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RESUMEN (en español)

La química es una disciplina científica cuyos conceptos más arraigados han sido interpretados  
alegóricamente por Frenking y Krapp [J Comput Chem 28: 15–24, 2007] como unicornios, 
refiriéndose a algo que todo el mundo conoce pero que nadie ha visto. Como encargada de 
comprender las sustancias y sus transformaciones, la química ha ido introduciendo desde sus 
orígenes conceptos con un trasfondo en gran parte mítico, resilientes por haber servido para 
traerla hasta el estado en que se encuentra hoy en día, pero frágiles si atendemos al 
razonamiento científico sobre el que se basan. El enlace químico es uno de ellos que, como 
central a la ciencia química por ser el que rige las relaciones entre átomos y moléculas, y que 
por tanto define el comportamiento de las sustancias, ha sufrido numerosas transformaciones 
que han tratado de dotarlo de fondo físico. 

Con el desarrollo de la mecánica cuántica como teoría del mundo microscópico a principios del 
siglo XX y su aplicación a sistemas químicos, el concepto de enlace ha ganado en sofisticación 
y contenido físico. Sin embargo, este avance se ha producido fundamentalmente en espacios 
abstractos diferentes al espacio real, por lo que entender las teorías que intentan explicarlo y 
sus consecuencias se hace muy complicado al exigir al lector una formación física avanzada. 

De un tiempo a esta parte, se ha tratado de dar una vuelta de tuerca a la manera de entender el 
enlace, intentando buscar la forma de conciliar el rigor físico y matemático de su definición con 
las ideas tradicionales que tan útiles han demostrado ser, pero que se basan en la intuición. 
Esta nueva forma de entender la química cuántica se conoce como topología químico-cuántica 
(QCT). El paraguas QCT ampara diferentes herramientas, como los índices de localización (LI) y
deslocalización (DI), definidos dentro de la teoría cuántica de átomos en moléculas (QTAIM), así
como las funciones de distribución electrónica (EDF) y los orbitales naturales adaptativos 
(NAdOs), todo en el espacio real, donde la mente del químico está acostumbrada a trabajar y 
donde el concepto de enlace químico toma sentido. 

En la presente tesis doctoral ahondamos en la utilización de estas herramientas. Demostramos 
que los LIs y DIs son cantidades capaces de caracterizar sistemas metálicos y aislantes, tanto 
moléculares como en el estado sólido, desde un punto de vista teórico, es decir, con la gran 
ventaja de sólo necesitar de un cálculo computacional, sin involucrar ningún tipo de 
experimento. Se han aplicado en cadenas y anillos modelo, así como en cadenas y anillos de 
átomos de hidrógeno. Se analiza a su vez el efecto que tiene sobre ellos la correlación 
electrónica. También se extiende la aplicación de las EDFs, hasta ahora solo calculadas en 
moléculas, a sistemas en estado sólido: NaCl, diamante y grafito, y sodio metálico, como 
modelos de enlace iónico, covalente y metálico, respectivamente. Estas funciones de 
distribución electrónica permiten hacer un análisis pormenorizado de la “personalidad” de un 
sistema, cristal en nuestro caso, proporcionando así información del porqué de su 
comportamientos en cualquier tipo de ambiente. Tanto los LIs y DIs como las EDFs responden a
la contemplación del enlace químico desde un punto de vista estadístico, lo que proporciona una
mirada original a un concepto de larga trayectoria. 



                                                               

Por otro lado, los NAdOs son funciones representables gráficamente y que por su carácter 
monoelectrónico ofrecen una imagen del enlace químico similar a la de los orbitales 
moleculares, a los que la comunidad química está acostrumbrada. Complementan por tanto la 
información de los DIs y las EDFs, haciendo que el enlace se comprenda mejor y además, 
pueda contemplarse mejor. En este trabajo se han aplicado los NadOs, que hasta ahora solo se 
habían estudiado en moléculas, a los mismos sistemas cristalinos para los que se evaluaron las 
EDFs. 

El resultado es un trabajo que recoge las más originales ideas sobre el enlace químico y que 
constituyen el state of the art de la ciencia química, y las extiende a nuevos territorios donde no 
se conocía su comportamiento, aumentando así su carácter general.

RESUMEN (en Inglés)

Chemistry is a scientific discipline whose deepest concepts have been interpreted allegorically 
by Frenking and Krapp [J Comput Chem 28: 15-24, 2007] as unicorns, referring to something 
that everyone knows but no one has ever seen. As responsible for understanding substances 
and their transformations, chemistry has introduced since its inception, concepts with a largely 
mythical background, resilient for they have served to bring it to the state in which it is today, but
fragile if we consider their scientific basis. The chemical bond is one those concepts, central to 
chemistry for it governs the relations between atoms and molecules, thus defining the behavior 
of the substances. Due to its relevance, it has undergone numerous transformations that have 
tried to give it a sound physical reasoning.

With the development of quantum mechanics as a theory of the microscopic world in the early 
twentieth century and its application to chemical systems, the bond concept has gained in 
sophistication and physical content. However, this progress has occurred mainly in abstract 
spaces other than the real space, which require from the reader an advanced physical 
background for proper understanding.

While ago, the scientific community has tried to give a twist to the way the chemical bond is 
looked at, pursuing to reconcile the physical and mathematical rigor of its definition with the 
traditional ideas, which have proved to be extremely useful, but are built on an intuitive basis 
though. This new look at quantum chemistry is known as quantum chemical topology (QCT). 
The QCT umbrella covers different tools, such as localization (LI) and delocalization indices 
(DI), defined within the quantum theory of atoms in molecules (QTAIM), the electron distribution 
functions (EDF) and the adaptive natural orbitals (NAdO), all defined in the real space, where 
the mind of the chemical is used to work in and where the concept of chemical bond makes 
sense.

In this thesis we delve into the use of these tools. We show that LIs and DIs are quantities 
capable of characterizing metal and insulating systems, both in molecules and in the solid state,
from a theoretical point of view, that is, with the advantage that only a computer is needed in 
order to carry out the calculation and no experiment is involved. These indices have been 
applied in both model and real chains and rings of hydrogen atoms. The effect that the electron 
correlation exerts on them has been analyzed as well. The study is extended to the application 
of the EDFs, so far only calculated in molecules, to solid state systems: NaCl, diamond and 
graphite, and metallic sodium as model compounds of ionic, covalent and metallic bonding, 
respectively. EDFs allow a detailed analysis of the "personality" of a system, crystalline in our 
case, through the scrutiny of its electron distribution, offering that way an explanation of its 
behaviour in any environment. Both LIs and DIs, as well as EDFs respond to the observation of 
the chemical bond from a statistical point of view, providing an original look at the chemical 



                                                               

bond, a concept with a long career.

