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1 Introduction

Supersymmetric gauge theories with N = 2 superconformal invariance are of great in-

terest, as they provide a tractable, yet very rich, class of theories. In this respect, the

recently developed new tools, including in particular supersymmetric localization [1], al-

low to perform exact computations of a plethora of observables, including for instance the

partition function, Wilson and ’t Hooft loops [1–6], domain walls [7, 8] or cusp anomalous

dimensions [9, 10].

A particularly interesting sector of N = 2 superconformal theories (SCFT’s) is that

originated from primary operators annihilated by all supercharges of one chirality, hence

known as chiral primaries. In superspace language, the scaling dimension ∆ of chiral

primaries are bottom components of N = 2 chiral superfields. The case of ∆ = 2 is
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particularly interesting, as the integrated top component of the multiplet defines an ex-

actly marginal operator. Hence, chiral superfields with ∆ = 2 parametrize the conformal

manifold associated to the SCFT. Moreover, the 2-point function of such top components

defines the Zamolodchikov metric on the conformal manifold. Such metric depends on the

exactly marginal couplings, which act then as coordinates. Because of supersymmetry, it

turns out that such metric can be read as well from the correlators of the chiral primary

operators (CPO’s).

In general, supersymmetry guarantees that the OPE of CPO’s is non-singular. Thus,

they are endowed with a ring structure, the so-called chiral ring. While there is no strict

proof, it is believed that this ring is spanned by a finite set of generators. As one moves

on the space of exactly marginal couplings, CPO’s generically mix. Thus, CPO’s can be

thought as sections of a bundle endowed with a connection encoding such mixings. Similarly

to the 2d case [11–14], it turns out that the integrability conditions for this connection define

a set of tt∗ equations which, together with the Witten-Dijkgraaf-Verlinde-Verlinde equa-

tions, encode the (holomorphic) coupling dependence of the correlation functions [15–17].

Very recently, it has been shown that the Zamolodchikov metric on the conformal

manifold can be exactly computed by means of supersymmetric localization. In particular,

it turns out that the S4 partition function can be identified with the Kahler potential

for the Zamolodchikov metric [18, 19]. Then, the derivatives of the partition function

with respect to the marginal couplings allow to compute correlation functions for exactly

marginal operators.

In [20] this result was extended and a method to exactly compute correlation functions

of arbitrary CPO’s was developed. The starting point is a modified version of the theory

on the S4 whereby it is deformed by couplings to all the generators of the chiral ring —

that is, for each CPO generating the chiral ring, one adds to the theory the integrated top

component of the superfield whose bottom component is that CPO. By taking derivatives

with respect to these couplings and upon setting at the end the deformation couplings

to zero, one can compute correlation functions of the associated CPO’s. The important

caveat noticed in [20] is that when going from the S4 into R4, due to the conformal anomaly

further mixings are introduced [21]. For instance, while on R4 the correlator of two CPO’s

with different scaling dimensions automatically vanishes due to Ward identities, on the S4

this is not anymore the case; as the conformal anomaly allows for a mixing among operators

of different dimension (basically because the Ricci scalar, being dimensionful, allows to mix

operators with dimensions differing by 2). Thus, in order to disentangle this mixing, one

should perform, on the S4 result, a Gram-Schmidt orthogonalization.

In this paper we will apply the prescription given in [20] to compute correlators of

CPO’s to N = 4 SYM and superconformal QCD. Since these theories admit a lagrangian

description, we can identify the CPO’s of interest with gauge-invariant operators involving

only the scalar field in the vector multiplet φ. Moreover, we will be interested in the large

N limit of these theories, where we can use the saddle point approximation to compute

the deformed partition function and its derivatives. The large N limit introduces further

simplifications, as multi-traces, having an extra 1/N suppression, decouple. Hence, in this

limit, the CPO’s of interest on R4 are simply Trφn for n up to N . In addition, the large
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N limit has the effect to suppress instanton contributions as well. While a priori it might

be that the integration over instanton moduli could overcome the exponential suppression

of the instanton action, it is widely believed that in practise the moduli space factor is at

most power-like in N , and thus cannot compensate the exponential damping (see [4] for

an explicit test). Thus, in the large N limit we can drop the instanton contribution which

would, otherwise, be present for the superconformal QCD theory. While in large N one

would naively expect that U(N) and SU(N) are indistinguishable, in this context there is

one important caveat: as opposed to the SU(N) case, in the U(N) theory the operator

Trφ is present. This is relevant as this operator will mix on the S4, due to the conformal

anomaly, with all operators of the form Trφ2n+1. In most of the discussion we will assume

that the gauge group is U(N). The case of SU(N) gauge group will be treated at the end

of in section 3.

This paper is organized as follows: in section 2 we review some salient aspects of the

construction in [20]. In section 3 we consider the case of the N = 4 theory at large N . Using

saddle point techniques, we compute the relevant derivatives of the partition function and

perform the orthogonalization to obtain the desired correlators on R4. In section 4 we turn

to the large N limit of superconformal QCD. In this case, due to the non-trivial one-loop

determinant in the S4 partition function, we compute the two-point functions in the weak

coupling expansion in the ’t Hooft coupling (planar expansion) and briefly comment on the

strong coupling regime. Finally, in section 5 we offer some conclusions and highlight some

open problems. For completeness, we discuss the decoupling of multi-trace operators in

appendix A; and compile several useful technical results in appendix B. In appendix C we

compute higher derivatives of the free energy, which could be of interest for higher-point

function computations.

2 Exact correlators for chiral primary operators in R4 from the S4 par-

tition function

Local operators in SCFT’s are organized into highest weight representations of the confor-

mal algebra. These are labelled by their highest weight state O under dilatations, known as

the superconformal primary. In turn, O can be defined as [Saα, O] = [S
a
α̇, O] = 0, where Saα

and S
a
α̇ are the conformal supersymmetry generators. Among all superconformal primaries,

a particularly interesting class is that of chiral primary operators, defined as [Q
a
α̇, O] = 0,

where Qaα and Q
a
α̇ are the Poincare supercharges. Anti-chiral primary operators are defined

analogously as [Qaα, O] = 0.

There are strong arguments suggesting that chiral primaries are always Lorentz scalars

satisfying the BPS bound ∆O = RO
2 (or ∆O = −RO

2 for antichirals) — see [20, 22] for

comments on this issue. Because of this BPS bound, the OPE of CPO is non-singular,

and the structure functions in the OPE become simply constants. This implies that these

operators are endowed with a ring structure which is expected to be freely generated

and with dimension equal to the dimension of the Coulomb branch of the theory when

a Lagrangian description is available. Thus, one may choose a basis where the 2-point

– 3 –



J
H
E
P
0
6
(
2
0
1
6
)
1
0
9

functions of CPO’s on R4 are of the form

〈On(x)Om(0)〉R4 =
Gnm
|x|2∆n

δ∆n∆m . (2.1)

Then, the metric Gnm encodes all the essential data about the chiral ring, and it is the

main object of interest in this paper.

Very recently, [20] suggested that correlators of CPO’s — and hence the metric Gnm
in eq.(2.1) — can be extracted from the S4 partition function of an auxiliary theory, the

latter computable in principle exactly due to supersymmetric localization. More explicitly,

in superfield language, the superfield whose bottom component is a CPO O with conformal

dimension ∆ — denoted in an abuse of notation by O as well — satisfies that D
a
α̇O.

Following [20], one can consider a deformation of the S4 theory preserving osp(2|4), namely

the supergroup of the general massive theory. In superspace, the deformed SCFT on the

S4 is constructing by deforming with

− 1

32π2

∫
d4x

∫
d4θE τO O , (2.2)

where E is the chiral density. This way one can construct a deformed S4 partition function

Z({τn, τn}) depending on all the deformation couplings τn — note that some of them may

have ∆ = 2 and thus correspond to exactly marginal operators parametrizing the conformal

manifold. As shown in [20], it turns out then that

1

Z(τn, τn)
∂τn∂τmZ(τn, τn) =

(
1

32π2

)2 ∫
d4x
√
g(x)

∫
d4y
√
g(y)〈Cn(x)Cm(y)〉S4 , (2.3)

where Cn is a quantity constructed out of the CPO, of the top component of the superfield

C and of the middle component B (see [20] for details). Using for instance a Ward identity,

it then follows that the integrated correlator of the Cn’s equals the correlation function of

the CPO’s O evaluated at the north and south poles of the sphere(
1

32π2

)2 ∫
d4x
√
g(x)

∫
d4y
√
g(y)〈Cn(x)Cm(y)〉S4 = 〈On(N)Om(S)〉S4 . (2.4)

Thus the correlator on the S4 is

〈On(N)Om(S)〉S4 = GS
4

nm =
1

Z(τn, τn)
∂τn∂τmZ(τn, τn) . (2.5)

Naively one can suspect that the sphere correlator 〈On(N)Om(S)〉S4 can be directly re-

lated to the R4 correlator. However, due to the conformal anomaly, operators in the S4 mix

with operators of dimensions lowered in steps of 2 through the curvature schematically as1

OR4 → OS
4

∆ + α1RO
S4

∆−2 + α2R
2OS

4

∆−4 + · · · (2.6)

1We will keep S4, R4 superscripts in operators to remind whether we refer to operators on the S4 —

which include mixings among different dimensions — or to operators on R4 where such mixings are absent.

