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Abstract. High-grade, highly deformed gneisses crop out

continuously along the Masanteo peninsula and constitute

the upper part of the lower crustal section in the Cabo Ortegal

nappe (NW Spain). The rock sequence formed by migmatitic

quartzo-feldspathic (qz-fsp) gneisses and mafic rocks records

the early Ordovician (ca. 480–488 Ma) injection of fel-

sic dioritic/granodioritic dykes at the base of the qz-fsp

gneisses, and Devonian eclogitization (ca. 390.4± 1.2 Ma),

prior to its exhumation. A SE-vergent ductile thrust consti-

tutes the base of quartzo-feldspathic gneissic unit, incorpo-

rating mafic eclogite blocks within migmatitic gneisses. A

NW-vergent detachment displaced metasedimentary qz-fsp

gneisses over the migmatites. A difference in metamorphic

pressure of ca. 0.5 GPa is estimated between both gneissic

units. The tectono-metamorphic relationships of the basal

ductile thrust and the normal detachment bounding the top

of the migmatites indicate that both discrete mechanical con-

tacts were active before the recumbent folding affecting the

sequence of gneisses during their final emplacement. The

progressive tectonic exhumation from eclogite to greenschist

facies conditions occurred over ca. 10 Ma and involved bulk

thinning of the high-grade rock sequence in the high pres-

sure and high temperature (HP–HT) Cabo Ortegal nappe.

The necessary strain was accommodated by the develop-

ment of a widespread main foliation, dominated by flatten-

ing, that subsequently localized to a network of anastomos-

ing shear bands that evolved to planar shear zones. Qz-fsp

gneisses and neighbouring mafic granulites were exhumed at

> 3 mm yr−1, and the exhumation path involved a cooling of

∼ 20 ◦C/100 MPa, These figures are comparable to currently

active subduction zones, although exhumation P–T trajectory

and ascent rates are at the hotter and slower end in compar-

ison with currently active similar settings, suggesting an ex-

tremely ductile deformation environment during the exhuma-

tion of qz-fsp gneisses within a coherent Cabo Ortegal nappe.

1 Introduction

The processes involved in the exhumation of high-pressure

(HP) and ultra-high-pressure (UHP) rocks in subduction

zones remain a hot topic in tectonics given the complexity

of strain and displacement paths that rocks follow, from the

surface to great depths and back to the surface (e.g. Gerya et

al., 2008). The boundary interval between convergent plates

concentrates a large amount of strain and also heterogeneity

(e.g. Escher and Beaumont 1997). This interval in subduction

zones, named as the subduction channel, is characterized by

non-parallel planar rigid edges on either side, on a profile

having a narrow, downward-tapering triangular shape (i.e.

Bird, 1978; England and Holland, 1979; Shreve and Cloos,

1986; Mancktelow, 1995). Under this configuration, the con-

vergence of rigid plates squeezing a non-compressible vis-

cous material introduces a stress gradient in the system that

leads to a non-lithostatic pressure gradient with depth (e.g.

Mancktelow, 1995). If the shearing associated with the con-
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vergence is taken into account, the result is that particles

close to the subducting plate will follow the lower bound-

ary, but once they reach the vertex of the triangular channel

will be entrained to return to the surface, following the upper

rigid boundary (see Fig. 4 in Shreve and Cloos, 1986). In fact,

the exhumation of high pressure rocks represents the return

flow in the system, so that subduction zones need to be active

in order that high pressure rocks may reach the surface. The

rheology of rocks in the subduction channel has an impact

that affects the velocity of exhumation in comparison to sub-

duction rates. Exhumation rate is about 1/3 of the subduc-

tion rate if deformation approaches a Newtonian behaviour;

but is slower if deformation is dominated by more non-linear

processes such as dislocation creep, becoming about 1/6 of

the subduction rate (Gerya and Stöckhert, 2002). In addition,

there is substantial intrinsic heterogeneity in the system at

the boundary between plates, which can be now be visu-

alised in numerical models (e.g. Gerya et al., 2008; Burov

et al., 2014a, b). The rock record does not always preserve

all the deformation stages, thus the difficulty in inferring a

finite strain/displacement pathway for rocks and rock units

remains.

In continental collision, subsequent in most cases to a sub-

duction stage, there are some analogies with the “subduction

channel” or the boundary zone between plates, but some ma-

jor differences. The first major difference is that, as a conse-

quence of the less-rigid plate boundaries involved, the extent

in cross-section of this idealized downward-tapering plate

boundary increases substantially (e.g. Gerya et al., 2008). In

the upper part it consists of an orogenic wedge, a Coulomb

wedge or an accretionary wedge. It has a triangular shape

in cross-section, but the angles between sides can vary. Dis-

placement paths of particles within the system do follow the

sides of this wedge, but the dynamics are completely dif-

ferent from the deeper domain. In orogenic wedges, the ex-

humation of subducted rocks from depths greater than 50 km

cannot be satisfactorily explained by classical collision mod-

els, such as in the dynamics of accretionary wedges (i.e.

Davis et al., 1983; Platt, 1986) or by exhumation by exten-

sional collapse of the orogen (i.e. Chemenda et al., 1995). In

fact, insights from numerical models of ultra-high-pressure

(UHP) exhumation at the continental collisional phase are

consistent with a multi-stage process, where exhumation

seems to start after a degree of continental subduction for

most continental collision zones (e.g. Burov et al., 2014a, b).

One aspect of significance associated with the dynamics

of channel flow at a crustal scale in collisional orogens is

the upward extrusion of high-grade rocks squeezed between

colliding plates. In the case of the Himalayan-Tibet system,

the great crustal thickness beneath the Tibetan Plateau con-

tributes significantly to the lithostatic pressure gradient re-

quired to force the lateral and frontal flow of a ductile lower

crust (e.g. Beaumont et al., 2004; Rutter et al., 2011). Highly

sheared and migmatized rocks of the greater Himalayan se-

quence between the Main Central Thrust and the South Ti-

betan Detachment are effectively extruded towards the fore-

land. The extrusion process involves substantial thinning of

the slab or fragment of crust involved in the subduction

or collision. This is also apparent from numerical models,

where a weak accretionary wedge can be squeezed out be-

tween the mantle portions of both colliding plates (e.g. Gerya

et al., 2008).

Relics of the plate boundary region between northern

Gondwana and Laurasia, and the accretionary complex sand-

wiched in between, are preserved in the high-grade al-

lochthonous complexes of NW Iberian peninsula (e.g. Ries

and Shackleton, 1971; Martínez-Catalán et al., 1997; Matte,

2001). The timing, kinematics, and structure of one of these,

the Cabo Ortegal complex (COC), has been discussed over

the past 45 years, and many hypotheses and models have

been proposed to explain the exhumation and final tectonic

emplacement of the high-grade, high-pressure rocks that

form the greater part of the COC as it is presently exposed.

Initially the debate was focused on whether the Cabo Orte-

gal complex represents evidence of a mantle plume, as pro-

posed by the Leiden group (e.g. van Calsteren et al., 1979)

or was in fact an allochthonous thrust sheet, as supported

by many other schools since then (e.g. Ries and Shackleton,

1971; Bayer and Matte, 1979). A second point of contention

was whether high-pressure metamorphism and the sequence

of structures represented a deep tectonic setting, i.e. the re-

mains of the subduction channel itself (e.g. Ábalos et al.,

2003), or were due to the superposition of structures during

their exhumation from high-pressure conditions (e.g. Marcos

et al., 2002). Regarding the initial exhumation from high-

pressure conditions to mid-crustal depths, several mecha-

nisms have been proposed, in relation to extensional tecton-

ics (e.g. Martínez-Catalán et al., 1997), ductile slab breakoff

(e.g. Llana-Fúnez et al, 2004) or more recently channel flow

(e.g. Albert et al., 2012).