On the other hand, NAdOs are graphically representable one-electron functions that provide an 
image similar to that of the molecular orbitals, picture to which the chemical community is 
accustomed. They therefore complement the information provided by the DIs and EDFs, visually
endorsing the understanding of the chemical bond. In this work have the NAdOs, so far only 
studied in molecules, have been applied in the same crystal systems as the EDFs.

The result is a PhD thesis that collects the most original ideas on chemical bonding that are the 
state of the art of quantum chemistry, and extends them to unexplored territories, thereby 
increasing their general character.
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Unlike Newton’s mechanics, or Maxwell’s electrodynamics, or
Einstein’s relativity, quantum theory was not created—or even
definitively packaged—by one individual, and it retains to this day
some of the scars of its exhilarating but traumatic youth. There is
no general consensus as to what its fundamental principles are,
how it should be taught, or what it really “means". Every
competent physicist can “do" quantum mechanics, but the stories
we tell ourselves about what we are doing are as various as the
tales of Scheherazade, and almost as implausible. Niels Bohr said,
“If you are not confused by quantum physics then you haven’t
really understood it"; Richard Feynman remarked, “I think I can
safely say that nobody understands quantum mechanics".

Introduction to Quantum Mechanics
David J. Griffiths

At the end of the nineteenth century, and although the atomistic
nature of matter was already known, it was felt that the laws of na-
ture were well understood and that it was just a matter of time that a
rationalization of all physical phenomena would be achieved. How-
ever, some scientists began to notice that Newtonian laws were not
able to explain phenomena at the atomic level[160]. As the focus of
their investigations changed from the dynamics of macroscopic bod-
ies to entities of atomic dimensions, it was recognized that the older
laws were not applicable to atoms or electrons without considerable
modification[124]. The behaviour of atoms and molecules can be un-
derstood from the laws governing the motion of atoms and electrons.
A new theory then appears, a theory of the very small: the body of scien-
tific principles that explains the behaviour of matter and its interactions with
energy on the scale of atoms and subatomic particles[163], which is not a
smooth continuation of the classical mechanics, but a conceptually rich
and also technically difficult theory[63]. Although clear analogies ex-
ist between classical mechanics and quantum mechanics, the name this
new theory was given, the latter has a very distinct formulation that
arises from a very different perspective regarding the way nature is
observed.

The “old quantum theory”, as Pauling called it[124], was born at
the beginning of the twentieth century with Planck’s solution to the
black body radiation conundrum[126]. Without explicitly stating the
idea of light quantization, Planck had introduced during his investi-
gations a finite constant h not existent in the classical theory[160]. It
was in 1905 that Einstein introduced the idea of light quanta[41], for
which he later received the Nobel price. This concept, as he showed
in a posterior article[40], was implicitly used by Planck in his earlier
work. With the idea of the electromagnetic energy being quantized in
packages of energy hν, named photons, Einstein gave a satisfactory
explanation of the photoelectric effect[39]. Armed with this ideas,
Bohr introduced the atomic model by postulating a discrete number
of allowed energy levels in the hydrogen atom[24].
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In 1927, after the famous Solvay conference in Brussels, the field of
quantum physics was widely accepted and applied to many different
disciplines, including the one that interests us: chemistry. The appli-
cation of the Schrödinger equation to the hydrogen atom in 1926[143],
as well as the first quantum-mechanical approach to the hydrogen
molecule in 1927[66] are considered as the true birth of quantum
chemistry[90, 164]. The successful application of the quantum ideas
and the subsequent description of simple systems from the perspec-
tive of a quantized nature of the matter, such as the harmonic oscil-
lator, the oscillating and rotating diatomic molecule or the particle in
a box, to cite a few examples, gave this theory the sufficient strength
that led to the modern formulation of quantum mechanics[124, 165].

As a central discipline that is involved in every single natural pro-
cess, the formation of substances and their transformations has been a
main concern since the first attempts to understand nature. The chem-
ical bond is the bridge between the original alchemical reasoning of
the chemical transformations and the new perspectives of molecules
changing into one another by breaking old bonds and making new
ones. The bond concept extends its roots way back to the chemists
that tried to overcome the spiritual view of chemistry as bunch of
magical processes[145].

The new era in the study of the chemical bond is widely accepted to
have started with the asseveration of Lewis that the electron pairs con-
stitute the fundamental blocks of matter[91]. Previous to the devel-
opment of the quantum chemistry as an appropriate tool to describe
chemical processes, he introduced the cubical atom model and the
electron pairing to explain the chemical bond. His observations con-
sider the formation of electronic pairs as a phenomenon that cannot
be understood just in terms of electrostatic interactions, and postu-
lates a violation of the Coulomb law for the electronic coupling.

The quantum study of a chemical system consists in obtaining an
approximation to its wave function, the quantum mechanical object
that completely characterizes any physical system, by solving an ap-
proximation to the fundamental or Schrödinger equation. It was the
great development of the quantum chemistry that came later which
permitted the explanation of the underlying processes, and made it
possible to recognize the Pauli principle as the reason for the viola-
tion that Lewis had stated.

The subsequent study of Heitler and London already mentioned
[66], followed by the works of Pauling[122], Slater[155], Mulliken[119],
Hund[70] or Hückel[69] among many others, made it clear that the
new quantum theory was offering satisfactory explanations to the
problems of chemistry. Several decades after, the chemical bond, de-
spite its crucial importance, keeps intriguing the scientific commu-
nity for various reasons. On the one hand, Lewis’ classical ideas
blend with difficulty with the quantum image. The former are based
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on the concept of electron pairs and its sharing among the different
chemical species are far from easy to be given a quantum-mechanical
reasoning. There is not such a thing as a Lewis pair in the complex
multidimensional mathematical object that a wave function is, whose
analysis does not easily provide a intuitive representation of the var-
ious concepts used in chemistry, maybe with the exception of the
simplest molecular systems.

On the other hand, there does not exist an observable operator
for the chemical bond, so that it cannot be experimentally deter-
mined. For both reasons, chemists have been forced to develop the-
ories, methods, concepts,. . . to write the information contained in a
wave function in a language that the chemists’ mind understands.

In the subsequent years, the increasingly important study of the
chemical systems in quantum-mechanical terms gave rise to many
theories that tried to explain the experimental facts, and in particular
the chemical bond. Two captured an special attention: the molecular
orbital (MO) and the valence bond (VB) theories.

