
Modeling a multilevel converter for radiography and fluoroscopy  

Juan A. Martín-Ramos, Óscar Pardo Vaquero, Juan Díaz González, Miguel A. José Prieto, 
Juan A. Martínez Esteban, Alberto Martín Pernía 

Universidad de Oviedo  
Edificios Departamentales Oeste, Mod 3. 

Campus de GIJÓN, SPAIN 
jamartin@uniovi.es 

 

Acknowledgements 
This work has been funded by the Spanish Government with the action TEC2014-53324-R. 

Keywords 

AC/DC conversion, high voltage, resonant topologies, power stage modeling. 

Abstract 

In this paper a mathematical model for a resonant multilevel converter is presented. The topology has 
been conceived to be used in X-ray power supplies. The power stage has been designed to minimize 
the resonant current throughout the input voltage range: 400V to 750V. The inverter stage is based on 
the series-parallel resonant topology, LCC, to include the parasitic elements of the step-up 
transformer. However, the introduction of an additional magnetic coupling provides a way to modify 
the reactive elements depending on the output power. 

Introduction 
A significant number of industrial applications require a power supply capable to deliver a DC voltage 
of tens of kV while transferring a power of tens of kW. Such applications include X-ray generators, 
electron beam welding machines, or electrostatic precipitators to name a few. In all cases, the primary 
power supply is a three-phase line which may vary between 380V and 480V rms depending on the 
different regulations. Fig. 1 shows a block diagram with the usual structure of such a high-voltage 
power supply. The first stage is a three phase rectifier. Given the different line settings, the operating 
tolerances and the 50Hz-60Hz ripple, the rectifier output can take values between 400V and 750V. 
The second stage is a square wave inverter where the switching frequency is in the range of tens of 
kHz. This value is high enough to consider the input voltage as DC, including the low frequency 
ripple, and to allow the minimization of the transformer size. 
 

 
Fig. 1: Block diagram of a high voltage power supply. 
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The transformer is certainly the key element in the design of this sort of power supplies. It is an 
essential component that provides electrical isolation and raises the output voltage to the required 
range: between 20kV and 150kV depending on the application. Its special features can be summarized 
in two consequences for topology: the presence of a leakage inductance, LS, and a stray capacitance in 
the secondary, CP; which can be transferred to primary. Both are significant [1-3]. In general, the 
inclusion of these reactive elements in the circuit leads to resonant topologies [4-20]. In particular, the 
series parallel resonant topology, PRC- LCC, with a capacitor as output filter, fig. 2, is one of the most 
attractive solutions, since it includes easily the transformer parasitic elements [10-17]. This paper 
presents a multilevel modification of this topology, which provides further versatility. 
 

 
Fig. 2: Full-bridge PRC-LCC resonant topology with a capacitor as output filter. VAB is the inverter 
output voltage and iL is the current through the resonant inductor, LS. 
 

The resonant inverter 
The performance of a full-bridge based PRC-LCC resonant converter, fig 2, is penalized because of 
the wide input voltage range. Obviously, the power stage must be capable of providing full power with 
the minimum input voltage, coping with the reactive elements of the stage. The best strategy for the 
converter design is to employ large duty cycles and a switching frequency close to resonance for these 
conditions. The ideal expected resonant current and inverter output voltage for minimum input 
voltage, 400V, and rated output power are shown in fig. 3. The resonant current is minimized due to 
the absence of reactive energy, and the inverter is delivering power to the load throughout the whole 
period. This situation is truly advantageous also from the viewpoint of the switching losses, because  
switching transitions always occur without current. 

 
Fig. 3: Inverter output voltage and resonant current for maximum transferable power at minimum 
input voltage, 400V, in a tight design. 
 
However, when the input voltage is not the minimum, the same inverter will be forced to change the 
working regime to limit the power injection into the circuit. Otherwise, the same switching frequency 
and duty cycle on the same circuit when the input voltage is higher will lead to higher resonant current 
and output power. There are three possibilities to control delivered power: a) to decrease duty cycle, b) 
to increase switching frequency above resonance or c) to combine both strategies, fig. 4. In any of 
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those three cases, the voltage across the switches is higher, because the input voltage is above 400V. 
However, the peak value of the resonant current is not diminishing in the same proportion, although 
transferred power remains constant. In fact, just a 10% reduction has been measured when DC bus 
varies from 400V to 750V [8]. As a result, losses recorded on the inverter are increase largely at 750V. 
Now, switching transitions occur with high voltage and current levels, while conduction losses are not 
reduced.  
 

 
a) Staying at resonant frequency, duty cycle is 

reduced to maintain input power. 
b) Duty cycle remains constant while switching 
frequency is increased to maintain input power. 

c) A particular case of switching frequency and duty cycle modification to maintain input power. 
 
Fig. 4: Resonant current and inverter output voltage to obtain full power when the input voltage is 
maximum 750V. Three control possibilities. 
 
