obvious question is whether we can generalize these successes away from the com-

paratively simple spin 2, axio-dilaton and dilatino fluctuations to the remainder of the

spectrum. With this in mind we take a first look at the three-form equation in section 5.

2See also [38] for a discussion of mappings between the spectra of various differential operators on Kähler

manifolds.
3In this paper we will usually use the term holomorphic in this sense — i.e. to denote ∂̄bY = 0.
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R

h̄

∣∣E0+2
2 , q

〉
0∣∣E0+1

2 , q − 1
〉

1
2

∣∣E0+3
2 , q − 1

〉
− 1

2

∣∣E0
2 , q

〉

Figure 1. A summary of our results for the axio-dilaton as well as the dilatino. The figure only

includes the right handed quantum numbers
∣∣h̄, q〉

s
since h follows directly from the helicity via

h − h̄ = s. The action of L̄−1 and G−
±1/2 is indicated with dotted arrows. The red mode comes

from the axio-dilaton and is discussed in section 2, the blue modes are the dilatino modes discussed

in section 4. At the unitarity bound we have E0 = q. The dashed mode is the chiral primary.

The situation is involved, yet under some mild assumptions we are able to identify Betti

multiplets; that is, multiplets arising from non-trivial de Rham cohomology groups H1(M7)

and H2(M7). Our analysis shows that the deformation of the Laplace operator seen in the

case of the axio-dilaton can be generalized suitably to p-forms.

As we mentioned previously, a particularly interesting class of the geometries in ques-

tion has recently been constructed in [27] via twisted compactification of four-dimensional

N = 1 quiver gauge theories dual to type IIB on AdS5×Y p,q. Our results on the spectrum

together with those of [8, 9, 39] lead to an interesting question: if the short multiplets of

the four-dimensional theory correspond to certain holomorphic sections on the Calabi-Yau

cone over Y p,q, and if at least some of the short multiplets of the two-dimensional theory

correspond to holomorphic sections of the cone over M7, how are the two spectra related?

Our methods are suitable to address this question and we will give a first glimpse of this

in section 3.2.

2 The minimally coupled scalar and the unitarity bound

Consider fluctuations of the axio-dilaton. These yield a complex, harmonic scalar in the

ten-dimensional warped geometry. Using the explicit form of the background (1.2), the

linearised equation of motion can be rewritten as

0 = ∆10AB = e−2A
(

∆3 + ∆7 − 8gκλ7 ∂κA∂λ

)
B. (2.1)

Here, ∆3 and ∆7 are the Laplace operators on AdS3 and M7 respectively. Thus, we need

to study the spectrum of the operator

L0 = ∆7 − 8gκλ7 ∂κA∂λ = −e−8A∇κ(e8Agκλ7 ∂λ). (2.2)

– 5 –
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As a matter of fact, L0 doubles also as the mass operator of spin 2 modes in the graviton

spectrum. This has been previously discussed in [11, 13] and we give a brief summary of

the derivation in appendix B. In an abuse of notation we will often use the same symbol

for a differential operator and its eigenvalues.

To begin, note that the spectrum of L0 is positive definite. Consider a generic eigen-

function Y0 with L0Y0 = δ0Y0. Then, δ0 ≥ 0 follows from integration by parts

δ0

∫
e8A√g7|Y0|2 =

∫
e8A√g7Ȳ0L0Y0 =

∫
e8A√g7|∂Y0|2 ≥ 0. (2.3)

The main “trick” we have used here is to sneak a factor of e8A into the integral. Similarly,

the functions Y0 appear as an orthonormal system with respect to the inner product defined

by (X0, Y0)8 =
∫
M7

e8A√g
7
X̄0Y0.4 This modified inner product will be very useful when

considering more complicated cases of higher rank forms in section 5.

To proceed, we introduce local, complex coordinates wi on M6 and define the operators

∂b = dwi
(

∂

∂wi
− Pi

∂

∂z

)
, ∂̄b = dw̄j̄

(
∂

∂w̄j̄
− Pj̄

∂

∂z

)
. (2.4)

This definition is equivalent to that given in the introduction. Integrating by parts one

finds that∫
e8A√g7Ȳ0L0Y0 =

∫
e8A√g7

[
e4Agij̄6

(
2∂biȲ0∂̄bj̄Y0 + Ȳ0

[
∇bi, ∇̄bj̄

]
Y0

)
− 4Ȳ0∂

2
zY0

]
=

∫
e8A√g7

[
2e4A|∂̄bY0|2 − 4Ȳ0(∂2

zY0 + ın∂zY0)
]
. (2.5)

Here, ∇bi denotes the Levi-Civita connection on M6 twisted as in (2.4) and at the last step

made use of the equation for the warp factor:

gij̄6
[
∇bi, ∇̄bj̄

]
Y0 = −ngij̄6 ρij̄∂zY0 = −4ıne−4A∂zY0. (2.6)

We restrict to n = +1. The discussion for n = −1 is analogous. Since ξ is Killing, we

can diagonalize L0 and £ξ simultaneously. If Y0 satisfies £ξY0 = ıqY0, it follows that

L0 ≡ E2
0 + 2E0 ≥ q2 + 2q , (2.7)

where as it is customary we introduced the notation L0 ≡ E2
0 + 2E0 for the L0 eigenvalue.

Thus the bound (2.7) is E0 ≥ q. It is saturated if and only if Y0 is holomorphic in the sense

of ∂̄bY0 = 0.

Let us map this to a dual operator. In general, an operator in the spectrum of (0, 2)

theories is of the form

|h〉 ⊗ |h̄, q〉. (2.8)

Multiplets are obtained by repeated application of L0, L±1 in the left handed sector and

L̄0, L̄±1 and G±±1/2 in the right handed sector. The R-symmetry current is J0. The

states are labelled according to the eigenvalues of the operators L0, L̄0 and J0. That is,

4We would like to thank Diego Rodriguez-Gomez for discussions that led to this observation.
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L0 |h〉 = h |h〉, L̄0

∣∣h̄, q〉 = h̄
∣∣h̄, q〉 and J0

∣∣h̄, q〉 = q
∣∣h̄, q〉. Starting with fluctuations of the

graviton we have h+ h̄ = ∆± and h− h̄ = ±2 while the relevant mass-dimension formula

is ∆± = 1±
√

1 +m2. For the helicity h− h̄ = +2 we obtain the operator∣∣∣∣E0 + 4

2

〉
⊗
∣∣∣∣E0

2
, q

〉
. (2.9)

At the bound, 2h̄ = E0 = q and it is clear that we have found a chiral primary. We will

thus refer to (2.7) as the unitarity bound. For the special case of a constant wave function,

the dual operator in the graviton spectrum is the energy momentum tensor. In the above

we have tacitly assumed that q ≥ 0. For q ≤ 0 one would consider anti-holomorphic wave

functions.

