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Abstract

The classification of clients is an essential matter in commercial banking, insur-
ance companies, electrical corporations, communication business, etc. Those compa-
nies frequently classify their customers by means of the information provided by the
so-called classifier. Motivated by the need to compare systems of classification we
introduce a new stochastic order which permits the comparison of classifiers. The
stochastic order is analyzed in detail, providing characterizations and properties as
well as connections with other stochastic orders and other classification systems. Such
an order is applied to compare some classifiers used by a Spanish commercial banking
to analyze the key problem of customer churn, obtaining conclusive results by means
of real databases. Namely, the optimal classifier among them in the new stochastic
order is obtained.
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1 Introduction

Customer classification plays a key role for commercial purposes in any marketing strategy.
A suitable system of classification of customers is essential to develop efficient marketing
programs.

A frequent situation is that in which customers are classified in two possible categories.
That is very common in insurance companies or commercial banking. Data analysis units
of banks often should classify their clients in a dichotomic system. For instance, will
a customer purchase a credit card?, will a client abandon the bank?, will he acquire a
mortgage?, will he be a defaulter?, etc. In fact, in many countries, commercial banks are
obligated to classify their clients as ”professional” or ”retail client”.

More examples can be found in insurance companies. These usually develop analysis of
their clients, or potential clients, classifying them as future (or not future) purchasers of life
insurances, health insurances, social insurances, third-party insurances, etc. Other exam-
ples are in relation to phone or electrical companies, which classify their former customers
as returnable or not.

The classification of customers is very useful in developing marketing programs and
provides information to launch campaigns or promotions among clients.

Classifications are frequently performed by means of a bidimensional random vector
whose components are the so-called classifier and target. A target is a random variable
which follows a Bernoulli distribution with parameter q, where q stands for the true propor-
tion of customers in which the characteristic under study is satisfied. For instance, when
a commercial bank analyzes which clients will purchase a credit card, q is the true and
unknown proportion of customers which will buy the credit card. In this case the target
takes value 1 at a client which will buy the credit card, and 0 if that client will not purchase
it.

The value the target assigns to each client is commonly unknown (otherwise there would
not exist uncertainty in the classification of clients), and is estimated using the information
provided by the value the classifier takes at such a customer. For instance, if the classifier
shows that the client has got into debt and his financial difficulties resulted in debt arrears,
the bank probably will consider that he is not a potential purchaser of a pension and
retirement plan, and in this case the bank will estimate that the value of the corresponding
target at that person is 0.

Different techniques have been designed to construct classifiers, like those based on
neuronal networks (see for instance Hwang et al. (2004) and Hung et al. (2006)), on decision
trees (see Wei and Chiu (2002)), on random forest (see Breiman (2001) and Buckinx and
Van den Poel (2005)), on logistic regression models (see Qi et al. (2009)), on Bayesian
approaches (see Figini and Giudici (2010)), etc.
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The comparison of such classifiers is an appealing topic. Detecting efficient classifiers
to estimate a target is a key question to be successful with commercial campaigns among
clients.

The main aim of this paper is to introduce a new mathematical framework to compare
classifiers from a stochastic point view, analyze in detail such a model, and apply it to the
comparison of classifiers used by a commercial banking to obtain conclusive results. Our
mathematical model will be based on a stochastic order for classifiers and targets motivated
by the problem described above. By means of such a stochastic order we develop a study
where we compare multiple classifiers used in a Spanish bank to approach customer churn,
obtaining that one of them (that based on logistic regression with all the variables and
stepwise selection method) is the best in the new stochastic order to predict clients that
are highly prone to abandon their bank. To the best of our knowledge stochastic orders
have not been used to analyze the comparison of classifiers till this moment.

It is worth mentioning that customer churn has been widely analyzed in the last years.
Customer churn prediction models try to find clients with high possibilities to break rela-
tionships with their companies (see Verbeke et al. (2011) for an overview on this topic).
The churn prediction matter has been discussed in different fields, like in banking (see for
instance Kumar and Ravi (2008) and Larivière and Van den Poel (2005)), insurance (see
Morik and Kpcke (2004) and Günther et al. (2014)), telecommunications (see Hwang et al.
(2004) and Hung et al. (2006)), retailing (Buckinx and Van den Poel (2005)), retail grocery
sector (Miguéis et al. (2012)), etc.

The structure of the paper is as follows. In Section 2 we include the concepts and
results needed for our analysis. The new stochastic order is introduced in Section 3, where
a detailed analysis of the order is shown. In Section 4 we apply our mathematical model
to some classifiers used in a Spanish commercial banking (Liberbank), using real data
to compare eleven classifiers commonly applied by such a bank in the customer attrition
problem. Conclusive results are derived by means of this study.

2 Preliminaries

Basic concepts and notations necessary for the development of the paper are included here.
Let W be a random variable or random vector. We will denote by FW its distribution

function, and by FW its survival function.
When W is a random variable, the symbol F−1

W will stand for the quantile function of
W , that is, F−1

W : (0, 1) → R, with F−1
W (u) = inf {x ∈ R : FW (x) ≥ u} for any u ∈ (0, 1).

The usual Borel σ-algebra on Rd will be denoted by BRd .
If P is a probability on the measurable space (Rd,BRd), and h : Rd → Rd is a measurable
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mapping, P ◦h? will denote the probability given by P ◦h?(B) = P (h?(B)) for any B ∈ BRd ,
where h?(B) = {x ∈ Rd : h(x) ∈ B}, that is, the preimage of B under h.

Let P be a probability on the measurable space (Rd,BRd). A set A ∈ BRd is said to be
a continuity set for the probability P , if P (δA) = 0, where δA stands for the boundary of
A.

The symbol ∼ will stand for the equality in distribution.
Two random vectors (X1, X2, . . . , Xd) and (Y1, Y2, . . . , Yd) are said to belong to the

same Frechet class if Xi ∼ Yi for any 1 ≤ i ≤ d, that is, marginal distributions of the same
components are equal.

The dependence structure of the components of a random vector is given by the so-
called copula. A copula can be defined as a distribution function of a random vector
(U1, U2, . . . , Ud) whose components follow uniform distribution on the interval (0, 1).

If X = (X1, X2, . . . , Xd) is a random vector, then there exists C a copula such that
FX = C(FX1 , FX2 , . . . , FXd

). The reader is referred to Nelsen (2009) and Cherubini et al.
(2004) for an introduction to the theory of copulas.

A key concept in this manuscript is the so-called stochastic order. Basically stochastic
orders aim to rank probabilities in accordance with an appropriate criterion. Multiple
criteria have been proposed in mathematical literature to order probabilities like variability,
dispersion, concentration, residual life, etc.

Formally a stochastic order can be defined as a pre-order relation on a set of probabilities
associated with a measurable space.

The reader is referred to the books Müller and Stoyan (2002), Shaked and Shanthikumar
(2007) and Belzunce et al. (2015) for an introduction to the theory of stochastic orders from
both theoretical an applied points of view.

Some stochastic orders which will appear throughout the paper are the following: let
X and Y be random vectors, X is said to be smaller than Y in the

i) usual stochastic order, denoted by X ¹st Y , if E(f(X)) ≤ E(f(Y )) for all increasing
mappings f : Rd → R such that the above expectations exist, that is, for all mappings
f : Rd → R with f(x) ≤ f(y) when x ≤ y, where ≤ stands for the usual componentwise
order of Rd,

ii) upper orthant order, denoted by X ¹uo Y , if FX(z) ≤ F Y (z) for all z ∈ Rd,
iii) lower orthant order, denoted by X ¹lo Y , if FX(z) ≥ FY (z) for all z ∈ Rd,
iv) positive quadrant dependent order, denoted by X ¹PQD Y , if FX(z) ≤ FY (z) for

all z ∈ R2, where X = (X1, X2) and Y = (Y1, Y2) belong to the same Frechet class.
Throughout the paper we will denote by B(q) the Bernoulli distribution of parameter

q ∈ (0, 1). The uniform distribution on the interval (0, 1) will be indicated by U(0,1).
A random variable W is said to follow a Govindarajulu distribution with shape param-

eter β > 0, scale parameter σ > 0 and position parameter θ ≥ 0, if its quantile function is
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given by F−1
W (u) = θ + σ((β + 1)uβ − βuβ+1) for any u ∈ (0, 1) (see Govindarajulu (1977)

for the definition of the family and Nair et al. (2012) for applications).
On the other hand, by “continuous random variable” we will mean a random variable

whose distribution function is continuous.