The new configuration of the inverter presented in fig. 5 has been conceived to address this problem. 
Two full-bridges are coupled by an auxiliary transformer with a 1:1 turns ratio. As shown in fig. 6, a 
square waveform, VAB, with up to five voltage levels is produced by them. Since the topology is 
resonant and the switching frequency is near resonance, the inverter output, VAB, can be approximated 
by its first harmonic for a simple and convenient mathematical analysis. The new topology allows 
combining duty cycles of both inverters, to maintain constant VAB first harmonic term, independently 
of the DC bus level, fig. 6. Behind this new configuration also lies the possibility to optimize the value 
of the reactive elements to the new conditions. Now the inverter voltage is 800V across the full range 
of input voltage, so the base impedance of the resonant circuit should be higher than the one 
considered for 400V. The maximum power the PRC-LCC topology can transfer is given by (1) and (2) 
[8]. From these expressions, it can be deduced than an increment in the minimum input voltage from 
400V to 800V allows increasing the series inductance, LS, and decreasing the equivalent capacitance, 
C. Having higher base impedance in the circuit involves a reduction in the resonant current. Thus, the 
proposed topology doubles inverter output voltage while halves resonant current to provide the same 
output power. 
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To keep constant the first harmonic amplitude of VAB, the output voltage of both full-bridges is added 
through the auxiliary transformer, fig. 5. This control scheme is used for high power levels, i.e., 
radiography. However, when the output power is low, e.g. fluoroscopy, the auxiliary full bridge is kept 
inactive. In this case, the magnetizing inductance, LM, of the 1:1 transformer is added to the leakage 
inductance, LS, increasing the effective series inductance and the base impedance (2) of the resonant 
circuit, fig. 7. 
 

 
Fig. 5: Circuit for the proposed multilevel topology. 
 

 
Fig. 6:   Inverters duty cycles are controlled independently to maintain constant  the first harmonic of 
VAB. Example for two different DC bus values, VE=400V on the left, VE=700V on the right. 
 
The design details for a power source based on these five voltage levels scheme, can be found in [21], 
where it is compared to a traditional three-level full-bridge inverter. The present work is focused on 
the mathematical modeling of the proposed topology. 
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Large signal model 
To mathematically model the topology, the resonant mesh is considered at first. This mesh presents 
two forms, depending on whether the auxiliary full bridge inverter is operating or not. The only 
difference between both cases lies in the different series inductance of the mesh, fig. 7. 
 

 
Fig. 7: Simplified model of the resonant mesh for high (left) and low-power (right) applications. 
 
The differential equations of the resonant mesh are presented in (3) and (4), where LX represents LS or 
LS + LM depending on the case. “r” concentrates in a single resistor the power losses of the resonant 
circuit. 
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Behind the high-voltage output rectifier there is a second mesh that must be analyzed too. In 
this case, Kirchoff’s current low is applied to obtain (5). The current through the rectifier, iD, 
is divided between the output capacitor, CF, and the load, R. Magnitudes in (5) have been 
transferred to the primary of the step-up transformer. 
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These three differential equations (3-5) describe the dynamic model of the topology. Hence, 
they are the state equations. They include three variables that store a significant amount of 
energy: VS, VX and iL, i.e., the state variables. As the variation of energy is important in the 
circuit state analysis, their time-derivatives appear explicitly in the state equations. Bearing in 
mind the resonant circuit waveforms, it is evident that in (3) and (4) the predominant effects 
on the circuit will be produced by the first harmonic component. Therefore, the related state 
variables can be approximated as shown in (6) and (7). However, in the output section, behind 
the rectifier, the waveforms must be approximated by their mean value. In fact, this is the 
prevailing harmonic term in all the variables which appears in (5). This fact is expressed in 
(8), where the magnitude VX2 has been referred to primary side. 
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It should be noted that although VP is the voltage of a capacitor, the energy it represents is not 
significant. In fact, that voltage cannot vary freely. On the contrary it is clamped twice every 
period, when the output rectifier is on, by the voltage at Cf, a quite higher capacitance. This 
process is presented in fig. 8. The output rectifier operates in discontinuous conduction mode, 
being disconnected every time the resonant current, iL, changes its sign. Then iL flows through 
CP, making it start to charge sinusoidally. After some time, its voltage, VP, reaches the value 
of the output voltage at Cf, and the rectifier is on again. Now Cf and CP are connected in 
parallel. Given the large capacitance of Cf, the resonant current can hardly change the voltage 
across this capacitor, and it can be assumed to be constant: VP is clamped. The conduction 
angle of CP in a period, ψ, can be deduced from the differential equation of a charging 
capacitor, provided that the maximum value of the resonant current, iLP, and the value of the 
output voltage referred to the primary, VX are known (9). 
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Fig. 8: Topology waveforms. Top: Output voltage of both inverters, VAB, and resonant 
current, iL. Bottom: voltage at the parallel capacitor, VP. 
 