Next we turn to the axio-dilaton. Since B is a scalar fluctuation, we have h = h̄ and

thus 2h̄ = ∆+ = E0 + 2 where we used the mass-dimension formula for scalars in two

dimensions, ∆± = 1±
√

1 +m2. In other words, the operator in question is∣∣∣∣E0 + 2

2

〉
⊗
∣∣∣∣E0 + 2

2
, q

〉
. (2.10)

At the bound it takes the form ∣∣∣∣q + 2

2

〉
⊗
∣∣∣∣q + 2

2
, q

〉
. (2.11)

This mode is not a chiral primary for which h̄ = |q|
2 , yet since Y0 satisfies a differential

condition and saturates a bound one should expect it to be a descendant of one. We will

return to this point in section 4.1.

Equation (2.11) is not the only solution to the mass-dimension formula. Indeed, it

might appear that 2h̄ = ∆− = −q saturates the unitarity bound if the R-charge is nega-

tive.5 However, this possibility does not agree with our findings in section 4 or with the

structure of short representations of the N = 2 algebra. We will give several reasons for

this: in section 4 we will show that any eigenmode of the operator L0 gives rise to two

eigenmodes in the spectrum of the dilatino. The situation is summarized in figure 1. Here,∣∣E0+2
2 , q

〉
0

is the mode discussed in this section, yet clearly it is not of lowest weight when

compared with the dilatino modes. Furthermore, it follows from the N = 2 algebra that

a chiral primary operator satisfying h̄ = − q
2 is annihilated by the supercharge G−−1/2. Yet

G−−1/2

∣∣E0+2
2 , q

〉
0

=
∣∣E0+3

2 , q − 1
〉
− 1

2
which is generally not zero, resulting in another con-

tradiction. Independently of this argument one would expect that all holomorphic modes

correspond to modes with R-charges of the same sign. Finally, solutions with negative R-

charge would correspond to meromorphic rather than holomorphic functions which would

lead to non-normalizable modes. In light of all the above we reject the solution ∆−.

Summarizing, we found that for every element Y0 of the Kohn-Rossi cohomology group

H0,0

∂̄b
there is a short superconformal multiplet including the mode (2.9) with E0 = q. The

axio-dilaton fluctuations (2.11) might lie in the same multiplet. If they do not, every

5Unitarity of the N = 1 algebra imposes h̄ ≥ 0 in the NS sector.
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element of H0,0

∂̄b
will give rise to a second superconformal multiplet. Since the bound (2.7)

is saturated, one would expect these to be short as well. As remarked earlier, the group

H0,0

∂̄b
(M7) can be lifted to H0,0

∂̄
(C(M7)). Thus one can count these short multiplets by

counting holomorphic functions on the variety C(M7) [8, 24, 32].

3 Examples

3.1 The D3-D3 intersection

The probably simplest solution in the class (1.2) is the AdS3×S3×T 4 solution correspond-

ing to the near horizon limit of a D3-D3 intersection. This is not to be confused with the

AdS3×S3 × T 4 and AdS3×S3 × K3 solutions which describe the D1-D5 system. While

the former carries five-form flux, the latter support three-form flux. The two solutions

with T 4 factors are related by T-duality. Note that the D1-D5 solutions are essentially of

Freund-Rubin type. Their Kaluza-Klein spectra are amenable to harmonic analysis and

were studied extensively in the early days of AdS/CFT duality [4, 5, 44–46].

The calculation of H0,0

∂̄b
(S3 × T 4) is very illustrative. Instead of calculating on M7, we

make the transition to the cone

C(S3)× T 4 = C2 × T 4. (3.1)

There is an important subtlety here: since S3 × T 4 is a direct product, it follows that the

contact form η dual to the R-symmetry generating vector field ξ has no legs along the T 4

factor. Therefore one has to consider the cone over S3 instead of the product S3×T 4. For

the cohomology groups this means that H0,0

∂̄b
is isomorphic to H0,0

∂̄
(C2) since there are no

holomorphic functions on the compact T 4. A holomorphic function of fixed R-charge is

simply a homogeneous polynomial with the R-charge being proportional to its degree.

While we emphasized that the geometry in question is different from that of the D1-

D5 intersection, it is still interesting to compare this result. In the case of the D1-D5

intersection one argues generally that it is sufficient to consider only the Kaluza-Klein

spectrum of six-dimensional supergravity on AdS3×S3 since the volume of T 4 or K3 scales

in such a way to render fluctuations there redundant [4, 5, 44–46]. In the case at hand, we

find that modes saturating the bound (2.7) are independent of T 4 due to holomorphy.

3.2 Universal twist for Y p,q

A particularly interesting class of the AdS3 solutions we are examining in this paper arises

from the twisted compactifications of four-dimensional N = 1 gauge theories dual to

AdS5×Y p,q on a Riemann surface [27]. For simplicity we will focus on the case of the

universal twist where the IR R-symmetry is the same as in the UV and the gauge field is

turned on only along the R-symmetry bundle. This class of solutions was first described

in section 6.1 of [22]. Before proceeding with the actual example let us first analyse the

holomorphicity constraint ∂̄bY0 = 0.

– 8 –
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3.2.1 The holomorphicity constraint

As we described in the previous section the eigenvalues of the operator L0 saturate the

bound E0 = q when the eigenfunctions Y0 of the axio-dilaton fluctuations B are holomor-

phic with respect to the tangential Cauchy-Riemann operator (1.7). That is when

∂̄bY0 = 0 . (3.2)

One can study H0,0

∂̄b
using formal methods, yet in certain cases it is also convenient to simply

treat the above as a first order PDE and solve it directly. This will allow us to make a

connection with the results of [39]. Proceeding in this way, we rewrite equation (3.2) as

ΠdY0 = 0 , (3.3)

where Π is a projector Π : TCM7 → T 0,1. Specifically,

Π =
1

2
[1 + iI − η ⊗ (ηy)] , (3.4)

with I being the almost complex structure on M6. We also have

dY0 = êαÊα(Y0) = êαÊµα∂µY0 , α = 1, 2, . . . , 7 , (3.5)

where êα are the vielbein of M7 with ê7 = η and êa = e−2Aea for a = 1, . . . , 6. The ea are

the vielbein of M6. The scalar mode Y0 decomposes into real and imaginary parts

Y0 = Yr + iYim . (3.6)

Using the above (3.3) reduces to three sets of Cauchy-Riemann equations

Ê2j(Yr) + Ê2j−1(Yim) = 0 ,

Ê2j−1(Yr)− Ê2j(Yim) = 0 , (3.7)

where j = 1, 2, 3.

