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Abstract: The storage of data is a key process in the study of electrical power networks related
to the search for harmonics and the finding of a lack of balance among phases. The presence of
missing data of any of the main electrical variables (phase-to-neutral voltage, phase-to-phase voltage,
current in each phase and power factor) affects any time series study in a negative way that has to be
addressed. When this occurs, missing data imputation algorithms are required. These algorithms
are able to substitute the data that are missing for estimated values. This research presents a new
algorithm for the missing data imputation method based on Self-Organized Maps Neural Networks
and Mahalanobis distances and compares it not only with a well-known technique called Multivariate
Imputation by Chained Equations (MICE) but also with an algorithm previously proposed by the
authors called Adaptive Assignation Algorithm (AAA). The results obtained demonstrate how the
proposed method outperforms both algorithms.

Keywords: missing data imputation; multivariate imputation by chained equations (MICE);
Mahalanobis distances; Self-Organized Maps Neural Networks (SOM); Adaptive Assignation
Algorithm (AAA); Multivariate Adaptive Regression Splines (MARS); quality of electric supply;
voltage; current; power factor

1. Introduction

Currently, the importance of problems due to harmonics in electric networks is growing. This fact
is due to the increase in the amount of non-linear loads. The two main problems related to harmonics
are the overheating of conductors due to the skin effect and the activation of automatic breakers, which
produce problems for supply continuity. Additionally, distortion of the voltage waveform may cause
the malfunction of some devices. The monitoring of harmonics in real time is required to control them.

Another common problem in electrical networks is the imbalance between phases. This is usually
caused by a bad load distribution between phases and provokes a high current return displayed by
the neutral, as it has to compensate for the gap existing at the centre of the scheme vectors.

Electricity quality is an important issue that is present in the following variables: voltage, current,
frequency anomalies, etc. The quality affects all devices connected to the power network, causing
failure of the systems or disability [1]. Currently, an electric system is analyzed in terms of efficiency,
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stability and optimization to obtain better quality of the system [2]. With the aim of reducing the
issues and improving electricity quality, science and technology are evolving to mitigate problems and
overcome the problems mentioned above [3].

Different studies in this field have been performed: for instance, a novel power quality deviation
parameter based on principal curves is presented in [4]. In [5], a review of the signal processing
and intelligent techniques and methods employed in the self-classification of the events of power
quality and the influence of noise on the recognition and classification of perturbations has been
made. [6] describes a device capable of labelling, recognizing, and quantifying energy and power
quality perturbation. An intelligent device for high-resolution frequency measuring that agrees with
the common indicator standards is shown in [7]; it is used for electricity quality monitoring and control.
Furthermore, [8] exposes a communication infrastructure created to obtain consistent data delivery at
low cost, with the aim to prevent the difficulties of the power quality monitoring service.

Monitoring the main electrical variables in electric systems in some buildings might be interesting.
Therefore, monitoring is useful for the control with the objective of balancing the loads of a building,
thus reducing the consumption of the electric energy of the building by decreasing the remaining
consumption (during non-working hours). The analysis of the electric system in buildings is useful
for determining the optimized rates. Furthermore, it is also useful for the analysis of supply issues
that can affect the different loads, which are caused by a lack of balance or harmonics, analysis of the
energy quality and preventing incidents as a result of poor signal quality. Finally, the analysis of the
building operation and its efficiency study might be of interest when accounting for the dependency
of the people who use it, area in use, installed power, etc.

During the data-collection process, it is likely that a small amount of the information retrieved may
be lost. In these cases, missing data imputation algorithms must be applied because the substitution of
missing data with zeros is not acceptable. The present research evaluates a new imputation method
that is able to predict the value of any missing data in the sensor devices that are used in this research
for the recording of electrical variables. The new algorithm is based on Self-Organized Maps Neural
Networks and Mahalanobis distances and hybridizes them with the algorithm called the Adaptive
Assignation Algorithm (AAA). The results obtained are benchmarked with those given by the AAA
and multivariate imputation by chained equations (MICE) [9].

The rest of the paper is arranged as follows: Section 2 describes the measurement equipment
and the database, Section 3 details the proposed algorithm and how its performance is measured and
compared. Section 4 presents the results obtained and its comparison with other algorithms. Finally,
the conclusions are drawn in Section 5.

2. Materials and Methods

2.1. Measurement Equipment

In this section, the specific power quality measurement devices that are employed in this work are
described (Figure 1). The next measurements are common to all them, namely: Energy Output or Input
(ENERGY), Reactive Energy Output or Input (R-ENERGY), Apparent Energy (A-ENERGY), Power
Factor (P-F), Power Output or Input (POW), Reactive Power (R-POW), Apparent Power (A-POW),
Voltage from Line to Line (VLL), Voltage from Line to Neutral (VLN), Current by line (I), and Frequency
(FQ). The accuracy of each electrical measurement for all devices used is shown in Table 1. Note that
all indicated percentage values refer to the obtained percentage.
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Table 1. Device precision. POW: power, R-POW: reactive power, A-POW: active power, A-ENERGY: 
active energy, VLN: voltage line to neuter, VLL: voltage line to line, I: current, PF: power factor, FQ: 
frequency. 