The Masanteo peninsula (Figs. 1 and 2), located on the

eastern side of the Cabo Ortegal Complex, offers a con-

tinuous exposure through the quartzo-feldspathic (qz-fsp)

gneisses in the structurally upper part of the coherent rock

sequence that constitutes the Cabo Ortegal nappe, the part of

the COC that registers widespread high-pressure and high-

temperature metamorphism which is also associated with

generalized intense deformation. In this paper, we present

a detailed structural analysis of the high-grade tectonic se-

quence at the contact between the eclogitic mafic gneisses

and the qz-fsp gneisses, on the eastern side of the Cabo Or-

tegal nappe (Fig. 2a). These gneisses are quite exposed in

clean exposures along the shores of the Masanteo peninsula,

covering an area of 4.5 km2.

A detailed mapping of the gneisses and the reconstruction

of the rock unit geometry on the basis of the attitude of the

main tectonic foliation (S2) is therefore presented here with

the aim of understanding the mechanism of deformation in

the tectonized zone between mafic and quartzo-feldspathic

rocks during the exhumation of subducted lower crust. The
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Figure 1. (a) Geological map of the Variscan Belt in N Iberia, highlighting the allochthonous complexes, based on Parga Pondal et al. (1982).

(b) Geological map with location of Fig. 2 and the CPOs samples. (c) Lithostratigraphic sequence and (d) cross-section of Cabo Ortegal

nappe (after Marcos et al., 2002).

deduction of the tectonic evolution in the gneisses is based

on newly observed structural relationships, recent Uranium-

lead (U-Pb) ages, and is supported by geothermobarome-

try data from previous studies in the gneisses and neigh-

bouring mafic rock units. The insights from well-preserved

high-grade structures observed in the field are believed to

be the key to understanding the processes of orogenic col-

lision and to constrain thermo-mechanical models. The in-

tegration of published geochronological data, metamorphic

evolution and the structural development helps to constrain

some characteristics of the process of exhumation of high-

grade gneisses from eclogite conditions to greenschist facies.

In this contribution, we provide robust figures for the bulk ex-

humation rate and amount of cooling during exhumation of

high-pressure rocks in the Cabo Ortegal nappe which may be

regarded as representative for a larger lower crustal section.

2 The geological framework: the Cabo Ortegal

complex

High-grade relicts of continental collision overlie tectoni-

cally most of the hinterland of the Variscan orogeny in NW

Iberia, forming a tectonic pile of oceanic and sedimentary

material that can be recognized totally or partially within five

allochthonous complexes (Martínez-Catalán et al., 1997).

Three main units form this allochthonous tectonic pile. The

upper unit includes ultramafic, mafic, and qz-fsp gneis-

sic rocks that recorded high-pressure and high-temperature

(HP-HT) metamorphism (e.g. Vogel, 1967). Rocks charac-

teristic of distinct geodynamic settings, such as E-MORB

basalts, tectonic melanges and arc volcanics (Arenas, 1986;

Díaz-García et al., 1999; Pin et al., 2006; Arenas et al.,

2007) form the intermediate ophiolitic unit. The basal unit

is formed by metasediments intruded by acid and basic

www.solid-earth.net/7/579/2016/ Solid Earth, 7, 579–598, 2016
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Figure 2. (a) Geological map of the Masanteo peninsula with location of samples, figures and cross-sections. Pole figures in (b) show the

distribution of S2-foliation poles and related structures (lineation and intrafolial fold axes). Equal area projection, lower hemisphere.

igneous rocks that recorded blueschist facies and low- to

intermediate-temperature eclogite facies conditions (e.g. Gil-

Ibarguchi and Ortega-Girones, 1985; Arenas et al., 1995;

López-Carmona et al., 2014).

The Cabo Ortegal complex is the northernmost of the

allochthonous complexes, sitting on rocks of the Central

Iberian Zone, and the closest to the foreland of the orogen

(Fig. 1a; e.g. Pérez-Estaún et al., 1991). This complex is ex-

posed along a coastal section with cliffs up to 600 m above

sea-level, and contains some of the best exposures of HP-

HT rocks of the Variscan orogen. Internally, it is divided

into two main tectonic units: the Cabo Ortegal nappe and the

lower tectonic unit (Marcos et al., 2002). The Cabo Ortegal

nappe (Fig. 1b) is composed of ultramafic rocks, mafic gran-

ulites, eclogites, and high-grade gneisses with HP-HT meta-

morphism, which are the objects of this study. The under-

lying lower tectonic unit is composed of three thrust sheets:

the ophiolitic unit, the basal unit, and the para-autochthonous

rock sequence (Marcos and Farias, 1999).

There are three major lithological units that form the high-

grade Cabo Ortegal nappe (Vogel, 1967). From bottom to

top, according to the lithostratigraphic column in Fig. 1c,

the base is formed by > 600 m of mantle-derived ultramafic

rocks, metaperidotites, and garnet pyroxenites (Girardeau et

al., 1989), overlain by a 400 m thick layer of mafic HP gran-

ulites. The granulites are in sharp contact with a 100–200 m

thick unit of massive, high–temperature eclogite derived

from N-MORB mafic protoliths (e.g. Peucat et al., 1990).

The eclogite unit is capped by quartzo-feldspathic gneisses

(> 600 m thick), also described as HP gneisses by Ábalos et

al. (2003). The qz-fsp gneisses along the contact with the

eclogite unit contain decametric to metric scale lenses of

mafic eclogite and locally show evidences of partial ana-

texis and migmatization (Vogel, 1967; Gil-Ibarguchi et al.,

1990; Fernández, 1997). These migmatitic gneisses corre-

spond to the Chimparra and banded gneisses of Vogel (1967).

Metasedimentary, supracrustal, pelitic, and psammitic parag-

neisses overlie the migmatitic qz-fsp gneisses, and mark the

top of the high-grade nappe. This higher paragneiss unit is

the Cariño gneiss of Vogel (1967). It also displays evidence

of HP metamorphism (Fig. 5) but indications of anatexis

are scarce. These units are interpreted to outcrop largely in
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the shape of an early recumbent synform (Fig. 1d; Marcos

et al., 2002). Overall, the whole lithostratigraphic sequence

has been used as a proxy for the continental crust-mantle

transition (Brown et al., 2009); and according to Ábalos et

al. (2003), it represents a stack of crustal and mantle units

assembled in a subduction channel, i.e. with oceanic origins;

it could also represent a continental lower crustal/uppermost

mantle sequence that has been partially subducted and ex-

humed.

Tectonic evolution of the high-grade Cabo Ortegal nappe

The high-pressure rocks of Cabo Ortegal are affected by

several phases and stages of deformation and metamor-

phism. Protolith ages of the ultramafic and mafic rocks in the

Cabo Ortegal nappe are considered Cambro-Ordovician on

the basis of 520–490 Ma U-Pb zircon (Peucat et al., 1990;

Ordoñez-Casado et al., 2001) and Samarium-Neodymium

(Sr-Nd) ages (Santos et al., 2002). Fernández-Suárez et

al. (2002) reported 480–490 Ma U-Pb monazite and zircon

ages from anatectic pods in the mafic granulites and the

migmatitic qz-fsp gneisses, suggesting the presence of a

Cambro-Ordovician metamorphic overprint similar to that

reported by Abati et al. (1999) from equivalent units in the

neighbouring Órdenes complex (Fig. 1a).

