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Predicting paper properties based on a limited number of measured 
variables can be an important tool for the industry. Mathematical models 
were developed to predict mechanical and optical properties from the 
corresponding paper density for some softwood papers using support 
vector machine regression with the Radial Basis Function Kernel. A 
dataset of different properties of paper handsheets produced from pulps 
of pine (Pinus pinaster and P. sylvestris) and cypress species (Cupressus 
lusitanica, C. sempervirens, and C. arizonica) beaten at 1000, 4000, and 
7000 revolutions was used. The results show that it is possible to obtain 
good models (with high coefficient of determination) with two variables: the 
numerical variable density and the categorical variable species. 
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INTRODUCTION 
 

Different types of wood fiber raw materials used for paper production may 

differently impact some of the properties and improve the performance of the final product 

and consequently allow different end uses (Niskanen et al. 1988; Biermann 1996; Santos 

et al. 2012). For a selected raw material, the paper properties are strongly dependent on the 

pulp refining, which affects the inter-fiber bonding (Wang et al. 2003; Gharehkhani et al. 

2015), and on the individual fiber strength. 

Modeling properties is an important step to predict product performance and may 

help in the management and operating conditions of industrial processes. For instance, 

paper properties can be predicted using a few, or only one, predictor variables, which is of 

high practical importance because of the difficulty of determining all paper properties. This 

possibility has been tested for some hardwood species (Eucalyptus globulus, Acacia 

dealbata, and A. melanoxylon) to predict paper properties using paper density as the 

predictor variable by applying unsupervised classification techniques and multivariable 

regression techniques (Anjos et al. 2015). It would be interesting to know if a similar 

approach also applies to softwood papers. 

mailto:ofelia@ipcb.pt


 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

García-Gonzalo et al. (2016). “Paper properties,” BioResources 11(1), 1892-1904.  1893 

Compared with hardwood species, softwood species provide longer and wider pulp 

fibers. Long fibers can develop more inter-fiber bonds per fiber, which decreases the tensile 

stress per inter-fiber bond and in consequence enables the production of paper materials 

with higher mechanical properties, e.g., tensile and tear strength (Niskanen et al. 1988). 

Tear strength is particularly sensitive to fiber length. Long fibers are used in paper materials 

where mechanical strength is very important, as is the case for sack kraft papers, but they 

can also be used as reinforcement fibers in other paper grades, such as printing and writing 

papers, to provide the required wet and dry strength to the paper web (Santos et al. 2008; 

Anjos et al. 2011).  

Bleached hardwood kraft pulps have a strong market position for printing and 

writing papers because of their strength, bulk, opacity, and smoothness (Kibblewhite et al. 

1991). Softwood fibers are principally used in the manufacture of printing and writing 

grades for their reinforcing properties. Leopold and Thorpe (1968) and Zeng et al. (2013) 

reported an increase in strength for Nordic softwood species through a lower fibril angle 

and less wall weak points given by kinks and nodes. Therefore, it can be concluded that 

their superior performance regarding tensile strength is also supported by the higher 

intrinsic fiber strength of these species. 

Support vector regression has been incorporated for solving prediction problems 

related to wood properties (Mora and Schimleck 2010; Zhang et al. 2011; Nascimbem et 

al. 2013) because it can obtain data-driven models that do not need an explicit regression 

function and because it is able to work with high-dimensional data. As a data-driven 

methodology, it “learns” from training data and creates a model, and when given new data, 

it is able to predict the dependent quantity. As in the case of other learning machine 

methods, the model is not represented by an equation or group of equations, and it works 

as a black box once the model is created. Since it supports kernels, it can model nonlinear 

relationships. The regularization parameter provides robustness to the method. 