For different reasons that will not be discussed in this succinct intro-
duction, the MO prevailed over the VB theory, and is still nowadays
an extremely useful tool with great descriptive and predictive power.
As it can be deduced from its name, the MO theory is based on the
description of the spatial distribution of the electrons with monoelec-
tronic functions known as orbitals. The orbitals have the great advan-
tage that they can be graphically represented, and on the other side,
mean a drastic reduction of the dimensionality of the wave function
from a 3N or (3+1)N-dimensional problem, to N 3- or 4-dimensional
problems.

Despite its crucial importance in the development of chemistry, the
MO theory suffers from some limitations originated in its monoelec-
tronic basis. The wave function is invariant under orbital transforma-
tions, opening the problem of which orbital representations should
be taken as reference, since there are infinite for a given wave func-
tion. Additionally, the electron correlation must be considered in
most chemical systems of interest in order to obtain a satisfying de-
scription of them and therefore one must search for alternative theo-
ries beyond the monoelectronic approach.

With this aim, the theoretical chemistry community has dedicated
itself to the search for new physically rigorous theories, that rather
than annihilating the widespread concepts originated from Lewis
ideas, try conciliate them with the principles of quantum mechan-
ics. The already mentioned idea of an electron pair shared between
two atoms, together with the process of electron transfer from one
atom to another and the notion of Pauling’s resonance[123], form a
hard core that still stands to this day, and there is no advantage in
putting them aside.
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These overwhelmingly successful ideas conform the chemical intu-
ition, deeply rooted in the chemist’s mind, that is an invaluable tool
in his every day’s work. The new theories are required to i) recover
these concepts by means of generic methods, not subject to a fixed
procedure as it is the case of the MO and VB approaches. Besides,
the search focuses on ii) theories in the real space —in contrast to
the Fock space—, where all the aforementioned concepts reside, and
where the chemist’s mind is accustomed to work. They are iii) ideally
of a not too high complexity, easily understandable by the not spe-
cialized scientific communities such as for instance the experimental
chemists, and also iv) endowed with predictive power.

The best known approaches, collecting the enumerated precondi-
tions are based on a partition of the real space by way of a gradi-
ent acting on some scalar field carrying chemical content, and are
grouped under the umbrella of the quantum chemical topology (QCT)
name[136, 137]. This standpoint, also known as the topological analy-
sis of the wave function, started with the work of Richard F. W. Bader
in the ’60s, and is based in the widely used strategy of dividing the
space of interest into smaller regions, endowed with physical mean-
ing, to tackle chemical problems. Therefore, the topological analyses
not only exhaustively partition the space, but also discretize it so that
the examination of a scalar field can be enclosed to specific regions of
particular importance, rather than extend the whole space.

Among the ream of scalar fields that can be used, as for instance the
Laplacian of the electron density ∇2ρ, or the widely used ELF[21] or
the ELI[81] functions, the electron density ρ is the most successful one.
The quantum theory of atoms in molecules (QTAIM)[12] is a very
well-known theory, central to this PhD thesis, that defines regions of
zero-flux of ρ, which results in a division of the space into atomic
regions.

The delocalization index (DI) is defined within Bader and Stephens’
QTAIM theory[10] as a descriptor of how many pairs of electrons are
shared —delocalized— between two atomic regions of the kind just
described, in the real space. In order to calculate the DI, only the
first- and second-order reduced density matrices, also referred to as 1-
RDM and 2-RDM, respectively, are necessary. The 1- and 2-RDMs, as
it will be described more in detail later on, are condensations of the to-
tal wave function that carry all the information that the wave function
contains about one and two particle interactions, respectively. As the
Schrödinger equation does not consider interactions between more
than two particles, the 2-RDM is in principle the highest-order RDM
necessary to characterize the chemical bond. The size of the problem
is reduced to at most a two-particle quantity, which make the DIs an
affordable tool in terms of the computational effort required to eval-
uate them. The DIs have been used to study many different chemical
problems, as the bonding in aromatic compounds[95, 105, 106, 127]
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and in solids[18, 56], the study of the bond transformation with reac-
tion coordinates[57], among many others.

Kohn published a seminal paper in 1964[77], in which he showed
that insulators and conductors do not differ, as it was believed un-
til then[74], only in the nature of their excited states, which implies
hence a description far from the real space, but also in the organiza-
tion of their electrons in the ground state. Resta did in 1998[84] a
reformulation of Kohn’s ideas, which has as consequence that con-
ductivity should leave scars in the RDMs, defined in the real space.

As deriving from the 2-RDM (the 1-RDM in the case of monodeter-
minantal wave functions), the DI is an attractive tool to study metal-
licity from the real space standpoint. A second connection is estab-
lished by the naive association made by the chemist’s mind between a
material with conducting properties and highly delocalized electron
networks. As a measure of the electron delocalization, the nature it-
self of the DI directly connects it to metallic or insulating character,
but its ability to characterize the degree of metallicity of a system,
being a priori appealingly clear, has yet never been put under study
though.

It is a main goal of this work, after the corresponding introduction
to the general ideas of the quantum chemistry and the solid state of
Part II, to show that the DI is a suitable index to characterize from
the ground state the behaviour of, not only in the solid state but also
molecular systems, both in model and real cases, under electric fields.
This is the content of Part III, divided into a first Chapter 4 where no
correlation is considered and a second 5 at the correlated level.

Let us come back to a exhaustive partition of the real space occu-
pied by a system. The particle number operator does not commute
with the Hamiltonian of the system, so that if we ask how many elec-
trons are there in a region of space, no definite number is obtained.
On the contrary, we can only talk about average electron populations
and for a given partition, an electron distribution will occur with a
certain probability. The frontiers of the domains in which the space
is divided must be considered as permeable, so the concept of fluc-
tuation becomes central: the higher the fluctuation, the lower the
localization.

Within this context, Daudel et al. occupied themselves in the search
for a function that determines the probability to find a given number
of electrons inside a region of space[37]. Savin gave later a turn to
this approach by using these probabilities to study the electron dis-
tribution in the setting of a QTAIM partitioning[32, 141]. The thread
was resumed around a decade ago by Martín Pendás and co-workers,
introducing the electron distribution function (EDF)[54, 100, 101], an
statistical interpretation of the chemical bond. For a given partition
of the space, each electron distribution, or resonant structure in Paul-
ing’s terms, has a probability which is a weight of this probability in
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the total set of resonant structures that the molecule can adopt. Part
IV deals with the application of this original view of the chemical
bond in solid state metallic, insulating and ionic systems.

The ubiquitous MO theory, for it is based in monoelectronic func-
tions, fails when the electron correlation plays a fundamental role.
Towards the search of an alternative standpoint to the MO theory, a
generalization must be done that allows to explore the yet to a great
extent unknown territory of the electron correlation, but at the same
time tending to the MO ideas if the correlation is removed. We are
entering a generalized electron population analysis.