3 The mathematical model: main results

In this section we introduce a new stochastic order to approach the problem of the com-
parison of classifiers described in the Introduction of the manuscript. Characterizations,
properties and connections with other stochastic orders and other rating procedures are
developed.

In the first place we introduce the concept of modelling vector, which will be the math-
ematical model the paper will be focused on.

Definition 3.1. A bidimensional random vector X = (CX , TX) is said to be a modelling
vector if TX ∼ B(q). The random variables CX and TX are said to be the classifier and the
target respectively.

Roughly speaking, a classifier tries to “predict” the value of the target.

Definition 3.2. Let X = (CX , TX) be a modelling vector. The mapping MX : (0, 1) → R
with

MX(p) = P (TX = 1/CX ≥ F−1
CX

(1− p))

for any p ∈ (0, 1) is said to be the accumulated improvement curve of the modelling vector
X.

The idea of this map is as follows. Given p ∈ (0, 1) we consider the smallest group
containing at least the 100p% of the customers with the largest values of the classifier CX ,
and in such a subgroup we study the probability that the target takes value 1.

We should indicate that P (CX ≥ F−1
CX

(1− p)) > 0 for any p ∈ (0, 1). As a consequence
for any modelling vector X = (CX , TX), the accumulated improvement curve MX satisfies
that

MX(p) =
P (CX ≥ F−1

CX
(1− p), TX = 1)

P (CX ≥ F−1
CX

(1− p))

for any p ∈ (0, 1).
It is worth mentioning that in financial literature the accumulated improvement curve

is sometimes defined as P (TX = 1/CX ≥ F−1
CX

(1 − p))/q, that is, MX(p)/q. As we will see
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later that is irrelevant for our purposes since we will compare classifiers of targets with the
same Bernoulli distribution.

A key applied problem in commercial banking is the comparison of classifiers. Based
on this issue we introduce the following stochastic order to compare classifiers.

Definition 3.3. Let X = (CX , TX) and Y = (CY , TY ) be two modelling vectors with
TX ∼ TY ∼ B(q). It will be said that X is less than Y in the accumulated improvement
curve stochastic order if MX(p) ≤ MY (p) for any p ∈ (0, 1). It will be denoted by X ¹M Y .

The idea of the order is the following. Roughly speaking, the relation X ¹M Y means
that for any p ∈ (0, 1), given the 100p% of the customers with the largest values of the
corresponding classifiers CX and CY , the probability of carrying out right classifications
by estimating as 1 the value of the target at those customers is greater (at least the same)
with classifier CY than with classifier CX .

For instance, let us consider the problem of the classification of customers of commercial
banking as potential or not purchasers of a credit card. In this case the target, say T , is a
random variable which takes 1 at a customer if he purchases the card and 0 in other case.
If a bank make use of two modelling vectors X = (CX , TX) and Y = (CY , TY ) (in this case
TX = TY = T ), the relation X ¹M Y means that if the card is offered to the 100p% of
the clients with the largest values of the corresponding classifiers, the probability of having
clients which acquire the card is greater (at least not smaller) when we consider the second
classifier for any p ∈ (0, 1).

From an applied point of view, in most of the cases TX and TY are the same target.
However there exist real-life problems in which targets could be different.

From now on we will assume that all the targets in the manuscript follow Bernoulli
distribution with parameter q.

The new stochastic order provides a theoretical framework to compare efficiently clas-
sifiers.

3.1 Properties of the accumulated improvement curve

We start with the analysis of our mathematical model studying different results in relation
to accumulated improvement curves.

Proposition 3.4. Let X = (CX , TX) be a modelling vector. It holds that limp→1− MX(p) =
q.

Proof. Note that the events CX ≥ F−1
CX

(1− p) are increasing in p. Therefore we have that

lim
p→1−

P (CX ≥ F−1
CX

(1− p)) = lim
n→∞

P (CX ≥ F−1
CX

(
1

n
)) = P ( lim

n→∞
(CX ≥ F−1

CX
(
1

n
)))
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= P (∪∞n=1 (CX ≥ F−1
CX

(
1

n
))) = P (CX ∈ supp (CX)) = 1,

where supp stands for the support of the random variable. Reasoning in the same way, it
is possible to obtain that

lim
p→1−

P (CX ≥ F−1
CX

(1− p), TX = 1) = P (CX ∈ supp (CX), TX = 1) = P (TX = 1) = q.

Therefore we have that limp→1− MX(p) = q.

Observe that when p tends to 1, the event (CX ≥ F−1
CX

(1− p)) tends to be satisfied by
all the population, and so MX(p) tends to P (TX = 1).

Proposition 3.5. Let X = (CX , TX) be a modelling vector. If the classifier CX is a
continuous random variable, then the mapping MX is continuous.

Proof. Note that

MX(p) =
P (CX ≥ F−1

CX
(1− p), TX = 1)

P (CX ≥ F−1
CX

(1− p))
.

Let p ∈ (0, 1). In accordance with formula (21) in Shorack and Wellner (1986), it holds
that CX ≥ F−1

CX
(1− p) if and only if FCX

(CX) ≥ 1− p.

Moreover, if CX is continuous, then FCX
(CX) ∼ U(0,1). Thus P (CX ≥ F−1

CX
(1− p)) = p,

which is continuous at p.
In relation to the numerator of MX , let us see that P (TX = 1, CX ≥ F−1

CX
(1 − p)) is

continuous at p, checking that it is right and left continuous.
Let p0 ∈ (0, 1). Let {pn}n ⊂ (0, 1) be a decreasing sequence with pn > p0 for any n ∈ N,

and limn pn = p0. Then

lim
n

P (CX ≥ F−1
CX

(1− pn), TX = 1) = lim
n

P (FCX
(CX) ≥ 1− pn, TX = 1)

= P (∩∞n=1(FCX
(CX) ≥ 1− pn, TX = 1)) = P (FCX

(CX) ≥ 1− p0, TX = 1)

= P (CX ≥ F−1
CX

(1− p0), TX = 1).

Therefore the numerator of MX is right continuous.
Let p0 ∈ (0, 1). Let {pn}n ⊂ (0, 1) be a increasing sequence with pn < p0 for any n ∈ N,

and limn pn = p0. In this case

lim
n

P (CX ≥ F−1
CX

(1− pn), TX = 1) = lim
n

P (FCX
(CX) ≥ 1− pn, TX = 1)

= P (∪∞n=1(FCX
(CX) ≥ 1− pn, TX = 1)) = P (FCX

(CX) > 1− p0, TX = 1)
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= P (FCX
(CX) ≥ 1− p0, TX = 1) = P (CX ≥ F−1

CX
(1− p0), TX = 1)

since the random variable CX is continuous.
Therefore we obtain that MX is continuous.

In general we can not guarantee that accumulated improvement curves are continuous
for any modelling vector as the following example shows.

Example 3.6. Let us consider the modelling vector X = (CX , TX) with P (CX = 0) =
P (CX = 1) = 1/2. Let a = P (TX = 1/CX = 0) and let b = P (TX = 1/CX = 1), with
a, b ∈ [0, 1] and a + b = 2q.

In this case

F−1
CX

(1− p) =

{
0 if p ≥ 1/2,
1 if p < 1/2.

It is not hard to prove that

MX(p) =

{
b if 0 < p < 1/2,
q if 1/2 ≤ p < 1.

Note that limp→1− MX(p) = q as Proposition 3.4 reads.
In general this mapping is neither continuous nor decreasing (increasing). For instance,

if we take b = 3q/4 and a = 5q/4, where q is a value such that 5q/4 ≤ 1, then MX is
increasing, but not continuous. If we consider a = 3q/4 and b = 5q/4, where q is a value
such that 5q/4 ≤ 1, then MX is decreasing, but not continuous. If we take a = b = q, the
mapping is continuous.