3.2.2 The wave functions for Y p,q

For these backgrounds, the warp factor is trivial. The metric meanwhile is

ds2
10 = ds2(AdS3) +

3

4
ds2

g>1 +
9

4
ds2
Ỹ p,q

, (3.8)

where Ỹ p,q is the five-dimensional metric of Y p,q fibered over the Riemann surface. Locally,

the constant curvature metric over the Riemann surface takes the form

ds2
g>1 = ds2

H2
=

1

x2
2

(
dx2

1 + dx2
2

)
. (3.9)

Any Riemann surface of genus g > 1 can be written as quotient of H2 with a Fuchsian

group Γ; i.e. a discrete subgroup of SL(2,R).6 In coordinates that make the Reeb foliation

6For an introduction, see e.g. [50].
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explicit we have

ds2
Ỹ p,q

=
1− cy

6

(
dθ2 + sin2 θdφ2

)
+

1

w(y)q(y)
dy2 +

w(y)q(y)

36
(dβ + c cos θdφ)2

+
1

9

(
dψ − cos θdφ+ y (dβ + c cos θdφ)− dx1

x2

)2

,

(3.10)

with

w(y) =
2
(
a− y2

)
1− cy

, q(y) =
a− 3y2 + 2cy3

a− y2
. (3.11)

Comparing with the canonical form of the metric in [40], one sees that the fibration is due

to the dx1
x2

term. However, the orbits of the Reeb vector are in general not closed [40] and

thus ψ is not a suitable coordinate to solve the PDE (3.2). After performing the coordinate

transformation

α = −β
6
− cψ

6
, ψ̃ = ψ , (3.12)

one has periodic coordinates ψ̃ and α with periods 2π and 2πl respectively where

l =
q

3q2 − 2p2 + p (4p2 − 3q2)1/2
. (3.13)

In terms of these coordinates, the metric is

ds2
Ỹ p,q

=
1− cy

6

(
dθ2 + sin2 θdφ2

)
+

1

w(y)q(y)
dy2 +

q(y)

9

(
dψ̃ − cos θdφ− dx1

x2

)2

+w(y)

(
dα+

ac− 2y + y2c

6 (a− y2)

(
dψ̃ − cos θdφ

)
+

2y

3w(y)

dx1

x2

)2

. (3.14)

Now that the U(1) isometries are explicit, we can make the same ansatz for Y0 as in [42],

namely, that Y0 factorizes:

Y0 = eıNψ̃ψ̃+ıNφφ+ıNα
l
αX (x1, x2) Θ (θ)R (y) . (3.15)

The R-charge q is defined as

2∂ψY0 = ıqY0 = ı

(
2Nψ̃ −

Nα

3l

)
Y0 . (3.16)

Upon combining the real and imaginary parts of Y0, the Cauchy-Riemann equations (3.7)

give us three equations, one for the Riemann surface, one for the two-sphere and one for

the directions y, α, which respectively are

x2 (∂x1Y0 + i∂x2Y0) + ∂ψY0 = 0 , (3.17a)

1

sin θ
∂φY0 − i∂θY0 + cot θ∂ψ̃Y0 = 0 , (3.17b)

A(y)2

6G(y)
∂αY0 +

A(y)

G(y)
y∂ψ̃Y0 +

i

3
∂yY0 = 0 . (3.17c)
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Here, we defined

A(y) = 1− cy , G(y) = a+ 2cy3 − 3y2 . (3.18)

We solve (3.17c) in the upper half plane. On H2 the general solution is

X(s, s̄) = f(s)x
−q/2
2 , (3.19)

where s = x1 +ıx2 and f(s) is an arbitrary holomorphic function. The remaining equations

can be solved as in [39]. For the fluctuations along the S2,

Θ(θ) =
(sin θ)Nφ+Nψ̃

(1 + cos θ)Nφ
=

(
sin

θ

2

)−Nφ−Nψ̃ (
cos

θ

2

)Nφ−Nψ̃
P

(−Nφ−Nψ̃ ,Nφ−Nψ̃)
0 (cos θ) . (3.20)

In the second step we rewrote the result in terms of Jacobi polynomials. Finally for the

fluctuations along y, α we get,

R (y) =
3∏
i=1

(y − yi)ai , (3.21)

where yi are the roots of the polynomial G(y) = 0 and

ai =
Nα

12l

(
1

yi
− 1

)
+
Nψ̃

2
, i = 1, 2, 3 . (3.22)

On H2, the situation is thus clear: there is an infinite number of solutions to (3.19).

For each of these there is a copy of the corresponding solutions of the scalar Laplacian on

Y p,q at the unitarity bound as in [39] and thus a copy of a subsector of the mesonic chiral

ring of the four-dimensional N = 1 theory.

The crucial question is of course which of these modes survive the transition to the

quotient H2/Γ.7 Instead of focussing on a specific choice of Γ, let us first consider a generic

SL(2,R) transformation which acts on s ∈ H2 as

s 7→ As+B

Cs+D
≡ s′,

(
A B

C D

)
∈ SL(2,R). (3.23)

While ds2
g>1 is invariant under this transformation, the cross term in (3.10) is not. Instead,

one finds that
dx1

x2
7→ dx1

x2
+ 2d

(
arctan

Cx2

Cx1 +D

)
. (3.24)

Since the mismatch is exact, it can be absorbed by a compensating transformation

ψ 7→ ψ + 2 arctan
Cx2

Cx1 +D
. (3.25)

We return to the wave function Y0. In terms of the coordinates of (3.10), we need to study

the transformation behavior of e
ıq
2
ψx
−q/2
2 f(s). Using arctan u = ı

2 log 1−ıu
1+ıu , we see that the

exponential factor transforms as

e
ıq
2
ψ 7→ e

ıq
2
ψ (Cs+D)q/2 (Cs̄+D)−q/2 . (3.26)

7We would like to thank the referee at JHEP for observations that led to the following discussion.
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Similarly, x
−q/2
2 7→ x

−q/2
2 (Cs + D)q/2(Cs̄ + D)q/2. Thus we arrive at the conclusion that

invariance of the wavefunction under Γ requires the function f(s) to transform as

f(s) 7→ (Cs+D)−qf(s). (3.27)

One recognizes the transformation behavior of a modular form of weight −q. With f

being a modular form on the Riemann surface H2/Γ, (3.27) holds ∀
(
A B
C D

)
∈ Γ, yet not

for generic elements of SL(2,R). At this point one should wonder about the sign of q.