The aim of this study is to build mathematical models using vector machine 

regression with the Radial Basis Function (RBF) Kernel to predict mechanical and optical 

properties from the corresponding paper density for some softwood-based papers, namely 

those made from Pinus pinaster, P. sylvestris, Cupressus sempervirens, C. lusitanica, and 

C. arizonica. While both pine species are well established as softwood pulp species, the 

cypress species showed potential to be incorporated into papers with good light 

scattering/tensile strength and smoothness/tensile strength relationships, although they 

produce in general lower performing papers in comparison to pine woods, given their lower 

fiber length and coarseness and higher number of fibers per gram (Esteves et al. 2004; 

Anjos et al. 2014; Santos et al. 2014). 

 

 
EXPERIMENTAL 
 
Data 

Five softwood species were used: Pinus pinaster, P. sylvestris, Cupressus 

lusitanica, C. sempervirens, and C. arizonica. Pulps were produced that were refined at 

three refining levels, and paper sheets were produced and analyzed, including a set with 

zero refining level. The data used for the modeling and the experimental conditions are 

presented in Anjos et al. (2014). 

In brief, the wood chips (1000 g oven dry (o.d.) wood) were pulped with a kraft 

cooking process in a forced circulation digester under 25% effective alkali charge (as 
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NaOH); 30% sulphidity; 5/1 liquor/wood ratio; 170 °C pulping temperature; 90 min 

heating time; and 150 min time at temperature. The screened pulps were bleached with the 

D0 E1 D1 E2 D2 (D = ClO2 and E = extraction with NaOH) elemental chlorine-free sequence 

(Santos et al. 2008). The pulps were PFI beaten at 1000, 4000, and 7000 revolutions under 

a refining intensity of 3.33 N/mm, and paper handsheets were prepared. The Kappa number 

ranged from 21.4 to 32.0 for all the pulps and the ISO brightness of the bleached kraft pulps 

ranged from 65.0 to 85.0% 

The measured paper properties and respective standards use for each one were: 

density (Dens), TAPPI T220 sp-01; Bekk smoothness (Smoo), TAPPI T479 cm-09; tensile 

index (Tens), ISO 1924-2; stretch (Stre), ISO 1924-2; burst index (Burs), TAPPI T403 om-

10; tear index (Tear), TAPPI T220 sp-96; zero-span tensile strength in dry (Zssd) and wet 

(Zssw) handsheet samples, TAPPI T273 pm-95; opacity (Opac), ISO 2471; brightness 

(Brig), ISO 2470; and light scattering coefficient (Ligh), ISO 2469. The dataset of the 

physical properties of handsheets for each species (n=40) is summarized in Table 1 for pine 

and Table 2 for cypress species. 

 

Table 1. Physical Properties of Handsheets for Pine Species (n=40 for each 
species) 

 P. pinaster P. sylvestris 

 µ± Max-min µ± Max-min 

Dens  (g/cm3) 0.68±0.11 0.80-0.46 0.67±0.13 0.80-0.43 

Smoo (Bekk’s) 70±61 199-1 73±57 155-6 

Tens (N.m/g) 68.3±31.4 118.2-15.0 57.1±24.7 85.3-17.8 

Stre (%) 3.3±1.0 5.0-1.6 3.5±0.8 5.0-2.5 

Burs  (kPa.m2/g) 3.5±1.9 5.9-0.5 3.5±2.0 5.9-0.4 

Tear (mN.m2/g) 14.3±2.9 19.1-7.8 14.0±2.7 18.2-8.7 

Zssd (N.m/g) 144.4±13.1 166.1-119.9 174.5±9.5 191.7-151.0 

Zssw (N.m/g) 115.0±6.0 125.3-105.7 88.3±24.7 160.2-65.1 

Opac (%) 77.4±3.7 81.9-72.2 80.3±3.1 83.8-75.7 

Brig (%) 64.2±8.7 76.4-53.7 68.0±7.7 80.1-53.6 

Ligh (m2/kg) 21.6±7.7 33.9-13.6 25.0±8.2 39.2-16.4 

 
 

Table 2. Physical Properties of Handsheets for Cypress Species (n=40 for each 
species) 