Up to coefficients, the R4 operators are obtained by orthogonalization of the S4 operators with respect to

the inner product defined by the matrix of second derivatives of Z.
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where R is the Ricci scalar. As a result, the sphere correlation functions lead to mix-

ings which are not expected on R4 — where the correlators should be of the form (2.1).

The prescription in [20] amounts to perform a Gram-Schmidt orthogonalization of the S4

correlators, which then are identified with (2.1).

In general, the set of CPO’s contains both single-trace and multi-trace operators. For

instance, consider superconformal SQCD with gauge group U(N). The CPO’s correspond

to operators of On1···nm = (Trφ)n1 · · · (TrφN )nN , where φ is the scalar in the vector multi-

plet. Clearly, at a given dimension ∆, the set of CPO’s are those satisfying
∑

mmnm = ∆.

Then, correlators on the S4 of these operators are given by

〈OS4

n1···nN (N)O
S4

m1···mN (S)〉 =
1

Z
∂n1
τ1 · · · ∂

nN
τN
∂n1
τ1
· · · ∂nNτN Z

∣∣∣∣∣
{τk 6=2}={τk 6=2}=0

. (2.7)

In general there will be mixings between different operators. The Gram-Schmidt procedure

amounts to disentangle these mixings by finding an orthogonal basis. It is clear that

when constructing such basis, there will be mixings between multi-trace and single-trace

operators.

In the following we will be interested on computing correlation functions of operators

in gauge theories in the large N limit. In this limit, the mixing between multi- and single-

trace operators is suppressed in N , and thus we can simply consider single-trace operators

(see appendix A for a review of this feature in this context). Hence, the relevant set of

operators in the large N limit are operators of the form Trφn. Note in particular that at

each dimension there is one single operator, as opposed to the finite N case, where at each

dimension there will be generically a plethora of operators as described above. However,

due to the conformal anomaly, there will still be mixings between, say, Trφn and Trφn−2

which need to be disentangled through the Gram-Schmidt procedure.

Since in the large N limit we can consider only single-trace operators, the relevant

derivatives are

〈OS4

n (N)O
S4

m (S)〉 =
1

Z
∂τn∂τmZ

∣∣∣∣∣
{τk 6=2}={τk 6=2}=0

. (2.8)

Defining as usual Z(τk, τk) = e−F(τk,τk), we then have

〈OS4

n (N)O
S4

m (S)〉 = ∂τnF∂τ̄mF − ∂τn∂τmF

∣∣∣∣∣
{τk 6=2}={τk 6=2}=0

. (2.9)

Note that ∂τnF is nothing but the VEV of the operator OS
4

n — which is generically non-

zero when the theory is on S4. Thus, we can redefine a set of zero-VEV operators OS
4

n

by substracting the VEV. Note that we are interested in performing the Gram-Schmidt

process at the end of the day, and so the mixing with the identity — VEV — is one of

the particular components that need to be disentangled. Hence going to these VEV-less

operators amounts to a first step in that direction. Moreover, we have that the correlator
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of these VEV-less operators is

〈OS4

n (N)O
S4

m (S)〉 = −∂τn∂τmF

∣∣∣∣∣
{τk 6=2}={τk 6=2}=0

. (2.10)

Thus, in the following we will be interested in computing the matrix of second derivatives of

F in different theories, as it is this matrix for which a Gram-Schmidt orthogonalization will

lead to the desired correlators in R4. A more precise description of the orthogonalization

procedure is given in appendix A.

3 Correlation functions in N = 4 at large N

The matrix model for N = 4 SYM on S4 was computed, using supersymmetric localization,

in [1], confirming the conjectured matrix model of [23]. Introducing the deformations, we

can succinctly write it as [20]

Z =

∫
dNa∆(a)

∣∣∣ei∑N
n=1 π

n/2 τn
∑
i(ai)

n
∣∣∣2 , (3.1)

where τ2 = τYM. Moreover

∆(a) =
∏
i<j

(ai − aj)2 . (3.2)

It is important to stress that the integral over the Cartan of the gauge group in (3.1)

and the measure (3.2) assume that the gauge group is U(N). As such, in addition to

the deformations in [20] corresponding to Trφn for n ≥ 2, we can add yet one more

corresponding to the operator Trφ.

In the large N limit, the integral (3.1) can be computed by the saddle-point method

(see e.g. [24] for a review). We write

Z =

∫
dNa e−S , S = −i

N∑
n=1

πn/2 (τn − τ̄n)
∑
i

ani −
∑
i<j

log(ai − aj)2 . (3.3)

We also define ’t Hooft coupling parameters gn

gn = N−1π
n
2 τn . (3.4)

Note that the action depends on these through

gn = 2 Imgn, (3.5)

The large N limit is defined by taking the limit N →∞ with fixed gn. Since these are the

natural variables to use in the large N limit, we will adapt the prescription in [20] whereby

we consider derivatives of the deformed partition function with respect to gn, ḡn instead

of with respect to τn, τ̄n. Of course, at the end we need to set to zero all gn but g2 ∼ τYM .

Note that we reabsorb in the gn’s a factor of πn/2 present in the deformed matrix model of

– 6 –
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eq. (3.1). Thus, derivatives with respect to gn insert the operator Trφn, whose correlators

in R4 we will be computing.

Introducing as usual the eigenvalue density normalized to one

ρ(x) =
1

N

∑
i

δ(x− ai) ,
∫
dx ρ(x) = 1 , (3.6)

one can see that ρ is determined from the singular integral equation

−
∫
dy

ρ(y)

x− y
=

1

2
V ′(x) , V (x) =

N∑
n=1

gn x
n . (3.7)

N−2S = F =

∫
dx ρ(x)V (x)− 1

2

∫
dx

∫
dyρ(x)ρ(y) ln(x− y)2 . (3.8)

In the large N limit the value of Z is given by the saddle point approximation

Z = e−F(τk,τk) → e−N
2F |saddle , (3.9)

being F |saddle given by the evaluation of (3.8) on the ρ arising from solving (3.7).

The solution of the matrix model is known for a general potential. For a polynomial

potential, assuming that eigenvalues condense in a cut (−ν, µ), it is of the form

ρ(x) =

(
n1∑
k=0

ckx
k

)√
(µ− x)(x+ ν) , (3.10)

where n1 depends on the degree of the polynomial. The matrix model can have multicut

solutions appearing for critical values of the couplings. However, multicut solutions are

not relevant for the present discussion, because here we assume that all deformations, gn
with n 6= 2, are small. In this case, the eigenvalue distribution is a mild deformation

of the Wigner semi-circle distribution that describes the large N limit of N = 4 super

Yang-Mills theory.

Before setting the {gi 6=2} to zero the cut will generically be asymmetric in the real

line due to the presence of odd terms in x in the potential V . In particular, the condition∑N
i=1 ai = 0, which in the continuum becomes

∫ µ
−ν dx ρ(x)x = 0, will not be satisfied,

explicitly manifesting that the computation is for a U(N) theory (the SU(N) theory is

discussed in section 3.2).

3.1 Correlation functions in the matrix model

Deformation by even operators. Even and odd operators do not mix in correlation

functions in N = 4 theory. A direct way to see this is to note that the integral∫
dNa∆(a) |eiπ τ

∑
i a

2
i |2
(∑

k

ank

)∑
j

amj

 (3.11)

vanishes if n and m have distinct parity, since all ai are integrated from (−∞,∞). Thus,

for clarity in the presentation, we may begin our discussion by restricting the consideration

– 7 –
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to the N = 4 theory deformed by even operators, in which case the matrix model has

reflection symmetry leading to ν = µ and the solution is much simpler. Note that as a

consequence of the reflection symmetry the condition
∫
dx ρ(x)x = 0 will be met, and thus

the calculations in this sector also apply to the SU(N) theory.

Since for now we are including only even deformations, it is useful to redefine the

potential as

V =

n0∑
n=1

g2nx
2n , n0 ≡ [N/2] . (3.12)

Since the potential is invariant under reflection symmetry, we can assume that eigenvalues

will condense in a cut (−µ, µ), i.e. in this case ν = µ.

By acting with

−
∫ µ

−µ
dx

1√
µ2 − x2

1

z − x
(3.13)

on (3.7), we get

ρ(z) =
1

4π2

√
µ2 − z2−

∫ µ

−µ
dx

V ′(x)√
µ2 − x2(z − x)

, (3.14)

i.e.