An early–mid Devonian (400–388 Ma) HP-HT metamor-

phic event is well documented by Garnet-Clinopyroxene

(Grt-Cpx) whole-rock Sm-Nd ages in the metaperidotites of

the ultramafic unit (Santos et al., 2002), U-Pb zircon ages in

the eclogite unit (e.g. Peucat et al., 1990; Santos-Zalduegui et

al., 1996; Ordóñez-Casado et al., 2001) and zircon, monazite,

and titanite U-Pb ages from the mafic granulite and the qz-fsp

gneisses (Santos-Zalduegui et al., 1996; Fernández-Suárez et

al., 2002, 2007). This event reached metamorphic conditions

above 800 ◦C and 1.7 GPa (Gil-Ibarguchi et al., 1990; Fer-

nández, 1997; Galán and Marcos, 2000). The eclogitic and

granulitic rocks registered partial anatexis during the initia-

tion of decompression at peak temperature conditions, which

was followed by partial retrogression and amphibolitiza-

tion. Cooling ages in amphibole (390–380 Ma), rutile (U-Pb,

ca. 383 Ma; Santos-Zalduegui et al., 1996; Valverde-Vaquero

and Fernandez, 1996) and muscovite (375 Ma; Argon-Argon

(Ar-Ar) data, Peucat et al., 1990) ages indicate a fast cooling

and rapid exhumation of the HP-HT rocks that constitute the

nappe following peak HP conditions (see Ordoñez Casado et

al., 2001).

The development of structures associated with metamor-

phism allow the definition of a relative chronology made of

locally four deformation events in the Cabo Ortegal nappe.

It should be noted that these phases that do not have a direct

correlation with the three main regional deformation phases

in the underlying, autochthonous rock sequence (e.g. Pérez-

Estaún et al., 1991). Some authors interpret inclusion trails as

representing a distinct earliest event (D1 structures) formed

during the prograde path related to the subduction stage (i.e.

Ábalos et al., 2003); even though only the fabric elements

of the retrograde Pressure–Temperature–time (P–T–t) path

have been unequivocally recognized (Gil-Ibarguchi et al.,

1990; Fernández, 1997; Galán and Marcos, 2000). All units

of the high-grade nappe show a pervasive blastomylonitic

tectonic fabric, which locally is highly heterogeneously de-

veloped (Fernández, 1997; Marcos et al, 2002). This main

tectonic fabric and associated structures define a region-

ally recognizable deformation episode (labelled D2), formed

during the exhumation from high-pressure conditions. Fre-

quently, the blastomylonitic foliation (S2) forms networks of

anastomosed shear zones, and defines lozenge-shaped bod-

ies of layered migmatitic gneisses that preserve even earlier-

developed fabrics (Fernández and Marcos, 1996). Whilst

there is a lack of a pervasively developed mineral lineation,

the symmetry of quartz crystallographic preferred orientation

(CPO) patterns suggests a predominantly coaxial deforma-

tion during fabric development in the gneisses (Fernández,

1997). The omphacite CPO fabrics in neighbouring eclogite

units show a similar pattern, also consistent with flattening

strain in the plane of foliation (Llana-Fúnez et al., 2005).

Overall, bulk coaxial strain dominated the D2 deformation

and controlled the bulk tectonic thinning of the rock se-

quence in the Cabo Ortegal nappe (Llana-Fúnez et al, 2004).

Large-scale recumbent folding resulted in the inversion of

the lithostratigraphy along a reverse limb for more than 6 km

in the direction of tectonic transport, and determines the over-

all outcrop pattern in the COC. This folding deforms the D2

fabric and is hence recognized as D3.

Later asymmetric folds of decametric size cut across D2

folds and mark the formation of a large E-verging recum-

bent D3-fold, which was overprinted by two major thrusts

attributed to D4 (Fig. 1b and d; Marcos et al., 1984, 2002).

The subsequent tectonic evolution was controlled by the pro-

gressive localization of strain and the deformation along

thrusts and the final emplacement of the HP-HT Cabo Or-

tegal nappe.

The D4a-thrusts imbricated the Cabo Ortegal nappe as

part of its progressive emplacement toward the ESE over

the underlying ophiolitic rock units (Marcos and Farias,

1999). This presumably implies that the emplacement over

the ophiolitic rocks was now under greenschist facies condi-

tions. Late D4b-upright refolding produced the elliptical fi-

nal shape of the Cabo Ortegal synformal complex that led

to its preservation from erosion. The other allochthonous

complexes were similarly affected, and upright large-scale

folds of similar orientation also affect the rocks of the un-

derlying autochthon during the later part of the Variscan

Orogeny (Matte, 1968; Marcos, 1971; Pérez-Estaún et al.,

1991). The kilometric amplitude and wavelength of upright

folds reach crustal-scale and evidence continuing shorten-

ing subsequently to the emplacement of allochthonous com-

plexes (Llana-Fúnez and Marcos, 2007).
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3 The rock sequence at Masanteo peninsula

The rock sequence that crops out in the Masanteo peninsula

is more than 300 m thick. It is a high-grade imbricated sec-

tion of the upper part of the mafic-banded gneisses and the

qz-fsp, migmatitic, and metasedimentary gneisses (Fig. 2a).

The whole sequence shows a heterogeneous deformation de-

fined by a ductile pervasive S2 foliation. Anastomosed and

planar D2 shear zones are widespread, and include metric-

sized boudins of eclogite, ultramafic, and mafic rocks. The

anastomosing shear zones surround lozenge-shaped bodies

within the layered migmatitic gneisses. The size of lozenges

ranges from 0.5 to 4 m. The D2-shear zones also include

symmetric- and rotational structures of centimetre-size and

rootless-intrafolial folds. The D2-planar tectonites do not

show a consistently developed stretching lineation. However,

the intersection between the S2 foliation and the compo-

sitional or migmatitic layering forms locally a linear fab-

ric. Also locally, the D2 high-strain zones show garnet or

amphibole lineations with scattered patterns (Fig. 2b). The

mineral assemblages (M2) associated with this dominant

D2 deformation indicate retrogression from eclogite to am-

phibolite facies during the imbrication of the whole stack

(Gil-Ibarguchi et al., 1990; Fernández, 1997; Mendia 2000).

The following is a description of the main lithological units

within the D2 imbricate complex at the Masanteo peninsula.

3.1 Mafic gneisses

Highly strained amphibole-bearing gneisses crop out at the

base of the Masanteo cliff (Fig. 3). These amphibolitic

gneisses enclose boudins and blocks of eclogite, partly

retrogressed eclogite, and rare metagabbros. The amphi-

bolitic gneisses have a high-strain D2 fabric defined by a

mineral assemblage with Qz + Pl + Hbl + Ky + Grt

+ Bt±Kfs±Czo± Ilm±Ttn (mineral abbreviations fol-

lowing Whitney and Evans, 2010). The eclogite boudins

are composed of Omp+Grt±Hbl, and often preserve un-

deformed textures with inclusions of Rt in Grt, and lo-

cally contain mesocratic melt pods. The mineral assemblage

in the retrogressed eclogites is formed by Qz + Grt +

Omp±Hbl±Bt±Pl±Rt± Ilm±Ttn. The rare metagab-

bros (Ol+Pl+Grt±Ab±Ep) preserve relict ophitic tex-

tures and prograde pre-eclogitization coronitic garnets. This

D2 fabric developed in both mafic and migmatitic gneisses

and characterizes such contacts. Peak metamorphic condi-

tions during the eclogite stage have been constrained by

Mendia (2000) at 800 ◦C and 2.2 GPa.

3.2 Migmatitic gneisses

These migmatitic gneisses correspond to the “banded-

gneisses” of Vogel (1967) and are equivalent to his Chim-

parra gneiss. They are the highest grade qz-fsp gneisses

in the Cabo Ortegal nappe. They consist of Ky±Rt±Grt-

Figure 3. Mafic gneisses and related rocks. (a) Structures at the

exposure scale; the sketch shows the attitude of the main S2 folia-

tion at the contact between mafic gneisses and migmatitic gneisses.