Variable Units 
MP200 NEXUS 1252 SK-200 SK-100 

(%) 200 mili Seg (%) 1 s (%) (%) (%) 
POW W 0.5 0.1 0.06 0.2 0.2 

ENERGY W·h 0.5 N/A 0.04 0.2 0.2 
R-POW VARs 1.0 0.1 0.08 0.2 0.2 

R-ENERGY VAR·h 1.0 N/A 0.08 0.2 0.2 
A-POW VA 1.0 0.1 0.1 0.2 0.2 

A-ENERGY VA·h 1.0 N/A 0.08 0.2 0.2 
VLN V/KV 0.3 0.1 0.05 0.1 0.1 
VLL V/KV 0.5 0.1 0.05 0.2 0.1 

I A/KA 0.3 0.1 0.025 0.1 0.1 
PF  0.5 to 1 1.0 0.1 0.08 0.2 0.2 

FQ (*) Hz ±10−2 * 3.10−2 * 1.10−2 * ±3.10−2 * 1.10−2 * 

* Accuracy in Hz. 

 
Figure 1. Equipment (SK-100/200 on the left, Nexus1250 on the right top and MP200 on the right 
bottom; source: Electro Industries/GaugeTech, Westbury, New York—USA) [10]. 

2.2. The Data Description 

In this paper, the next dataset, which includes measurements of variables from an electrical 
power supply of an edifice, has been used. 

 Three variables of each phase current 
 Three variables of voltage from phase to phase 
 Three variables of voltage from phase to neutral 
 Average power factor 

Between the 27 November 2014 at 18:45 and the 31 May 2015 at 23:45, the data set was logged, 
with an interval of 15 min. 

A building called Severo Ochoa, in honour of the Novel Prize winner, was used in this work for 
the dataset. The University of Oviedo (Spain) is the owner of this building, which has a total area of 

Figure 1. Equipment (SK-100/200 on the left, Nexus1250 on the right top and MP200 on the right
bottom; source: Electro Industries/GaugeTech, Westbury, New York—USA) [10].

Table 1. Device precision. POW: power, R-POW: reactive power, A-POW: active power, A-ENERGY:
active energy, VLN: voltage line to neuter, VLL: voltage line to line, I: current, PF: power factor,
FQ: frequency.

Variable Units
MP200 NEXUS 1252 SK-200 SK-100

(%) 200 mili Seg (%) 1 s (%) (%) (%)

POW W 0.5 0.1 0.06 0.2 0.2
ENERGY W·h 0.5 N/A 0.04 0.2 0.2
R-POW VARs 1.0 0.1 0.08 0.2 0.2

R-ENERGY VAR·h 1.0 N/A 0.08 0.2 0.2
A-POW VA 1.0 0.1 0.1 0.2 0.2

A-ENERGY VA·h 1.0 N/A 0.08 0.2 0.2
VLN V/KV 0.3 0.1 0.05 0.1 0.1
VLL V/KV 0.5 0.1 0.05 0.2 0.1

I A/KA 0.3 0.1 0.025 0.1 0.1
PF 0.5 to 1 1.0 0.1 0.08 0.2 0.2

FQ (*) Hz ±10−2 * 3.10−2 * 1.10−2 * ±3.10−2 * 1.10−2 *

* Accuracy in Hz.

All mentioned measurements can be performed by the four devices used in the present work.
The four devices have additional features. Shark 100, Shark 200 and Shark MP200 incorporate

V-Switch technology, which allows the operator to add new functions to the devices using
programming commands at any time after its installation. In the case of the Nexus 1252 device,
it is possible to add isolated input/output modules and software options for additional functions.
All of them have communication capabilities (some optional) as Modbus or DNP 3.0 (Distributed
Network Protocol) protocols by an RS485 port, 10/100BaseT Ethernet capabilities or IrDA port. A deep
analysis of features of each device is made in [10].

2.2. The Data Description

In this paper, the next dataset, which includes measurements of variables from an electrical power
supply of an edifice, has been used.
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• Three variables of each phase current
• Three variables of voltage from phase to phase
• Three variables of voltage from phase to neutral
• Average power factor

Between the 27 November 2014 at 18:45 and the 31 May 2015 at 23:45, the data set was logged,
with an interval of 15 min.

A building called Severo Ochoa, in honour of the Novel Prize winner, was used in this work for
the dataset. The University of Oviedo (Spain) is the owner of this building, which has a total area
of 8.150 m2, distributed over two basement levels and five floors; a total of 78 employees work in it.
The ITS (Information Technology Services) of the University of Oviedo are also located in this edifice.
The equipment of the ITS is distributed across server rooms and scientific laboratories. This equipment
has to be supplied by a good quality power network at all times. The laboratory equipment mentioned
above includes electron microscopes, NMR spectrometers, X-ray diffractometers, etc. The energy
consumption is 190.572 KWh per day, on average. The data set detailed here was already employed by
the authors in previous research [9].

The equipment mentioned above, and the building services, incorporate devices such as UPS
(Uninterruptible Power Supply), VSD (Variable Speed Drive) and inductive and capacitive loads in
switching mode. These electronic circuits are nonlinear loads, and all of them can create harmonic
distortion in the power line. The harmonic distortion in the distribution system is caused by the
harmonic currents flowing in the electronic loads.

3. Methodology

The data set employed in this research has a total of 17,763 samples that correspond to the period
of time referred to in the description of the data. A process of random data deletion was performed
using this data set.

The new algorithm presented in this paper hybridizes the Self-Organized Maps Neural Networks
methodology with the Mahalanobis distances. The hybrid method obtained is combined with an
algorithm already presented in this journal by the authors, called AAA [9], based on Multivariate
Adaptive Regression Splines. The proposed methodology is new and its performance is even better
than the one referenced and presented in a previous paper when applied to the same database.
This method is considered a hybrid method because it combines well-known pattern recognition and
machine learning methodologies in a hybrid model that is able to impute missing data [11,12].