Next result reads that a classifier which is independent of the target does not provide
us with information.

Proposition 3.7. Let X = (CX , TX) be a modelling vector. If CX and TX are independent,
then MX(p) = q for any p ∈ (0, 1).

Proof. It is clear since TX ∼ B(q).

3.2 Basic properties of the stochastic order

In this subsection we analyze different properties of the accumulated improvement curve
stochastic order.

Roughly speaking the first two results read that when classifiers are translated or mul-
tiplied by a positive scalar, accumulated improvement curves are not modified.
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Proposition 3.8. The stochastic order ¹M is preserved under translations of the classi-
fier.

Proof. Let X = (CX , TX) be a modelling vector and let k ∈ R. We denote by X ⊕ k the
modelling vector given by X ⊕ k = (CX + k, TX).

We have that MX⊕k(p) = P (TX = 1/CX + k ≥ F−1
CX+k(1− p)). Now note that CX + k ≥

F−1
CX+k(1 − p) if and only if FCX+k(CX + k) ≥ 1 − p. But FCX+k(x + k) = FCX

(x), and

so MX⊕k(p) = P (TX = 1/CX ≥ F−1
CX

(1 − p)) = MX(p) for any p ∈ (0, 1). That is,
X ¹M X ⊕ k and X ⊕ k ¹M X.

Proposition 3.9. The stochastic order ¹M is preserved under scale changes of the clas-
sifier.

Proof. Let X = (CX , TX) be a modelling vector and λ ∈ (0, +∞). Let λ¯X = (λCX , TX).
It holds that P (λCX ≥ F−1

λCX
(1−p)) = P (FλCX

(λCX) ≥ 1−p) = P (FCX
(CX) ≥ 1−p) =

P (CX ≥ F−1
CX

(1− p)) for any p ∈ (0, 1).

In the same way P (λCX ≥ F−1
λCX

(1 − p), TX = 1) = P (CX ≥ F−1
CX

(1 − p), TX = 1) for
any p ∈ (0, 1).

Therefore Mλ¯X = MX , and so we have the result.

As a consequence of those results we obtain that the new stochastic order is not a partial
order.

Proposition 3.10. The relation ¹M is a pre-order, but it does not satisfy the anti-
symmetric property.

Proof. It is clear that ¹M is reflexive and transitive. However the anti-symmetric property
is not satisfied. Observe that Proposition 3.8 says that X ¹M X ⊕ k and X ⊕ k ¹M X
for any k ∈ R, and obviously the modelling vectors X ⊕ k and X do not share the same
distribution.

The new stochastic order is not preserved under weak convergence as the following exam-
ple shows. However it is possible to state mild conditions which guarantee that preservation
as we prove after the example.

Example 3.11. Let Xm = (CXm , TXm), m ∈ N, be modelling vectors such that P (CXm =
1, TXm = 1) = 3/8, P (CXm = 1, TXm = 0) = 1/8, P (CXm = 1− 1/m, TXm = 1) = 1/8, and
P (CXm = 1− 1/m, TXm = 0) = 3/8, for any m ∈ N. Observe that TXm ∼st B(1/2).

Note that for 0 < p < 1/2, we have that F−1
CXm

(1 − p) = 1, while for 1/2 ≤ p < 1 it

holds that F−1
CXm

(1− p) = 1− 1/m.
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Thus it can be seen that

MXm(p) =

{
3/4 if 0 < p < 1/2,
1/2 if 1/2 ≤ p < 1,

for all m ∈ N.
Let X = (CX , TX) be a modelling vector where CX = 1 a.s. and TX ∼st B(1/2). It

holds that limm Xm = X in the weak convergence.
Now consider Ym = (CYm , TYm), m ∈ N, modelling vectors such that P (CYm = 1, TYm =

1) = 3/8, P (CYm = 1, TYm = 0) = 1/8, P (CYm = 1/m, TYm = 1) = 1/8, and P (CYm =
1/m, TYm = 0) = 3/8, for any m ∈ N.

In this case, we have that

MYm(p) =

{
3/4 if 0 < p < 1/2,
1/2 if 1/2 ≤ p < 1,

for all m ∈ N.
Let Y = (CY , TY ) be a modelling vector where P (CY = 1, TY = 1) = 3/8, P (CY =

1, TY = 0) = 1/8, P (CY = 0, TY = 1) = 1/8, and P (CY = 0, TY = 0) = 3/8. It holds that
limm Ym = Y in the weak convergence.

Now observe that Ym ¹M Xm for all m ∈ N. However the relation Y ¹M X is false
since MX(p) = 1/2 for any p ∈ (0, 1) (note that CX and TX are independent) while

MY (p) =

{
3/4 if 0 < p < 1/2,
1/2 if 1/2 ≤ p < 1.

Therefore the order ¹M is not preserved under weak convergence.

In spite of that example, when classifiers are continuous the new order is preserved
under the weak convergence as the following proposition asserts.

Proposition 3.12. Let Xm = (CXm , TXm), Ym = (CYm , TYm), X = (CX , TX) and Y =
(CY , TY ), with m ∈ N, be modelling vectors. If Xm ¹M Ym for any m ∈ N, limm Xm =
X and limm Ym = Y in the weak convergence, and CX and CY are continuous random
variables, then it holds that X ¹M Y .

Proof. The condition Xm ¹M Ym implies that for any p ∈ (0, 1) and any m ∈ N, P (TXm =
1/CXm ≥ F−1

CXm
(1− p)) ≤ P (TYm = 1/CYm ≥ F−1

CYm
(1− p)), equivalently

P (CXm ≥ F−1
CXm

(1− p), TXm = 1)

P (CXm ≥ F−1
CXm

(1− p))
≤

P (CYm ≥ F−1
CYm

(1− p), TYm = 1)

P (CYm ≥ F−1
CYm

(1− p))
.
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The hypothesis limm Xm = X and limm Ym = Y in the weak convergence imply that
limm CXm = CX and limm CYm = CY in the weak convergence since the weak convergence
is preserved by the components of random vectors.

Thus it holds that limm FCXm
(x) = FCX

(x) for any x ∈ R since FCX
is continuous.

Moreover the continuity of FCX
implies that the sequence {FCXm

}m tends uniformly to
FCX

(see for instance Breiman (1968) or Pollard (1984)).
Therefore it is possible to apply Theorem 5.5 of Billingsley (1999) to obtain that that

limm PCXm
◦F ?

CXm
= PCX

◦F ?
CX

and limm PCYm
◦F ?

CYm
= PCY

◦F ?
CY

in the weak convergence.
Observe that PCX

◦F ?
CX

is the probability induced by the random variable FCX
(CX), and

similarly with the rest of variables. Therefore we have that limm FCXm
(CXm) = FCX

(CX)
and limm FCYm

(CYm) = FCY
(CY ) in the weak convergence.

Thus we obtain that limm P (FCXm
(CXm) ≥ 1 − p) = P (FCX

(CX) ≥ 1 − p) for any
p ∈ (0, 1) since the set [1−p,∞) is a continuity set for the probability induced by FCX

(CX),
note that the boundary of [1− p, +∞) is {1− p} and P (FCX

(CX) = 1− p) = 0 since FCX

is continuous.
Obviously we can derive the same conclusion with random variables {Ym}m and Y.
Let us see now that for any p ∈ (0, 1) we have that

lim
m

P (FCXm
(CXm) ≥ 1− p, TXm = 1) = P (FCX

(CX) ≥ 1− p, TX = 1). (3.1)

We know that limm Xm = X in the weak convergence and limm FCXm
= FCX

in the
uniform convergence.

As a consequence, if g : R→ R is the identity function, we have that limm(FCXm
, g) =

(FCX
, g) uniformly in R2.

Applying Theorem 5.5 in Billingsley (1999) to the sequence {Xm}m which converges
weakly to the vector X, we obtain that limm (FCXm

(CXm), TXm) = (FCX
(CX), TX) in the

weak convergence.
This implies formula (3.1) since [1− p,∞)× {1} is a continuity set for the probability

induced by (FCX
(CX), TX). Observe that FCX

is continuous, and so P (FX(CX) = 1 −
p, TX = 1) = 0 for any p ∈ (0, 1).