Microphotographs: (b) retrogressed coronitic metagabbro (sample

B917); (c) Bt-Grt-bearing amphibolite gneisses within the less de-

formed lozenges (sample B714). Sample location is indicated in

Fig. 2a.

bearing layered, biotite-rich migmatites. At the Masanteo

peninsula they are sandwiched between the mafic gneisses

and the overlying metasedimentary gneisses. Locally, they

contain centimetric to decimetric thick bands of orthogneiss

(Qz + Mc + Pl + Grt + Ms+Bt) intruded by felsic (Qz

+ Pl + Kfs + Grt + Hbl±Czo) and tonalitic/granodioritic

dykes intercalated in the migmatitic gneisses. The total thick-

ness of this gneissic unit ranges from 50 to 200 m. The

migmatitic gneisses have two compositional end-members:

a melanosome-dominated, biotitic qz-fsp gneiss (Fig. 4d)

with Ky+ Grt+ Bt±Hbl±Czo± Ilm±Ttn, with less than

20 % of leucosome; and a banded leucocratic qz-fsp gneisses

(Fig. 4f) with Qz + Pl + Kfs±Ky±Czo± Ilm±Ttn with

less than 20 % of melanosome. The difference in modal com-

position may relate to differences in the primary composi-

tion of the metasedimentary rocks; however, compositional

differentiation may also be a consequence of migmatiza-

tion and/or subsequent deformation. The banded leucocratic

gneisses are located on the upper section of the migmatitic

unit, while the biotite-rich migmatitic gneiss occurs along

the contact with the underlying mafic gneiss. A phyllonitic

fabric of the biotite gneisses, including centimetric layers of

restitic material (Fig. 4e), and its location overlying the mafic

gneisses points to deformation in high-grade conditions.

Peak metamorphic conditions estimated for the migmatitic

gneisses in the Masanteo peninsula have been estimated

Solid Earth, 7, 579–598, 2016 www.solid-earth.net/7/579/2016/
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Figure 4. Migmatitic biotite qz-fsp gneisses and related rocks.

(a) Folding affecting a felsic dioritic dyke and the S2 foliation.

(b) Microphotograph of the felsic diorite dyke showing a coarse

foliation (sample DM-2). (c) Anastomosing shear zones defined by

the S2 foliation surrounding lozenges of less deformed migmatitic

qz-fsp gneisses. (d) Microphotograph of the biotite qz-fsp gneisses

(sample B23). (e) Restite in migmatitic qz-fsp gneisses. (f) Mi-

crophotograph of the leucocratic qz-fsp gneisses (sample B12).

Sample locations are in Fig. 2a.

at 720 ◦C and 1.5 GPa (Gil-Ibarguchi et al, 1990). Esti-

mates of metamorphic conditions of equivalent biotite qz-fsp

gneisses in Punta Tarroiba (location in Fig. 1b), the Chim-

parra gneisses (Vogel, 1967), show slightly higher values of

800 ◦C and 1.7 GPa (Fernández, 1997) comparable to condi-

tions calculated in the eclogites (Fig. 5).

Locally, the structural relationships between the blastomy-

lonitic S2 foliation and felsic dioritic/granodioritic dykes al-

low the relative timing of events in these gneisses to be con-

strained. The felsic dykes are buckled by metric folds that are

transected by the S2 foliation (Fig. 4a and b), demonstrate

that intrusion and folding of the felsic dykes occurred before

the D2 deformation. The S2 foliation shows sub-parallelism

with the migmatitic layering and bounds concordantly the

eclogite blocks (Fig. 4c). Castiñeiras et al. (2010) sampled

one of these eclogitic boudins (sample COZ-4; Fig. 2) and

obtained a U-Pb zircon age of 390± 2 Ma. The field re-

lationships suggest that local anatexis and migmatization

must have occurred during the early stages of D2, after

eclogitization. Thus, the migmatitic qz-fsp gneisses appar-

Figure 5. P–T data calculated for metasedimentary and migmatitic

qz-fsp gneisses in Cabo Ortegal nappe, based on the available pub-

lished data, indicated in the legend. Al2SiO5 phase diagram af-

ter Holdaway (1971). Error bars are also plotted. P–T path in the

gneisses proposed is in grey. Detailed metamorphic work by Galán

and Marcos (2000) traced the P–T-t path (thick dashed line) of the

underlying Mafic granulites (after Galán and Marcos, 2000) is also

plotted. Thin dashed lines trace sub-parallel retrograde paths for

metasedimentary and migmatitic qz-fsp gneisses

ently have recorded an early intrusive event related to the

injection of the pre-D2 dioritic/granodioritic dykes in the

gneisses, and a latter anatectic melting event that produced

the migmatitic layering, which is preserved within the less

deformed lozenges bodies surrounded by anastomosing D2-

shear bands.

New U-Pb ID-TIMS geochronology in the migmatitic

gneiss

In order to constrain the ages of pre-D2 felsic dykes, two

separate felsic dykes (DM-2 and DM-3; Fig. 4a, b) were

dated by U-Pb ID-TIMS at the IGME geochronology labora-

tory in Tres Cantos (Spain). Zircon and monazite were anal-

ysed following the procedures outlined in Rubio Ordoñez et

al. (2012). The zircon fractions were chemically abraded be-

fore final dissolution.

In the case of sample DM-2, two zircon and three monazite

fractions were analysed (Table 1; Fig. 6). The zircon fractions

are discordant, while the three monazite fractions overlap the

concordia curve, providing concordant ages at 475 (M1), 478

(M2) and 485 Ma (M3). These three monazite fractions are

colinear and provide a lower intercept age of 384± 180 Ma

and an upper intercept age of 479± 6.5 Ma. For sample DM-

3, four zircon and three monazite fractions were dated (Ta-

ble 1; Fig. 6). The monazite and zircon fractions Z1, Z4,

www.solid-earth.net/7/579/2016/ Solid Earth, 7, 579–598, 2016
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Figure 6. U–Pb CA-ID-TIMS data of the diorite dyke samples DM-2 and DM-3 (small white filled ellipses – zircon; grey ellipses – monazite).

Locations are in Fig. 2a.

Figure 7. Metasedimentary qz-fsp gneisses and related rocks.

(a) Leucosome veins (to right of the scale marker) parallel to the

compositional banding. (b) Intrafolial folds related to the S2 folia-

tion superimposed on the compositional banding. (c) Microphoto-

graph of a metapelite band (sample B1427). (d) Microphotograph

of a metapsammite band (sample B22). Sample locations are in

Fig. 2a.

and Z3 define a mixing line anchored at 480± 8 Ma by the

concordant monazite and an upper intercept at 2.56 Ga, sug-

gesting Proterozoic zircon inheritance. In this sample, mon-

azite analyses were done using single crystals. Monazites M2

and M3 overlap each other and provide a concordant age of

480± 1 Ma (MSWD 0.44), while monazite M1 is concor-

dant at 488 Ma, resembling the monazite from sample DM-

2. These data clearly demonstrate the presence of Cambro-

Ordovician (ca. 480–490 Ma) monazite in both dykes. A

similar spread of early Ordovician monazite ages, such as

those in sample DM-2, was reported by Fernández-Suárez et

al. (2002) in the Cabo Ortegal nappe from leucosomes of the

Chimparra gneiss, suggesting minor Devonian (ca. 386 Ma)

overprint of Cambro-Ordovician monazite. The same authors

also reported a zircon age of 487 Ma from a leucosome in the

mafic granulites. Therefore, we consider that the monazites

provide the best estimate for the intrusion age of the felsic

dykes DM-2 and DM-3, which would be bracketed by a min-

imum age of 480 Ma (intercepts of the discordia lines) and a

maximum age of 485–488 Ma (oldest concordant monazite

fractions).