The interpretation of f as a modular form of weight −q suggests q ≤ 0. Moreover, the

wave function Y0 is singular at x2 = 0 for positive values of q. On the other hand, the

definition of the 2D R-charge in (3.16) is identical to that of the 4D R-charge, which leads

to q ≥ 0 which is consistent with our conventions in section 2. Whatever the resolution to

this question, the above exhibits an injective map from the set of modular forms of weight

−q on the Riemann surface to the set of short multiplets of the CFT.

4 The dilatino and superconformal multiplets

Our discussion of the axio-dilaton and spin 2 fluctuation in section 2 relied heavily on

holomorphy. Our discussion in the introduction emphasized however that holomorphy and

its relation to the unitarity bound is just one tool that one can exploit in the Kaluza-

Klein analysis. In this section we will instead focus on superconformal symmetry using

the dilatino as an example. The situation is simplified by the fact that its fluctuations

also decouple from the rest of the spectrum — a fact that also holds for fluctuations of the

three-form that we will turn to in section 5. We will be able to prove that any wave function

discussed in section 2 — not just those satisfying the bound — immediately defines wave

functions in the dilatino spectrum. The corresponding modes have the correct quantum

numbers to be superpartners of the axio-dilation fluctuations, which agrees with the form

of the supersymmetry transformations of type IIB supergravity. Note however that we do

not calculate the complete dilatino spectrum which should also contain modes that lie in

other multiplets.

4.1 Some lessons from the superconformal algebra

In order to get some intuition, we will review some elementary aspects of the representation

theory of theN = 2 algebra. For details see [33–35] and references therein. What is relevant

for our analysis is the osp(2|2) subalgebra

[L̄0, L̄±1] = ∓ L̄±1, [J0, L̄±1] = 0,

[L̄0, G
+
±1/2] = ∓ 1

2
G+
±1/2, [J0, G

+
±1/2] = G+

±1/2,

[L̄0, G
−
±1/2] = ∓ 1

2
G−±1/2, [J0, G

−
±1/2] = −G−±1/2. (4.1)

Now, as we saw in section 2, any element of the Kohn-Rossi cohomology group H0,0

∂̄b
defines a scalar operator ∣∣∣∣q + 2

2

〉
⊗
∣∣∣∣q + 2

2
, q

〉
(4.2)
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that does not saturate the unitarity bound yet is conjectured to lie in a short multiplet.

Direct application of the algebra shows that there are two candidates for the chiral primary:

G+
1/2

∣∣∣∣q + 2

2
, q

〉
=

∣∣∣∣q + 1

2
, q + 1

〉
, L̄1

∣∣∣∣q + 2

2
, q

〉
=
∣∣∣q
2
, q
〉
. (4.3)

Since the original state is bosonic and there are no fermionic operators in the left handed

algebra, the former possibility would imply that the chiral primary is fermionic, while the

latter case leads to a bosonic state. In both cases we cannot make a definite statement

about the overall spin of the state we are looking for since it is possible that we would

have to act with some power of L1 as well. It is thus conceivable that the chiral primary in

question is actually the spin 2 fluctuation we found previously. However, one should keep

in mind that in the four-dimensional theories the axio-dilaton and spin 2 fluctuations lie

in different multiplets [8].

4.2 The dilatino

Schematically, the supersymmetry variation of the dilaton is δΦ ∼ ε̄λ and similar for the

axion. It follows that some of the fluctuations of the dilatino and all of the fluctuations

of the axio-dilaton should be related by the action of one of the supercharges 1 ⊗ G±±1/2.

With this in mind we consider fluctuations of the dilatino.

4.2.1 The supersymmetry spinor

To begin, we need to recall some properties of the background supersymmetry spinor. Our

discussion mainly follows [19]. However, see also appendix A of [51].

The supersymmetry variation of the gravitino imposes that the ten-dimensional Killing

spinor satisfies8

0 = ∇̂Aε+
ı

480
F̂A1...A5ΓA1...A5ΓAε. (4.4)

Comparing the spin connections on the warped and un-warped frames on M10 (êA1 =

eAeA1) yields

ω̂AB = ωAB + 2ê[AÊB](A). (4.5)

Writing the supersymmetry spinor as ε = ( 1
0 )⊗ ε⊗ ζ, it follows that

0 =

(
/∂A− ın+

1

2
e−4AF βγγβγ

)
ζ,

0 =

(
∇α +

1

2
γαβ∂

βA− 1

4
e−4AFβγγ

βγγα

)
ζ. (4.6)

This implies that ζc = C7ζ
∗ satisfies

0 =

(
/∂A− ın− 1

2
e−4AF βγγβγ

)
ζc,

0 =

(
∇α +

1

2
γαβ∂

βA+
1

4
e−4AFβγγ

βγγα

)
ζc. (4.7)

8Since we are working in flat indices, we emphasize that there is a difference between F̂A1...A5 =

ÊM1
A1

. . . ÊM5
A5
FM1...M5 and FA1...A5 = EM1

A1
. . . EM5

A5
FM1...M5 .
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In principle one wants to calculate £ξζ to confirm that the R-charge of ζ is ınζ and

that of the conjugate spinor −ın. Instead we just note that the three-form Ω = ζTγ(3)ζ

in [19] satisfies £ξΩ = 2ınΩ. This implies that both spinors have the correct R-charge.