Thus we have proved that for any p ∈ (0, 1) it holds that limm MXm(p) = MX(p) and
limm MYm(p) = MY (p), and so derive the result.

3.3 Characterization results of the stochastic order

Now we provide some characterizations of the stochastic order ¹M .
The first result is based on quantile and distribution functions. The second characteri-

zation on the usual stochastic order.
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Proposition 3.13. Let X = (CX , TX) and Y = (CY , TY ) be modelling vectors. Then
X ¹M Y if and only if

F−1
TX |FCX

(CX)≥1−p(FTY |FCY
(CY )≥1−p (x)) ≤ x (3.2)

for any p ∈ (0, 1) and any x such that FTY |FCY
(CY )≥1−p (x) ∈ (0, 1).

Proof. In the first place, let us suppose that X ¹M Y . That is,

P (TX = 1/CX ≥ F−1
CX

(1− p)) ≤ P (TY = 1/CY ≥ F−1
CY

(1− p))

for any p ∈ (0, 1). This is the same as

P (TX = 1/FCX
(CX) ≥ 1− p) ≤ P (TY = 1/FCY

(CY ) ≥ 1− p).

Since the marginal distributions of TX and TY are Bernoulli, the above inequality can be
written as

P (TX > x/FCX
(CX) ≥ 1− p) ≤ P (TY > x/FCY

(CY ) ≥ 1− p)

for any x ∈ R and p ∈ (0, 1), that is,

P (TX ≤ x/FCX
(CX) ≥ 1− p) ≥ P (TY ≤ x/FCY

(CY ) ≥ 1− p),

equivalently, FTX |FCX
(CX)≥1−p ≥ FTY |FCY

(CY )≥1−p.

As a consequence we obtain that F−1
TX |FCX

(CX)≥1−p ≤ F−1
TY |FCY

(CY )≥1−p and so we conclude

that

F−1
TX |FCX

(CX)≥1−p(FTY |FCY
(CY )≥1−p (x)) ≤ F−1

TY |FCY
(CY )≥1−p(FTY |FCY

(CY )≥1−p (x)) ≤ x

for any p ∈ (0, 1) and any x such that FTY |FCY
(CY )≥1−p (x) ∈ (0, 1).

Conversely, let us suppose that inequality (3.2) is satisfied. Since distribution functions
are increasing we deduce that

FTX |FCX
(CX)≥1−p(F

−1
TX |FCX

(CX)≥1−p(FTY |FCY
(CY )≥1−p (x))) ≤ FTX |FCX

(CX)≥1−p(x).

Now note that if F is a distribution function, then F (F−1(u)) ≥ u for any u ∈ (0, 1), and
thus we obtain that FTY |FCY

(CY )≥1−p (x) ≤ FTX |FCX
(CX)≥1−p (x). This implies that

P (TX = 1/FCX
(CX) ≥ 1− p) ≤ P (TY = 1/FCY

(CY ) ≥ 1− p)

for any p ∈ (0, 1), and so X ¹M Y .
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Proposition 3.14. Let X = (CX , TX) and Y = (CY , TY ) be modelling vectors. Then
X ¹M Y if and only if TX |(FCX

(CX) ≥ 1 − p) ¹st TY |(FCY
(CY ) ≥ 1 − p) for any

p ∈ (0, 1).

Proof. It is a consequence of Proposition 3.13 and Theorem 1.2.6 in Müller and Stoyan
(2002) which reads that two random variables W1 and W2 satisfy W1 ¹st W2 if and only if
F−1

W1
(FW2(x)) ≤ x.

The following result shows that when classifiers are continuous, the accumulated im-
provement curve stochastic order can be characterized by means of the upper orthant order
considering appropriate transformations of modelling vectors.

Proposition 3.15. Let X = (CX , TX) and Y = (CY , TY ) be modelling vectors where
the classifiers CX and CY are continuous. Then it holds that X ¹M Y if and only if
(FCX

(CX), TX) ¹uo (FCY
(CY ), TY ).

Proof. When CX and CY are continuous, it holds that FCX
(CX) ∼ FCY

(CY ) ∼ U(0,1).
Therefore P (CX ≥ F−1

CX
(1− p)) = P (CY ≥ F−1

CY
(1− p)) = p for any p ∈ (0, 1).

As a consequence we obtain that X ¹M Y if and only if

P (CX ≥ F−1
CX

(1− p), TX = 1) ≤ P (CY ≥ F−1
CY

(1− p), TY = 1)

for any p ∈ (0, 1).
This is the same as

P (FCX
(CX) ≥ 1− p, TX = 1) ≤ P (FCY

(CY ) ≥ 1− p, TY = 1),

and because of the continuity of CX and CY , this condition is equivalent to

P (FCX
(CX) > 1− p, TX = 1) ≤ P (FCY

(CY ) > 1− p, TY = 1)

for any p ∈ (0, 1).
Since TX and TY follow Bernoulli distribution, that is the same as

P (FCX
(CX) > 1− p, TX > x) ≤ P (FCY

(CY ) > 1− p, TY > x)

for any x ∈ R and p ∈ (0, 1). Note that if x < 0, both probabilities of the above expression
are equal to p.

Observe that the above inequality of probabilities is also true when p ≤ 0, both proba-
bilities being equal to zero. If p ≥ 1, the above probabilities are P (TX > x) and P (TY > x)
respectively, values which are equal for any x ∈ R.

Therefore we have seen that X ¹M Y if and only if P (FCX
(CX) > y, TX > x) ≤

P (FCY
(CY ) > y, TY > x) for any x, y ∈ R, which is the same as (FCX

(CX), TX) ¹uo

(FCY
(CY ), TY ).

13



Observe that when CX and CY are continuous, then the random vectors (FCX
(CX), TX)

and (FCY
(CY ), TY ) belong to the same Frechet class. As a consequence of this we obtain

the following corollary.

Corollary 3.16. Let X = (CX , TX) and Y = (CY , TY ) be modelling vectors where the
classifiers CX and CY are continuous. Then it holds that

i) X ¹M Y if and only if (FCX
(CX), TX) ¹PQD (FCY

(CY ), TY ),

ii) X ¹M Y if and only if (FCY
(CY ), TY ) ¹lo (FCX

(CX), TX).

Proof. The results follow from p. 388 of Shaked and Shanthikumar (2007) and Proposition
3.15.

It is interesting to note that if CX and CY are not continuous, the above results are not
true as we show in the following example.

We should indicate that from an applied point of view, a great number of modelling
vectors used in insurance firms or in commercial banking have classifiers which are not
continuous, like for instance those based on decision trees.

Example 3.17. Let us consider the modelling vector X = (CX , TX) with P (CX = 0) =
P (CX = 1) = 1/2. Let a = P (TX = 1/CX = 0) and let b = P (TX = 1/CX = 1), with
a, b ∈ [0, 1] and a + b = 2q (see Example 3.6).

It is not hard to prove that

P (TX > x, FCX
(CX) > c) =





1 if x ∈ (−∞, 0) and c ∈ (−∞, 1/2),
1/2 if x ∈ (−∞, 0) and c ∈ [1/2, 1),
0 if x ∈ (−∞, 0) and c ∈ [1, +∞),
q if x ∈ [0, 1) and c ∈ (−∞, 1/2),
b/2 if x ∈ [0, 1) and c ∈ [1/2, 1),
0 if x ∈ [0, 1) and c ∈ [1, +∞),
0 if x ∈ [1, +∞) and c ∈ R.

The accumulated improvement curve of X is given by

MX(p) =

{
b if p ∈ (0, 1/2),
q if p ∈ [1/2, 1).

Let Y = (CY , TY ) be a modelling vector with CY and TY independent random variables
such that CY = 1 a.s.

14



In this case P (TY > x, FCY
(CY ) > c) = P (TY > x)P (FCY

(CY ) > c). Note that
FCY

(CY ) = 1 a.s. Therefore

P (TY > x, FCY
(CY ) > c) =





0 if x ∈ [1, +∞) or c ∈ [1, +∞),
q if x ∈ [0, 1) and c ∈ (−∞, 1),
1 if x ∈ (−∞, 0) and c ∈ (−∞, 1).