The performance of the proposed new methodology, in comparison with AAA and MICE, has
been evaluated using the mean absolute error (MAE) and the root mean square error (RMSE). They are
very common metrics in forecasting research [13,14]. The reason why, in the present research, both
are employed is their complementarity. The purpose of the MAE is the measurement of the average
magnitude of the error in a set of forecasts without considering their direction while the RMSE is
employed for its ability to describe uniformly distributed errors [13]. A more detailed explanation
including the formulas employed can be found in [9]

Let us assume that we have a dataset formed by c different variables v1, v2, . . . , vc that are
the columns of a data matrix whose total number of rows is r. The algorithm is applied via the
following steps.

3.1. Creation of a New Matrix with Missing Values from the Original Data Set

This step of the algorithm is not required when it is applied to a data set in which missing data
are going to be imputed, but it is mandatory in the present research to validate the algorithm by using
a complete data set.

Let A be the original matrix (rxc) of r rows and c columns. As a first step and to obtain a matrix
with a certain amount of missing data, a proportion of p elements in the matrix is removed. Let B be
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the new (rxc) matrix, with a proportion p of missing elements. The removal is performed completely
at random; therefore, the type of imputation that is going to be tested to determine the performance of
the algorithm is the one known as missing completely at random (MCAR).

3.2. Creation of the Reduced Matrix

A new matrix in which all the rows with missing data are removed is created. This new matrix is
called Bred. Although the number of rows s (s ≤ r) of this matrix will change depending on the matrix
that is going to be imputed, in those cases like the one presented in this algorithm in which the removal
of data has been performed completely at random and in a proportion p, the number of remaining
rows u will be represented by the following formula:

u = r× (1− p)c , (1)

where:

p: proportion of missing data considered;
r: number of rows of the original matrix;
c: number of columns of the data matrix;
Afterwards the Bred matrix is normalized.

3.3. Determination of the Director Vectors by Means of Self-Organized Maps Neural Networks

The Self-Organized Maps (SOM) Neural Network is a type of unsupervised neural-network
algorithm whose main application is related to the visualization and interpretation of large dimensional
data sets [15].

These types of maps are used to represent all the available observations (data vectors), with an
optimized accuracy, by means of a reduced set of models. This is the reason why this technique has
been chosen in the present research.

Let N be the dimension of the n director vectors X(t) ∈ Rn, t = 1, 2, . . . , n, where each sample vector
is identified by a label. The two-dimensional output layer of the SOM map contains a rectangular
mesh of k = 1, . . . , xdim × ydim nodes. Each one of these nodes is employed as a codebook vector Wk
of dimension N. The calculus of the weight vectors is performed by using the following algorithm [16].

For a certain amount of iterations, follow the steps detailed below:

1. Choose one sample vector X (t) at random;
2. Search for the nearest weight vector Wc : ||X−Wc|| = minj||X−Wj||;
3. Update the weights Wi by means of the following rule:

Wi (t + 1) = Wi (t) + hci (t) · [X (t)−Wi (t)] , (2)

where hci (t) is the neighbour function, which, in the case of the present research and is being very
common in the literature [15], is of the Gaussian type:

hci (t) = α (t) ·exp
(
−||Wc −Wi ||

2·σ2 (t)

)
. (3)

Weight of neurons lying in the neighbourhood hci (t) of the winning neuron is moved closer to
X (t). The learning rate α (t) ∈ [0, 1] decreases monotously as the number of iterations increases, σ (t)
determining that the radius of the neighbourhood also decreases monotonically. After many iterations
and the slow reduction of α (t) and σ (t), the neighbourhood covers only a single node and the map is
formed. Please note that those neurons, whose weights are closer in the parameter space W, are also
closer on the mesh. After this process, the director vectors obtained are denormalized. The number of



Sensors 2016, 16, 1467 6 of 13

director vectors chosen to create the Self-Organized Map in the case of the present algorithm is related
to the number of rows in the Bred matrix. Let u be the number of rows in the matrix Bred; the total
amount of director vectors will be a range of values d = e·u / e ∈ [0.05, 0.8] ; the reason for this range
of values, empirically found, will be explained in the results sections.

3.4. Finding the Closest Director Vectors by Means of Mahalanobis Distances

The Mahalanobis distance is a well-known, non-Euclidean distance measure based on correlations
between variables [17]. These correlations allow for the identification and analysis of different patterns.
This measure is a useful way of determining the similarity of an unknown sample set to a known one,
and, in the present research, it is used to compare each one of the rows of the data matrix with missing
data with all the director vectors. It can be defined by the following formula:

dA (x1, x2) =

√
(x1 − x2)

T ·A· (x1 − x2) , (4)

where x1 and x2 represent the sets of variables of two different rows of the data matrix, and A ∈ Rnxn

is a positively semi-definite matrix that represents the inverse of the covariance matrix of class {I} .
By means of the eigenvalue decomposition, A can be decomposed into A = W·WT .

In the case of the present algorithm, the Mahalanobis distance of each vector row with two or
more missing data points to all the director vectors is calculated. Please note that, in order to make this
operation possible, all those variables with missing data in the row that come from the data matrix
are removed in the director vector. The director vector with the lowest Mahalanobis distance value is
selected and those missing variables in this row of the data matrix are filled using the values present in
the corresponding row of the director vector.

Finally, the original matrix is reconstructed and the value of the missing data of those rows
with only one or two missing data points are imputed by means of the AAA algorithm. As it has
already been stated, this algorithm was presented in a previous work [9] published in this journal.
The referenced algorithm is based on a multivariate non-parametric technique called Multivariate
Adaptive Regression Splines (MARS) [18–21].