Once the clamping angle, ψ, is known, it is possible to determine the harmonic content of VP 
and iD, referred to the primary. The suitable harmonic term is expressed in (10) and (11) 
respectively, being μ an abbreviation given in (12). 
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duty cycle of the auxiliary inverter. If the transferred power is low enough, this auxiliary 
inverter is not operating. In this case, (13) and (14) are still valid if τ2 is considered null. 
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At this moment, the state equations (3-5) can be reconsidered to substitute the state variables 
(6-8), VP (10), iD (11) and VAB (14-15) for their suitable harmonic approximation. By doing 
so, the large signal dynamic model of the system is approximated by a simpler, but accurate 
enough, mathematical expression (16-20). After the substitution, the summands of (3) and (4) 
contain sine and cosine terms, which can be grouped. This way, both equations (3) and (4) are 
split into two. That is why the large-signal model is expressed as 5 differential equations (16-
20) instead of three (3-5). 
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The harmonic approximation has changed the nature of the state variables. Originally they 
represented the temporal evolution of the waveforms. Now, after the approximation, they just 
represent the amplitude and phase of the sinusoidal variables iL and VS, and the average value 
of the output voltage, VX. Some information is lost but the important one remains.  

Steady state model 

The steady-state model can be easily derived from the large-signal model. It is only necessary 
to consider that under steady state condition the variables do not change from one period to 
other. Mathematically, this means that the derivatives of the model (16-20) are zero. After this 
consideration and simple algebraic manipulation the steady state model is obtained (21-25). 
The subscript 0 indicates particularization for static operation. 
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The same equations (21-25) are also obtained if the circuit from fig. 9 is solved. It is the 
equivalent circuit of the topology at steady state. 
 

 
Fig. 9: Equivalent circuit for the topology under steady state condition. 

Experimental verification 

In order to check the accuracy of the mathematical model obtained, a scaled prototype is 
designed and assembled. The values of the resonant parameters are: Ls = 38μH, Cs = 330nF, 
and Cp =220nF, Lm = 125 μH. For validation purposes, a scaled input voltage has been used 
(40 to 75V). The step up transformer has also been removed, and resonant network has been 
implemented by discrete elements. Note that, in this prototype, voltage and current are 
divided by a scale of 10 and power by 100. Table I compares the results provided by the 
prototype and the model.  
 

Table I: Experimental results vs. the calculations obtained from the model (shaded) 

 VX (V) iLP (A) PSAL (W) 
Meas. 1 
VE=40V 

Vx=118.9 IL=22.7 Pw=942.4 
Vx=119.8 IL=22.1 Pw=956.8 

Meas. 2 
VE=40V 

Vx=59.4 IL=30.4 Pw=940.8 
Vx=60 IL=29.39 Pw=960.3  

Meas. 3 
VE=40V 

Vx=59.4 IL=30.4 Pw=940.8 
Vx=60 IL=29.39 Pw=960.3  

Meas. 4 
VE=60V 

Vx=64.2 IL=17.6 Pw=549.5 
Vx=62.4 IL=17.9 Pw=519.1 

Meas. 5 
VE=40V 

Vx=96.2 IL=5 Pw=9.25 
Vx=95.6 IL=4.86 Pw=9.13 

Meas. 6 
VE=40V 

Vx=32.21 IL=1.7 Pw=1.037 
Vx=31.89 IL=1.66 Pw=1.01 
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Measurements 1-4 are obtained when both inverters are operating. Measurements 5-6 are 
obtained when the auxiliary inverter is off. Experimental waveforms for both cases are shown 
in fig. 10. The oscilloscope channels have been used according to the following criteria: Ch1, 
yellow, output voltage, VX. Ch2, green, resonant current iL. Ch3, purple, auxiliar inverter 
voltage, VB. Ch4, red main inverter voltage, VA. Math channel, pink, resonant circuit voltage, 
VAB. The difference between the measurements on the prototype and the calculation provided 
by the model is always below 3%. 
 

a) Waveforms at measurement 1. b) Waveforms at measurement 4. 

c) Waveforms at measurement 5 
 
Fig. 10: Experimental waveforms for the inverters at measurement 5. 
 

Conclusions 
In this paper a novel resonant topology based on a multilevel structure is studied. It is formed by two 
full-bridge inverters coupled through a transformer. They have the ability to compensate input voltage 
fluctuations to produce the same first harmonic in their output square voltage. The result is that the 
resonant stage can be designed more conveniently for a particular application, halving expected 
current levels. Moreover, at low power levels (fluoroscopy) one of the inverters can be deactivated, so 
that the power circuit is favorably changed for those conditions. Other interesting contribution is the 
reduction of the inverter switching losses at high input voltage levels. Although the number of 
switches has been doubled, their current rating is halved. 
As a design tool, a large signal dynamic model for the topology has been deduced step by step. This 
model is particularized for steady state condition. Its validity and accuracy has been experimentally 
demonstrated. 
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