It is clear that MY (p) = q for any p ∈ (0, 1) since CY and TY are independent (see
Proposition 3.7).

Taking q < b ≤ 1, we obtain that Y ¹M X.
On the other hand if b < 2q, then P (TX > x, FCX

(CX) > c) = b/2 when x ∈ [0, 1)
and c ∈ [1/2, 1), whereas P (TY > x, FCY

(CY ) > c) = q. Therefore (FCY
(CY ), TY ) ¹uo

(FCX
(CX), TX) is false.

Observe that there are values of a, b and q satisfying the above relations. It is sufficient
to take a = 0.3, b = 0.7 and q = 0.5.

A consequence of the stochastic order ¹M is now derived. The following lemma will
be applied for that purpose.

Lemma 3.18. Let X = (CX , TX) be a modelling vector where CX is a continuous random
variable. Then the distribution of TX |CX ≥ x and TX |FCX

(CX) ≥ FCX
(x) are the same.

Proposition 3.19. Let X = (CX , TX) and Y = (CY , TY ) be modelling vectors such that
X ¹M Y , MX is decreasing, CX and CY are continuous and CY ¹st CX . Then for any x
such that FCX

(x), FCY
(x) ∈ (0, 1), it holds that TX |(CX ≥ x) ¹st TY |(CY ≥ x).

Proof. By Lemma 3.18 we have that

P (TX > a/CX ≥ x) = P (TX > a/FCX
(CX) ≥ FCX

(x)) = P (TX > a/CX ≥ F−1
CX

(FCX
(x))).

Since MX is decreasing and FCX
≤ FCY

, we obtain that

P (TX > a/CX ≥ F−1
CX

(FCX
(x))) ≤ P (TX > a/CX ≥ F−1

CX
(FCY

(x))).

Using now the relation X ¹M Y ,

P (TX > a/CX ≥ F−1
CX

(FCY
(x))) ≤ P (TY > a/CY ≥ F−1

CY
(FCY

(x)))

= P (TY > a/FCY
(CY ) ≥ FCY

(x)) = P (TY > a/CY ≥ x).

As a consequence of this we obtain that

P (TX ≤ a/CX ≥ x) ≥ P (TY ≤ a/CY ≥ x)

for any a ∈ R, which concludes the proof.
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3.4 Connections with copulas

Now we obtain conditions for the stochastic order ¹M in relation to copulas of the mod-
elling vectors.

Proposition 3.20. Let X = (CX , TX) and Y = (CY , TY ) be modelling vectors sharing a
same copula C, with CX ¹st CY . Let fC,q : (0, 1) → R be the mapping given by fC,q(x) =
(C(1− x, 1− q)− (1− q))/x. Then,

i) if fC,q is increasing, it holds that X ¹M Y ,

ii) if fC,q is decreasing, it holds that Y ¹M X.

Proof. In accordance with the definition of the order ¹M we should compare the values
MX(p) and MY (p) for any p ∈ (0, 1), that is,

P (CX ≥ F−1
CX

(1− p), TX = 1)

P (CX ≥ F−1
CX

(1− p))
and

P (CY ≥ F−1
CY

(1− p), TY = 1)

P (CY ≥ F−1
CY

(1− p))

for any p ∈ (0, 1).
By hypothesis, there exists C a common copula of X = (CX , TX) and Y = (CY , TY ).

Let Ĉ be the survival copula of C, that is, the copula associated with the survival
functions of the modelling vectors (CX , TX) and (CY , TY ), namely, F (CX ,TX) = Ĉ(FCX

, F TX
)

and F (CY ,TY ) = Ĉ(FCY
, F TY

).

If H is the copula of a bidimensional random vector (W1,W2) and Ĥ is the survival
copula of H, we have that

P (W1 ≥ w1, W2 > w2) = P (∩∞n=1(W1 > w1− 1

n
),W2 > w2) = lim

n
P (W1 > w1− 1

n
,W2 > w2)

= lim
n

Ĥ(FW1(w1 − 1

n
), FW2(w2)) = Ĥ(FW1(w

−
1 ), FW2(w2))

since copulas are continuous mappings (see for instance Nelsen (2009)) and survival func-

tions are decreasing. In a similar way we obtain that P (W1 ≥ w1) = Ĥ(FW1(w
−
1 ), 1).

Thus in order to compare modelling vectors X and Y with the stochastic order ¹M ,
we should compare the values

Ĉ(FCX
((F−1

CX
(1− p))−), F TX

(x))

Ĉ(FCX
((F−1

CX
(1− p))−), 1)

and
Ĉ(FCY

((F−1
CY

(1− p))−), F TY
(x))

Ĉ(FCY
((F−1

CY
(1− p))−), 1)

,
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when for instance x = 1/2.
Note that if x = 1/2, then F TX

(1/2) = P (TX > 1/2) = P (TX = 1) = q, and the same
formula is held with random variable TY .

As a consequence we should compare the values

Ĉ(FCX
((F−1

CX
(1− p))−), q)

Ĉ(FCX
((F−1

CX
(1− p))−), 1)

and
Ĉ(FCY

((F−1
CY

(1− p))−), q)

Ĉ(FCY
((F−1

CY
(1− p))−), 1)

for any p ∈ (0, 1).
Now if CX ¹st CY , we have that FCX

((F−1
CX

(1 − p))−) ≤ FCY
((F−1

CY
(1 − p))−) for any

p ∈ (0, 1).

Therefore if it is possible to state an inequality between the values Ĉ(a, q)/Ĉ(a, 1) and

Ĉ(b, q)/Ĉ(b, 1) for any a, b ∈ (0, 1) with a ≤ b, we will obtain a relation in the stochastic
order ¹M between modelling vectors X and Y .

The copula associated with the survival function satisfies that Ĉ(u, v) = u + v − 1 +
C(1− u, 1− v) for any u, v ∈ [0, 1] (see Nelsen (2009)). Thus

Ĉ(a, q)

Ĉ(a, 1)
=

a + q − 1 + C(1− a, 1− q)

a + 1− 1 + C(1− a, 0)
=

q − 1

a
+ 1 +

1

a
C(1− a, 1− q) = fC,q(a) + 1

since C(1− a, 0) = 0.
If fC,q is increasing, then fC,q(a) + 1 ≤ fC,q(b) + 1 for any a, b ∈ (0, 1) with a ≤ b, and

so MX(p) ≤ MY (p) for any p ∈ (0, 1), that is, X ¹M Y.
On the other hand, if fC,q is decreasing, we obtain that Y ¹M X, which concludes the

proof.

Next we compare different modelling vectors with the stochastic order ¹M by applying
the above result.

Example 3.21. Let X = (CX , TX) and Y = (CY , TY ) be modelling vectors whose com-
ponents are independent with CX ¹st CY . In this case C(u, v) = uv for any u, v ∈ [0, 1].
Thus the mapping fC,q is given by fC,q(x) = ((1 − x)(1 − q) − (1 − q))/x = q − 1. This
mapping is constant, therefore, increasing and decreasing.

As a consequence of Proposition 3.20 we obtain that X ¹M Y and Y ¹M X. Note
that this result was known since MX(p) = q = MY (p) for any p ∈ (0, 1) (see Proposition
3.7). In fact for this result we do not need any relation between CX and CY in the usual
stochastic order.
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Example 3.22. Let X = (CX , TX) and Y = (CY , TY ) be modelling vectors sharing a same
copula C, with CX ¹st CY . Suppose that the common copula is C : [0, 1] × [0, 1] → [0, 1]
with C(u, v) = min{u, v}.

In this case it is possible to prove that fC,q(x) =

{
0 if x ≤ q,
(q − x)/x if x > q.

Note that the

derivative of the mapping x → (q − x)/x is negative, and so fC,q is decreasing. Thus we
obtain that Y ¹M X.

Example 3.23. Let us consider now an example in which the mapping fC,q is increasing.
Let X = (CX , TX) and Y = (CY , TY ) be modelling vectors sharing a same copula K,

with K(u, v) = u + v − 1 + C(1− u, 1− v), C being a copula, and CX ¹st CY . Note that
K is the survival copula of C.