RDMs are the suitable base for these new concepts, for they are
condensations of the system wave function, and therefore less com-
plex, but stills carry the information we want. Although the tradi-
tional bond is basically a 2-centre, 2-electron bond, from higher-order
RDMs also higher-order DIs can be obtained and that way multicen-
tre bonds can be studied.

From a diagonalization procedure that involves cumulants, which
are just special parts of the RDMs that are irreducible, in a certain
spin orbital representation, a series of functions of particular interest
can be obtained. These are representable monoelectronic functions
obtained for multicentre bonds. Therefore one gets from them an
orbital picture very similar to that yielded by the MO theory, but
with information of 2 or higher-order bonding —for they derive from
two- or higher-order cumulants, i.e., RDMs—. The brilliant idea of
obtaining those functions is Ponec’s idea, who gave them the name,
in the case of just one-centre, of domain-average Fermi hole (DAFH)
functions[129, 130]. A generalization of the DAFHs to ν-centres was
done at the quantum chemistry group in the University of Oviedo by
Francisco et al., who proposed the name of natural adaptive orbitals
(NAdOs)[113]. In the case of three centres, the NAdOs can be seen
as a partition of a traditional two-centre bond in monoelectronic con-
tributions. The 2-NAdOs will be analyzed within this work, together
with the EDFs, in the solid state systems of Part IV.

In the last Part V we tried to apply the DIs to map an insulator-
to-metal transition in the MnO. Transition metal oxides (TMOs) are
strongly correlated systems with partially filled d-bands that show in-
sulating behaviour in the ground state. TMOs can suffer an inversion
in their electric properties, becoming metals from an insulating state
as a consequence of a change in the correlation strength triggered by
some alteration in the physical properties. As the inversion, known
as a Mott transition[26], is originated in the electronic structure of
the TMO and after the success of the DI in differentiating metallic
from insulating behaviour, it is tempting to check whether these in-
dices capture the switch in the delocalization that takes place during
a Mott transition.
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The correct description of a Mott insulators, name given to the
TMOs that undergo a Mott transition, as insulating systems although
being oxides of transition metals has been yet not achieved. This is
one of the biggest failures of the band theory, which predicts the Mott
insulators to be metals in their ground state. The recent development
of a new theory, known as the reduced density-matrix functional the-
ory (RDMFT)[60] appeared as the solution to this problem for it was
shown it could provide a correct theoretical description of a Mott
insulator[147, 148]. However and although we established contact
with the authors of these publications, their results were not repro-
ducible, at least with our computational resources. The early stage of
the development of the theory, as well as the rapidly scaling compu-
tational cost are the reasons behind this failure.

Part VI just wraps up summarizing some conclusions that we think
important to stress from this thesis.
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1 G E N E R A L Q U A N T U M
C H E M I S T R Y

Let us now briefly introduce the basic ideas, that will allow us to
construct an eloquent exposition of the results of our research.

1.1 the schrödinger equation and the many
electron wave function: the orbital ap-
proximation

The main concern of quantum chemistry is the problem of many
electrons moving in a field of fixed nuclei. We will introduce now the
many-electron problem and what the approximations generally used
to solve it are.

It is a basic tenet of quantum mechanics that all the information
that can be obtained from a system is contained in its wave function
Ψ, which is the solution of the so-called Schrödinger equation:

ĤΨ = i∂tΨ. (1)

In the above equation, Ĥ is the Hamiltonian operator, whose spec-
trum yields the allowed energy values of the system. In the case of
a time independent Hamiltonian, the energy of the system E results
from the application of the Hamiltonian operator Ĥ to the aforemen-
tioned wave function Ψ: ĤΨ = EΨ. For a many body problem, the
last equation can be rewritten as:

ĤΨ(r1, . . . , rN,RA, . . . ,RM) = EΨ(r1, . . . , rN,RA, . . . ,RM), (2)

where the positions of the N electrons and the M nuclei are de-
noted by rN and RM, respectively, and the Hamiltonian operator Ĥ
adopts the form:

Ĥ = −

N∑
i=1

1

2
∇2i −

M∑
A=1

1

2MA
∇2A −

N∑
i=1

M∑
A=1

ZA
riA

+

+

N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB
RAB

. (3)

Nuclei and electrons are designated by A,B and i, j, respectively.
Nucleus A has nuclear charge ZA and MA is the ratio of its mass to
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14 general quantum chemistry

the mass of an electron, in any case using atomic units. The Laplace
operator ∇2 involves the second derivative with respect to the spa-
tial coordinates of the ith electron and of the Ath nucleus. The first
two terms describe the kinetic energy of electrons and nuclei, respec-
tively. The remaining three terms are potential ones and represent, in
this order, the attractive electrostatic nucleus-electron interaction and
the potential describing the electron-electron and the nucleus-nucleus
repulsion.

1.1.1 The Born-Oppenheimer approximation

The description of chemical systems with the tools of the quantum
mechanics is a very difficult task, made feasible by means of different
approximations. A paramount one within quantum chemistry is the
Born-Oppenheimer approximation.

Due to their heavier nature, nuclei move very slowly when com-
pared with the lightweight electrons,1 This allows us to assume that,
to a very good approximation, the electrons are the only mobile par-
ticles in a molecule. That way, the Born-Oppenheimer approximation
assumes the electron motion uncoupled from the motion of the nu-
clei, which are now fixed, and considers both movements separately.
Equation 3 is thus simplified by noticing that the nuclear kinetic en-
ergy vanishes, and the last term in this expression, which accounts
for the nuclear repulsion is constant. Since addition of a constant
to an operator does not change its eigenvectors, simply shifting its
spectrum, this term can also be neglected and expression 3 reduces
to

Ĥelec = −

N∑
i=1

1

2
∇2i −

N∑
i=1

M∑
A=1

ZA
riA

+

N∑
i=1

N∑
j>i

1

rij
= T̂ + V̂Ne+ V̂ee, (4)

which is the electronic Hamiltonian describing the motion of N
electrons in the field of M fixed nuclei now represented by point
charges. T̂ is the kinetic energy operator, and V̂Ne and V̂ee are the
operators denoting the nucleus-electron and the electron-electron in-
teractions, respectively.

The electronic Schrödinger equation is now formulated as

ĤelecΨelec = EelecΨelec, (5)

analogous to the general equation 3, but where the energy Eelec
and the wave function Ψelec are now electronic objects. The total
energy is recovered according to

Etot = Eelec + Enuc. (6)

1 The nucleus-electron mass ratio for the lightest nucleus (proton 1H) is of 1,836152.
For very common atoms as C, the ratio is increased to about 20,000.
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A more detailed discussion on the nuclear Schrödinger equation
and the treatment of a wave function where nuclei also move can be
found in the cited literature, as for example in references [75, 157].