 C. lusitanica C. sempervirens C. arizonica 

 µ± Max-min µ± Max-min µ± Max-min 

Dens  (g/cm3) 0.91±0.14 1.04-0.64 0.82±0.13 0.95-0.57 0.88±0.15 1.02-0.53 

Smoo (Bekk’s) 255±121 431-76 173±95 338-26 200±107 433-43 

Tens (N.m/g) 63.9±22.0 93.5-25.7 64.4±25.4 91.4-20.7 58.2±19.5 82.8-23.6 

Stre (%) 6.6±1.2 8.0-3.6 5.2±0.8 6.8-3.5 7.1±1.2 9.1-4.3 

Burs  (kPa.m2/g) 3.5±1.9 5.9-0.4 3.4±2.0 5.9-0.4 3.3±2.0 5.9-0.4 

Tear (mN.m2/g) 11.1±1.7 14.3-6.1 11.6±1.8 14.9-9.0 10.4±2.2 14.8-5.2 

Zssd (N.m/g) 131.7±10.6 151.8-
100.7 

137.5±16.5 161.9-109.8 115.2±13.3 135.6-91.9 

Zssw (N.m/g) 86±12 105-70 91.3±8.6 107.2-75.1 74.1±7.3 95.8-60.2 

Opac (%) 77.2±5.6 84.0-68.6 74.2±4.5 80.3-67.9 76.0±4.9 83.3-68.4 

Brig (%) 69.1±11.2 86.7-53.7 71.2±10.6 87.5-58.4 65.7±13.3 85.6-50.2 

Ligh (m2/kg) 29.5±16.5 59.1-11.6 27.3±13.3 50.7-13.5 24.9±14.4 49.4-10.8 
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Data Processing 
In this study, an analysis of the data set was performed by using Principal 

Component Analysis (PCA). The PCA is a technique used to reduce the dimensionality of 

a data set by selecting the dimensions having the largest variances. This technique is used 

to find the causes of variability in a data set and to sort them by importance. The first 

principal component accounts for a percentage of the total variance in the same proportion 

as the first eigenvalue of the PCA analysis with respect to the sum of all the eigenvalues. 

Then, the procedure is continued similarly for the other principal components. 

The PCA analysis was conducted using the PCA MATLAB function princomp with 

previously normalized data (for each variable, the mean was subtracted and the result 

divided by the standard deviation). 

The prediction of paper properties requires several steps: 1) choosing a model; 2) 

optimizing the model parameters; and 3) obtaining property predictions. The first step is to 

select a combination of input properties that affect the output property. 

If  1 2, , , kx x x x  is a vector that comprises the input variables, k being the 

number of such variables, and if we have n observations, 
 

     21 1 2, , ,, , ,n ny y yx x x ,   (1) 
 

where y is the output property or the variable to predict, the problem arises, according to 

the theory of support vector machines (SVM) (Vapnik 1999), as  

(a) finding a function, 
 

(( )) T bf  ω xx    (2) 
 

and (b) using this function to fit the training data, where ω  is the vector that contains the 

so-called weights that affect each predictor, b is a real number, and   is a non-linear 

mapping function. 

A non-linear problem can be mapped into a higher dimension space, using an inner 

product (kernel), where a linear regression can be performed. The SVM theory affirms that 

the solution to problem (2) is the same as the solution of the equation, 
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where i  is the error between observed and predicted values, that is, 
 

  max 0,| |i iy f  x    (4) 
 

with 0   determines an insensitivity zone around the fitted model where error is not 

taken into account; and C is the regularization or penalty parameter that weights the error 

in the function that is minimized, that is to say, the parameter C controls the trade-off 

between the margin and the size of the slack variables. 
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Thus, 
1

n

i

i

C 


  values are the losses on the training set. 