In this case we conclude that fK,q(x) = −1 + C(x, q)/x.
As a consequence, if the mapping x → C(x, q)/x is increasing, so is fK,q. Let us consider

the copula C : [0, 1]× [0, 1] → [0, 1] with C(u, v) = uv/(1+(1−u)(1−v)) (see Archimedean
copulas in Nelsen (2009)).

It holds that C(x, q)/x = q/(1 + (1− q)(1− x)), mapping which is increasing in x.
Then we obtain that fK,q is increasing. Applying Proposition 3.20 we conclude that

X ¹M Y.

Example 3.24. We propose now an example in which the mapping fC,q is neither increasing
nor decreasing.

Consider the Archimedean copula C : [0, 1] × [0, 1] → [0, 1] with C(u, v) = max {1 −
((1− u)θ + (1− v)θ)1/θ, 0}, where θ ∈ (1,∞).

In this case fC,q(x) =
(
max {1− (xθ + qθ)1/θ, 0} − (1− q)

)
/x.

When the above maximum is 0, we obtain fC,q(x) = −(1− q)/x, mapping which is
increasing. Note that the above maximum is equal to 0 if and only if x ≥ (1− qθ)1/θ.

If the involved maximum is greater than 0, that is, x < (1−qθ)1/θ, we have that fC,q(x) =
(q − (xθ + qθ)1/θ)/x. For values of x with x < (1 − qθ)1/θ, close enough to (1 − qθ)1/θ, the
derivative of fC,q is negative, and so that mapping is decreasing in such a part.

Thus, by Proposition 3.20 we are not able to derive a conclusion on the order ¹M for
modelling vectors X = (CX , TX) and Y = (CY , TY ) sharing copula C, with CX ¹st CY .

Example 3.25. Let X = (CX , TX) and Y = (CY , TY ) be modelling vectors with a common
copula C given by C(u, v) = uv/(u + v − uv), with u, v ∈ (0, 1).

Assume that the distributions of both classifiers belong to the so-called Govindarajulu
family. Let CX ∼ G(β, σ1, θ) and CY ∼ G(β, σ2, θ) with σ1 ≤ σ2. It holds that CX ¹st CY ,
note that F−1

CX
(u) ≤ F−1

CY
(u) for any u ∈ (0, 1).
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Consider Proposition 3.20 and the mapping fC,q : (0, 1) → R defined there. It holds
that fC,q(x) = −(1− q)2/(2− q − x− (1− x)(1− q)). It is not hard to prove that this map
is decreasing. As a consequence of Proposition 3.20 we conclude that Y ¹M X.

The following results analyze the stochastic order ¹M when we consider random vectors
of the same Frechet class. Observe that no continuity conditions are imposed on the
classifiers.

Proposition 3.26. Let X = (CX , TX) and Y = (CY , TY ) be modelling vectors in the same
Frechet class whose copulas are C1 and C2 respectively. If

i) Ĉ1(a, q) ≤ Ĉ2(a, q) for any a ∈ (0, 1), then X ¹M Y ,

ii) Ĉ1(a, q) ≥ Ĉ2(a, q) for any a ∈ (0, 1), then Y ¹M X.

Proof. Reasoning in the same way as in Proposition 3.20 we should compare the values
MX(p) and MY (p), that is,

Ĉ1(FCX
((F−1

CX
(1− p))−), q)

Ĉ1(FCX
((F−1

CX
(1− p))−), 1)

and
Ĉ2(FCY

((F−1
CY

(1− p))−), q)

Ĉ2(FCY
((F−1

CY
(1− p))−), 1)

with p ∈ (0, 1).
Since CX ∼ CY , we obtain that FCX

((F−1
CX

(1 − p))−) = FCY
((F−1

CY
(1 − p))−) for any

p ∈ (0, 1) and so the comparison of MX(p) and MY (p) reduces to the comparison of

Ĉ1(a, q)/Ĉ1(a, 1) and Ĉ2(a, q)/Ĉ2(a, 1) with a ∈ (0, 1). Since Ĉ1(a, 1) = Ĉ2(a, 1) = a, we

deduce that MX(p) ≤ MY (p) for any p ∈ (0, 1) if and only if Ĉ1(a, q) ≤ Ĉ2(a, q) for any
a ∈ (0, 1), which proves the results.

Next result provides maximal and minimal elements in the stochastic order ¹M inside
the same Frechet class.

Proposition 3.27. Let X = (CX , TX), Y = (CY , TY ) and Z = (CZ , TZ) be modelling
vectors in the same Frechet class whose copulas are C1, C2 and C3 respectively. If copulas
C1 and C3 satisfy that the associated survival copulas are Ĉ1(u, v) = max {u+v−1, 0} and

Ĉ3(u, v) = min {u, v} respectively, then it holds that X ¹M Y and Y ¹M Z.

Proof. By Proposition 3.26 the result will be proved if we see that Ĉ1(a, q) ≤ Ĉ2(a, q) ≤
Ĉ3(a, q) for any a ∈ (0, 1).

Now note that Ĉ1 and Ĉ3 are the so-called universal Frechet-Hoeffding bounds for
copulas, that is, for any copula H : [0, 1]× [0, 1] → [0, 1], it holds that Ĉ1(u, v) ≤ H(u, v) ≤
Ĉ3(u, v) for any u, v ∈ [0, 1], which proves the result.
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Now we derive the following consequences of this result.

Corollary 3.28. Let X = (CX , TX) be a modelling vector such that CX ∼st B(q). Then
X ¹M (TX , TX).

Proof. Observe that for any x, y ∈ R we have that P (TX > x, TX > y) = P (TX >
max {x, y}) = min {P (TX > x), P (TX > y)}. Therefore the survival copula of the random

vector (TX , TX) is Ĉ(u, v) = min {u, v}, and so Proposition 3.27 leads to the result.

Corollary 3.29. Let X = (CX , TX) be a modelling vector such that CX ∼st B(q). Then
(1− TX , TX) ¹M X.

Proof. In accordance with Proposition 3.27 it is sufficient to prove that the survival copula
of (1− TX , TX) is Ĉ(u, v) = max {u + v − 1, 0}.

That is, we should prove that P (1−TX > x, TX > y) = Ĉ(P (1−TX > x), P (TX > y)),
where x, y ∈ R.

Note that for any x, y ∈ R, it holds that P (1− TX > x, TX > y) = P (y < TX < 1− x)

=





0 if y ≥ 1− x,
0 if y < 1− x and 1 ≤ x,
0 if y < 1− x, 0 ≤ x < 1 and y ≥ 0,
1− q if y < 1− x, 0 ≤ x < 1 and y < 0,
1 if y < 1− x, x < 0 and y < 0,
q if y < 1− x, x < 0 and y ∈ [0, 1),
0 if y < 1− x, x < 0 and y ≥ 1.

On the other hand, for any x, y ∈ R we have that Ĉ(P (1 − TX > x), P (TX > y)) =
max {P (1− TX > x) + P (TX > y)− 1, 0} = max {P (TX < 1− x) + P (TX > y)− 1, 0}

=





0 if 1 ≤ x or y ≥ 1,
1− q if 0 ≤ x < 1 and y < 0,
0 if 0 ≤ x < 1 and 0 ≤ y < 1,
1 if x < 0 and y < 0,
q if x < 0 and 0 ≤ y < 1.

Therefore P (1 − TX > x, TX > y) = Ĉ(P (1 − TX > x), P (TX > y)) for any x, y ∈ R
and so we have the result.
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3.5 Comparison with other rating systems

Some rating systems used by companies are the so-called ROC indexes and CAP indexes,
which are the areas under the ROC curves and under the CAP curves respectively (see for
instance Bamber (1975) and Engelmann et al. (2003)). ROC and CAP are the acronyms
of Receiver Operating Characteristic and Cumulative Accuracy Profile. We establish a
relation between the system based on the accumulated improvement curve stochastic order
and both indexes.