ρ(z) =
1

2π2

√
µ2 − z2

n0∑
n=1

ng2n−
∫ µ

−µ
dx

x2n−1√
µ2 − x2(z − x)

. (3.15)

The integral can be computed by choosing a contour that surrounds the cut (−µ, µ) and

computing the residue at infinity as

−
∫ µ

−µ
dx

x2n−1√
µ2 − x2(z − x)

= 2π

n−1∑
k=0

bkz
2n−2k−2µ2k . (3.16)

Then, we obtain

ρ(x) =

(
n0−1∑
k=0

qkz
2k

)√
µ2 − z2 , (3.17)

with

qk =
1

π

n0∑
n=k+1

nbn−k−1g2nµ
2n−2k−2 , (3.18)

bk ≡
1√
π

Γ(k + 1/2)

k!
. (3.19)

Let us now consider the normalization condition. Again, by residues∫ µ

−µ
dz z2k

√
µ2 − z2 = πσk+1µ

2k+2 , (3.20)

where

σk ≡
1

2
√
π

Γ(k − 1/2)

k!
. (3.21)
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Hence, normalization implies

π

n0−1∑
k=0

qkσk+1µ
2k+2 = 1 . (3.22)

Using the expression for ck, this becomes
n0∑
n=1

nbng2nµ
2n = 1 . (3.23)

where we used the identity
n−1∑
k=0

σk+1bn−k−1 = bn . (3.24)

As described above, in order to compute the R4 correlators we are interested on, we

need to compute the gn derivatives of F . Since gn = 2Imgn = i(ḡn − gn), we have that

∂gn∂ḡm = ∂gn∂gm , and thus the derivatives of interest coincide with those with respect to

gn. Thus, in order to compute two point functions in large N we need to compute the

matrix of second derivatives of F as in eq. (2.10). To that matter, we begin with the

formula

∂g2nF =

∫ µ

−µ
dz z2nρ(z) . (3.25)

This gives

∂g2nF = π

n0−1∑
k=0

qkσk+n+1µ
2k+2n+2 =

n0∑
m=1

dm,ng2mµ
2m+2n , (3.26)

with

dm,n ≡ m
m−1∑
k=0

bm−k−1σk+n+1 =
(2m)!Γ

(
n+ 1

2

)
4m
√
π(m+ n)n!(m− 1)!2

. (3.27)

Next, we compute the second derivative of the free energy,

∂g2m∂g2nF =

n0∑
k=1

(2k + 2n)dk,ng2kµ
2k+2n−1 dµ

dg2m
+ dm,nµ

2m+2n . (3.28)

To compute dµ/dg2m, we use the normalization condition. This is done in appendix B.

After differentiation, we must set all g2n = 0, with n > 1. We get

dµ

dg2k
= −kbkµ

2k−1

g2
= −1

2
kbkµ

2k+1 , (3.29)

where we used

µ2 =
2

g2
=

λ

(2π)2
. (3.30)

Therefore

∂g2m∂g2nF

∣∣∣∣
g2k>2=0

=
(
dm,n − (2 + 2n)d1,nmbm

)
µ2m+2n . (3.31)

After some simple algebra, we obtain

∂g2m∂g2nF = −
(

λ

4π2

)m+n Γ
(
m+ 1

2

)
Γ
(
n+ 1

2

)
π(m+ n)Γ(m)Γ(n)

. (3.32)

In appendix B we also give the expressions of ∂g2`
∂g2j∂g2nF and ∂g2s∂g2k

∂g2j∂g2nF .
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General Deformation including even and odd operators. Let us now apply the

methods developed for the even deformations to the more involved case where we allow both

even and odd powers in the potential. In that case the eigenvalues will not be distributed

symmetrically around the origin. Nevertheless, we can follow the same logic by acting on

the integral equation (3.7) with

−
∫ µ

−ν
dx

1√
(µ− x)(x+ ν)

1

z − x
. (3.33)

We get

ρ(z) =
1

4π2

√
(µ− z)(z + ν)−

∫ µ

−ν
dx

V ′(x)√
(µ− x)(x+ ν)(z − x)

, (3.34)

i.e.

ρ(z) =
1

4π2

√
(µ− z)(z + ν)

N∑
n=1

ngn−
∫ µ

−ν
dx

xn−1√
(µ− x)(x+ ν)(z − x)

. (3.35)

Computing this integral by residues (using a contour surrounding the cut (−ν, µ)), we get

ck =
1

2π

N∑
n=k+2

ngn

n−k−2∑
r=0

brbn−k−r−2µ
r(−ν)n−k−r−2 , (3.36)

and

ρ(x) =

(
N−2∑
k=0

ckx
k

)√
(µ− x)(x+ ν) . (3.37)

In order to compute the two-point functions of interest we need to compute the matrix

of second derivatives of F with respect to the couplings gn. As before we start with

∂g`F =

∫ µ

−ν
dz z`ρ(z) ≡ m` . (3.38)

Using the explicit form of the density, we obtain for the moments m`,

m` = −π
N−2∑
k=0

ck

k+`+2∑
r=0

σrσk+`+2−rµ
r(−ν)k+`+2−r . (3.39)

We now need to differentiate with respect to gs. Recall that eventually we want to

evaluate these derivatives upon setting all gn 6=2 to zero. This also implies setting, after

differentiation, all ck = 0, k > 0, c0 = g2/π and µ = ν. One contribution comes from

∂gsck =
s

2π

s−k−2∑
r=0

brbs−k−r−2µ
r(−ν)s−k−r−2 (3.40)

=
s

2π
(−1)s−kµs−k−2

s−k−2∑
r=0

(−1)rbrbs−k−r−2

=
s

2π
µs−k−2(−1)s−kγs−k−2 θ(s− k − 2) ; (3.41)
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with

γm = (1 + (−1)m)
Γ
(
m
2 + 1

2

)
2
√
πΓ
(
1 + m

2

) , (3.42)

and θ(x) is the step function (with the convention θ(0) = 1). Note that γ2n = bn.

Other contributions come from ∂gsµ, ∂gsν. These are computed in appendix B. We

obtain

g2∂gsµ = g2∂gsν = −1

2
µs−1sb s

2
, for even s ;

g2∂gsµ = −g2∂gsν = −1

2
µs−1sγs−1 , for odd s . (3.43)

Using the above formulas, we find

∂gs∂g`F

∣∣∣∣
gn 6=2=0

= −π
s−2∑
k=0

∂gsck(−1)k+`µk+`+2αk+`+2 − g2(`+ 2)(−1)`µ`+1α`+2∂gsν

−g2(−1)`µ`+1β`+2(∂gsµ− ∂gsν) ; (3.44)

where

αm ≡
m∑
r=0

(−1)rσrσm−r = −(1 + (−1)m)
Γ
(
m
2 −

1
2

)
4
√
πΓ
(
m
2 + 1

) ;

βm ≡
m∑
r=0

(−1)rrσrσm−r =


− Γ(m2 −

1
2)

2
√
πΓ(m2 )

, m even ;

Γ(m+1
2
− 1

2)
2
√
πΓ(m+1

2 )
, m odd .

(3.45)

Note that α2k = −σk, β2k = −kσk = −1
2bk−1, β2k+1 = 1

2bk.

Thus

∂gs∂g`F

∣∣∣∣
gn 6=2=0

= −1

2
(−1)s+`µ`+s s

s−2∑
k=0

αk+`+2γs−k−2 − g2(`+ 2)(−1)`µ`+1α`+2∂gsν

−g2(−1)`µ`+1β`+2(∂gsµ− ∂gsν) . (3.46)

It is now easy to demonstrate that non-vanishing two-point functions ∂gs∂g`F have

both s and ` of the same parity. Indeed, if ` is odd and s is even (or viceversa) the first

term in (3.46) vanishes, because the product αk+`+2γs−k−2 only contributes where the

arguments of both αm and γm are even. The second term and third term also vanish when

` is odd and s is even. In the other case, ` even and s odd, the second and third term

become

g2µ
`+1∂gsµ

(
(`+ 2)α`+2 − 2β`+2

)
= 0 ,

where we used that mαm = 2βm for even m.

Thus we need to consider two cases, 1) s, ` even, and 2) s, ` odd.
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• Even-Even two-point function: let s = 2m, ` = 2n. Then

2m

2m−2∑
k=0

αk+2n+2γ2m−k−2 = 2m

m−1∑
r=0

α2r+2n+2γ2m−2r−2

= −2m
m−1∑
r=0

σr+n+1bm−r−1 = −2dm,n , (3.47)

and

∂g2m∂g2nF = µ2m+2n
(
dm,n −mbnbm

)
. (3.48)

This simplifies to2

∂2m∂2nF = −
(

λ

4π2

)m+n Γ
(
m+ 1

2

)
Γ
(
n+ 1

2

)
π(m+ n)Γ(m)Γ(n)

, (3.49)

which reproduces (3.32).