4.2.2 Dilatino fluctuations

The equation of motion for fluctuations of the dilatino is (see e.g. [52–54])

ΓA∇̂Aλ =
ı

240
F̂A1...A5ΓA1...A5λ. (4.8)

The dilatino is chiral, Γ(10)λ = −σ3λ = λ. Thus λ = ( 0
1 )⊗ λ⊗ χ and

0 = /∇λ⊗ χ− ıλ⊗
(
/∇χ+

9

2
/∂Aχ+

1

2
e−4A /Fχ

)
. (4.9)

Therefore the mass operator for dilatino fluctuations is

L1/2 ≡ /∇+
9

2
/∂A+

1

2
e−4A /F . (4.10)

Some experimentation along the lines of [38] suggests that given an eigenfunction Ỹ

of the operator L0 one can construct eigenmodes of L1/2 by considering Ỹ ζc and /∂Ỹ ζc.9

Following this line of thinking one finds

L1/2Ỹ ζ
c = /∂Ỹ ζc + Ỹ /∂Aζc +

ın

2
Ỹ ζc,

L1/2(/∂Ỹ ζc) =

[
− LỸ − 1

2
∂aỸ ∂aA−

5

2
∂aỸ ∂bAγ

ab

+
3

4
e−4A∂aỸ Fbcγ

abc +
3

2
e−4A∂aỸ F

abγb

]
ζc

= −LỸ ζc + ∂aỸ ∂aAζ
c − ∂aỸ ∂bAγabζc −

3ın

2
/∂Ỹ ζc. (4.11)

Note that in going from the second line to the third we made use of the algebraic equation

for ζc. The choice Ỹ = e−AY0 turns out to lead to a diagonalizable system:

L1/2

(
e−AY0ζ

c

e−A/∂Y0ζ
c

)
=

(
ın
2 1

−L0 −3ın
2

)(
e−AY0ζ

c

e−A/∂Y0ζ
c

)
. (4.12)

The eigenvalues of the mass matrix are ı
(
±
√
L0 + 1− n

2

)
.10 Setting n = 1 and labelling

the corresponding masses as m±, we have

m± = E0 + 1± 1

2
. (4.13)

9The ansatz used here is also indebted to a series of discussions with Y. Tachikawa concerning the

equivalent problem in the Sasaki-Einstein case.
10 For reference, the eigenvectors are

ıe−AY0ζ
c(
√
L0 + 1 + n)− e−A /∂Y0ζ

c(L0),

ıe−AY0ζ
c(
√
L0 + 1− n) + e−A /∂Y0ζ

c(L0).

Clearly, contracting with (ζc)† yields Y0. This shows that one should be able to map some of the eigenmodes

of L1/2 to the set of eigenmodes of L0 by simply contracting with (ζc)†. This is of course just the inverse

of the supersymmetry transformation that mapped axio-dilaton fluctuations to dilatino ones.
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Now, recall that h− h̄ = s = ±1/2 and that h+ h̄ = ∆ = |m|+ 1. It follows that we have

a mode with s = 1/2, 2h̄ = E0 + 1 and R-charge q − 1 and another mode with s = −1/2,

2h̄ = E0 + 3 and R-charge q + 1. At the unitarity bound E0 = q these are not chiral

primaries. However, they are superpartners of the axio-dilaton mode, as we verify that the

dilatino states correspond to the action of 1⊗G−±1/2 on the axio-dilaton state.

In the above discussion the sign of the helicity s followed from consistency. The

“wrong” choice of sign leads to modes with 2h̄ = q + 2 which is not possible for a mode

which lies in the same multiplet as the mode of section 2, yet has opposite spin statistics.

One might wonder whether the spinor ζ — instead of its conjugate — might lead to

additional eigenmodes of the dilatino. An identical calculation to the above yields

L1/2(/∂Ỹ ζ) =

[
− LỸ − 1

2
∂aỸ ∂

aA− 5

2
∂aỸ ∂bAγ

ab

+
1

4
e−4A∂aỸ Fbcγ

abc − 7

2
e−4A∂aỸ F

abγb

]
ζ,

L1/2Ỹ ζ = /∂Ỹ ζ − Ỹ /∂Aζ +
5ın

2
Ỹ ζ. (4.14)

The point is that it seems impossible to use the algebraic identity for ζ to further simplify

the first of these since the terms of O(F ) differ by a factor of −14 while acting with γa on

the algebraic equation in (4.6) yields a relative factor of 2.

5 The three form and Betti multiplets

In the final part of this paper we will extend the methods used in section 2 to study

fluctuations of the three-form. For simplicity, we restrict to n = +1.

5.1 Deformed laplace operators

As alluded in section 2, the operator L0 can in fact be regarded as a deformation of the

usual Laplace operator. In order to make this relation clear we need to review some aspects

of the Hodge dual and the resulting inner product on p-forms.

Consider a d-dimensional (compact) manifold of signature t and α ∈ Ωk, β ∈ Ωl. The

Hodge star is defined by

?ᾱ ∧ β =
1

k!
ᾱm1...mkβm1...mk vol ≡ 〈α, β〉 vol . (5.1)

Occasionally we will add a subscript to denote the metric used to define the Hodge star.

E.g. for ds2
10A = e2Ads2

10, ?10A is the Hodge dual induced by the warped ten-dimensional

metric, ?10 its unwarped cousin. Appendix A.1 contains a number of technical results that

we will use extensively.

In order to define a Laplace operator one considers the canonical inner product on Ωk:

(α, β) ≡
∫
?ᾱ ∧ β. (5.2)
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This product leads to the notion of adjoint operators such as (α, d∗β) = (dα, β) which in

turn allow the definition of the de Rham Laplacian via ∆ = {d, d∗}. In our conventions

one finds

d∗α = (−1)kd+t ? d ? α. (5.3)

However, the inner product (·, ·) is not unique and so neither is d∗. Indeed, the crucial

if simple insight in section 2 was to normalize the inner product on scalars with a factor

of e8A. Generalizing this we introduce the deformed inner product

(α, β)c ≡
∫
ecA ? ᾱ ∧ β (5.4)

where we have introduced the constant c ∈ R and tacitly assumed that the warp-factor is

sufficiently well behaved for the integral to converge. The logical next step is to consider

deformed adjoints and Laplace operators in terms of the deformed inner product (5.4). For

(d+ cdA∧)∗c ≡ (−1)kd+t ? d? = d∗,

d∗c ≡ (−1)kd+t ? d ?−cdAy = d∗ − cdAy (5.5)

one verifies that (dα, β)c = (α, d∗cβ). Instead of introducing further symbols we will denote

the deformed de Rham Laplacian by

{d, d∗c} = dd∗c + d∗cd. (5.6)

For scalar functions on M7 one verifies that

L0 = {d, d∗8}|Ω0 . (5.7)

In the above discussion we defined d∗c as the adjoint of the exterior derivative with

respect to the deformed inner product (·, ·)c. However, we could have just as well defined

d∗c in terms of the inner product (·, ·) after rescaling the metric on M7 by a suitable power

of eA, with the weight of the exponential depending on the degree of the form. It follows

that the usual theorems that are familiar from de Rham and Dolbeault cohomology apply

— most notably Hodge decomposition and the existence of a complete set of orthogonal

eigenfunctions of the Laplace operator.