1.1.2 Antisymmetry and the Pauli exclusion principle

Although the Hamiltonian of equation 4 depends only on the spa-
tial coordinates of the electrons, a complete description of a system
demands to consider their spin coordinates as well. The wave func-
tion is then Ψ(x1, x2 . . . , xN), where both the spatial ri and the spin
σi coordinates of the ith electron are included in xi = (ri,σi).

According to Max Born’s interpretation, the square of the wave
function yields the probability density of finding electron 1 in dx1, 2

in dx2, . . . and N in dxN, simultaneously:

|Ψ(x1, x2 . . . xN)|2dx1dx2 . . . dxN. (7)

For indistinguishable particles this probability is not affected by
the exchange of the coordinates of two of them. Nature offers two
possible situations that can result from the permutation of the co-
ordinates of two particles: either the N-wave function remains the
same after the permutation, in which case the considered particles
are called bosons, or its spin is also flipped (is antisymmetric), and
then the particles we are dealing with are named fermions. Electrons
are fermionic particles with spin = 1/2 and the wave function Ψ is
therefore antisymmetric:

Ψ(x1, x2 . . . xN) = −Ψ(x2, x1 . . . xN). (8)

The last equation is the quantum-mechanical expression of the Pauli
exclusion principle. Ψ is of course normalized, so the probability to
find the N electrons in the whole space equal to unity:∫

|Ψ(x1, x2 . . . xN)|2dx1dx2 . . . dxN = 1. (9)

1.1.3 The orbital approximation

After assuming the Born-Oppenheimer approximation, each of the
electrons that form the system is moving under the influence of the
frozen nuclei and the other electrons. Another vital approximation in
quantum chemistry limits what kind of influence that is. If the elec-
tron is considered as a negatively charged particle moving under the
influence of a mean field created, on the one hand by the potential of
the positively charged, fixed nuclei, and on the other hand by an aver-
aged interaction of the remaining electrons, this new approximation
is known as the mean field electron model or the orbital approximation.
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Within the so-called orbital approximation, notwithstanding their
antisymmetry requirement, the electrons are treated as independent
particles and consequently, the total electronic Hamiltonian of equa-
tion 4 can be written as a sum of one-particle effective Hamiltonians

Ĥelec =
∑

ĥeff, (10)

and very importantly, the many-body wave function can then be ex-
pressed as an antisymmetrized product of one-particle functions ψ

Ψelec(x1, x2) = A
∏
i

ψi. (11)

As we will only consider the electronic structure of matter in this
work, any reference to the total wave function of a system Ψ will be
addressing namely the electronic wave function Ψelec.

Molecular orbitals

The one-particle wave functions ψi introduced in equation 11 are
spin orbitals of the form

ψ(xi) = φ(ri)σ(s). (12)

A spin orbital is a function that describes a mean-field electron formed
by two parts: a spatial term φ that accounts for the position of elec-
tron i, and a spinorial one, σ, describing its spin. s can adopt either
the α —spin-up— form with ms = +12 or alternatively the β —spin-
down— one with ms = −12 .

In atomic or molecular systems, which unlike crystals span a finite
volume, the spatial part φ of the spin orbital is normally approxi-
mated as a linear combination of either Slater-type functions (STF)
or more frequently Gaussian-type functions (GTF). The collection of
atomic-centred functions {χi} of either STF- or GTF-type, or a combi-
nation of both, is known as the basis set. The procedure of expanding
a wave function ψ as a linear combination of functions of the basis
set is given the name linear combination of atomic orbitals (LCAO) and
has the form

ψj =

N∑
i=1

cijχi, (13)

where cij are the coefficients of the expansion.
In a molecular context, the total wave function Ψ is then expressed

as an antisymmetrized product of one-particle wave functions ψi, the
molecular orbitals, which are in turn approximated according to the
LCAO procedure. The particular procedure of combining ψ functions
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to recover Ψ, has been historically done through either of two differ-
ent approaches. On the one hand, the valence bond theory sees the
molecular orbitals as functions localized in the bonding region, while
the second strategy provides a picture in which the molecular orbitals
spread all over the molecular space. This latter approach is the molec-
ular orbital theory (MO), which has had much more success and has
been used in most of the quantum studies of chemical systems up to
our days.

The electronic Schrödinger equation shown in the equation 5 con-
sequently reduces to an effective one-electron Schrödinger equation,

ĥeffψj = εjψj. (14)

1.2 the hartree-fock approximation

After all the approximations we have briefly introduced, a practical
method is necessary in order for the previous ideas to be applicable
to real systems: this role is played by the Hartree-Fock (HF) method.
In the search for approximate solutions to the electronic Schrödinger
equation 14, despite being founded on a strongly simplifying assump-
tion that we will discuss immediately, the Hartree-Fock procedure
still represents not only the cornerstone of all conventional, i.e., wave
function based quantum chemical methods, but also a conceptually
very relevant theory as a first step towards more accurate approxima-
tions.

The simplest antisymmetric wave function, i.e., a wave function
that fulfills the Pauli exclusion principle, of the ground state Ψ0 of a
closed-shell N-electron system, is a single Slater determinant

|Ψ0〉 = |ψ1ψ2 · · ·ψN〉 =

=
1√
N!

∣∣∣∣∣∣∣∣∣
ψ1(x1) ψ2(x1) · · · ψN(x1)

ψ1(x2) ψ2(x2) · · · ψN(x2)
...

...
. . .

...
ψ1(xN) ψ2(xN) · · · ψN(xN)

∣∣∣∣∣∣∣∣∣ . (15)

The best wave function that satisfies the above equation is found
variationally as that yielding the lowest energy:

E0 = 〈Ψ0|Ĥ|Ψ0〉, (16)

where Ĥ is the total Hamiltonian of the system. The main task of
the variational principle resides in finding the best approximation to
the unknown true ground state wave function Ψ0, which would have
associated a energy E0. A priceless power of this principle is that
the variationally determined energy E is an upper bound to the true
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ground state energy E0, which takes its lowest possible value. The
variational principle carries out its task by finding the best choice of
spin orbitals ψj, in turn expanded as stated in equation 13. That way,
one is sure to be closer to the true wave function Ψ0 if a new choice
of spin orbitals yields a lower (more negative) energy.

The minimization of the energy with respect to the spin-orbitals
leads to the derivation of an eigenvalue equation for each particle i.
These are collectively known as the Hartree-Fock equations

f̂iψ(xi) = εψ(xi). (17)

f̂i is Fock’s effective operator and ε the orbital energy (eigenvalue)
of the spin orbital (eigenvector) ψ.