3.3 Metasedimentary gneisses

The upper unit of the tectonic imbricate in Masanteo

peninsula is composed of high-pressure qz-fsp paragneisses

with a paragenesis containing±St±Ky±Rt±Grt. These

metasedimentary gneisses preserve a compositional layer-

ing formed by alternations of psammitic and pelitic lay-

ers and are also known as Cariño gneiss (Vogel, 1967).

The paragneisses also show occasional leucosomes and have

been strongly deformed during D2 (Fig. 7a and b). The

metapelitic layers are composed of Ky + Grt + Bt +

Ms±St±Hbl±Czo± Ilm±Ttn, while the metapsammitic

layers lack Ky and the other alumina-rich phases (Fig. 7c

and d). Albert et al. (2015) reported a maximum depositional

age of ca. 510 Ma from this paragneiss, where the source

for siliciclastic detritus was mostly continental. North of our

area of study, the paragneisses are intruded by amphiboli-

tized flaser gabbro (Fig. 2a), Fernández-Suárez et al. (2002)

reported 400 Ma (Ttn) and 386 Ma (Mnz) U-Pb ages from

Solid Earth, 7, 579–598, 2016 www.solid-earth.net/7/579/2016/
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Figure 8. Relation of deformation structures inside and outside

lozenge migmatitic bodies: (a) sketch showing the trace of the S2

foliation in bounding shear zones and within the lozenge (location

of observations in Fig. 4c); and (b) pole figure of main S2 foli-

ation, intersection lineation and intrafolial hinge lines within the

lozenge in (a). Equal area projection, lower hemisphere projection

also shows the V1 eigenvector and the mean S2-foliation plane. The

arrows indicate the orientation of the horizontal maximum exten-

sion inferred.

these gneisses. Peucat et al. (1990) provided a well-defined

muscovite Ar-Ar plateau age of 376± 2 Ma from this gneiss

in the Masanteo peninsula, marking the cooling of the whole

nappe below 350 ◦C (muscovite blocking temperature; see

discussion in Ordoñez-Casado et al., 2001).

Metamorphic peak conditions in metasedimentary

gneisses in the Masanteo peninsula are 700 ◦C and 1.2 GPa

(Fig. 5; Castiñeiras, 2005), consistent with the presence of

St and the absence of eclogite or retroeclogite blocks in

them. Peak T conditions are comparable to those recorded

in the underlying migmatitic qz-fsp gneisses, however there

is a difference of 0.5 GPa in peak pressure conditions. This

difference in peak lithostatic pressure conditions represents a

difference in depth of ∼ 13 to 15 km between the migmatitic

and the metasedimentary gneisses. Most outcrops exam-

ined show a gradual transition between migmatitic and

metasedimentary gneisses, which is accommodated by the

intense development of the blastomylonitic S2 foliation.

This contact is quite exposed in the Serrón beach (Figs. 2a

and 12c), where a sub-horizontal shear zone deflects the S2

foliation, indicating an extensional sense of shear relative to

lithological layering.

4 Structure

4.1 The main tectonic fabric

Evidence of the structural evolution prior to eclogite facies

deformation is rarely observed in Cabo Ortegal nappe rocks

because the main tectonic fabric, S2, (Figs. 3a, 4c, 7a), is

so pervasive. The most common tectonites formed in rela-

tion to shear zones are planar (S-tectonite) or plano-linear

(LS-tectonite). S2 foliation involved the formation of decom-

pressive textures, such as the growth of large Phg bounded

by Bt flakes that enclose small Grt (Fig. 4d and f), evidenc-

www.solid-earth.net/7/579/2016/ Solid Earth, 7, 579–598, 2016
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Figure 9. Crystallographic preferred orientation (CPO) patterns in quartz and plagioclase, in relation to the main S2 foliation in the qz-fsp

gneisses. Sample locations are in Fig. 2. Contouring is in multiples of uniform distribution (Gaussian half width 15). Items indicated in the

stereo plots are the following: bottom left, the J -index; right, the values of contours. Equal area projection, lower hemisphere. S2 foliation is

plotted E–W vertical and the L2-lineation, if sufficiently developed, is plotted E–W horizontal. Crystallographic preferred orientation (CPO)

pattern in garnet formed in the S2-tectonic fabric in sample CO4 is also plotted.

ing a fast isothermal decompression during D2-deformation

(Fernández, 1997).

The lozenge-shaped bodies bounded by anastomosing

shear zones, which preserve migmatitic layering within less

deformed qz-fsp gneisses. The lozenges include rootless in-

trafolial fold hinges and an intersection lineation between the

migmatitic layering and the lozenge shear walls. The ori-

entation of the intersection lineation can be useful to infer

kinematics during deformation. Eigenvector v1 orientation

for the intersection and intrafolial hinge lines lie sub-parallel

to N20E direction (Fig. 8), and the overall geometry is con-

sistent with bulk strain controlled by flattening (Ponce et al.,

2013).

Crystallographic preferred orientation (CPO) patterns of

Qz, Pl, and Grt have low intensity during the development of

LS- and S-tectonites in D2 and are comparable in metased-

imentary and migmatitic gneisses (Fig. 9). The lack of a

well-developed stretching lineation in samples CO4 and CO5

makes its kinematic interpretation difficult. The preferred

orientation of Qz c axes is characterized by a single girdle

of c axes normal to the foliation plane in sample CO16; and

by a single girdle in samples CO4 and CO5 dominated by a

strong maximum within the girdle and parallel to the folia-

tion. Such CPO patterns are usually found in fabrics formed

at medium and high T , in relation to the dominant activity

of the prism < a > and rhomb < a > slip systems (e.g. Law,

1990).

Solid Earth, 7, 579–598, 2016 www.solid-earth.net/7/579/2016/



F. J. Fernández et al.: Insights on high-grade deformation in quartzo-feldspathic gneisses 589

Figure 10. Coastal sections of the basal thrust (see Figs. 2a and 12a for locations). (a) Continuous section showing the contact between the

mafic gneisses and the migmatitic gneisses. The white line represents the sea level. (b) Elliptical sections in sheath folds of decametric size in

the lower domain of the basal thrust. The arrow points to an fisherman for scale, also used as reference in the sketch outlining the S2 foliation

underneath. (c) Phyllonitic domain in the basal thrust. Structures related to this domain are outlined in the sketch below the picture.

4.2 The basal ductile thrust

The normally pervasive blastomylonitic S2 foliation is dis-

rupted by a discrete high-strain shear zone. The layering and

foliations intersect relative to the sense of shear indicate that

is a basal ductile thrust, between the mafic gneisses and the

migmatitic qz-fsp gneisses (Figs. 3 and 14a). The shear zone

has a thickness < 100 m. Three deformation domains can be

differentiated. The associated structures decrease in size and

the domains decrease in thickness towards the upper bound-

ary of the ductile thrust, indicating the progressive localiza-

tion of deformation. The lower domain affects the underlying

mafic gneisses along a band ca. 50 m in thickness. It contains

metric- and decametric-sized sheath folds. The orientation of

www.solid-earth.net/7/579/2016/ Solid Earth, 7, 579–598, 2016
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Figure 11. Non-cylindrical minor fold associated with the basal

thrust: (a) sheath folds with apical axes perpendicular to the sec-

tion view; and (b) type 3 fold interference pattern (after Ramsay,

1967) in the phyllonitic domain (see Fig. 10 for location).

angular spread of the fold hinges indicates NW–SE stretch-

ing (Fig. 10b).