Once C,  , and the parameters of the kernel have been selected, this problem has a 

unique solution. Different parameters will give different solutions or models; therefore, the 

parameters must be tuned to optimize the model. Different optimization methods can be 

used. In this paper, we used particle swarm optimization (PSO) (Kennedy and Eberhart 

1995) for tuning SVM with RBF kernel parameter, . 

The input variables x = (x1, x2,…, xk) were density and species. This last variable is 

represented as a dummy explanatory variable. There were 40 (n) observations for each 

case. An independent study was conducted for each of the independent variables y: Bekk 

smoothness, tensile index, stretch, burst index, tear index, zero-span tensile strength in dry; 

and wet, handsheet samples, opacity, brightness, and light scattering coefficient. The first 

part of the study was the selection of the model, i.e., a search of the optimal parameters for 

the SVM model was performed using the PSO algorithm. For this, we began with 20 

different random parameter sets of parameter (C,,). The cross-validation coefficient of 

determination of the SVM with RBF kernel model was found for each set. Thus, a nonlinear 

model was built. Based on these cross-validation values, the PSO proposes 20 new sets of 

models. After a number of iterations when the ending criteria are met, the best set, i.e. the 

one that achieves the model with the highest cross-validation coefficient of determination, 

is chosen as the optimal model. Then we proceeded to construct the model and predict the 

values for the output variables (smoothness, tensile index, and so on). 

 
 
RESULTS AND DISCUSSION 
 

Tables 1 and 2 show that the dataset contained a high variation and range for the 

values of the paper properties, which is usually needed for construction of good models. 

 

Principal Component Analysis 
All the variables except tear index (Tear) and zero-span tensile strength in dry 

(Zssd) and wet (Zssw) presented a medium to high correlation coefficient with paper 

density (Dens). Additionally, the variables tear index (Tear) and zero-span tensile strength 

in dry (Zssd) and wet (Zssw) samples were weakly correlated with the other variables 

except with burst index (Burs) variable.  

 
 

Fig. 1. Partial correlation coefficients between variables (scale on the right) 
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The correlation matrix for all the samples (Fig. 1) shows a close relationship 

between the variables opacity (Opac), brightness (Brig), and light scattering coefficient 

(Ligh), with a high correlation index with the variables tensile index (Tens) and burst index 

(Burs) and a good, but not so high, correlation with density. The variables Dens and Smoo 

were highly correlated.  

Better correlations were found when the species were analyzed separately. This is 

in accordance with the PCA results, where the two first components explain 82% of the 

total variation (Fig. 2). Similar findings have been reported by Anjos et al. (2015). 

Variables Opac, Brig, and Ligh were clustered together in the positive region of the 

first component axis, with almost zero second principal components, which means a high 

correlation between the variables of this cluster. Burs and Tens presented a similar 

situation, being highly correlated, and with zero second principal components, thus they 

are expressed in terms of the first principal component. Variables from both clusters were 

highly correlated but with negative sign because they were in a symmetric position with 

respect to the y-axis. Dens clustered with Smoo and Stre. The variables Tear, Zssd, and 

Zssw clustered together, thus Smoo and Stre were strongly related and similarly the 

members of the other cluster. 

The inverse relationship between density and light scattering coefficient has been 

found previously (Batchelor and He 2005; Hubbe et al. 2008; Anjos et al. 2015). Some 

authors have also reported a trend of increasing tensile strength with increasing paper 

density and of decreasing tensile strength with decreasing fiber strength (Seth and 

Kingsland 1990; Santos et al. 2006; Vainio and Paulapuro 2007; Anjos et al. 2014). 