In short, the HF method could be said to simplify the construction
of the complicated many-body wave function, reducing it to finding
single-electron functions which describe averaged electron-electron
repulsion. To that end, in the electronic Hamiltonian of equation 4

we replace the electron-electron repulsion term by vHFi :

f̂i = −
1

2
∇2i −

M∑
A=1

ZA
riA

+ vHFi , (18)

where the sum over the N electrons has been removed since f̂i is
a monoelectronic operator. vHFi is a one-electron effective potential
explicitly defined as

vHFi =
∑
j

(
Ĵj(xi) − K̂j(xi)

)
, (19)

the sum runs over all the spin orbitals ψj and Ĵj and K̂j are the
Coulomb and exchange operators, respectively. vHFi is the total av-
erage potential experienced by the electron i due to the influence of
the remaining electrons.

Developing the parenthesis of this equation, the HF potential can
be divided into two parts. The first one is the Coulomb potential

vcouli =
∑
j

Ĵj(xi) =
∑
j

∫ ∣∣ψj(x2)∣∣2 1
ri2
dx2, (20)

which accounts for the repulsive interaction exerted by electron 2

on electron i. The interaction between both electrons is weighted by
dx2

∣∣ψj(x2)∣∣2, the probability of electron 2 to be found in the volume
element dx2.

The second term in equation 19 is the exchange contribution to the
HF potential. It arises from the antisymmetric character of the Slater
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determinants and has no classical meaning. It can only be understood
through its effect when operating on a spin orbital:

K̂j(xi)ψ
′
j(xi) =

[ ∫
ψ∗j (x2)r

−1
12 ψ

′
j(x2)d(x2)

]
ψj(xi). (21)

It can be seen comparing the previous equation with equation 20

that the action of K̂j produces an exchange of the variables of the
two spin orbitals such that now ψ′j is occupied by x2. The result of
applying K̂j depends on the value of ψ′j in all points of space, so the
exchange operator is hence said to be nonlocal.

The total potential vHFi seen by electron i (equation 19) depends on
the spin orbitals of the remaining electrons. In other words, the Fock
operator (equation 18) depends on its own eigenfunctions, which re-
quires that the solution of equation 17 is known in order to be able
to solve this equation. This sort of dependency is solved by means of
an iterative procedure named self-consistent field (SCF) method.

Every SCF loop starts with a initial guess of the spin orbitals that
allows for the calculation of the mean potential vHFi seen by electron
i. Equation 17 is then solved and a new set of spin orbitals obtained,
from which again a potential vHFi is found closing one SCF loop and
starting the iteration again until convergence of both the ψ’s and ε’s
is attained (a schematic description of the SCF iterative process can
be seen in figure 1).

We have already mentioned that the second term in equation 4 is
also a potential that describes the interaction electron-nucleus. The
spatial arrangement of the nuclei is the unique part of the whole
equation that changes with the system under consideration. Hence,
whether our system is a solid, a molecule or an atom is determined
by the spatial arrangement of the nuclei, which is specified in the
electron-nucleus potential.

1.3 quantum chemical methods beyond hartree-
fock i: wave function methods

1.3.1 Configuration interaction

Within the HF theory, the ground state wave function of a closed
shell system is approximated by a single Slater determinant formed
by N occupied spin orbitals. Approximations to the excited states of
the system can also be proposed by constructing Slater determinants
in which any of the occupied spinorbitals is substituted by excited
solutions of the Hartree-Fock equations. It may be proven that the
exact wave function, Φ, may be expanded as a linear combination of
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the ground state determinant and those formed by all possible excited
ones. This is the basis of the Configuration Interaction (CI) method:

|Φ0〉 = c0|Ψ0〉+
∑
ra

cra|Ψ
r
a〉+

∑
a<b
r<s

crsab|Ψ
rs
ab〉+ · · · , (22)

where |Ψ0〉 is the HF wave function, |Ψra〉 are the single-excited de-
terminants, |Ψrsab〉 accounts for double excitations and so on, and c0,
cra,. . . are the coefficients of the linear combination, which are also
variationally optimized within the CI method.

By ignoring the contribution of the excited determinants, the HF
approach neglects all of the instantaneous correlations that exists be-
tween electrons, beyond that related to anstisymmetry. Neglecting
the correlation implies then ignoring some of Coulomb repulsion,
and electrons within HF are closer to each other than in the real sit-
uation. Consequently the “HF system” is less stable than it really is
|EHF| < |E0|. As it is a variational method, the EHF is an upper bound
to the exact, non-relativistic energy E0. The difference between both
energies is a negative quantity called the correlation energy

Ecorr = E0 − EHF. (23)

A linear combination of Slater determinants of all the possible ex-
citations of the N electrons to all the molecular orbitals of the sys-
tem would yield the full CI wave function of the system, and would
offer the exact energy within the one-electron basis set used. This
energy will approach the true energy of the system as the basis set
approaches completeness.

1.3.2 Configuration interaction single and doubles

The actual number of determinants that have to be considered in
a full CI calculation can be reduced according to Brillouin’s theorem,
which states that the ground-state determinant cannot directly mix
with single-excited determinants (see for instance [157]). Although
they can mix through double or higher order excitations, this cuts
down the collection of determinants that must be considered. Despite
this simplification and the conceptually simple mathematical full CI
formulation, its computational cost grows with the size of the system
at a rate that makes it a prohibitive approach for the majority of the
real systems. Fortunately, the higher the order of the excitation, the
lower the weight of the wave function terms. To a good approxima-
tion, one can thus accomplish a truncation of the full CI expansion of
equation 24. Of course, the full CI expansion could be stopped at any
excitation, but experience has demonstrated that the wave function of
the system can be accurately approximated by considering only those
Slater determinants differing from the ground state in only one or two
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spin-orbitals. In other words, by neglecting the Slater determinants
involving excitations of more than two electrons. The procedure that
corresponds to a truncated full CI at the double excitations is known
as single and doubles CI (CISD). Equation 24 becomes

|ΦCISD〉 = c0|Ψ0〉+ cS|ΨS〉+ cD|ΨD〉, (24)

where |ΨS〉 and |ΨD〉 are the terms that account for the single and
double excitations, respectively.

1.3.3 Multi-configuration self-consistent field

Within HF, the molecular orbitals ψj are optimized, but combined
in just a single Slater determinant to approximate the wave function.
Differently, in CI not the molecular orbitals but the coefficients c of
the expansion are varied, optimizing that way the linear combina-
tion in terms of which the wave function is pictured. The multi-
configuration self-consistent field (MCSCF) is a combination of both

|ΦMCSCF〉 =
∑
I

cI|ΨI〉, (25)

in which the coefficients of the expansion cI, as well as the Slater
determinants ΨI are optimized. Let us recall that Slater determinants
are made of molecular orbitals as shown in equation 15, that in turn
are a linear combination of basis functions (equation 13).