4. Results and Discussion

In this section, the results of the Hybrid Adaptive Assignation Algorithm (HAAA) are presented
and compared with those of the AAA and MICE. The test was performed using the MCAR
methodology, deleting 10%, 15% and 20% of the information. This process was repeated five times. The
performances of the three algorithms were compared based on the MAE and RMSE metrics. The results
of all the interactions performed are presented. To simplify the comparisons, the results that use the
same original MCAR subsets are presented in the same table. The way in which results are presented
is the same as the one that was employed in previous research, in which the performance of the AAA
algorithm was analysed [9]. Each table also contains the average values of the five replications. Table 2
contains the RMSE values of the MICE, AAA and HAAA algorithms when applied to a database
with 10% of the data missing. As can be observed in this table, for the variables of voltage, intensity
and power factor employed in this research, the RMSE values obtained by the new algorithm are
considerably lower than those obtained by using the AAA and MICE methods. In the case of 10%
missing data, Table 2, the variable in which the RMSE is reduced to a lesser amount receives a 15%
reduction, while the average reduction of all variables is 62%. For the case of 15% missing data, Table 3,
the results are very similar, obtaining at least a reduction of the RMSE of 12% and an average reduction
of 46%. Additionally, for the case of 20% missing data, Table 4, the results are equivalent, with a
minimum 18% reduction of the RMSE value and an average of 48%.
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Table 2. RMSE obtained with 10% missing data using MICE, AAA and the newly proposed algorithm,
HAAA. RMSE: root mean square error, MICE: multivariate imputation by chained equations, AAA:
adaptive assignation algorithm, HAAA: hybrid adaptive assignation algorithm, Van: voltage line a to
neuter, Vbn: voltage line b to neutre, Vcn: voltage line c to neutre, Vab: voltage line a to b, Vbc: voltage
line b to c, Vca: voltage line c to a, Ia: current line a, Ib: curren line b, Ic: current line c.

RMSE MICE 10% Missing Data

ID# Van Vbn Vcn Vab Vbc Vca Ia Ib Ic PF

1 20.8398 34.3633 21.9653 30.9830 36.0714 48.0547 0.2653 0.7807 1.6655 0.0030
2 18.7495 31.6307 24.1316 31.0080 37.0614 48.1173 0.7918 0.3262 1.5742 0.0017
3 18.8833 30.4312 24.0313 34.9034 30.8320 47.8822 0.1946 0.1122 1.6727 0.0027
4 17.3260 32.0759 21.2884 31.8996 31.5952 48.7585 0.9634 0.6172 1.8090 0.0030
5 20.0333 34.4660 22.1438 32.1480 32.9437 47.7413 0.7631 0.1324 1.4919 0.0028

average 19.1664 32.5934 22.7121 32.1884 33.7007 48.1108 0.5956 0.3937 1.6427 0.0026

RMSE AAA Algorithm 10% Missing Data

ID# Van Vbn Vcn Vab Vbc Vca Ia Ib Ic PF

1 1.0583 1.7376 1.1078 1.6251 1.0612 1.8042 0.1318 0.1478 0.1514 0.0030
2 1.0228 1.6687 1.2186 1.4223 2.0596 1.7124 0.1307 0.1749 0.1304 0.0020
3 0.9641 1.5329 1.2044 2.0471 1.9560 1.7213 0.1365 0.1985 0.1172 0.0015
4 0.9328 1.6923 1.1531 1.8030 1.8338 1.8457 0.1845 0.1581 0.1340 0.0021
5 1.0473 1.7783 1.1100 1.7025 1.5521 1.8885 0.1368 0.1374 0.2158 0.0024

average 1.0050 1.6819 1.1588 1.7200 1.6925 1.7944 0.1441 0.1633 0.1498 0.0022

RMSE New Algorithm 10% Missing Data

ID# Van Vbn Vcn Vab Vbc Vca Ia Ib Ic PF

1 0.6029 0.6657 0.6165 0.0384 0.0218 0.0265 0.0866 0.0632 0.0863 0.0009
2 0.5663 0.6128 0.5283 0.0270 0.0558 0.0503 0.0599 0.0896 0.0687 0.0008
3 0.5789 0.6526 0.5457 0.0690 0.0497 0.0479 0.0768 0.0652 0.0687 0.0061
4 0.5264 0.5965 0.6352 0.0344 0.0383 0.0374 0.0608 0.0624 0.0609 0.0007
5 0.5853 0.5110 0.5568 0.0603 0.0354 0.0316 0.0612 0.0745 0.0523 0.0009

average 0.5720 0.6077 0.5765 0.0458 0.0402 0.0387 0.0691 0.0710 0.0674 0.0019

Table 3. RMSE obtained with 15% missing data using MICE, AAA and the newly proposed
algorithm, HAAA.

RMSE MICE 15% Missing Data

ID# Van Vbn Vcn Vab Vbc Vca Ia Ib Ic PF

1 21.2798 34.9133 22.2953 36.3636 31.1154 44.9074 0.3129 1.2746 1.0503 0.0031
2 19.1895 31.9607 24.4616 37.2800 31.0974 45.0104 0.5060 1.3345 1.7062 0.0034
3 19.1033 30.7612 24.4713 37.1822 31.1052 44.6659 0.4039 1.2087 1.1608 0.0036
4 17.6560 32.4059 21.6184 37.1192 30.6655 45.9235 0.6803 1.9764 1.8724 0.0029
5 20.4733 35.1260 22.8038 37.4040 30.9877 44.5148 0.3754 1.1864 1.2194 0.0043

average 19.5404 33.0334 23.1301 37.0698 30.9942 45.0044 0.4557 1.3961 1.4018 0.0035