The middle domain forms in biotite qz-fsp gneisses and

includes eclogite blocks within the migmatites. Migmatitic

leucosomic and restitic layers are interbedded and deformed

ductilely. Metric asymmetrical folds develop vergence to the

SE (Fig. 12a and c).

The upper domain contains ∼ 10 m thick phyllonites, fre-

quently including mafic eclogite pods and boudins. The phyl-

lonites are affected by shear bands, decimetric sheath folds,

superposed folds and rotational complex structures (Figs. 10c

and 11). Superposed shear folds show the type 3 (coaxial)

interference pattern of folding (Ramsay, 1967) (Figs. 11 and

12). The apical axes of sheath folds point towards N20E, in-

dicating maximum ductile extension along this direction.

4.3 The internal structure of the migmatitic gneisses

A group of decametric asymmetric folds, affecting the planar

blastomylonitic S2 foliation, dominates the internal structure.

The folds are tight, overturned and vergent to the SE along

the lower part of the migmatitic gneisses (Fig. 12a). They of-

ten have associated parasitic folds, and non-cylindrical hori-

zontal hinges. Occasionally, minor folds relate to small thrust

surfaces that imbricate eclogite pods parallel to the blastomy-

lonitic S2 foliation.

The shape of eclogite blocks and boudins was measured

in exposed faces within the gneisses. The representation in

a Flinn diagram using the shape of pods according to block

sizes shows in Fig. 13 that most of the large eclogite blocks

plot near to the plane strain field, while smaller eclogite bod-

ies plot either in the constrictional or flattening fields. How-

ever, the results of this analysis are not a very strong ar-

gument because the eclogite bodies do not show a strongly

dominant shape. The shapes were measured in 2-D sections,

and the original shapes of these blocks is unknown. The long

axis of eclogite bodies does not show a preferred orientation

(to the right in Fig. 13).

The ca. 488 Ma felsic dykes can be regarded as pas-

sive deformation markers during D2-deformation. A com-

plex structure has been observed in the coastal section at

the Serrón beach (Fig. 12b). In this section, the thickness

of the migmatitic qz-fsp gneisses is less than 100 m, and

both bottom and top boundaries of this unit are quite ex-

posed. Their thickness decreases progressively towards the

SE. Migmatitic gneisses are affected by a shear zone in which

the sense of the shear changes between the top and the bot-

tom, producing rootless folds of opposite vergence in the fel-

sic dioritic/granodioritic dykes and in the migmatitic band-

ing. The larger structure reconstructed from both markers

(the felsic dykes and the migmatitic banding) consists of an

opposite vergence recumbent hinge defined by the competent

dioritic dykes. The limbs are disrupted and boudinaged to-

wards the horizontal high-strain zones located at the bound-

aries of the unit. This sandwiched structure indicates orthog-

onal stretching with the transport direction for the migmatitic

gneisses towards the SE (Fig. 12b).

4.4 The top detachment

A horizontal discrete shear zone separating the metasedimen-

tary and the migmatitic gneisses is exposed at the Serrón

beach (Fig. 12b and c). A gradual transition between both

types of gneisses is observed along the base of the cliffs. De-

formation partitions into anastomosing D2-shear bands pre-

serving evidences of previous melting episodes (Figs. 4e and

7a).

The horizontal shear zone is 20 m in thickness and

strongly deflects the migmatitic layering in extensional man-

ner. Migmatitic layering and diorite dykes are disrupted and

boudinaged progressively towards the upper high-strain sur-

face (Fig. 12c). The deflection of the migmatitic layering,

parasitic “drag” folds and the boudinage of the dioritic dykes

indicate top to NW shear sense. Despite subsequent re-

equilibration under greenschist-facies conditions, evidencing

a late reactivation, the mineral assemblages in the progres-

sively less deformed bands within the detachment are basi-

cally the same as the high-grade qz-fsp gneisses described

previously (Fig. 5).

4.5 The upper D3-recumbent fold

The metasedimentary qz-fsp gneisses lie in the core of

a km-scale D3-recumbent/overturned-synformal structure,

outcropping towards the east side of the Masanteo penin-

sula (Fig. 1b and d shows the location of the fold within the

general cross-section of Cabo Ortegal nappe, after Marcos

et al., 2002). This large-scale fold opens to the SE and has

several parasitic cylindrical-folds and an associated crenu-

lation cleavage. Intrafolial and sheath folds formed during

the development of the S2 foliation (Fig. 15c and d) are re-

folded by parasitic D3-folds related to the recumbent fold

(Fig. 14b). Detailed cross-sections of the recumbent struc-

ture have been constructed using the asymmetry of small-

scale parasitic folds and the main S2 foliation (Fig. 14). The

fold axis plunges 5–30◦ towards N20E. The fold attitude re-
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Figure 12. Geological sections showing the internal structure of the migmatitic qz-fsp gneisses and the locations of larger eclogite-blocks.

Cross sections are located in Fig. 2a. The white lines represent the sea level. (a) In the northern section, the internal structure is characterized

by asymmetrical folding and the presence of eclogite block-in-matrix close to the thrust. (b) The internal structure of the migmatitic qz-fsp

gneisses is dominated by the presence of polyclinal folds bounded by the basal thrust and the upper normal detachment. (c) Photograph and

sketch in the cliff of the Serrón beach showing an extensional detachment placing the metasedimentary gneisses on top of the migmatitic

gneisses. Location of the sections is in Fig. 2a.

Figure 13. The shapes of the eclogite pods show a range of ge-

ometries in a Flinn diagram from prolate to oblate. The size of the

symbols is proportional to size of the blocks.

quires that the reverse limb outcrops in the northeastern cliffs

of Cabo Ortegal and only partially along the southeast shore-

line. A late upright antiform refolds the recumbent synform

(Fig. 15b and e). This late folding affects the crenulation

cleavage (Fig. 14c), which equilibrated under greenschist-

facies conditions.

5 Metamorphic evolution in the gneisses

The gneissic sequence in the Masanteo peninsula shows

a complex tectonic record, including pre-Variscan and Eo-

Variscan events. HP-HT metamorphism followed by rapid

decompression leading to the formation of the D2 tectonic

fabric, based on the M2 metamorphic assemblages defining

the main foliation in the qz-fsp migmatites, eclogites and

mafic granulites (Gil-Ibarguchi et al., 1990; Fernández, 1997;

Galán and Marcos, 2000; Ábalos et al., 2003).

The Cambro-Ordovician intrusion of the felsic dykes at

ca. 488 Ma demonstrates a pre-Variscan tectonothermal event

(Table 1; Fig. 6). The 488–486 Ma monazites from these dis-

crete felsic dykes coincide in age with the monazite ages re-

ported by Fernández-Suárez et al. (2002) also in migmatitic

gneisses from other localities in the Cabo Ortegal nappe.
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Figure 14. Geological sections of the D3-recumbent syncline reconstructed from the small-scale parasitic folds that are folding the main S2

foliation. Location of the sections is in Fig. 2a. White lines represent the sea level. (a) Northern outcrop section. (b) Southern outcrop section

and the structural detail with location of Fig. 15. Note that the recumbent synform is affected by open-upright D4b-folds. (c) Crenulation

cleavage S4b, D3 fold axes and L2−4b intersection lineation is plotted in an equal area, lower hemisphere projection.

Figure 15. Small-scale parasitic folds related to the recumbent synform folding prior to D2-isoclinal folds. Locations of outcrops are indi-

cated in Figs. 3 and 14. (a) Sketch of the outcrop section. (b) W–E view of a monocline, with location of the photographs (c), (d), and (e).