As equation 25 is a truncation of a CI expansion, it still remains
to be decided how many Slater determinants are to be included in
the linear combination. A particularly important strategy to do so is
the complete active space or CASSCF, which in brief consists of a full
CI done in a restricted space of determinants of adjustable size. The
user specifies an active space, which consists of a number of active
electrons and a set of active and virtual orbitals that those electrons
occupy and can be excited to. All possible excitations of the selected
electrons among the chosen orbitals are taken into account. An active
space including all electrons in all the molecular orbitals available
according to the chosen basis set would be a full CI exactly as that
described above. CASSCF can also be considered as a truncated CI.

On the water molecule with a basis of let us say 12 orbitals, a
CASSCF[4,10] calculation would mean that the 1s22s2 electrons of
the oxygen and the 2 electrons of the hydrogen atoms are fixed and
fully occupy the 3 lowest orbitals. The remaining 4 p-electrons of the
oxygen are allowed to occupy any of the 10 next orbitals, so that it
can be said that a full CI is performed for this 4 weight electrons in
the active space formed by 10 orbitals.
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1.4 quantum chemical methods beyond hartree-
fock ii: density functional methods

One among the most successful post-HF methods, which was worth
a Nobel price to one of its major developers Walter Kohn in 1998, is
known as the density functional theory (DFT). It is endowed with a
good treatment of the electron correlation, concept that will be ex-
plained more in detail in the next section 1.5, at a very low computa-
tional cost when compared to wave function post-HF methods, which
opened up the possibility to theoretically treat complex real systems,
such as solid state compounds, to which DFT is systematically ap-
plied.

The wave function of a system depends on 4N variables (3 spatial
coordinates per electron plus the spin) which makes it a complicated
object that can be fully analyzed only in very small systems. Most
of the chemical structures of interest in biology, materials science, etc.
are therefore entirely intractable. In addition to the large computa-
tional expense, the complexity of the wave function makes it very
difficulty to obtain a clear description of the system and an intuitive
interpretation of it. Those reasons make it desirable to find an alter-
native, in which more simple quantities are used, without loosing all
the information necessary to describe a chemical system. Addition-
ally, the total Hamiltonian is a function of only one- and two-particle
operators (see Section 1.5 and equation 43 in particular), which sug-
gests that the wave function needs not to be considered as a whole.
The low-order (first- and second-order specifically) density matrices
are in principle sufficient to provide us with the information neces-
sary to solve the majority of the problems of quantum chemistry, for
they mainly consist on 1- and 2-body interactions.

The DFT is characterized by taking one of these density matrices
as its central quantity: the first-order density matrix or simply its
diagonal part the electron density ρ(r) —a real space quantity that
depends only on the 3 spatial coordinates of the electron— rather
than the whole wave function Ψ. It assumes that, in principle, the
Schrödinger equation can be solved by using functionals of the elec-
tron density, a promising solution to the aforementioned problems.

1.4.1 First Hohenberg-Kohn theorem

Many attempts were done in order to find a practical way of solv-
ing the Schrödinger equation using ρ. The most successful one is
established by the first Hohenberg-Kohn theorem.

The electron density ρ is firstly proved to be a suitable quantity to
solve the Schrödinger equation (equation 1) in the paper published by
Hohenberg and Kohn in 1964 [67]. In there —quoting literally [67]—
is stated that “the external potential Vext(r) is (to within a constant) a



1.4 post-hf methods ii: density-based 23

unique functional of ρ(r); since in turn Vext(r) fixes Ĥ we see that the full
many body particle ground state is a unique functional of ρ(r)”. A proof
for this statement is easily found by reductio ad absurdum, in which the
consideration of two different external potentials Vext and V ′ext can
not lead to the same density ρ(r). The role of the external potential
is therefore crucial in the aforementioned assertion, the foundation
upon which the whole DFT is built. Once proven that the ground
state density ρ0(r) uniquely determines the external potential Vext,
one can conclude it also decides all the other properties of the system
in its ground state, as this sketch summarizes

ρ0 −→
{
N,ZA,RA

}
−→ Ĥ −→ Ψ0 −→ E0 (26)

In our case, the external potential is the attractive potential exerted
on the electrons by the nuclei Vext = VNe. The total energy of the
ground state E0 can be divided in three components: the electron-
electron repulsion Eee, the kinetic energy T and the external po-
tential now in the form of an attractive nucleus-electron interaction
ENe[ρ0] =

∫
ρ0(r)VNedr. As the complete ground state energy is fully

determined by the ground electron density ρ0, so are its components,

E0[ρ0] = ENe[ρ0] + Eee[ρ0] + T [ρ0] (27)

which are in turn functionals ρ0. The kinetic T as well as the electron-
electron repulsion energy Eee in the expression above are system-
independent quantities. However, the term accounting for the nucleus-
electron electrostatic interaction ENe is the term that defines the kind
of system that is considered:

E0[ρ0] =

∫
ρ0(r)VNedr︸ ︷︷ ︸

System−dependent

+ T [ρ0] + Eee[ρ0]︸ ︷︷ ︸
Universal

, (28)

The last two terms on the right hand side of equation 28 can be
gathered under a new quantity called the Hohenberg-Kohn functional,
defined as

FHK[ρ0] = T [ρ0] + Eee[ρ0], (29)

which remains unchanged no matter the system and is acknowledged
to be the holy grail of DFT.

Equation 28 can now be rewritten as

E0[ρ0] =

∫
ρ0(r)VNedr+ FHK[ρ0]. (30)
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Apart from the electron kinetic energy T it contains information about
the electron-electron interaction:

Eee[ρ] =
1

2

∫
dr1

∫
ρ(r1)ρ(r2)

r12
dr2 + Encl[ρ]. (31)

The first term is the classical part known as the Coulomb repulsion
J[ρ], whereas the second Encl[ρ] is non-classical and accounts for the
self-interaction correction and the inter particle correlation.

1.4.2 Second Hohenberg-Kohn theorem

We know now from the first H-K theorem that the ground state
electron density suffices to determine any of the properties of the
system. The next step, also solved by Hohenberg and Kohn in their
work [67], is to ensure that the electron density ρ we are using is
indeed the density of the ground state that we are looking for. In that
sense the second H-K theorem establishes that the energy E0 given
by the H-K functional will be the lowest energy only if the density
ρ is the density of the ground state ρ0. This theorem is hence also
variational and can be expressed as

E0 = min
Ψ→ρ
〈Ψ|T̂ + V̂Ne + V̂ee|Ψ〉. (32)

In other words, for any trial density the E obtained is an upper
limit to the true ground state energy E0:

E0 6 E[ρ] = T [ρ] + ENe[ρ] + Eee[ρ]. (33)

1.4.3 The Kohn-Sham Approach

Many attempts have been performed to attain a practical solution
to the H-K equation 30. The most successful one is formulated in the
second most important article within the development of the density
functional theory by W. Kohn and L. Sham in 1965 [79].