• Odd-Odd two-point function: let s = 2m+ 1, ` = 2n+ 1. Now

(2m+ 1)

2m−1∑
k=0

αk+2n+3γ2m−k−1 = (2m+ 1)

m−1∑
r=0

α2r+2n+4γ2m−2r−2

= −(2m+ 1)

m−1∑
r=0

σr+n+2bm−r−1

= −2m+ 1

m
dm,n+1 . (3.50)

Therefore

∂g2m+1∂g2n+1F = µ2m+2n+2 2m+ 1

2m

(
dm,n+1 −mbmbn+1

)
. (3.51)

Substituting the expressions for the coefficients dm,n+1, bm, we finally find

∂g2m+1∂g2n+1F = −
(

λ

4π2

)m+n+1 Γ
(
m+ 3

2

)
Γ
(
n+ 3

2

)
π(m+ n+ 1)Γ(m+ 1)Γ(n+ 1)

. (3.52)

Gram-Schmidt orthogonalization. We now need to run the Gram-Schmidt orthogo-

nalization procedure (further details can be seen in appendix A). As discussed above, in

the large N limit it is more natural to consider the gn variables. Then, orthogonalization

of the matrix of g-derivatives, and upon taking into account a factor of 4n as in [20],3

computes the correlators of Trφn in R4.

2The equivalence between (3.48) and (3.31) follows from the simple identities d1,n = σn+1 and bn =

2(1 + n)σn+1.
3The reason for this can be traced to the conformal mapping from R4 to S4. Consider the R4 operator

limx→∞ x2∆O∆(x) and re-write it as 4∆ limx→∞

(
x2

4

)∆

O∆(x) ∼ 4∆ limx→∞

(
1 + x2

4

)∆

O∆(x). Since the

conformal mapping R4 into S4 is ds2
R4 = (1 + ~x2

4
)2ds2

S4 , this is simply 4∆O(N). Thus 〈OR4

(0)O
R4

(0)〉R4 =

4∆ 〈OS
4

(S)O
S4

(N)〉S4 .
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Since the mixed odd-even derivatives of F vanish, we can run this procedure in the even

and odd sectors separately. It is straightforward to check that the first few orthogonalized

operators are (recall OS
4

n refers to VEV-less operators on the S4)

OS
4

1 ;

OS
4

2 ;

OS
4

3 −
3λ

(4π)2
OS

4

1 ;

OS
4

4 −
4λ

(4π)2
OS

4

2 ;

OS
4

5 −
5λ

(4π)2
OS

4

3 +
5λ2

(4π)4
OS

4

1 ;

OS
4

6 −
6λ

(4π)2
OS

4

4 +
9λ2

(4π)4
OS

4

2 ;

· · · (3.53)

Taking into account the numerical coefficient explained above, for OR4

n = Trφn on R4, we

finally obtain

〈OR4

n (0)O
R4

m (x)〉R4 =
δnm
|x|2∆n

∆n λ
∆n

(2π)2∆n
. (3.54)

This exactly coincides with the result in [25] computed in the free theory, which, as a

consequence of a non-renormalization theorem [25–29], holds to all loop orders (up to

ambiguous contact terms).

3.2 The SU(N) theory

So far we have concentrated on the U(N) theory. Let us now consider the SU(N) theory,

which amounts to demand that
∑N

i=1 ai = 0 in eq. (3.1). This can be implemented by

inserting in the integral δ(
∑N

i=1 ai). Writing the δ in Fourier space, it becomes evident

that the momentum variable of the integration appears just like τ1 in eq.(3.3). Thus, we

can recover the SU(N) case by simply integrating over τ1, since τ1 is playing the role

of Lagrange multiplier enforcing the tracelessness condition of SU(N) (for simplicity of

the presentation, we reabsorb all factors of π in the couplings). Since odd-even mixed

derivatives do not couple, we can consider for this matter just the odd deformations.

Consistently, as described above, the even deformations involve solutions where the cut

where eigenvalues live is symmetric in the real axis around the origin, and thus the even

correlation functions directly coincide in SU(N) and U(N). Moreover, note that as a

consequence of the fact that even-odd derivatives vanish the VEV’s of odd operators vanish

(as it should be expected on general grounds from eq. (2.6)). Thus for odd operators

OS
4

n = Trφn. Then we can write

F = 〈Trφ2n+1Trφ
2m+1〉τ2n+1τ̄2m+1 + Feven , n, m ≥ 0 ; (3.55)

where 〈Trφ2n+1Trφ
2m+1〉 stands for the S4 correlators arising from the matrix of second

derivatives in eq.(3.52). For simplicity of the presentation, let us consider operators up to
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dimension ∆ = 3. Then, the relevant part of the partition function is

Z = e〈TrφTrφ〉τ1τ̄1+〈TrφTrφ
3〉τ1τ̄3+〈Trφ3Trφ〉τ3τ̄1+〈Trφ3Trφ

3〉τ3τ̄3+··· . (3.56)

This can be re-written as

Z = e
〈TrφTrφ〉τ̂1τ̂1+

(
〈Trφ3Trφ

3〉− 〈TrφTrφ
3〉〈Trφ3Trφ〉

〈TrφTrφ〉

)
τ3τ3+···

, (3.57)

where

τ̂1 = τ1 −
〈TrφTrφ

3〉
〈TrφTrφ〉

τ3 . (3.58)

Thus, the SU(N) theory is obtained by integrating over τ1. Performing the shift of the

integration into τ̂1, the result is simply

ZSU(N) = e

(
〈Trφ3Trφ

3〉− 〈TrφTrφ
3〉〈Trφ3Trφ〉

〈TrφTrφ〉

)
τ3τ3+···

. (3.59)

Inspection of eq.(3.59) shows that the mixing with Trφ is gone — as this operator is absent

in the SU(N) theory — , and thus Trφ3 does not mix with any operator. Thus, we can

easily read the R4 correlator for Trφ3 from Z−1
SU(N)∂τ3∂τ3ZSU(N)

〈Trφ3Trφ
3〉R4 =

1

|x|6

(
〈Trφ3Trφ

3〉S4 −
〈TrφTrφ

3〉S4〈Trφ3Trφ〉S4

〈TrφTrφ〉S4

)
=

1

|x|6
3λ3

(2π)6
;

(3.60)

which is exactly the same result as for the U(N) case. Note that this holds exactly, since

1

ZSU(N)
∂τ3∂τ3

ZSU(N) = 〈Trφ3Trφ
3〉S4 −

〈TrφTrφ
3〉S4〈Trφ3Trφ〉S4

〈TrφTrφ〉S4

(3.61)

is exactly the correlator of the OR4

3 operator (cf. eq.(A.11)). Indeed, the argument above

extends straightforwardly to all orders, thus showing the identity of the SU(N) and U(N)

results for all operators (obviously aside of Trφ). This is indeed what we should have

expected, as the non-renormalization theorem continues to hold, and the difference SU(N)

and U(N) for all operators other than Trφ is subleading in N .

4 Correlation functions in N = 2 superconformal QCD at large N

The matrix model for N = 2 superconfomal QCD was constructed in [1]. Then, the

deformed partition function is defined as follows:

ZN=2 SCF =

∫
dNa∆(a)

∣∣∣ei∑N
n=1 π

n/2 τn
∑
i a
n
i

∣∣∣2 ∏i<j H
2(ai − aj)∏

iH(ai)2N
|Zinst|2 ; (4.1)

where

H(x) ≡
∞∏
n=1

(
1 +

x2

n2

)n
e−

x2

n . (4.2)
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The instanton factor |Zinst| → 1 exponentially at large N , so it will not be considered

in what follows. Under that assumption, the remainder of the undeformed matrix model

depends on the squared of the eigenvalues ai. Hence, due to the reflection symmetry

ai → −ai of the measure, correlators mixing even-and odd operators will vanish again.

Thus, we can separately treat each case. For simplicity, let us concentrate in the following

in the case of even operators.

Just as before, we will be interested in the large N limit, where, due to the same

argument as in the case of N = 4 SYM, we can concentrate on single-trace operators.

Note that in eq.(4.1) we are considering the U(N) theory. However, just as in the N = 4

case, since the eigenvalue density for only-even deformations is symmetric in the real line

around the origin, the solution is identical to that of the SU(N) theory.

Similarly as before, we define

V =

n0∑
n=1

g2nx
2n ; (4.3)

where g2n = 2 Imgn are the natural variables in the large N limit and the ones with respect

to which we will take derivatives when computing correlators. We then have to solve the

saddle-point equation

−
∫ µ

−µ
dy ρ(y)

(
1

x− y
−K(x− y)

)
=

1

2
V ′(x)−K(x) , (4.4)

where

K(x) ≡ −H
′(x)

H(x)
. (4.5)

This equation was investigated in great detail for the undeformed case in [4]. Following [4],

we now get

ρ(z) =
1

2π2

√
µ2 − z2−

∫ µ

−µ
dx

1√
µ2 − x2(z − x)

(
1

2
V ′(x)−K(x) +

∫
dyρ(y)K(x− y)

)
.