5.2 Gauge fixing of the three-form equations

Linearising the equation of motion for the three-form, d∗10AG = ıGy10AF5, leads to (G = da)

d∗10Ada = ıday10AF5 = ıe−6Aday10F5. (5.8)

Using a standard decomposition

a2(M10) =
∑

ak(AdS3)⊗ Y2−k(M7) (5.9)
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as well as (1.4) one arrives at the set of equations11

0 = d∗da2Y0 + a2(d∗dY0 − 4dAydY0)− da1(?d ? Y1 + 4dAyY1)

+ıe−4A(?da0Y2yF − ?a1dY1yF ), (5.10a)

0 = d∗da1Y1 + a1(d∗dY1 − 4dAydY1)− da0(?d ? Y2 − 4dAyY2)− ?d ? a2dY0

+ıe−4A(?da1Y1yF + ?a2dY0yF ), (5.10b)

0 = d∗da0Y2 + a0(d∗dY2 − 4dAydY2)− ?d ? a1dY1

−ıe−4A

[
?da2Y0F + a0dY2y

(
J ∧ ρ ∧ η

8
− e4A ? (dA ∧ η)

)]
. (5.10c)

Each equation contains terms of the form d∗dYk − 4dAydYk as well as d∗Yk − 4dAyYk. If

we impose the gauge condition

d∗4Yk = 0, (5.11)

the latter vanish, while the former become deformed Laplacians:

d∗dYk − 4dAydYk + d(d∗Yk − 4dAyYk) = {d, d∗4}Yk. (5.12)

In other words, the twisted adjoints and Laplace operators defined in the previous section

appear to be a good language to describe the equations of motion.

One might wonder whether this gauge condition is consistent. Continuing from the

discussion at the end of section 5.1, we assume that Hodge decomposition holds. Then we

can decompose any form Yk into a closed, co-closed and harmonic part:

Yk = dyk−1 + d∗4yk+1 + yk, {d, d∗4}yk = 0. (5.13)

By a gauge transformation, we can set yk−1 to zero and since harmonic forms are closed

and co-closed it follows that d∗4Yk = 0.

To proceed, we assume wave functions Yk of different degree k to be orthogonal and

similarly for the modes ak. Then the above decompose into three equations for a2,

0 = ?da2 ⊗ Y0F, (5.14a)

0 = d∗da2 ⊗ Y0 + a2 ⊗ {d, d∗4}Y0, (5.14b)

0 = ?d ? a2 ⊗ dY0 − ıe−4A ? a2 ⊗ dY0yF, (5.14c)

three equations for a1

0 = ?d ? a1 ⊗ dY1, (5.15a)

0 = −da1 ⊗ d∗4Y1 + ıe−4A ? a1 ⊗ dY1yF, (5.15b)

0 = d∗da1 ⊗ Y1 + a1 ⊗ {d, d∗4}Y1 + ıe−4A ? da1 ⊗ Y1yF, (5.15c)

11This uses

e2Ad∗10Ad(akY2−k) = d∗dakY2−k + akd
∗dY2−k − dak ? d ? Y2−k − ?d ? akdY2−k

+4(−1)kdakdAyY2−k − 4akdAydY2−k.
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and three equations for a0

0 = ?da0 ⊗ Y2yF, (5.16a)

0 = da0 ⊗ d∗4Y2, (5.16b)

0 = d∗da0 ⊗ Y2 + a0 ⊗
[
{d, d∗4}Y2 − ıe−4AdY2y

(
J∧ρ∧η

8
− e4A ? (dA ∧ η)

)]
. (5.16c)

5.3 Betti multiplets

Equations (5.14), (5.15) and (5.16), although quite complicated, simplify considerably if

we assume the wave functions to be closed, dYk = 0. Since we assumed them to be also

orthogonal, it is better to also assume that they are not exact. Due to the gauge condition

they are then harmonic with respect to the deformed Laplacian, {d, d∗4}Yk = 0. Finally, we

observe that the R-charge vanishes if they are horizontal, since £ξYk = d(ιξYk).

• From equations (5.16) it follows that for every element of H2(M7) that is orthogonal

to F (Y2yF = 0) there is a massless scalar a0. From the AdS/CFT dictionary it

follows that ∆± = 1± 1. If moreover Y2 is horizontal, the R-charge is zero.

• The situation is a little more complicated for the one-form a1. For dY1 = 0, the first

equation in (5.15) no longer imposes the constraint d∗a1 = 0 while the remaining

ones are gauge-invariant under a1 7→ a1 + dλ. This behaviour is actually familiar

from the Freund-Rubin case. See e.g. the discussion in [18]. The second equation

reduces to the constraint dY1yF = 0. To deal with the final equation, we take the

“square root” of the Laplacian by defining Q = ı ?3 d. The equation is now

0 = Q2a1 ⊗ Y1 +Qa1 ⊗ e−4AY1yF. (5.17)

If the two terms are linearly independent, we have Qa1 = 0 and thus da1 = 0.

However, since the universal cover of anti-de Sitter space has trivial fundamental

group this means that a1 is pure gauge. Thus, the existence of a non-trivial solution

requires the existence of some constant y1 ∈ C such that Y1yF = ıe4Ay1Y1. Together

with the gauge condition this implies that the constraint is satisfied as

dY1yF = d∗(Y1yF ) = ıy1d
∗(e4AY1) = ıy1e

4A(d∗Y1 − 4dAyY1) = 0. (5.18)

The fluctuation equation reduces to

0 = (Q2 + ıy1Q)a1, (5.19)

with eigenvalues Q = 0 and Q = −ıy1. Again, the Q = 0 eigenvalue leads to a

a1 being pure gauge. The mass is given by Q2 and thus y2
1. The mass-dimension

formula for a one-form in AdS3 is ∆± = 1 ± |m|. Since these modes have spin 1 we

have h− h̄ = ±1 and thus 2h̄ = 1∓ 1± |m|. In appendix C we calculate y1 for some

simple examples.
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• The simplest equations are those determining the two-form a2. The first of (5.14)

imposes that a2 is closed. However, H2(AdS3) = 0 and one sees immediately that no

such fluctuations exist.