(c) The apical-section of a D2-sheath-fold, behind the hammer, indicates a N–S stretching line. (d) D2-intrafolial folds folded by a “Z”

parasitic D3-fold (reverse limb of the D3-recumbent fold). (e) “Z” parasitic D3-fold rotated by the D4b-monocline.

These monazites have survived the high-pressure Devonian

overprint. This could point to the presence of an early Or-

dovician metamorphic event similar to the one described by

Abati et al. (1999) in equivalent units of the Órdenes com-

plex. Such a pre-Variscan event would be consistent with the

presence of coronitic textures in the Cabo Ortegal metagab-

bros (Galán and Marcos, 1997; Marcos et al., 2002). How-

ever, to be able to tie these metastable early Ordovician mon-

azites from Cabo Ortegal to a particular set of metamor-

phic conditions remains to be conclusively demonstrated.

The high-grade eclogitic event is well-established by the

ca. 390 Ma U-Pb Zrn age from the eclogitic boudin in the

migmatitic gneiss, (sample COZ4 located in Figs. 2a and

12a; Castiñeiras et al., 2010). In addition, the ca. 376 Ma
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Figure 16. Synthetic tectonic evolution of qz-fsp gneisses within the Cabo Ortegal nappe. (a) Simplified geological section of the Cabo

Ortegal nappe at present, showing the detail of the structure in the Masanteo peninsula (cross section in Fig. 1d, modified from Marcos et al.,

2002). Partially restored section to the left shows the relationships between D3-recumbent folds and D4a-thrust. (b) D2-stage (390–380 Ma)

summarising the effect of progressive localization of deformation and thinning during exhumation. The P–T diagram (based on Fig. 5) is

showing the retrograde P–T-t paths for migmatites, metasedimentary qz-fsp gneisses and mafic granulites compared to current subduction

zones. (c) Slab breakoff could eclogitize the top of the mafic granulites during a widespread thinning of the tectonic sequence (Llana-Fúnez

et al., 2004). (d) A Cambro-Ordovician melting event led to the injection of felsic dykes at the base of the qz-fsp gneisses coeval with

leucosome in the mafic granulites (Fernandez-Suarez et al., 2002). Arrows indicate the inferred finite strain principal displacements.

muscovite Ar-Ar date from the paragneisses in the Masan-

teo peninsula provides a cooling age, which would be con-

sistent with rapid cooling (ca. 90 ◦C Ma−1) and a relatively

fast exhumation rate (5.8 mm yr−1) associated with the D2

deformation, following the eclogitic event (see discussion of

U-Pb and Ar-Ar data in Ordoñez-Casado et al., 2001).

6 Discussion

6.1 Tectonic evolution of gneisses at Masanteo

The tectono-metamorphic and geochronological data re-

ported in this paper based on the observations around the

Masanteo peninsula are grouped into three stages (Fig. 16).

The first stage is characterized by the assembly of a high-

grade tectonic sequence composed of mafic granulites over-

lain by qz-fsp gneisses. The partial melting of the mafic gran-

ulites led to the injection of the felsic dykes into the base of

the gneisses during the early Ordovician (ca. 490 Ma).

A Devonian subduction, producing the eclogite facies

metamorphism dated at 390 Ma (Peucat et al., 1990; Santos-

Zalduegui et al., 1996; Ordóñez-Casado et al., 2001;

Fernández-Suárez et al., 2002, 2007; Castiñeiras et al., 2010),

occurred 20 Ma prior to the main Variscan subduction at

ca. 370–360 Ma (i.e. Martínez-Catalán et al., 1997; Arenas

et al., 2014; López-Carmona et al. 2014) and suggests the

development of a complex collision during the assembly of

Pangea.

The qz-fsp gneisses underwent an episode of partial melt-

ing after eclogitization (at ca. 390 Ma). Migmatitic qz-fsp

layers are heterogeneously mylonitized along anastomosing

shear bands that progressed to planar shear zones, incorpo-

rating eclogite blocks during D2 (Figs. 3a and 10a). D2-

tectonic fabrics have similar high temperature CPO patterns

in migmatitic and metasedimentary qz-fsp gneisses consis-

tent with flattening strain (Fig. 9). In addition, bulk flatten-

ing strain is also supported from the lozenged overall struc-

ture and the scattered orientation of the kinematic markers.

Most of the tectonic pile thinning occurred during the devel-

opment of the blastomylonitic S2 foliation (i.e. Fernández,

1997; Llana-Fúnez et al., 2004) and before the progressive

localization of strain. Lack of a persistent stretching lineation

suggests non-plane strain, with orogeny parallel stretching

accompanying shearing displacements. Additional thinning

could have progressed through the reactivation of the NW-
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vergent top detachment (Fig. 12b and c). The common meta-

morphic and structural evolution for most of the rock units

within the Cabo Ortegal nappe indicates a tectonic setting

of coherent slab subduction in which extensive eclogitiza-

tion and significant ductile thinning of the tectonic sequence

are coeval. A scenario of downdip extension during ductile

breakoff was suggested to produce observed structures and

metamorphic imprint (Llana-Fúnez et al., 2004).

The tectono-metamorphic relationships of the basal duc-

tile thrust and the normal detachment mapped in the Masan-

teo peninsula indicate that both discrete mechanical contacts

were active before the development of the recumbent folding

that affects the sequence of gneisses. These mechanical con-

tacts upon their development became in fact the boundaries

of the migmatitic qz-fsp gneisses (Figs. 1b and 10c). The ar-

rangement of the bounding shear zones defines an inclined

E-dipping wedge with the migmatitic qz-fsp gneisses in the

middle.

The internal structure of the migmatites consists of a root-

less double recumbent hinge (Fig. 12). The metric sheath

folds belonging to the mafic gneisses of the basal ductile

thrust are consistent with an extension direction towards the

SE (Fig. 10b). In addition, progressive localization of strain

occurred during exhumation. Frequently, Phg phenoblasts

are aligned parallel to the S2 foliation of the migmatitic qz-

fsp gneisses, and are bounded by Bt flakes that enclose small

prismatic shaped Grt (Fernández, 1997). These microstruc-

tures evidence the instability of Phg during decompression

and indirectly point to exhumation at high rates. The starting

point for the exhumation of the migmatitic qz-fsp gneisses

and the metasedimentary qz-fsp gneisses differs by 0.5 GPa

(Fig. 5) and indicates that they have been initially juxtaposed

by shearing displacements. The metamorphic pressure differ-

ence between both types of gneisses could be indicative that

metasedimentary qz-fsp gneisses exhumed from maximum

burial depths of ∼ 13 to 15 km lower than the migmatitic qz-

fsp gneisses if we consider metamorphic pressure as litho-

static. However, in the context of subduction and exhuma-

tion of high-pressure rocks, the architecture of the qz-fsp

migmatites, with a basal thrust and a top detachment, in ad-

dition to a tectonic regime dominated by flattening may sug-

gest the development of a non-lithostatic pressure gradients

leading to tectonic (vertical) extrusion. In this scenario, the

reported difference in metamorphic pressure may contain a

component of non-lithostatic stress (taking lithostatic stress

as simply due to depth of burial), which will affect the con-

version to depths. For instance, an overpressure (elevated

mean stress) of 1.1 or 2 times the lithostatic pressure (e.g.

Mancktelow, 1995, 2008; Moulas et al., 2013) would imply

a difference in burial depths for the gneisses between 11 and

5.5 km, respectively.

The migmatite wedge within the qz-fsp gneisses described

here in the Cabo Ortegal nappe, is similar to the gneiss wedge

reported within the high-pressure terranes of the Sambagawa

HP rocks, sharing exhumation characteristics from lower to

upper crustal levels (Osozawa and Wakabayashi, 2015). An-

other example comparable to what is reported here occurs in

the exhumation of blueschist facies rocks of Leti Island in

Indonesia (Kadarusman et al., 2010).