(4.6)

4.1 Weak coupling

We aim to find the correlators in the weak coupling regime. This is akin to consider the

planar expansion of the theory. Since g2 = 8π2/λ, at weak coupling, g2 � 1 and the linear

force V ′ = 2g2x + . . . makes eigenvalues condense near the origin. As a result µ � 1 and

we can use the Taylor expansion for the function K(x),

K(x) = −2

∞∑
n=1

(−1)nζ(2n+ 1)x2n+1 . (4.7)

Using this, the last integral in eq.(4.6) becomes∫ µ

−µ
dyρ(y)K(x− y) = −2

∞∑
n=1

(−1)nζ(2n+ 1)

∫ µ

−µ
dyρ(y)(x− y)2n+1

= −2

∞∑
n=1

(−1)nζ(2n+ 1)

n∑
k=0

(
2n+ 1

2k

)
x2n+1−2km2k ;
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where we have used the fact that the eigenvalue density is even (since the potential and

the one-loop determinant are even) and

m2k ≡
∫ µ

−µ
dy ρ(y)y2k . (4.8)

Next, we need to consider the integral which we already computed in eq.(3.16). Thus we

obtain

ρ(x) =

( ∞∑
k=0

Ckz
2k

)√
µ2 − z2 , (4.9)

where Ck has three contributions,

Ck = qk +Ak +Bk (4.10)

The first one, qk, is the same as in N = 4 theory in the even-even case in eq.(3.18) (qk = 0

for k > n0 − 1). The second one Ak comes from K(x) in eq. (4.6). The factor multiplying√
µ2 − z2 is

2

π

∞∑
n=1

(−1)nζ(2n+ 1)

n∑
k=0

bn−kz
2kµ2n−2k =

∞∑
k=0

Akz
2k , (4.11)

with

Ak =
2

π

∞∑
n=max(k,1)

(−1)nζ(2n+ 1)bn−kµ
2n−2k , k ≥ 0 . (4.12)

Finally, consider the third contribution Bk:

∞∑
`=0

B`z
2` = − 2

π

∞∑
n=1

(−1)nζ(2n+ 1)

n∑
k=0

(
2n+ 1

2k

)
m2k

n−k∑
`=0

bn−k−`µ
2n−2k−2`z2`

= − 2

π

∞∑
n=1

(−1)nζ(2n+ 1)

n∑
`=0

z2`
n−∑̀
k=0

(
2n+ 1

2k

)
m2kbn−k−`µ

2n−2k−2` .

Thus

B` = − 2

π

∞∑
n=max(`,1)

(−1)nζ(2n+ 1)
n−∑̀
k=0

(
2n+ 1

2k

)
m2kbn−k−`µ

2n−2k−2` , ` ≥ 0 . (4.13)

The moments m2k are determined by integrating the density, which at the same time

contain m2k′ . In turn, this will give a linear system of equations for m2k that can be

solved in terms of µ and λ. Then we shall use the normalization condition to compute µ

in terms of λ.

For example, if we wish to determine correlators up to λ8 corrections, relative to the

leading term, then we need to truncate the K series up to the term with coefficient ζ(9),

which implies computing up to m8, i.e. solving a linear system for m2,m4,m6,m8 in terms

of µ and λ. The linear system is obtained form the formula:

m2r =

∞∑
k=0

Ck

∫ µ

−µ
dz z2k+2r

√
µ2 − z2 = π

∞∑
k=0

Ckσk+r+1µ
2k+2r+2 . (4.14)
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Next to leading order terms (NLO). In this paper we will compute the first non-

trivial order in λ, that is, up to next-to-leading order (NLO). This is obtained by truncating

the Taylor series for K at n = 1. So we have:

A0 = − 1

π
ζ(3)µ2 ; A1 = − 2

π
ζ(3) ; (4.15)

B0 =
1

π
ζ(3)

(
µ2 + 6m2

)
; B1 =

2

π
ζ(3) . (4.16)

As a warm-up, consider the undeformed theory. We set n0 = 1 (i.e. we set to zero all

deformations g2n, n > 1). Then

q0 =
1

π
g2 , (4.17)

and all other qk = 0, k > 0. Thus

C0 =
1

π
g2 −

1

π
ζ(3)µ2 +

1

π
ζ(3)

(
µ2 + 6m2

)
=

8π

λ
+

6

π
ζ(3)m2 ; (4.18)

C1 = − 2

π
ζ(3) +

2

π
ζ(3) = 0 . (4.19)

Moreover, we have from (4.14)

m2 = πC0σ2µ
4 =

(
π2

λ
+

3

4
ζ(3)m2

)
µ4 . (4.20)

These results agree with those in [4].

Let us now restore the deformations. We consider (4.14), with A0, A1 and B0, B1

given by (4.15) and (4.16), while qk given by (3.18). Then

m2 =
3

4
ζ(3)m2µ

4 +A , (4.21)

where

A ≡ π
n0−1∑
k=0

qkσk+2µ
2k+4 =

∞∑
k=0

n0∑
m=k+1

mbm−k−1σk+2g2mµ
2m+2

=

n0∑
m=1

ηmg2mµ
2m+2 ; (4.22)

with

ηm ≡
m−1∑
k=0

mbm−k−1σk+2 =
m2Γ

(
m+ 1

2

)
2
√
π(m+ 1)!

. (4.23)

The various correlations functions can now be obtained from differentiating the free

energy F with respect to the coupling g2n a certain number times. As in the N = 4 case,

we begin with

∂g2nF =

∫ µ

−µ
dz z2nρ(z) = m2n . (4.24)
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This gives

∂g2nF = π

n0∑
k=0

Ckσk+n+1µ
2k+2n+2 =

n0∑
m=1

dm,ng2mµ
2m+2n + 6ζ(3)m2σn+1µ

2n+2 , (4.25)

with dm,n given earlier in (3.27). Thus,

∂g2j∂g2nF =

n0∑
m=1

(2m+ 2n)dm,ng2mµ
2m+2n−1 dµ

dg2j
+ dj,nµ

2j+2n

+6ζ(3)m2(2n+ 2)σn+1µ
2n+1 dµ

dg2j
+ 6ζ(3)σn+1µ

2n+2dm2

dg2j
. (4.26)

The derivatives dµ
dg2r

, dm2
dg2r

are computed in the appendix B, with the result

dµ

dg2r
= −µ2r+1 4rbr + 3ζ(3)(4ηr − rbr)µ4

8 + 6ζ(3)µ4
. (4.27)

dm2

dg2r
=
ηrµ

2r+2 + µ dµ
dg2r

1− 3
4ζ(3)µ4

= −µ2r+2 rσr+1

1 + 3
4ζ(3)µ4

. (4.28)

Substituting into (4.26), we find

∂g2m∂g2nF = −µ2m+2nΓ
(
m+ 1

2

)
Γ
(
n+ 1

2

)
π(m+ n)Γ(m)Γ(n)

Qm,n , (4.29)

with

Qm,n ≡
1

1 + 3
4ζ(3)µ4

(
1 +

3

4
ζ(3)µ4 (m− 1)(n− 1)

(m+ 1)(n+ 1)

)
(4.30)

On the other hand, from the normalization condition, one finds (see (B.27))

1 = µ2

(
4π2

λ
+

3

4
ζ(3)µ2

)
. (4.31)

Solving for µ2, substituting into (4.29) and expanding in powers of λ, we find

∂g2m∂g2nF = ∂g2m∂g2nF0 + P (2)
m,n + P (4)

m,n + . . . ; (4.32)

with

∂g2m∂g2nF0 = −
(

λ

4π2

)m+n Γ
(
m+ 1

2

)
Γ
(
n+ 1

2

)
π(m+ n)Γ(m)Γ(n)

, (4.33)

P (2)
m,n =

3

4
ζ(3)

(
λ

4π2

)m+n+2 (3 +m+ n+mn)Γ
(
m+ 1

2

)
Γ
(
n+ 1

2

)
π(m+ 1)(n+ 1)Γ(m)Γ(n)

, (4.34)

P (4)
m,n = − 9

32
ζ(3)2

(
λ

4π2

)m+n+4 (3 +m+ n)(5 +m+ n+mn)Γ
(
m+ 1

2

)
Γ
(
n+ 1

2

)
π(m+ 1)(n+ 1)Γ(m)Γ(n)

.

(4.35)

Note that P
(2)
m,n is a correction of O(λ2) relative to the leading term and it corresponds

to an extra loop (see [28] for the diagrammatic). Moreover, the leading term (4.33) is
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just the same as that for the N = 4 case in eq.(3.49). This is to be expected, since the

leading term corresponds to the free theory; while, in turn, due to the non-renormalization

theorem [26–28], the full N = 4 result is just given by the free theory. To order O(λ3),

there are extra contributions proportional to ζ(5), in addition to P
(4)
m,n, which we are not

computing. However, the above formulas encapsulate the complete dependence on ζ(3) in

the two-point functions to all order in the coupling (for terms involving powers of ζ(3) with

no other factor ζ(2n+ 1), n > 1).

It is interesting to note that, for very large n,m, Qm,n → 1. Nevertheless note that

µ is determined from eq. (4.31), which differs from the N = 4 SYM case in the O(ζ(3)λ)

term. Thus, even in this limit, there will still be non-trivial NLO corrections.

Gram-Schmidt orthogonalization. Having computed the second derivatives of the

free energy, we can now proceed to perform the Gram-Schmidt orthogonalization procedure.