RMSE AAA Algorithm 15% Missing Data

ID# Van Vbn Vcn Vab Vbc Vca Ia Ib Ic PF

1 1.1133 1.8036 1.1298 0.0591 0.0650 0.1153 2.0629 2.1338 2.5664 0.0009
2 1.0778 1.6907 1.2406 0.0620 0.0629 0.1176 2.2728 1.5485 2.6213 0.0009
3 1.0081 1.5549 1.2374 0.0493 0.0656 0.1014 1.8102 1.9783 2.6717 0.0012
4 0.9658 1.7583 1.2191 0.0523 0.0393 0.1501 2.2242 1.5741 2.5330 0.0012
5 1.1023 1.8333 1.1320 0.0678 0.0533 0.0929 1.7768 2.1714 2.4560 0.0010

average 1.0534 1.7281 1.1918 0.0581 0.0572 0.1155 2.0294 1.8812 2.5697 0.0011

RMSE New Algorithm 15% Missing Data

ID# Van Vbn Vcn Vab Vbc Vca Ia Ib Ic PF

1 0.6689 0.6987 0.6715 0.0439 0.0262 0.0309 0.6936 0.6543 0.7210 0.0010
2 0.5883 0.6678 0.5943 0.0325 0.0580 0.0536 0.6579 0.7209 0.7350 0.0009
3 0.6449 0.6966 0.5787 0.0745 0.0541 0.0545 0.8358 0.7183 0.7421 0.0011
4 0.5814 0.6185 0.6792 0.0388 0.0427 0.0407 0.6739 0.6574 0.6531 0.0008
5 0.6403 0.5550 0.6008 0.0658 0.0409 0.0349 0.6336 0.7715 0.7050 0.0009

average 0.6248 0.6473 0.6249 0.0511 0.0444 0.0429 0.6990 0.7045 0.7112 0.0009
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Table 4. RMSE obtained with 20% missing data using MICE, AAA and the newly proposed
algorithm, HAAA.

RMSE MICE 20% Missing Data

ID# Van Vbn Vcn Vab Vbc Vca Ia Ib Ic PF

1 23.3518 36.9853 24.0713 43.6987 33.1613 50.9935 0.5688 0.6465 1.1420 0.0941
2 21.8535 34.3287 25.3496 30.8402 36.5679 53.5682 0.6665 0.5931 1.2083 0.0906
3 19.9913 33.1292 25.9513 40.3302 27.7061 53.0747 0.5814 0.5970 1.0409 0.0550
4 20.0240 33.5899 23.3944 30.7252 35.7307 51.8370 0.5847 0.3919 1.4901 0.0843
5 22.8413 36.0140 25.4678 45.1604 28.2537 48.6319 0.6590 0.5827 1.0313 0.1027

average 21.6124 34.8094 24.8469 38.1509 32.2839 51.6210 0.6121 0.5622 1.1825 0.0853

RMSE AAA Algorithm 20% Missing Data

ID# Van Vbn Vcn Vab Vbc Vca Ia Ib Ic PF

1 1.2317 1.4731 1.1482 2.2405 2.2522 2.8032 0.142 0.1537 0.1597 0.0058
2 1.2850 1.3387 1.2478 2.53918 1.6669 2.7101 0.1353 0.1772 0.1731 0.0038
3 1.1857 1.2352 1.2742 2.07656 2.1855 2.8789 0.1162 0.1459 0.155 0.0068
4 1.0546 1.2359 1.1375 2.4018 1.7221 2.6810 0.162 0.146 0.1259 0.0066
5 1.3687 1.4813 1.1392 1.98403 2.2898 2.6632 0.1196 0.1533 0.1304 0.0077

average 1.2251 1.3528 1.1894 2.2484 2.0233 2.7473 0.1350 0.1552 0.1488 0.0061

RMSE New Algorithm 20% Missing Data

ID# Van Vbn Vcn Vab Vbc Vca Ia Ib Ic PF

1 0.8761 0.9651 0.8787 0.4692 0.4224 0.4128 0.0978 0.0929 0.1123 0.0014
2 0.7659 0.7566 0.7127 0.3311 0.5584 0.6419 0.1118 0.1012 0.1252 0.0017
3 0.9113 0.9038 0.7267 0.7379 0.5989 0.5070 0.1341 0.1157 0.1076 0.0018
4 0.7294 0.8849 0.9456 0.4763 0.4598 0.4680 0.0953 0.1044 0.1112 0.0016
5 0.7587 0.8214 0.7192 0.6213 0.5170 0.3739 0.1125 0.1186 0.1066 0.0017

average 0.8083 0.8664 0.7966 0.5272 0.5113 0.4807 0.1103 0.1066 0.1126 0.0016

The results obtained when the MAE metric is applied to the three algorithms are equivalent.
Table 5 shows the results obtained using the MAE metric for 10% missing data, while Table 6 does the
same for 15% and Table 7 for 20%. When the algorithm proposed is compared with AAA in the case of
10% missing data, the average of improvement regarding the MAE metric is 35%, with a minimum
value of 10%. For the case of 15% missing data, the average improvement of the MAE is 29%, with a
minimum of an 8% improvement in one of the variables. When the amount of missing data is 20%, the
average improvement of the referenced metric is 42%, with a minimum amount of 13%.

Table 5. MAE (mean absolute error) obtained with 10% missing data using MICE, AAA and the newly
proposed algorithm, HAAA.