 

 
 
Fig. 2. Principal component analysis for the paper properties of the five species with four pulp 
refining levels 

 

In Fig. 2 the data of both the different refining levels and the different species are 

merged together, and a role of the refining levels is not revealed. Figure 3 represents the 

same data regarding the paper properties but revealing the effect of the refining for the 

different species. The PCA indicates that the first principal component separates the 

samples by their refining level: the zero level corresponds to the clusters of the left, the 

first level to the clusters in the middle and the second and third refining level clusters are 

quite near and appear as very close clusters at the right side in Fig. 3. The second principal 

component is closely related with the different species. Refining improves internal 
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fibrillation and swelling (Garcia et al. 2002), enhancing fiber flexibility, collapsibility, and 

fiber-fiber bonds (Fardim and Duran 2003). The extent and intensity of these behaviors are 

species-dependent and also depend on the pulp fiber characteristics (Paavilainen 1993; 

Santos et al. 2008; Anjos et al. 2011, 2014). 

The results show that the variable species should be one of the predictive variables. 

Moreover, higher differences were observed when comparing Cypress and Pinus species, 

in agreement with previous results (Anjos et al. 2014; Santos et al. 2014).  

 

 
 

Fig. 3. Principal component analysis for the normalized data of the paper properties of P. pinaster, 
P. sylvestris, C. lusitanica, C. sempervirens, and C. arizonica for the four levels of refining 

 

Support Vector Machine (SVM) Regression  
A support vector machine regression using the LIBSVM library (Chang and Lin 

2011) with the RBF kernel was performed with its MATLAB code. With the linear model 

it was also possible to obtain good models with only two variables: the numerical variable 

density and the categorical variable species. MATLAB function Linear Model.fit was used 

for this task. However, for the higher refining levels, a lower predictability was found. 

Given this result, two independent variables were used to create regression models for the 

dependent variables Smoo, Tens, Stre, Burs, Tear, Zssd, Zssw, Opac, Brig, and Ligh. 

The parameters for the SVM with a RBF Kernel are C, ε, and σ. Maximum values 

of 1 and 10 for σ and C, respectively, were used to avoid oscillations in the predicted 

regression function. The parameters were tuned with the algorithm particle swarm 

optimization (PSO), with the criterion that the mean R2 for a cross-validation with 10 folds 

was the maximum. The chosen version was the 2011 Standard PSO (Clerc 2012) with 

MATLAB code.   The search space parameter limits are represented in Table 3. 

 

Table 3. Search Space Parameter Limits for PSO while Tuning SVM Parameters 
with a RBF Kernel Model 

Parameter Lower boundary Upper boundary 

C 10-4 101 

 10-4 100 

ε 10-6 100 
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The stopping criteria for the PSO algorithm was 20 iterations without improvement 

in a R2 value with six decimals, with a maximum number of 1000 iterations. The 

parameters obtained for each RBF-SVM model, with their corresponding R2 cross-

validation values, are presented in Table 4. The cross-validation R2 was also obtained for 

5, 15, and 20 folds for the same parameters to check the robustness of the models. It can 

be observed that there is little variation related with the number of cross-validation folds. 

For all the variables but one, Tear, cross-validation R2 higher than 0.8 were obtained, and 

higher than 0.9 for most of the independent variables. 

 

Table 4. RBF-SVM Model Parameters and their corresponding R2 Cross-
Validation Value 

    R2 cross-validation 

Variable C σ ε 5 fold 10 fold 15 fold 20 fold 

Smoo 9.797 0.997 0.0477 0.847 0.854 0.855 0.854 

Tens 4.876 0.599 0.0396 0.950 0.951 0.952 0.952 

Stre 3.005  0.801  0.0945 0.903 0.913 0.914 0.914 

Burs 8.629  0.696  0.0237 0.957 0.960 0.959 0.959 

Tear 8.723  1.000 0.0542 0.704 0.694 0.703 0.701 

Zssd 1.546  0.996  0.0000 0.921 0.924 0.922 0.923 

Zssw 6.431  0.743 0.0550 0.937 0.939 0.936 0.936 

Opac 9.999  1.000  0.0368 0.933 0.937 0.937 0.940 

Brig 7.961  1.000  0.0217 0.957 0.955 0.955 0.957 

Ligh 4.484  0.985 0.0171 0.980 0.980 0.980 0.979 

 

For comparative purposes, a linear model was also created for each variable. We 

began predicting a linear model from each variable using as predictors the qualitative 

variable Species, together with the numerical variables Smoo and Dens. It emerged that 

good models, with coefficients of determination over 0.8, could be obtained using only the 

variables Species and Dens.   