Following the same steps as above, the first few orthogonalized operators are (to next-to-

leading order in λ)

OS
4

2 ;

OS
4

4 −
4λ

(4π)2

(
1− 3ζ(3)

64π4
λ2 +O(λ3)

)
OS

4

2 ;

OS
4

6 −
6λ

(4π)2

(
1− 3ζ(3)

64π4
λ2 +O(λ3)

)
OS

4

4 +
9λ2

(4π)4

(
1− 3ζ(3)

32π4
λ2 +O(λ3)

)
OS

4

2 ;

OS
4

8 −
8λ

(4π)2

(
1− 3ζ(3)

64π4
λ2 +O(λ3)

)
OS

4

6 +
20λ2

(4π)4

(
1− 3ζ(3)

32π4
λ2 +O(λ3)

)
OS

4

4

− 16λ3

(4π)6

(
1− 9ζ(3)

64π4
λ2 +O(λ3)

)
OS

4

2 ;

· · · (4.36)

where OS
4

n are the VEV-less operators. As expected, these operators coincide, at leading

order, with the operators in the N = 4 theory in eq.(3.53). Taking into account numerical

factors as described above, the correlators for OR4

n = Trφn on R4 are given by

〈OR4

2 (0)O
R4

2 (x)〉R4 =
1

|x|4
2λ2

(2π)4

(
1− 9ζ(3)

4(2π)4
λ2 +O(λ3)

)
;

〈OR4

4 (0)O
R4

4 (x)〉R4 =
1

|x|8
4λ4

(2π)8

(
1− 3ζ(3)

(2π)4
λ2 +O(λ3)

)
;

〈OR4

6 (0)O
R6

6 (x)〉R4 =
1

|x|12

6λ6

(2π)12

(
1− 9ζ(3)

2(2π)4
λ2 +O(λ3)

)
;

〈OR4

8 (0)O
R6

8 (x)〉R4 =
1

|x|16

8λ8

(2π)16

(
1− 6ζ(3)

(2π)4
λ2 +O(λ3)

)
;

· · · (4.37)

Let us consider in detail the 〈OR4

2 (0)O
R4

2 (x)〉R4 correlator. Writting it in terms of N ,

it reads

〈OR4

2 (0)O
R4

2 (x)〉R4 =
1

|x|4

(
2N2

π2(ImτYM )2
− 9N4ζ(3)

2π4(ImτYM )4
+ . . .

)
. (4.38)
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Combining with the results for SU(2), SU(3), SU(4) gauge groups discussed in [20] and

in [16], it is natural to conjecture that the finite N version of formula (4.38) is

〈OR4

2 (0)O
R4

2 (x)〉R4 =
1

|x|4

(
2(N2 − 1)

π2(ImτYM )2
− 9(N2 − 1)(N2 + 1)ζ(3)

2π4(ImτYM )4
+ . . .

)
, (4.39)

so that the ratio of the NLO to the leading order is 9(N2 + 1) ζ(3)
4π2 (ImτYM )2 . For N = 2, this

formula perfectly agrees with eqs. (3.24) in [20] and eq. (5.35) in [16]; while for N = 3 and

N = 4 it reproduces (3.43) and (3.54) in [20] respectively.

It is interesting to note that including next-to-NLO in the correlators above will bring

contributions of the form ζ(5)λ3. Yet, since K only contains ζ(2n+ 1), interesting contri-

butions of order λ4 — in particular ζ(3)2λ4 terms — can be read from the computation

which we have performed. Explicitly showing the structure of the corrections we have

〈OR4

2 (0)O
R4

2 (x)〉R4 =
1

|x|4
2λ2

(2π)4

{
1− 9ζ(3)

4

λ2

(2π)4
+ a2 ζ(5)

λ3

(2π)6

+

(
45ζ(3)2

8
+ n2ζ(7)

)
λ4

(2π)8
+O(λ5)

}
;

〈OR4

4 (0)O
R4

4 (x)〉R4 =
1

|x|8
4λ4

(2π)8

{
1− 3ζ(3)

λ2

(2π)4
+ a4 ζ(5)

λ3

(2π)6

+

(
63ζ(3)2

8
+ n4ζ(7)

)
λ4

(2π)8
+O(λ5)

}
;

〈OR4

6 (0)O
R6

6 (x)〉R4 =
1

|x|12

6λ6

(2π)12

{
1− 9ζ(3)

2

λ2

(2π)4
+ a6 ζ(5)

λ3

(2π)6

+

(
243ζ(3)2

16
+ n6ζ(7)

)
λ4

(2π)8
+O(λ5)

}
;

〈OR4

8 (0)O
R6

8 (x)〉R4 =
1

|x|16

8λ8

(2π)16

{
1− 6ζ(3)

λ2

(2π)4
+ a8 ζ(5)

λ3

(2π)6

+

(
198ζ(3)2

8
+ n8ζ(7)

)
λ4

(2π)8
+O(λ5)

}
;

· · · (4.40)

where ak, nk are (rational) numerical coefficients. These can be determined by the same

method used in this paper, by including more terms in the Taylor expansion of K(x).

4.2 Comments on strong coupling

The matrix model for undeformed N = 2 superconformal QCD was investigated at strong

(λ � 1) coupling in [4–6]. In the infinite λ coupling limit, one can exactly solve the

saddle-point equation (4.4). In this limit, the harmonic potential 8πx2/λ vanishes and

the eigenvalue distribution extends from −∞ to ∞. Then, a Fourier analysis gives the
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normalized density [4]

ρ∞(x) =
1

2 cosh πx
2

. (4.41)

This immediately allows us to obtain the VEV (in the S4) of chiral operators in the infinite

coupling limit:

〈Trφ2n〉 =

∫ ∞
−∞

dx ρ(x)x2n = |E2n| (4.42)

where E2n is the Euler number, while 〈Trφ2n+1〉 = 0.

The calculation of two-point functions requires going beyond this leading order. In

the present case, this requires a more sophisticated analysis, similar to the one carried out

in [4–6] to determine subleading contributions in 1/λ in the free energy. For finite λ� 1,

the eigenvalue distribution has a width µ of the form [4]

µ =
2

π
lnλ+ . . . . (4.43)

In Fourier space, one has

ρ(x) =

∫ ∞
−∞

dω

2π
e−iωxρ(ω) , (4.44)

where

ρ(ω) =
1

coshω
+

2 sinh2 ω
2

coshω

8π2µJ1(µw)

λω
+ . . . . (4.45)

Then, a slight generalization of the calculation in appendix B of [6] gives

∂g2nF = 〈Trφ2n〉 =

∫ µ

−µ
dxρ(x)x2n = −

∫ ∞
−∞

dω

πi

ρ(2n)(ω)

ω − i0
. (4.46)

Application of the Sokhotski-Plemelj formula then determines 〈Trφ2n〉 to be proportional

to the 2n-th derivative of ρ(ω) at ω = 0. This expresses ∂g2nF in terms of µ, hence in terms

of λ. Using this result, one can compute two-point functions ∂g2∂g2nF . The computation

of ∂g2m∂g2nF is more difficult and requires generalizing the analysis of [4] to the case of

a potential V = g2mx
2m. It would be extremely interesting to determine the general

two-point functions in the strong coupling limit.

5 Conclusions

Using large N techniques we have computed correlation functions for CPO’s in N = 4 SYM

and superconformal QCD. For large N , the CPO’s of interest are single-trace operators

of the form Trφn. When the theory is on S4, due to the conformal anomaly, operators

corresponding to different n’s mix. As we have argued, such mixing occurs only among

operators Trφn, Trφm, having n and m of the same parity. This reflects the fact that the

mixing is due to the conformal anomaly, which, through the Ricci scalar R, allows mixings

of operators whose dimensions differ by 2 (see (2.6)).

In the case ofN = 4 SYM the final outcome of the computation is encoded in eq. (3.54).

This formula nicely agrees with the results in the literature computed in perturbation
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theory. Indeed, the result is correct at leading order in the free field theory case, as it has

been argued that, due to a non-renormalization theorem, higher corrections cancel. Our

computation explicitly confirms this. It is also worth noting that, instead of using the

deformed matrix model, another, more direct approach to the computation of correlation

functions of CPO’s is by directly computing the matrix integrals of the Gaussian matrix

model with insertions of Trani by using orthogonal polynomials. Like in the case of the

Wilson loop [23], this approach may also permit to find closed expressions for any finite

N to be compared with those in [30, 31]. We plan to report on this approach in a future

publication.

In the case of superconformal QCD we have considered the large N , small λ regime,

which is akin to the planar expansion. The leading order is identical to the N = 4 SYM

theory. Due to the non-renormalization theorem, this is in turn simply given by the free

theory, which should be indeed giving the leading term in superconformal QCD as well.