MAE MICE 10% Missing Data

ID# Van Vbn Vcn Vab Vbc Vca Ia Ib Ic PF

1 16.5255 27.4609 17.6382 31.0773 31.8032 39.9026 0.1725 0.2588 1.3358 0.0024
2 14.6229 24.1967 20.2526 33.6486 24.1749 40.8152 0.1744 0.2355 1.3055 0.0025
3 15.1412 23.9954 19.4134 26.2969 30.7039 41.4323 0.2113 0.2623 1.3377 0.0024
4 14.0678 25.6064 17.3741 34.8765 23.4809 37.3655 0.2512 0.2306 1.3785 0.0026
5 16.0730 27.5605 17.8741 27.4130 33.2976 35.7481 0.2334 0.1752 1.4786 0.0060

average 15.2861 25.7640 18.5105 30.6624 28.6921 39.0528 0.2086 0.2325 1.3672 0.0032

MAE AAA Algorithm 10% Missing Data

ID# Van Vbn Vcn Vab Vbc Vca Ia Ib Ic PF

1 0.8120 0.8681 0.7423 0.4379 1.3656 2.5745 0.1117 0.1210 0.9243 0.0059
2 0.8358 0.8545 0.7946 1.5311 1.2375 0.8110 0.1210 0.1228 1.0954 0.0062
3 0.8274 0.8546 0.7923 1.1356 1.4964 1.3782 0.1215 0.1272 0.9566 0.0095
4 0.8653 0.8651 0.7562 1.3314 1.4677 1.3657 0.1186 0.1222 1.0425 0.0085
5 0.9052 0.8561 0.7563 1.2364 1.2115 0.8277 0.1145 0.1177 0.9595 0.0120

average 0.8491 0.8597 0.7684 1.1345 1.3557 1.3914 0.1175 0.1222 0.9957 0.0084

MAE New Algorithm 10% Missing Data

ID# Van Vbn Vcn Vab Vbc Vca Ia Ib Ic PF

1 0.8192 0.7406 0.6883 0.3447 0.5175 1.0331 0.1047 0.1091 0.1338 0.0042
2 0.6789 0.6371 0.7580 0.5359 0.5140 1.0838 0.1163 0.0872 0.1410 0.0033
3 0.7080 0.6473 0.7381 0.4839 0.3278 1.0783 0.0923 0.1055 0.1387 0.0054
4 0.6946 0.7001 0.6387 0.5285 0.2821 0.8947 0.1224 0.0845 0.1253 0.0049
5 0.7616 0.7693 0.6695 0.1723 0.6028 1.0647 0.0926 0.1158 0.1217 0.0069

average 0.7325 0.6989 0.6985 0.4131 0.4488 1.0309 0.1057 0.1004 0.1321 0.0049
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Table 6. MAE obtained with 15% missing data using MICE, AAA and the newly proposed
algorithm, HAAA.

MAE MICE 15% Missing Data

ID# Van Vbn Vcn Vab Vbc Vca Ia Ib Ic PF

1 17.1855 27.7909 18.2982 32.3532 40.3426 31.4073 0.7919 0.9918 2.0018 0.0149
2 15.2829 24.4167 20.6926 24.3949 41.2552 34.0886 1.0895 0.9905 2.0695 0.0141
3 15.5812 24.6554 19.6334 31.0339 41.9823 26.7369 0.3773 0.6813 2.0927 0.0171
4 14.6178 26.0464 17.8141 23.7009 37.6955 35.2065 0.5732 0.5966 1.8180 0.0189
5 16.2930 27.8905 18.5341 33.9576 35.9681 27.6330 0.4885 1.2168 2.1226 0.0205

average 15.7921 26.1600 18.9945 29.0881 39.4488 31.0144 0.6641 0.8954 2.0209 0.0171

MAE AAA Algorithm 15% Missing Data

ID# Van Vbn Vcn Vab Vbc Vca Ia Ib Ic PF

1 0.9321 0.9516 0.8651 1.3788 1.4240 1.3866 0.0932 0.0952 0.0865 0.0063
2 0.9576 0.8613 0.9000 1.3569 1.3313 1.3687 0.0958 0.0861 0.09 0.0075
3 0.5774 0.8965 0.8652 1.3458 1.5144 1.3788 0.0577 0.0896 0.0865 0.0101
4 0.9626 0.8945 0.9513 1.3565 1.5227 1.3744 0.0963 0.0895 0.0951 0.0096
5 0.9342 0.9852 0.9806 1.3026 1.5278 1.3506 0.0934 0.0985 0.0981 0.0124

average 0.8728 0.9178 0.9125 1.3481 1.4640 1.3718 0.0873 0.0918 0.0912 0.0092

MAE New Algorithm 15% Missing Data

ID# Van Vbn Vcn Vab Vbc Vca Ia Ib Ic PF

1 0.7185 0.5040 0.6644 0.4819 0.5835 1.0881 0.0797 0.0851 0.0842 0.0072
2 0.5999 0.4390 0.7368 0.5861 0.5800 1.1278 0.0882 0.0699 0.0881 0.0056
3 0.6245 0.4420 0.7256 0.2459 0.3938 1.1113 0.0696 0.0839 0.0881 0.0093
4 0.6131 0.4770 0.6181 0.3534 0.3371 0.9497 0.0927 0.0684 0.0789 0.0086
5 0.6783 0.5150 0.6615 0.2834 0.6578 1.1307 0.0709 0.0908 0.0771 0.0114

average 0.6469 0.4754 0.6813 0.3902 0.5104 1.0815 0.0802 0.0796 0.0833 0.0084

Table 7. MAE obtained with 20% missing data using MICE, AAA and the newly proposed
algorithm HAAA.