Consider a modelling vector (C, T ) such that C assumes only the values 0 and 1, esti-
mating T by the value of C. The table of possible outcomes is

T = 1 T = 0
C = 1 TP FP
C = 0 FN TN

where TP means true positive, TN true negative, FP false positive and FN false negative.
The sensitivity of the modelling vector is defined as the ratio between true positives and
positive condition, that is, P (C = 1, T = 1)/P (T = 1). The specificity as the ratio between
true negatives and negative condition, that is, P (C = 0, T = 0)/P (T = 0).

Let (C, T ) be a general modelling vector. Given k ∈ R, define the modelling vector

(Ck, T ) with Ck =

{
1 if C ≥ k,
0 if C < k.

For each (Ck, T ) consider its sensitivity and its specificity, we will denote them as
Sens(k) and Spec(k) respectively, where k ∈ R.

The ROC curve of the modelling vector (C, T ) is given by {(1−Spec(k), Sens(k)) | k ∈
R}. The ROC index is defined as the area under the ROC curve.

The CAP curve of (C, T ) is the set of points {(P (C ≥ k), Sens(k)) | k ∈ R}. The CAP
index is the area under the CAP curve.

It is not hard to see the relation (1− q)× ROC index+(q/2) = CAP index.
The following result relates the new stochastic order with CAP curves.

Proposition 3.30. Let X = (CX , TX) and Y = (CY , TY ) be two modelling vectors where
classifiers are continuous. If X ¹M Y then the CAP curve of X is not greater than the
CAP curve of Y .

Proof. Let (C, T ) be a modelling vector where C is continuous. Let k ∈ R. Consider the
modelling vector (Ck, T ) defined above. Let P (C ≤ k) = 1− pk. Suppose that pk ∈ (0, 1).
Since C is continuous the events (C ≥ k) and (FC(C) ≥ 1 − pk) are equal a.s. Thus it
holds that

Sens(k) =
P (C ≥ k, T = 1)

P (T = 1)
=

P (T = 1/FC(C) ≥ 1− pk)pk

q
= M(C,T )(pk)

pk

q
.
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Thus the CAP curve point associated with the value k ∈ R is (pk,M(C,T )(pk)
pk

q
).

As a consequence, since MX(p) ≤ MY (p) for any p ∈ (0, 1) we obtain the result when
pk ∈ (0, 1). If pk = 0 or pk = 1, we have in the CAP curve the points (0, 0) and (1, 1)
respectively.

Now we conclude that under mild conditions the accumulated improvement curve
stochastic order implies that the corresponding ROC and CAP indexes are ordered.

Proposition 3.31. Let X = (CX , TX) and Y = (CY , TY ) be two modelling vectors where
classifiers are continuous. If X ¹M Y then

i) the CAP index of X is not greater than the CAP index of Y ,
ii) the ROC index of X is not greater than the ROC index of Y .

Proof. It is a consequence of the above proposition and the relation between the ROC and
CAP indexes.

We should indicate that the converse of the above result is not true as the following
example shows.

Consider a modelling vector X = (CX , TX) satisfying that P (CX = 1) = P (CX = 2) =
P (CX = 3) = 1/3, P (TX = 1) = 0.4, P (TX = 1|CX = 3) = 0.6, P (TX = 1|CX = 2) = 0.3
and P (TX = 1|CX = 1) = 0.3. On the other hand take the modelling vector Y = (CY , TY )
with P (CY = 1) = P (CY = 2) = P (CY = 3) = 1/3, P (TY = 1) = 0.4, P (TY = 1|CY =
3) = 0.5, P (TY = 1|CY = 2) = 0.5 and P (TY = 1|CY = 1) = 0.2.

It can be seen that both relations X ¹M Y and Y ¹M X are false, but ROC and
CAP indexes of those classifiers are exactly the same.

4 An application to customer attrition in commercial

banking

The mathematical model proposed and developed in Section 3 to compare classifiers has
been applied to analyze the key problem of customer churn. This is a crucial matter for
banks, insurance firms, telecommunication service providers, etc. Customer attrition rates
are pivotal business indicators. The prediction of customer churn is a key issue to launch
customer retention programs on those clients with high possibilities to abandon in order
to retain them. It is interesting to observe that the cost of retaining a customer is much
lower than the cost of acquiring a new client.

The mathematical tool introduced in this paper has been applied to compare different
classifiers to detect clients that are highly prone to abandon their bank, in order to reduce
churn rates.
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Namely, our mathematical model has been used by a Spanish commercial banking,
Liberbank (hereafter LBK), to compare eleven classifiers in relation to customer attrition.
LBK is the result of the consolidation of three Spanish Savings Banks: Grupo Cajastur,
Caja de Extremadura, and Caja Cantabria, to which they transfer the assets and liabilities
of the banking business. LBK has a national presence and is a leader in retail markets of
Asturias, Cantabria, Castilla-La Mancha and Extremadura, four regions of Spain.

The database used in this analysis is composed of clients of LBK that at 31 December
2013 they are aged between 18 and 80 years, have at least 500 euros of business balance
(savings+debts), and an account balance greater than 0 euros. Employees of the bank,
deceased, disabled and defaulter are not considered. In total 823.985 clients are included.
The number of available variables of those clients is equal to 63. Among them, the variables
number of financial products, age and business balance are considered the most important
by LBK.

The target variable T is the abandonment of the bank. It was considered that a client
had abandoned LBK when his business balance was 0 euros at 31 December 2014. The
churn rate was 0.0386.

The set of customers containing 823.985 persons was divided into two groups, a training
group with 523.985 clients, and a validation or testing group with 300.000 customers. The
former was used for the development and estimation of the classifiers. The latter for our
main aim, the comparison of classifiers to predict our target variable, that is, to predict if
a client will abandon LBK.

The different models of classifiers considered in the analysis are the following:

• Classifier 1 (C1): Decision tree with all the variables, 2 branches per division, maxi-
mum depth of 6 and minimum size of leaf equals to 5.000 clients.

• Classifier 2 (C2): Decision tree with all the variables, 4 branches per division, maxi-
mum depth of 8 and minimum size of leaf equals to 5.000 clients.

• Classifier 3 (C3): Decision tree with all the variables, 2 branches per division, maxi-
mum depth of 3 and minimum size of leaf equals to 5.000 clients.

• Classifier 4 (C4): Logistic regression with all the variables and stepwise selection
method.

• Classifier 5 (C5): Decision tree with the most important variables (number of financial
products, age and business balance), 2 branches per division, maximum depth of 6
and minimum size of leaf equals to 5.000 clients.
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• Classifier 6 (C6): Logistic regression with the most important variables (number of
financial products, age and business balance) and stepwise selection method.

• Classifier 7 (C7): Decision tree with the variable number of financial products, 2
branches per division, maximum depth of 6 and minimum size of leaf equals to 5.000
clients.

• Classifier 8 (C8): Decision tree with the variable number of financial products, 2
branches per division, maximum depth of 2 and minimum size of leaf equals to 5.000
clients.

• Classifier 9 (C9): Decision tree with the variable account balance, 2 branches per
division, maximum depth of 2 and minimum size of leaf equals to 5.000 clients.

• Classifier 10 (C10): Decision tree with the variable account balance, 2 branches per
division, maximum depth of 3 and minimum size of leaf equals to 5.000 clients.

• Classifier 11 (C11): Mesh method with the most important variables (number of
financial products, age and business balance).

In Classifier 11, the training group was divided by means of the deciles of the variables
number of financial products, age and business balance, therefore generating 103

groups. Those groups whose sizes were less than 1000 were joined to groups with at
least 1000 customers and with the nearest standard centroides.

Given any two classifiers, say Ci and Cj, we approach the following questions:

i) if Ci and Cj are equally efficient to predict abandonments (the value of T ), that is,
(Ci, T ) ¹M (Cj, T ) and (Cj, T ) ¹M (Ci, T ), equivalently, M(Ci,T ) = M(Cj ,T ),

ii) if Ci is more efficient than Cj to predict abandonments, namely, if the relation
(Cj, T ) ¹M (Ci, T ) is satisfied, that is to say, M(Cj ,T ) ≤ M(Ci,T ).