We computed the NLO correction, which admits a simple extension into a finite N formula

which exactly matches small N results in the literature. We have computed up O(λ2) with

respect to the leading order. It would be definitely interesting to compute higher order

in λ and understand the systematic of the expansion. Note however that, thanks to the

transcendentality properties of the perturbative expansion, we also computed the next-to-

next-to-NLO proportional to ζ(3)2λ4. It would also be extremely interesting to compute

two-point functions in the strong λ� 1 limit, following the method outlined in section 4.2.
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A Decoupling of multi-trace operators

Since in the present S4 case there is a non-trivial operator mixing, it is useful to understand

the decoupling of multitrace operators in more detail. In the large N limit, correlation

functions involving multitrace operators are known to be suppressed by extra powers of

1/N . In short, this can be argued by noting that the large N free energy is of the form

F(τk, τk) = −N2F |saddle(gk, ḡk), which exhibits explicitly the N dependence. Correlators

are obtained by differentiating with respect to ∂τn , but ∂τn ∼ N−1∂gn , see (3.4). Since each

∂τn inserts a single-trace operator, it is clear that multitrace operators require more ∂τn
derivatives and therefore additional 1/N factors (for example, one may compare correlators

involving Trφ6 with correlators involving Trφ2Trφ4 - the latter will carry an extra 1/N

factor). Nevertheless, let us be more specific in our argumentation (as a by-product, we

will make more explicit the Gram-Schmidt orthogonalization preocedure). Let us suppose
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that, up to order ∆0, we have constructed all the correlators of the VEV-less operators

OS
4

n1,··· ,nN , which in particular implies
∑
mnm ≤ ∆0. Let us suppose that, with these, we

have constructed the orthogonal basis of operators OR4

i — i stands for an arbitrary chosen

ordering of such operators — , covering all dimensions up to ∆0. Assume now that for

these it is true that multi-trace operators decouple in the large N limit; that is, the set

of operators OS
4

(or equivalently the OR4
) contains only single-trace operators. We will

prove by induction that this holds at any order. To that matter, suppose now that we want

to consider operators up to dimension ∆ = ∆0 + 1. Now the relevant operators to include

in the orthogonalization are those satisfying OS
4

n2,··· ,nNwith
∑
mnm ≤ ∆0 + 1. Let us split

them into

A =
{
OS

4

n1,··· ,nN /
∑

mnm ≤ ∆0

}
, B =

{
OS

4

n1,··· ,nN /
∑

mnm = ∆0 + 1
}
. (A.1)

The operators in A are nothing but the set of all operators up to dimension ∆0 for which we

are assuming that multi-traces decouple in the large N limit. Therefore, A contains only

single-traces and moreover we can change basis into the orthogonalized {OR4

n , n = 1 · · ·∆0}
which satisfy Gnm ∼ N0 δnm.

As for the operators in B, let us choose some ordering for them so that B =

{B1, · · · , BM}. All these operators are of dimension ∆0 + 1, but only one of them will

be a single trace operator. With no loss of generality, let us assume it to be B1. The

Gram-Schmidt orthognalization procedure amounts to write

OR4

∆0+1 = B1 −
∆0∑
n=1

αnO
R4

i , (A.2)

and fix the αn coefficeints by demanding 〈OR4

∆0+1O
R4

i 〉 = 0 for all i = 1 · · ·M . Due to the

orthogonality properties of the OR4

i we have

αn =
〈B1O

R4

n 〉

〈OR4

n O
R4

n 〉
, n = 1, · · · ,∆0 . (A.3)

This way we find a set of ∆0 + 1 operators, and we can further proceed with B2 and

construct its associated orthogonal operator. Now

OR4

∆0+2 = B2 −
∆0+1∑
n=1

αnO
R4

n αn =
〈B2O

R4

n 〉

〈OR4

n O
R4

n 〉
, n = 1, · · · ,∆0 + 1 . (A.4)

Continuing in the same way we can find the set of orthogonal operators up to dimension

∆ = ∆0 + 1. Recall that, since by assumption the single-trace operator is B1, only OR4

∆0+1

involves only single-traces, while the other OR4

∆0+2 etc. do involve multi-traces.

Let us now examine in closer detail the mixing coefficients in OR4

∆0+1 as opposed to those

in OR4

∆0+2 etc. (let us choose OR4

∆0+2 for concreteness). Since only B1 is single-trace, and by

assumption the OR4

n for n ≤ ∆0 are single-traces, schematically we have 〈B1O
R4

n 〉 ∼ 〈TrTr〉
while 〈B2O

R4

n 〉 ∼ 〈TrnTr〉 and 〈OR4

n O
R4

n 〉 ∼ 〈Tr2〉.
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The correlation functions of the OS
4

operators are constructed by taking appropriate

derivatives of the sphere partition function of the deformed theory. Recall now that in

the computation of F we introduce a set of gn’s appropriately rescaled (see main text) so

that the N dependence is extracted as Z = e−F , with F = N2F ({gn}). As mentioned

before, from the relation between the gn’s and the τn we have that, up to constant terms

(including the ’t Hooft coupling, fixed in the large N limit)

∂τn ∼
1

N
∂gn . (A.5)

From these scalings we see that derivatives of the free energy scale with N as (note that

for these matters ∂τ ∼ ∂τ )

∂nτ F ∼ N2−n . (A.6)

Using this scaling, we find that the scaling of 〈Trn〉 is4

〈Trn〉 ∼ Nn + · · ·+N2−n . (A.8)

Therefore

〈B1Oi〉
〈OiOi〉

∼ 〈TrTr〉
〈TrTr〉

∼ 1 ,
〈B2Oi〉
〈OiOi〉

∼ 〈TrnTr〉
〈TrTr〉

∼ Nn+1 + · · ·+N1−n

N2 + 1
∼ Nn−1 . (A.9)

Thus, schematically

OR4

∆0+1 ∼ B1 +

∆0∑
n

α̂nN
0OR4

i , OR4

∆0+2 ∼ B2 +

∆0+1∑
n

α̂nN
M2OR4

i ; (A.10)

where the α̂n are coefficients with no N dependence, and M2 ≥ 1 (its precise value will be

given by the number of traces in B2 minus one). This motivates to eliminate this extra N

suppression in mixings by redefining OR4

∆0+2 → N−M2OR4

∆0+2. In this manner we recover the

familiar extra 1
N suppression in multitrace operators. At the same time, it becomes evident

that the OR4

∆0+2 correlators come with an extra factor of N−2M2 . This explicitly shows the

decoupling of multitraces at dimension ∆0 + 1. Since one can explicitly check that multi-

traces decouple at the lowest ∆0, this serves as an inductive proof explicitly showing that

indeed multi-trace operators can be consistently neglected in the large N limit.

With the formulae above, we can also easily give a closed form for the OR4

∆0+1 correlator.

Using eqs. (A.2) and (A.3) we have

〈OR4

∆0+1O
R4

∆0+1〉 = 〈B1B1〉 −
∆0∑
n

〈B1O
R4

n 〉〈OR4

n B1〉

〈OR4

n O
R4

n 〉
. (A.11)

4One can convince of this very easily by explicitly looking at the first few examples

〈Tr〉 = −∂τF , 〈Tr2〉 = −∂2
τF + (∂τF)2 , 〈Tr3〉 ∼ ∂3

τF + ∂τF∂2
τF + (∂τF)3 · · · (A.7)

Note that the leading term reflects to the familiar large N factorization 〈Trn〉 ∼ 〈Tr〉n.
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B Useful formulas

We collect some relevant details for the computations in the main text, including normal-

ization conditions and cut endpoints.

B.1 N = 4 SYM

We compile relevant results for the computation of correlators in the N = 4 SYM theory.

B.1.1 Derivatives of endpoints of eigenvalue distribution: case of even

deformation

The derivatives dµ/dg2k can be computed from the normalization condition. For the sake

of clarity in the formulas, it is convenient to introduce another coefficient pk defined by

pk = kbk =
Γ
(
k + 1

2

)
√
π(k − 1)!