The comparison of both models shows that SVM models noticeably improved the 

obtained R2 in relation to the linear models for all the variables (Table 5) from a mere 10% 

decrease in the RMSE for variable Stre to almost 100% for the variable Tear. Nevertheless, 

a good model was not achieved for the variable Tear because this parameter is strongly 

related to the fiber length and inter-fiber bonding (Anjos et al. 2011), which was not 

measured in this work. 

 

Table 5. Comparison of the R2 obtained with SVM Models and Linear Models 

Variable R2 SVM R2 lin. mod. RMSE SVM RMSE lin.mod. % decrement RMSE 

Smoo 0.854 0.807 4.0437 101 5.1410 101 21% 

Tens 0.951 0.916 5.1561 100 7.1214 100 26% 

Stre 0.913 0.905 5.1885 10-1 5.7747 10-1 10% 

Burs 0.960 0.910 3.0341 10-2 4.7785 10-2 37% 

Tear 0.694 0.633 3.0341 10-2 1.9042 100 98% 

Zssd 0.924 0.903 6.1613 100 7.3251 100 16% 

Zssw 0.939 0.904 3.9496 100 5.2626 100 25% 

Opac 0.937 0.807 1.1132 100 2.1426 100 48% 

Brig 0.955 0.898 2.0691 100 3.4690 100 40% 

Ligh 0.980 0.932 1.6792 100 3.2781 100 49% 
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With the resulting SVM models, the predicted values of the dependent variable for 

the density of each species were calculated. 

The regression with SVM creates a data-driven model and thus does not need any 

assumption for the regression function. The model relies on data to find patterns that can 

be extended to a wider range of data, i.e., it maps the input-output relationship in the 

observed data, expecting that this learned mapping allows the prediction of outputs from 

new input data.  

Some examples of the graphical representation of these models are presented in 

Fig. 4. Figure 5 shows the graphical representation for the worst model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
P. sylvestris:  observed,  ̶ ̶ ̶   predict; P. pinaster:  observed,  ̶ ̶ ̶   predict; 

C. lusitanica:  observed,  ̶ ̶  ̶  predict; C. sempervirens:  observed,  ̶ ̶ ̶   predict; 
C. arizonica:  observed,  ̶ ̶ ̶   predict 

   
  
Fig. 4. Fitted curves for density vs. (A) tensile index, (B) burst index, (C) brightness, and (D) light 
scattering coefficient as the dependent variables 
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P. sylvestris:  observed,  ̶ ̶ ̶   predict; P. pinaster:  observed,  ̶ ̶ ̶   predict; 
C. lusitanica:  observed,  ̶ ̶  ̶  predict; C. sempervirens:  observed,  ̶ ̶ ̶   predict; 

C. arizonica:  observed,  ̶ ̶ ̶   predict 

   
Fig. 5. Fitted curves for density vs. tear index as the dependent variable 

 
 
CONCLUSIONS 
 
1. It is possible to use support vector machine regression with Radial Basis Function 

kernel techniques to establish prediction models for some paper properties of softwood 

pulps based on their paper density. 

2. Principal component analysis of paper handsheet properties showed that the pulp 

refining level strongly affects them, as does the species. 

3. Tear index could not be predicted with sufficient accuracy, probably because tear is a 

function of fiber length, which was not measured. 

4. PCA showed that Opac, Brig, and Ligh, Opac properties are related between them, as 

well as Burs and Tens properties. 

5. SVM models noticeably improved the obtained R2 in relation to the linear models for 

all the variables from a mere 10% decrease in the RMSE for variable Stre to almost 

100% for the variable Tear. 
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