MAE MICE 20% Missing Data

ID# Van Vbn Vcn Vab Vbc Vca Ia Ib Ic PF

1 19.8495 29.2709 19.7782 33.5372 32.2953 41.2306 0.5143 0.2057 1.2582 0.0032
2 16.1709 26.7847 22.7646 26.1709 36.1606 43.6232 0.6040 0.2416 1.1681 0.0026
3 17.6532 26.4314 21.7054 33.1059 28.5129 42.8703 0.2775 0.1110 0.8885 0.0027
4 15.8018 28.1184 20.4781 25.7729 36.6865 38.5835 0.3310 0.1324 0.7742 0.0023
5 18.9570 29.9625 20.0141 35.7336 28.8170 36.8561 0.2886 0.1155 1.4832 0.0034

average 17.6865 28.1136 20.9481 30.8641 32.4944 40.6328 0.4031 0.1612 1.1144 0.0028

MAE AAA Algorithm 20% Missing Data

ID# Van Vbn Vcn Vab Vbc Vca Ia Ib Ic PF

1 0.8996 0.9180 0.8043 1.0513 1.7261 1.4762 0.6694 0.8079 0.6984 0.0014
2 0.8944 0.8669 0.7321 1.4339 1.4942 1.5055 0.8636 0.8248 0.8678 0.0015
3 0.8441 0.8711 0.6416 1.5295 1.6559 1.6439 0.8366 0.8794 0.7254 0.0016
4 0.7184 0.8919 0.8057 1.4782 1.8988 1.4632 0.8848 0.8029 0.9249 0.0018
5 0.7525 0.8642 0.7273 0.8251 0.9897 1.4285 0.7865 0.8989 0.8785 0.0019

average 0.8218 0.8824 0.7422 1.2636 1.5529 1.5035 0.8082 0.8428 0.8190 0.0016

MAE NEW Algorithm 20% Missing Data

ID# Van Vbn Vcn Vab Vbc Vca Ia Ib Ic PF

1 0.1137 0.1810 0.1239 0.6595 0.7907 1.2953 0.7436 0.7280 0.7254 0.0011
2 0.1130 0.1702 0.1327 0.7933 0.6688 1.3942 0.7912 0.6542 0.7816 0.0012
3 0.1132 0.1547 0.1472 0.4827 0.5122 1.2889 0.7063 0.7437 0.8055 0.0012
4 0.0984 0.1658 0.1326 0.4718 0.4555 1.1273 0.8911 0.6175 0.7862 0.0014
5 0.1177 0.1846 0.1300 0.5498 0.9242 1.3971 0.6435 0.8116 0.7326 0.0015

average 0.1112 0.1713 0.1333 0.5914 0.6703 1.3006 0.7551 0.7110 0.7663 0.0013

Although the overall performance of the new algorithm has already been evaluated using MCAR
data, from the point of view of the authors, there are a couple of situations in which the information
is not missing completely at random and are of great interest for electrical measurements. These are
as follows:
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• The case in which there is correlation in the missingness of data: one possible situation when
working with electrical data would be when all the missing information corresponds to the same
phase. In order to simulate this kind of failure, five new data sets with a 20% of missing data were
created. Each phase is represented by means of four different variables: one variable of phase
current, two variables of voltage from phase to phase and one variable of voltage from phase to
neutral. It means that each row with missing incomplete information has four missing variables
or, in other words, that only 5% of the total of rows will have missing data. In the referred rows,
randomly selected, the information of the variables of one of the phases was removed. It means
that, for example, when information for variable Van is missing, it is also missing the information
of variables, Vab, Vca and Ia. The results obtained are presented in Tables 9 and 10. As it can
be observed, the performance of the HAAA algorithm is worse than in the MCAR case, but it
outperforms both MICE and AAA.

• The case in which most of the missing data correspond to a certain subset of variables. In order
to simulate this kind of failure, five new datasets with a 90% of missing data in a single variable
were created. In each dataset, a proportion of 90% elements in one single column were removed,
leaving the rest of the variables with their original values. As it can be seen in Table 8, the
imputation accuracy for all the algorithms decreased significantly. This was expected in such
an unfavourable situation; however, it is possible to ascertain, as both algorithms HAAA and
AAA considerably outperform the algorithm of reference MICE, HAAA being the one with the
best results.

Table 8. MAE and RMSE obtained with 90% missing data in a single column (case of missing
information in Van) using MICE, AAA and the newly proposed algorithm HAAA.

ID#

90% Missing Data in One Single Columm

MAE RMSE

MICE AAA HAAA MICE AAA HAAA

1 87.1375 10.2289 8.9960 103.8879 12.3165 8.7614
2 68.0226 10.1661 8.9438 99.2328 12.8503 8.6589
3 76.3340 10.1900 8.4414 86.4040 11.8568 9.1133
4 67.0027 8.8589 7.1839 90.5413 10.5458 7.9936
5 82.5461 10.5940 7.5248 102.5351 13.6865 9.5870

average 76.2086 10.0076 8.2180 96.5202 12.2512 8.8228

Table 9. RMSE obtained with 20% missing data using MICE, AAA and the newly proposed algorithm,
HAAA for the case in which there is correlation in the missingness of data.

RMSE MICE 20% Missing Data

ID# Van Vbn Vcn Vab Vbc Vca Ia Ib Ic PF

1 24.4908 43.2588 47.5089 65.2910 52.2601 68.8207 0.7967 1.1136 1.8646 0.1084
2 26.4326 61.1208 42.9646 57.2527 61.4969 71.0171 1.2437 0.9490 1.2511 0.1627
3 33.4717 61.9103 48.7703 55.0477 52.4416 106.0520 1.0616 0.8542 1.6592 0.0826
4 35.8859 50.2750 30.4530 54.3050 38.1316 68.8768 0.6942 0.6224 2.6681 0.1056
5 44.4516 52.6348 40.4844 90.2603 29.1994 58.1034 1.2995 0.7163 1.6545 0.1789

average 32.9465 53.8399 42.0362 64.4314 46.7059 74.5740 1.0191 0.8511 1.8195 0.1276