. (B.1)

Differentiating the normalization condition (3.23) with respect to g2k, we obtain

pkµ
2k = − dµ

dg2k

n0∑
n=1

2npng2nµ
2n−1 . (B.2)

Thus
dµ

dg2k
= − pkµ

2k∑n0
n=1 2npng2nµ2n−1

. (B.3)

It is useful to compute also the second and third derivative of µ. Differentiating again,

we find

d2µ

dg2kdg2j
=

2(k + j)pkpjµ
2k+2j−1

(
∑n0

n=1 2npng2nµ2n−1)2

− pjpkµ
2k+2j

(
∑n0

n=1 2npng2nµ2n−1)3

(
n0∑
n=1

2n(2n− 1)png2nµ
2n−2

)
. (B.4)

Now we evaluate the first and second derivatives at g2n = 0, with n = 2, . . . , n0. We get

dµ

dg2k
= −pkµ

2k−1

2p1g2
= −pkµ

2k−1

g2
, (B.5)

d2µ

dg2kdg2j
=

(2k + 2j − 1)pkpjµ
2k+2j−3

4p2
1g

2
2

=
(2k + 2j − 1)pkpjµ

2k+2j−3

g2
2

, (B.6)

where we used p1 = 1/2. At the end, we evaluate µ at g2n = 0, n = 2, . . ., which just gives

µ2 =
2

g2
=

λ

4π2
. (B.7)

Similarly, we find

d3µ

dg2`dg2kdg2j
= − 1

g3
2

(
4(k + j + `)(k + j + `− 2) + 3

)
p`pkpj µ

2k+2j+2`−5 . (B.8)
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B.1.2 Derivatives of endpoints of eigenvalue distribution: general case with

even and odd deformations

The endpoints of the cut (−ν, µ) are determined from the condition that the resolvent

behaves as ω(x) ∼ 1/x at large x. This leads to the condition (see e.g. [24])

I1 ≡
N∑
n=2

ngn

∫
dx

xn−1√
(µ− x)(x+ ν)

= 0 . (B.9)

For an even potential, this condition just implies µ− ν = 0. The integral can be computed

by choosing a contour that surrounds the cut (−ν, µ) and computing the residue at infinity,

by changing integration variable x = 1/z. Let us compute the generic integral

Jn ≡
∫
dx

xn√
(µ− x)(x+ ν)

= −i
∫
dz

z

1

zn
√

(1− µz)(1 + νz)
, (B.10)

where z = 1/x. Expanding around z = 0,

Jn = −i
∞∑
k=0

∞∑
`=0

bkb`µ
k(−ν)`

∫
dz

z
zk+`−n . (B.11)

By residues,

Jn = π

n∑
k=0

bkbn−kµ
k(−ν)n−k . (B.12)

Thus we have the condition
N∑
n=1

ngnJn−1 = 0 , (B.13)

i.e.
N∑
n=1

ngn

n−1∑
k=0

bkbn−1−kµ
k(−ν)n−1−k = 0 . (B.14)

Differentiating with respect to g`, we get

0 = `
`−1∑
k=0

bkb`−1−kµ
k(−ν)`−1−k +

dµ

dg`

N∑
n=1

ngn

n−1∑
k=1

kbkbn−1−kµ
k−1(−ν)n−1−k

− dν
dg`

N∑
n=1

ngn

n−2∑
k=0

(n− 1− k)bkbn−1−kµ
k(−ν)n−2−k . (B.15)

This has to be evaluated at gn = 0 for n 6= 2 and µ2 = ν2 = 2
g2

. Hence

0 = −`(−1)`µ`−1
`−1∑
k=0

bkb`−1−k(−1)k + g2

(
dµ

dg`
− dν

dg`

)
. (B.16)

Thus

g2

(
dµ

dg`
− dν

dg`

)
= `(−1)`µ`−1γ`−1 = −`µ`−1γ`−1 , (B.17)
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where γm was computed earlier in (3.42). In the last equality we used that γ`−1 is 6= 0 only

for odd `.

We have an extra condition coming from normalization. The normalization condition is

1 = −π
N−2∑
k=0

ck

k+2∑
r=0

σrσk+2−rµ
r(−ν)k+2−r . (B.18)

Differentiating with respect to gs, using (3.41) (and setting µ = ν and gn 6=2 = 0 after

differentiation) we finally obtain

g2(∂gsµ+ ∂gsν) = µs−1hs , (B.19)

with

hs ≡ s
s−2∑
k=0

αk+2γs−k−2 = −(1 + (−1)s)p s
2
. (B.20)

B.2 Superconformal N = 2 QCD

We now compile several useful results for the computation of the correlators in the super-

conformal QCD case.

The normalization condition can be read from (4.24), (4.25), setting m0 = 1. Using,

in addition, dm,0 = mbm = pm, we have

1 =

n0∑
n=1

png2nµ
2n + 3ζ(3)m2µ

2 . (B.21)

Using

m2 =
A

1− 3
4ζ(3)µ4

, (B.22)

we finally find the condition

0 =

(
1− 3

4
ζ(3)µ4

) n0∑
n=1

png2nµ
2n + 3ζ(3)

n0∑
n=1

ηng2nµ
2n+4 −

(
1− 3

4
ζ(3)µ4

)
. (B.23)

Differentiating with respect to g2r, we get

0 =

(
1− 3

4
ζ(3)µ4

)
prµ

2r + 3ζ(3)ηrµ
2r+4 +

n0∑
n=1

2npng2nµ
2n−1 dµ

dg2r

+3ζ(3)

n0∑
n=1

(
ηn −

1

4
pn

)
(2n+ 4)g2nµ

2n+3 dµ

dg2r
+ 3ζ(3)µ3 dµ

dg2r
. (B.24)

Setting all g2n>2 = 0, and using η1 = 1
4p1, we obtain

dµ

dg2r
= −µ2r+1 4pr + 3ζ(3)(4ηr − pr)µ4

4(g2µ2 + 3ζ(3)µ4)
. (B.25)
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We also need the derivative of m2 with respect to g2j . Using (B.22), we find

dm2

dg2j
=

2ηjµ
2j+2 + (g2 + 6ζ(3)m2)µ3 dµ

dg2j

2− 3
2ζ(3)µ4

. (B.26)

These expressions can be further simplified by using the normalization condition, which

relates µ2 to g2. Upon setting g2n>2 = 0, the normalization condition becomes

1 =
1

2
g2µ

2 + 3ζ(3)m2µ
2 , (B.27)

and m2 = µ2/4. Using these relations, we find the formulas (4.27), (4.28) given in section 4.

C Higher derivatives of the free energy in the N = 4 SYM theory

Higher derivatives of the free energy generate correlators with higher number of insertions.

Since these correlators do not depend on the point, at the end these correlators reduce to

two-point functions of multitrace operators. In this appendix we include formulas which

might be relevant for higher point functions of even operators.

Three-point correlators can be obtained from the third derivative of the free energy:

∂g2`
∂g2j∂g2nF =

n0∑
m=1

dm,ng2m(2m+ 2n)µ2m+2n−2

(
(2m+ 2n− 1)

dµ

dg2j

dµ

dg2`
+ µ

d2µ

dg2`dg2j

)
+dj,n(2j + 2n)µ2j+2n−1 dµ

dg2`
+ d`,n(2`+ 2n)µ2`+2n−1 dµ

dg2j
. (C.1)

At g2m = 0, m > 1, this simplifies to

∂g2`
∂g2j∂g2nF =

µ2n+2j+2`−2

g2

(
d1,npjp`(2n+ 2) (2`+ 2j + 2n)

−dj,n(2j + 2n)p` − d`,n(2`+ 2n)pj

)
. (C.2)

The coefficients dj,k, pj involve a combination of Γ functions, and the three-point

correlator finally becomes the remarkably simple formula:

∂g2`
∂g2j∂g2nF =

(
λ

4π2

)n+j+` Γ(`+ 1
2)Γ(j + 1

2)Γ(n+ 1
2)

π
3
2 Γ(`)Γ(j)Γ(n)

. (C.3)
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Four-point correlators are obtained from the fourth-derivative of the free energy

∂g2s∂g2`
∂g2j∂g2nF =

n0∑
m=1

dm,ng2m(2m+ 2n)µ2m+2n−3

×
[
(2m+ 2n− 1)

(
(2m+ 2n− 2)

dµ

dg2s

dµ

dg2j

dµ

dg2`
+ µ

dµ

dg2s

d2µ

dg2`dg2j

)
+

(
(2m+ 2n− 1)µ

(
d2µ

dg2jdg2s

dµ

dt`
+

d2µ

dg2`dg2s

dµ

dg2j

)
+ µ2 d3µ

dg2sdg2`dg2j

)]
+dj,n(2j + 2n)µ2j+2n−2

(
(2j + 2n− 1)

dµ

dg2`

dµ

dg2s
+ µ

d2µ

dg2`dg2s

)
+d`,n(2`+ 2n)µ2`+2n−2

(
(2`+ 2n− 1)

dµ

dg2j

dµ

dg2s
+ µ

d2µ

dg2jdg2s

)
+ds,n(2s+ 2n)µ2s+2n−2

(
(2s+ 2n− 1)

dµ

dg2j

dµ

dg2`
+ µ

d2µ

dg2`dg2j

)
Setting g2m = 0, m > 1, we obtain

∂g2s∂g2`
∂g2j∂g2nF =

µ2n+2s+2j+2`−4

g2
2

[
− d1,npjpsp`(2n+ 2)

×
(

(2n+ 1)
(
2n+ 4`+ 4j + 4s− 3

)
+ 4(s+ `+ j)(s+ `+ j − 2) + 3

)
+4(j+n+`+s−1)

(
dj,n(j + n)p`ps+d`,n(`+n)pjps+ds,n(s+n)p`pj

)]
Using the expressions for the coefficients dm,n, pk, we find the remarkably simple

formula

∂g2s∂g2`
∂g2j∂g2nF = −

(
λ

4π2

)n+s+j+k Γ
(
j + 1

2

)
Γ
(
k + 1

2

)
Γ
(
n+ 1

2

)
Γ
(
s+ 1

2

)
(j+k+n+s−1)

π2Γ(j)Γ(k)Γ(n)Γ(s)
(C.4)
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