For such a purpose and given any two classifiers, the validation group was divided at
random 100 times into two groups of size 150.000. Each part of a division was assigned at
random to one of the classifiers.

For each division and each classifier C, the mapping M was calculated in 20 points,
that is, 20 values of p, from 0.05 to 1 with a step of 0.05. To that end, those customers in
the corresponding part satisfying FC(C) ≥ 1 − p were selected. The value of M at that p
was obtained by means of the proportion of abandonments among those clients.

Thus, to compare any two classifiers Ci and Cj, we have 100 pairs of sample values of
M(Ci,T ) and M(Cj ,T ) at 20 points of p.
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To approach question i), for each division of the validation group, and for each value
of p we consider tests for the equality of the accumulated improvement curves at p of both
classifiers. Namely, the null hypothesis of those tests is H0 : M(Ci,T )(p) = M(Cj ,T )(p).
Observe that this is a test for the comparison of two proportions.

Then for each division of the validation group we obtain 20 p-values associated with
the 20 values of p (from 0.05 to 1 with a step of 0.05). As representative p-value of
the comparison of M(Ci,T ) and M(Cj ,T ) in that division, we take the smallest one among
the 20 p-values That is, we consider the p-value showing more evidence that the relation
M(Ci,T ) = M(Cj ,T ) is false.

In this way we have 100 p-values, one for each division of the validation group. As a
summary p-value for the null hypothesis M(Ci,T ) = M(Cj ,T ) we consider the median p-value
of that set.

Observe that to compare the accumulated improvement curves of two classifiers in one
division of the validation group, we need to apply twenty tests (one for each possible value
of p), thus we consider a Bonferroni correction to reduce the chances of obtaining false-
positive results (type I errors).

We consider as a level of significance α = 0.05. Therefore after Bonferroni correction
we should compare the summary p-values with 0.05/20.

Table 1 shows our conclusions in relation to question i). That table contains summary
p-values multiplied by 20 (this is done for easy of reading, note that then they should be
compared with the level of significance 0.05, roughly speaking, the Bonferroni correction is
incorporated in the summary p-values).

For each row (Ci) and each column (Cj) we have the summary p-value×20 for the null
hypothesis M(Cj ,T ) = M(Ci,T ).

As we can see, there is enough evidence to reject that any two classifiers are equal in
the accumulated improvement curve stochastic order. Thus we conclude that there are not
two classifiers equally efficient to predict customers that will abandon the bank.

The same procedure was followed to analyze question ii), that is, to test the hypothesis
M(Cj ,T ) ≤ M(Ci,T ). This means that classifier Ci is better that Cj to predict our target
variable. Observe that in this case the null hypothesis of “intermediate tests” are H0 :
M(Cj ,T )(p) ≤ M(Ci,T )(p).

Table 2 summarizes our conclusions. For each row (Ci) and each column (Cj) we
have the summary p-value multiplied by 20 (Bonferroni correction) for the null hypothesis
M(Cj ,T ) ≤ M(Ci,T ).

As a consequence of the preceding inferential procedure we obtain the following relations
among the classifiers for the accumulated improvement stochastic order (relations which
can be deduced by transitivity are not included):
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• (C3, T ) ¹M (C5, T ) ¹M (C1, T ) ¹M (C2, T ) ¹M (C4, T )

• (C5, T ) ¹M (C6, T ) ¹M (C2, T )

• (C3, T ) ¹M (C11, T ) ¹M (C6, T )

• (C10, T ) ¹M (C9, T ) ¹M (C7, T ) ¹M (C11, T )

• (C8, T ) ¹M (C7, T ) ¹M (C1, T )

Observe that the above relations permit to consider a Hasse diagram (see for instance
Schröder (2003), Harzheim (2005) and Neggers and Kim (1998)) to visualize clearly the
relation among classifiers.

In the Hasse diagram the different classifiers are represented in the plane. If the relation
(Cj, T ) ¹M (Ci, T ) is satisfied, then the point of the modelling vector (Ci, T ) has a larger
y-coordinate that the point of the classifier (Cj, T ), and we draw a line between the points
of (Cj, T ) and (Ci, T ).

The corresponding Hasse diagram appears in Figure 1.
Thus we can conclude that among the eleven classifiers considered in the analysis, there

is one maximal element in the accumulated improvement curve stochastic order, which
is the classifier constructed by means of the logistic regression with all the variables and
stepwise selection method. This has been a conclusive result for LBK in order to predict
customers “predisposed” to abandon the bank and launch on them retention marketing
campaigns.

We also include a graphical representation of the empirical accumulated improvement
curves of the different classifiers (see Figure 2). That was obtained by means of the whole
validation group. We can observe that the curve associated with classifier C4 is above the
rest of the curves. Those mappings were calculated at the above mentioned 20 values of p.
Interpolation was considered to plot curves. “Steps” suggest discontinuity points.

To conclude this section, it is worth mentioning that the proposed technique in this
manuscript is currently applied for LBK to compare classifiers for different targets like the
purchase of a credit card, investment funds, acquisition of a bank loan, etc.

We should indicate that all the calculations were executed with SAS software. The
data processing, the calculations of the accumulated improvement curves and the statistical
inference were executed with SAS Base and SAS Stat. On the other hand, classifiers were
constructed by means of SAS Enterpriser Miner.
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Shaked, M., Shanthikumar, J.G. (2007) Stochastic Orders. New York, Springer.

Shorack, G.R., Wellner, J.A. (1986) Empirical processes with applications to statistics. New York,
Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons.

Verbeke, W., Martens, D., Mues, C., Baesens, B. (2011) Building comprehensible customer churn
prediction models with advanced rule induction techniques. Expert. Syst. Appl., 38, 2354-2364.

Wei, C., Chiu, I. (2002) Turning telecommunications call details to churn prediction: a data
mining approach. Expert. Syst. Appl., 23, 103-112.

28



Tables

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

C1 . 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

C2 . . 0,00 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,00

C3 . . . 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

C4 . . . . 0,00 0,00 0,00 0,00 0,00 0,00 0,00

C5 . . . . . 0,00 0,00 0,00 0,00 0,00 0,00

C6 . . . . . . 0,00 0,00 0,00 0,00 0,01

C7 . . . . . . . 0,00 0,00 0,00 0,00

C8 . . . . . . . . 0,00 0,00 0,00

C9 . . . . . . . . . 0,02 0,00

C10 . . . . . . . . . . 0,00

C11 . . . . . . . . . . .

Table 1: For each row (Ci) and each column (Cj) the summary p-value×20 for the null
hypothesis M(Cj ,T ) = M(Ci,T ) is displayed.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

C1 . 0,00 1,00 0,00 1,00 0,00 0,34 0,21 1,00 1,00 0,00

C2 1,00 . 1,00 0,01 1,00 1,00 1,00 1,00 1,00 1,00 1,00

C3 0,00 0,00 . 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

C4 1,00 1,00 1,00 . 1,00 1,00 1,00 1,00 1,00 1,00 1,00

C5 0,00 0,00 0,25 0,00 . 0,00 0,00 0,04 0,00 0,28 0,00

C6 0,00 0,00 1,00 0,00 1,00 . 1,00 1,00 1,00 1,00 0,16

C7 0,00 0,00 0,00 0,00 0,00 0,00 . 1,00 0,07 0,91 0,00

C8 0,00 0,00 0,00 0,00 0,00 0,00 0,00 . 0,00 0,00 0,00

C9 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 . 1,00 0,00

C10 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,01 . 0,00

C11 0,00 0,00 0,19 0,00 0,00 0,02 0,18 0,23 1,00 1,00 .

Table 2: For each row (Ci) and each column (Cj) the summary p-value×20 for the null
hypothesis M(Cj ,T ) ≤ M(Ci,T ) is displayed.
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Figure 1: Hasse diagram of classifiers for the accumulated improvement stochastic order.

 

0

0,05

0,1

0,15

0,2

0,25

0,3

0,01 0,11 0,21 0,31 0,41 0,51 0,61 0,71 0,81 0,91

Empirical mapping M of the classifiers

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

Figure 2: Empirical accumulated improvement curves of the classifiers obtained by means
of the whole validation group.
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