RMSE AAA Algorithm 20% Missing Data

ID# Van Vbn Vcn Vab Vbc Vca Ia Ib Ic PF

1 1.9878 1.7252 1.8032 2.8163 4.1109 5.3343 0.1437 0.1631 0.2222 0.0103
2 2.4359 1.6420 2.4058 3.0857 3.1677 4.3184 0.2665 0.2600 0.2786 0.0056
3 1.3291 1.4607 2.4013 2.3697 2.7676 5.6870 0.1173 0.1481 0.2999 0.0073
4 1.8910 1.3804 1.1758 3.7502 2.4218 3.9166 0.3068 0.2228 0.1346 0.0070
5 1.3798 1.8577 1.5385 2.1441 2.9301 3.6357 0.1499 0.2220 0.1604 0.0108

average 1.8047 1.6132 1.8649 2.8332 3.0796 4.5784 0.1968 0.2032 0.2191 0.0082

RMSE New Algorithm 20% Missing Data

ID# Van Vbn Vcn Vab Vbc Vca Ia Ib Ic PF

1 1.0966 1.6848 1.3832 0.5570 0.5171 0.5755 0.1876 0.1183 0.1214 0.0024
2 1.2825 1.1124 1.2688 0.4565 0.6296 1.1775 0.1510 0.1534 0.1903 0.0028
3 0.9783 1.2418 1.1965 0.7558 0.8273 0.8882 0.1609 0.1871 0.1724 0.0034
4 1.2532 1.1211 1.4008 0.6415 0.7131 0.5738 0.1775 0.1299 0.1208 0.0017
5 1.1888 1.4617 1.3264 1.2255 0.7568 0.4553 0.1965 0.2133 0.1078 0.0028

average 1.1599 1.3243 1.3151 0.7273 0.6888 0.7341 0.1747 0.1604 0.1425 0.0026
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Table 10. MAE obtained with 20% missing data using MICE, AAA and the newly proposed algorithm
HAAA for the case in which there is correlation in the missingness of data.

MAE MICE 20% Missing Data

ID# Van Vbn Vcn Vab Vbc Vca Ia Ib Ic PF

1 38.1829 54.5223 23.8789 58.9845 38.1634 52.8209 0.8517 0.4084 2.2732 0.0062
2 24.1992 33.7322 43.3651 45.5847 65.1002 63.0445 0.8267 0.4078 2.1729 0.0051
3 27.6520 33.3112 26.5114 46.9331 43.6067 56.4079 0.3682 0.1129 1.0877 0.0053
4 22.4674 51.2556 26.8316 37.0569 45.6670 54.6107 0.4494 0.2114 1.2456 0.0029
5 23.7421 49.7850 32.9160 38.4813 55.2293 65.3112 0.3032 0.1294 2.1787 0.0066

average 27.2487 44.5212 30.7006 45.4081 49.5533 58.4390 0.5599 0.2540 1.7916 0.0052

MAE AAA Algorithm 20% Missing Data

ID# Van Vbn Vcn Vab Vbc Vca Ia Ib Ic PF

1 1.3325 1.3119 0.9742 1.8596 2.9608 2.8876 0.9854 1.3046 0.7014 0.0022
2 1.4758 1.2017 1.4369 1.7713 2.1919 1.8424 1.4863 0.8386 1.3763 0.0023
3 0.8996 0.9740 0.7864 2.7649 3.0907 2.8334 1.4497 1.2269 1.3796 0.0029
4 0.7598 1.1519 0.8644 1.7245 3.1458 2.4398 1.1288 1.0362 1.2571 0.0028
5 1.4621 1.3658 0.7819 1.5175 1.3176 1.4345 0.8660 1.6700 1.0700 0.0023

average 1.1860 1.2011 0.9687 1.9276 2.5414 2.2876 1.1832 1.2152 1.1569 0.0025

MAE New Algorithm 20% Missing Data

ID# Van Vbn Vcn Vab Vbc Vca Ia Ib Ic PF

1 0.1442 0.2838 0.1714 1.0236 1.5602 2.5453 0.9079 1.1350 1.0716 0.0015
2 0.1183 0.2924 0.1868 0.8085 0.9362 2.0889 1.5490 0.8778 1.0643 0.0021
3 0.1604 0.2698 0.2391 0.5750 0.9770 2.4446 0.9220 1.4670 0.9484 0.0023
4 0.1155 0.1715 0.2262 0.5195 0.7244 2.1240 1.2272 1.2134 1.2432 0.0022
5 0.1373 0.3592 0.1652 0.8841 1.3553 2.4234 0.9504 1.4772 0.7877 0.0023

average 0.1351 0.2754 0.1977 0.7622 1.1106 2.3252 1.1113 1.2341 1.0230 0.0021

5. Conclusions

The improvement of power quality has become a necessity as the presence of power electronics in
today’s grids has been increasing in the last decades. Due to this problem, network monitoring with
the help of real-time data collection devices is helpful. In this context, the availability of missing data
imputation techniques is required.

This research presents a new algorithm and compares it with another algorithm proposed in
a previous paper by the authors and also with a well-known missing data imputation algorithm.
Although the algorithm presented in this paper outperforms the others, as the previous methods to
which it is compared, it also has some limitations that must be taken into account. As those proposed
before, our algorithm would have imputation problems in those cases in which most of the missing
data belonged to the same variable or were concentrated in a certain subset of variables instead of
distributed among all the variables of the data set. Currently, the authors continue to develop hybrid
algorithms that would improve the results of existing algorithms when they have to address this type
of issue. Finally, the missing data imputation in the time-frequency domain will also be explored in
future works.
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