This concludes our discussion of the three-form equations.

6 Future directions

Our results point to a number of interesting directions for future research. To begin there is

the clarification of the example considered in section 3.2 with regards to the quotient H2/Γ.

Subsequently generalizing the analysis done there to the large number of solutions present

in [27] will give an answer to the question how the Hilbert spaces of the two-dimensional

theories arise from those of their four-dimensional avatars.

As we mentioned in the introduction, one of the most interesting discoveries of [27] is

the mixing of the UV R- and and baryonic-symmetries. Being mesonic operators however,

the supergravity fluctuations we discuss here are not sensitive to this effect; an interpre-

tation that is consistent with both our discussion of the unitarity bound and our results

concerning the superpartners in the dilatino spectrum. Baryonic operators dual to wrapped

branes on the other hand are sensitive to this effect. This suggests that one should perform

a careful analysis of these [55, 56].

While we used the approach of [39] to calculate H0,0

∂̄b
directly, one should not forget that

a large number of results in four dimensions have been obtained by considering the Calabi-

Yau cone instead of its Sasaki-Einstein base. The situation is more complicated in the case

at hand since M7 is constrained by equation (1.3) and the cones C(M7) are not Kähler,

yet the eight-dimensional perspective should still be an interesting avenue to explore.

Turning to questions in supergravity and Kaluza-Klein theory, one would like to com-

plete the analysis of the spectrum started here. The most interesting question here might

be whether higher cohomology groups Hp,q

∂̄b
contribute to the chiral ring beyond H0,0

∂̄b
. Com-

paring sections 2 and 5, one might thus wonder whether it is possible to extract further

information from the three-form equations by using holomorphy as a guiding principle.

We have actually attempted to do so following [10], yet were not able to find any further

modes with wave functions satisfying ∂̄bYk = 0. While this might indicate that there are

no such modes in the spectrum of the three-form, one should study the diagonalization

of the system (5.10) more carefully. Once one has achieved a sufficient understanding of

the Kaluza-Klein spectrum, one should be able to calculate the elliptic genus as in [5] to

obtain results similar to those of [8, 9]; i.e. as a weighted sum over Hp,q

∂̄b
. Finally, one can of

course generalize our approach to backgrounds including more general fluxes such as [51]

or in different dimensions. We hope to return to these topics in the future.
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A Conventions and useful expressions

A.1 Differential forms and the Hodge star

In terms of indices, the definition of the Hodge star in (5.1) translates to (ε123...d = 1)

? αm1...md−k =

√
g

k!
ε

n1...nk
m1...md−k αn1...nk . (A.1)

One verifies

? ? α = (−1)k(d−k)+tα,

?(β ∧ α) =

√
g

k!l!
ε

n1...nk+l
m1...md−(k+l)

βn1...nlαnl+1...nk+l

=
1

l!
βn1...nl(?α)m1...md−(k+l)n1...nl

= (−1)l[d−(k+l)]βy ? α, (A.2)

where

βyα ≡ 1

l!
βn1...nlαn1...nlmk−l+1...mk (A.3)

and we’ve assumed that d− k ≥ l.
For our background (1.2) the cotangent bundle decomposes as

T ∗M10 = T ∗AdS3⊕T ∗M7 = T ∗AdS3⊕T ∗M6 ⊕Rη. (A.4)

We need to consider how the various Hodge star operators are related. To do so, we need

to recall how the Hodge star decomposes in the generic case. Let (V, 〈, 〉) be a vector space

with an inner product of signature t. Moreover, there is a decomposition V = W1 ⊕W2

compatible with the inner product. Assume that the signature of 〈, 〉1 is t while 〈, 〉2 is

Euclidean. Finally, the spaces are oriented such that volV = vol1 vol2. Let ?V be the

Hodge star on V . The 〈, 〉i induce Hodge stars ?i on Wi. For αi, βi ∈Wi, one finds

?V (α1 ⊗ α2) ∧ (β1 ⊗ β2) = 〈α1, β1〉〈α2, β2〉 vol1 vol2 = (?1α1 ∧ β1) ∧ (?2α2 ∧ β2)

= (−1)k1(d2−k2) ?1 α1 ∧ ?2α2 ∧ β1 ∧ β2. (A.5)

Thus

?V (α1 ∧ α2) = (−1)k1(d2−k2) ?1 α1 ∧ ?2α2. (A.6)

Simpler considerations lead to

?10A α = e(10−2k)A ?10 α, ?6Aβ = e(4k−12)A ?6 β, α ∈ Ωk(M10), β ∈ Ωk(M6). (A.7)
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With this in mind we turn to ?7 where for α ∈ Ωk(M6)

?7α = ?7(α⊗ 1) = η ∧ ?6Aα = e(4k−12)Aη ∧ ?6α,

?7(α⊗ η) = e(4k−12)A ?6 α⊗ ?1η = (−1)ke(4k−12)A ?6 [ηy(α ∧ η)] . (A.8)

A.2 Dirac algebra

We decompose the ten-dimensional Dirac matrices as

Γα = σ1 ⊗ γα ⊗ 1, Γa = σ2 ⊗ 1⊗ γa, (A.9)

where γα and γa are Dirac matrices on AdS3 and M7 respectively. For specific calculations,

we use

γAdS
0 = ıσ1, γAdS

1 = σ2, γAdS
2 = σ3, (A.10)

as well as

γM7
1 = σ1 ⊗ 1⊗ 1, γM7

2 = σ2 ⊗ 1⊗ 1, γM7
3 = σ3 ⊗ σ1 ⊗ 1,

γM7
4 = σ3 ⊗ σ2 ⊗ 1, γM7

5 = σ3 ⊗ σ3 ⊗ σ1, γM7
6 = σ3 ⊗ σ3 ⊗ σ2,

γM7
7 = σ3 ⊗ σ3 ⊗ σ3. (A.11)

We have chosen the signs in γAdS
0 and γM7

7 such that

γAdS
012 = −1, γM7

1234567 = −ı. (A.12)

The “intertwiner” matrices are

C10 = Γ02468 = σ2 ⊗ γ02 ⊗ γ246 = σ2 ⊗ C3 ⊗M7,

B10 = −Γ2468 = −ıσ3 ⊗ γAdS
2 ⊗ γM7

246 = ıσ3 ⊗B3 ⊗B7 (A.13)

on M10 and

C3 = γAdS
02 , C7 = γM7

246, B3 = −γAdS
2 , B7 = C7 (A.14)

for the internal manifolds. They satisfy

C10ΓAC
−1
10 = (ΓA)T , B10ΓAB

−1
10 = − (ΓA)∗,

C3γ
AdS
α C−1

3 = − (γAdS
α )T , B3γ

AdS
α B−1

3 = (γAdS
α )∗,

C7γ
M7
a C−1

7 = − (γM7
a )T . (A.15)