The final stage of large-scale structure development is

dominated by the progressive deformation associated with

the Variscan convergence, corresponding to the formation of

kilometric-scale recumbent folds, thrusts and finally folding

into upright or SE verging folds, described here for Cabo Or-

tegal rocks in the Masanteo peninsula as D3, D4a, and D4b,

respectively (Fig. 16a). The late evolution of the Cabo Orte-

gal nappe and its kinematics (Marcos et al., 2002) is consis-

tent and coeval with the deformation recorded in the underly-

ing autochthonous rock sequence in relation to the Variscan

belt (Matte, 1968; Pérez-Estaún et al., 1991), and led to the

crustal thickening necessary to drive the deformation and

metamorphism of the autochthon beneath.

6.2 Characteristics of the exhumation of Cabo Ortegal

nappe rocks

The development of the main tectonic foliation in Cabo

Ortegal nappe rocks, defined by mineral assemblages from

eclogite facies to greenschist facies, indicates that the struc-

ture formed during the progressive exhumation from high-

pressure conditions to mid-crustal depths (Galán and Mar-

cos, 2000; Marcos et al., 2002) (Fig. 5). In this contribution,

we would like to highlight that the metamorphic evolution

of two major rock units in the Cabo Ortegal nappe, the mafic

granulites and the qz-fsp gneisses, have parallel P–T trajecto-

ries during their tectonic exhumation from eclogite to green-

schist facies conditions (Fig. 16b). In the first instance, this

suggests a common process and scenario for the exhumation

of high-pressure rocks to mid-crustal depths prior to their fi-

nal emplacement. In fact, it is possible to characterize the ex-

humation path in terms of cooling during decompression (the

common slope of P–T paths in Fig. 16b), which may be re-

garded as indicative of this particular tectonic setting. Given

that ages are available at peak pressure conditions and at mid-

crustal depths, exhumation rates can also be calculated from

the data summarized before.

The exhumation of either the mafic granulites or the

gneisses in Fig. 16b involves a cooling of > 200 ◦C for a de-

compression of 1 GPa, most of it associated with the verti-

cal component of movement in the crust. For a similar depth

range, the amount of cooling during decompression is com-

parable to present-day subduction zones, in particular to the

trajectory in the south-west Japan subduction zone (trajec-

tory SWJ from Fig. 4 in Yamasaki and Seno, 2003 in in-

cluded in Fig. 16b). The positive P–T slopes are charac-

teristic of subducting slabs in active subduction zones (e.g.

Hacker et al., 2003; Yamasaki and Seno, 2003). Therefore,

based on this observation, we infer that the exhumation of

Cabo Ortegal nappe rocks began while the subduction zone

was still during the initial stage of exhumation. This is in
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contrast to P–T paths from equivalent high-pressure rocks in

the Órdenes Complex, where adiabatic decompressive paths

were inferred during exhumation from eclogite facies con-

ditions (Arenas et al., 1995; Martínez-Catalán et al., 1997).

Adiabatic decompressive paths are related to the very rapid

exhumation of small fragments, not allowing cooling during

ascent, however this is unlikely in the case of coherent slabs

(Kylander-Clark et al., 2012).

The available ages at peak metamorphic conditions and

at mid-crustal depths provide time constraints for the ex-

humation process, which might involve at least 140 km of

horizontal displacement onto the continental margin. A rate

of > 3 mm yr−1 vertical component for migmatitic gneisses

can be estimated, if all metamorphic pressure is regarded

as corresponding to lithostatic pressure. These rates are

half of those previously reported (Ordóñez-Casado et al.,

2001), and are comparable to those reported in other parts

of the Variscan orogeny, the Alps or the Himalayas. When

compared with present-day subduction zones and numeri-

cal models the exhumation rates fall at the slow end mem-

ber of scenarios (Gerya et al., 2002; Kylander-Clark et al.,

2012; Burov et al., 2014). If the dislocation creep defor-

mation mechanism observed (from tectonic fabrics and mi-

crostructures) to control internal deformation in part of the

gneissic units (Fig. 9) were to be dominant across all of the

Cabo Ortegal nappe it would imply, according to numerical

models by Gerya and Stöckhert (2002), subduction rates 6

times higher than exhumation rate, still at the slower end for

other subduction zones. The metamorphic evolution during

the exhumation of Cabo Ortegal nappe rocks shows a sig-

nificant difference with the inferred P–T path in other an-

cient and current subduction zones compiled by Kylander-

Clark et al. (2012): the exhumation path is overall 100–

200 ◦C hotter than the warmest currently active (e.g. SW

Japan or the Pacific Northwest), and most of the exhuma-

tion took place under conditions of slab melting. Melting

occurring during a pervasive deformation episode will im-

part extreme weakening and ductile behaviour to rocks (e.g.

Rosenberg and Handy 2005; Rutter et al., 2006), ultimately

to the whole crustal section. This environment should pro-

mote widespread thinning in the subducting slab in which the

Cabo Ortegal nappe was involved during plate convergence

prior to the Variscan collision.

7 Conclusions

The structural relationships of the high-grade mafic and qz-

fsp gneissic bodies along the Masanteo peninsula provide

valuable insights to understand the polyorogenic origin of

the HP-HT Cabo Ortegal nappe. The Cambro-Ordovician

(ca. 480–490 Ma) intrusion of felsic dykes within the

migmatitic qz-fsp gneisses was coeval with the formation of

leucosome in the underlying mafic granulites. A second melt-

ing event partially affected the qz-fsp gneisses coevally with

the eclogitization of the whole lower crustal section during an

early Variscan high-pressure episode (ca. 400–390 Ma). Dur-

ing the subsequent fast exhumation (ca. 380 Ma) the origi-

nal rock sequence was largely thinned by dominant bulk flat-

tening associated to the development of a main blastomy-

lonitic foliation. Immediately after, at ca. 360 Ma, Cabo Orte-

gal nappe rocks, already at mid-crustal depths, were involved

in the final Variscan collision that emplaced the ensemble of

allochthonous complexes over the Iberian microplate, at the

edge of Gondwana.

Progressive strain localization during exhumation trig-

gered the development of anastomosing shear bands, enclos-

ing lenticular or lozenge-shaped bodies. Strain weakening

associated with hydration and retrogression during deforma-

tion in bounding shear zones prevented further pervasive de-

formation and retrogression into the lozenges. The geomet-

ric arrangement of ductile shear zones bounding the gneisses

at separate tectonic stages during the exhumation, forming a

basal ductile thrust and a top detachment, gave way to the

development of an internal migmatite wedge within the qz-

fsp gneisses, consequence of the localization of strain during

bulk thinning.

The exhumation path from eclogite facies conditions to

mid-crustal depths in qz-fsp gneisses, estimated in this con-

tribution around 2 ◦C/100 MPa, is parallel to the trajectory in

adjacent mafic high-pressure granulites and to the calculated

distribution of temperature with depth in currently active sub-

duction zones. This suggests that the metamorphic and also

the structural record associated with the process of exhuma-

tion is comparable to present-day tectonic scenarios. It must

be highlighted that the absolute temperatures for the exhuma-

tion path are substantially higher with respect to current set-

tings, by approximately 100–200 ◦C. Such high temperatures

can put the exhumation path into slab melting conditions,

which ultimately would favour an extreme ductile behaviour

of the whole rock sequence during deformation. This may

have been the case during the stretching of the lower crustal

rock sequence now preserved in the upper unit of the Cabo

Ortegal nappe.
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