The chirality matrix is Γ(10) = Γ012...9 = −σ3 ⊗ 1 ⊗ 1 and thus that the chirality

condition for IIB, Γ(10)ε = −ε, reduces to σ3ε = ε. This also implies that

ΓA1...A5ε =
1

5!
εA1...A5

B1...B5
ΓB1...B5ε. (A.16)

For a spinor of opposite chirality, a minus sign appears on the right hand side of the above

equation.
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B The spin 2 mass operator

We summarize the derivation of the mass operator of spin 2 fluctuations [11, 13, 57, 58],

following mainly [13]. To begin we introduce the Lichnerowicz operator on a symmetric

2-tensor:

∆LhMN ≡ −∇P∇PhMN − [∇M ,∇P ]hNP − [∇N ,∇P ]hMP . (B.1)

Next we cite some standard results regarding perturbations of the metric:

δRKLMN = ∇MδΓKNL −∇NδΓKML,

δRMN = ∇KδΓKNM −∇NδΓKKM ,

δΓKMN =
1

2
gKL (∇MδgNL +∇NδgML −∇LδgMN ) . (B.2)

These allow us to express the variation of the Ricci tensor in terms of the Lichnerowicz

operator:

δRMN =
1

2

(
−∇P∇P δgMN +∇P∇MδgNP +∇P∇NδgMP −∇M∇Nδg P

P

)
=

1

2

(
∆LδgMN +∇M∇P δgNP +∇N∇P δgMP

)
. (B.3)

As in the main text we denote the difference between the warped and unwarped ten-

dimensional metric with a hat. That is, dŝ2 = e2Ads2. The Ricci tensors and scalars

then satisfy

R̂MN = RMN − (dim−2)(∇M∂NA− ∂MA∂NA) + gMN [∆A− (dim−2)dA2],

R̂ = e−2A[R+ 2(dim−1)∆A− (dim−2)(dim−1)dA2], (B.4)

where for our purposes dim = 10.

At this stage we introduce a perturbation of the metric along the AdS3 factor:

δĝµν = e2Aδgµν = e2Ahµν(AdS3)Y0(M7), (B.5)

where hµν satisfies transverse-traceless gauge conditions; ∇µhµν = h µ
µ = 0. Note that this

appendix uses greek indices to indicate AdS3 directions. Since A depends only on the inter-

nal manifold, one finds that δ(dA)2 = 0, δ(∆7A) = gMNδΓkMN∂kA = −1
2h

µ
µ gkl∂kA∂lY0 = 0

and δ(∇µ∂νA) = 1
2hµνg

kl∂kY0∂lA. It follows that δR̂ vanishes, while

δR̂µν =
1

2
[Y0∆Lhµν + hµνL0Y0] + hµνY0(∆A− 8dA2). (B.6)

Turning to the equation of motion,

R̂MN −
1

2
ĝMN R̂ = T̂MN , (B.7)

we need to consider the variation of the energy-momentum tensor. One could evaluate

δT̂µν explicitly for the background at hand, yet it has been argued in [13] that this is not
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necessary. At the linearized level the spin 2 modes are decoupled from the rest of the

spectrum. Due to the symmetries of the background it follows then that

δT̂µν =
1

3
δĝµν T̂

ρ
ρ . (B.8)

Using Rκλµν = −(gκµgλν−gκνgλµ) one calculates T̂ ρ
ρ = −6e−2A+3e−2A(∆A−8dA2)− 3

2R̂

and thus

δT̂µν = δgµν

(
−2 + ∆A− 8dA2 − 1

2
e2AR̂

)
. (B.9)

Combining our previous results,

δ

(
R̂µν −

1

2
ĝµνR̂

)
=

1

2

[
Y0∆Lhµν + hµνL0Y0 − e2AR̂

]
+ hµνY0(∆7A− 8dA2), (B.10)

and we can conclude that

0 = Y0(∆L + 2)hµν + hµνL0Y0, (B.11)

the equation of motion for a spin 2 fluctuation of mass L0.

C Example: products of Kähler-Einstein spaces

A simple yet interesting class of solutions that has been discussed in section 6 of [21]

arises if M6 is the product of Kähler-Einstein spaces. The D3-D3 intersection that we

discussed briefly in section 3.1 falls into this class. Following [21], one uses the ansatz

M6 = KE
(1)
2 ×KE(2)

2 ×KE(3)
2 . The metric is simply

ds2
6 =

∑
i

ds2(KE
(i)
2 ) (C.1)

and since each factor is Einstein the Ricci form decomposes as ρ =
∑

i liJi for some

constants li. It follows that R = 2
∑

i li. In general the K
(i)
2 are of dimension two, yet by

considering the special case for which two li are equal the analysis of [21] includes the case

of M6 = KE4×KE2. The curvature constraint (1.3) is solved if l1l2 + l2l3 + l3l1 = 0. The

flux (1.4) is

F =
1

2


(
1− 1

4e
4Al1

)
J1 0 0

0
(
1− 1

4e
4Al2

)
J2 0

0 0
(
1− 1

4e
4Al3

)
J3

 . (C.2)

Let us revisit the AdS3 × S3 × T 4 solution of section 3.1. Here, M6 = CP1 × T 4

and thus l2 = l3 = 0, l1 = 1. Therefore R = 2 and e4A = 4. Studying the constraint

equation for one-form wave functions in section 5.3, we find that for one-forms Y1 along

CP1 y1 = 0. Along T 4 on the other hand y1 = ±1
8 . Of course one should keep in mind

that H1(CP1) = 0.

A similar example is M6 = H2 ×KE+
4 . Here KE+

4 is a Kähler-Einstein manifold of

positive curvature such as CP1 ×CP1, CP2 or a del Pezzo surface dPk, k = 3, . . . , 8. Here

l1 = −1 and l2 = l3 = 2. Then R = 6 and e4A = 4
3 . Y1 ∈ Ω1(H2) results in y1 = ±1

2 ,

Y1 ∈ Ω1(KE+
4 ) on the other hand in y1 = ±1

8 .
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