The success of this new approach starts by considering that most
of the problems that make DFT inaccurate were related to the way
the kinetic energy is treated. In their article, Kohn and Sham pro-
posed a Hartree-Fock-like method to more accurately calculate the
kinetic energy. A part of it is then determined exactly by introduc-
ing the concept of a non-interacting reference system built from a set
of orbitals (one-electron functionals), i.e., the electrons are treated as
non-interacting fermions. The remaining contribution to the kinetic
energy, a small part of the total, is treated by a non-classical approxi-
mate functional.
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The Kohn-Sham orbitals

The HK functional, expressed in equation 30 has the form

F[ρ(r)] = T [ρ(r)] + J[ρ(r)] + Encl[ρ(r)]. (34)

J[ρ] is a classical term and can be exactly determined but the other
two terms remain unknown. Regarding the kinetic energy T [ρ] it
became clear that it was not properly described by the simple ex-
pression used by other approaches such as the Thomas-Fermi-Dirac
model (see [75] for further information on alternative methods to the
Kohn-Sham one).

The kinetic energy is now obtained from a system of non-interacting
electrons. A new effective potential VS is added to account for the
electron-electron interaction and the Hamiltonian of the non-interacting
system ĤS has now the form:

ĤS = −
1

2

N∑
i

∇2i +
N∑
i

VS(ri), (35)

where consequently no electron-electron term appears. A pseudo-
wave function ΨS is now constructed in a Hartree-Fock manner (see
equation 15):

ΨS =
1√
N!

∣∣∣∣∣∣∣
ϕ1(x1) · · · ϕN(x1)

...
. . .

...
ϕ1(xN) · · · ϕN(xN)

∣∣∣∣∣∣∣ , (36)

where the Kohn-Sham orbitals ϕj fully recover the density

ρS(r) =
∑
j

∑
s

|ϕj(r, s)|2 = ρ0(r). (37)

As mentioned above the main idea of the Kohn-Sham Ansatz con-
sists of finding a new way to more accurately determine the kinetic
energy, calculating as much as possible of it exactly. The kinetic en-
ergy of the non-interacting system is described exactly using KS or-
bitals ϕ instead of the HF molecular orbitals ψ of equation 13:

TS = −
1

2

∑
j

〈ϕj|∇2|ϕj〉. (38)

The non-interacting kinetic energy TS does not carry all the kinetic
energy T 6= TS. The difference with the interacting system is included
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into a new functional named EXC that contains all the non-classical
interactions

EXC[ρ] =
(
T [ρ] − TS[ρ]

)
+
(
Eee[ρ] − J[ρ]

)
= TC[ρ] + Encl[ρ]. (39)

The exchange-correlation functional EXC still remains unknown and
the search for the exact one is the main challenge of DFT. It includes:

◦ effects of the self-interaction correction

◦ exchange (antisymmetry)

◦ correlation

◦ a portion belonging to the kinetic energy

After this, the expression for the energy of the true, interacting
system is written as follows:

E[ρ(r)] = TS[ρ] + J[ρ] + EXC[ρ] + ENe[ρ], (40)

where J is the Coulomb term, TS the part of the kinetic energy, ex-
actly determined by the non-interacting system, EXC the unknown
non-classical exchange-correlation functional and the external poten-
tial that accounts for the nuclei-electron interaction ENe.

The next step will be to find the proper orbitals for the non-interacting
system. To that end we will expand equation 40 to:

E[ρ(r)] = −
1

2

∑
j

〈ϕj|∇2|ϕj〉+

+
1

2

∑
j

∑
j′

∫ ∫
|ϕj(r1)|

2 1

r12
|ϕj′(r2)|

2dr1dr2+

+ EXC[ρ(r)] −
∑
j

∫ M∑
A

ZA
r1A

|ϕj(r1)|
2dr1.

Note that the unknown exchange-correlation term cannot be given
any explicit form.
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LCAO Ansatz for the resolution of the Kohn-Sham Equations

By variationally minimizing the expression 40 of the true energy
with respect to the KS single-particle orbitals, we get the following
1-electron equation

εjϕj(r1) =

(
−
1

2
∇21+

[∑
j

∫
|ϕj(r2)|

2

r12
dr2+VXC(r1)−

M∑
A

ZA
r1A

])
ϕj(r1),

(41)

or

εjϕj = f̂
KSϕj. (42)

The set of KS orbitals are expanded in an analogous way as within
the Hartree-Fock context (see equation 14), in terms of a finite basis
set that does not provide the exact orbitals but only approximations
to them. The larger the basis set the better the approximation but also
the more expensive the calculation. For an infinite basis set every KS
orbital will be exactly described.

Equation 42 has to be solved, the orbitals expanded as a linear com-
bination of the basis set. The Coulomb operator J and the exchange-
correlation operator EXC of equation 40 are dependent on the elec-
tron density ρ, which is a function of the orbitals ϕ. However these
orbitals are being searched in order to determine the electron den-
sity, entering in a Self-Consistency problem as that of solving the HF
equation (figure 1).

A guessed initial density ρ0 needed to calculate the orbitals is
introduced. The KS Hamiltonian HKS is found from the Coulomb
(also called Hartree-Fock potential) and the exchange-correlation po-
tentials. There are many different approaches to approximate this
exchange-correlation potential as LDA, LSDA, GGA, meta-GGA. . . which
will not be discussed here for this lies out of the scope of this work.
For a more detailed description of the approximations to the EXC
functional, the reader is referred to the specialized works [29, 42, 75].
When the KS Hamiltonian, named f̂KS within the Kohn-Sham ap-
proach has been found, the secular equation (see equation 42) is
solved and a set of orbitals ϕn is obtained. From these orbitals a
new density ρn, different from the previous one ρn−1, is calculated.
Once we have arrived to a point where the difference between both
densities is under a threshold, the self-consistent loop has converged
and the calculation comes to an end.
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Figure 1: Scheme of the iterative self-consistent procedure to solve the
Kohn-Sham equations [34].
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1.5 electron distribution and density ma-
trices

We find it necessary to include a —brief— selection of the ideas
explained in [112] about what a density matrix is, for it is a central
concept of the present work, to which we will be referring often.

Thanks to the increasing sophistication of the theoretical methods
used in quantum chemistry, the computational treatment of complex
chemical systems is now in reach. However, the associated wave func-
tion can be so complicated that its study as a whole provides no clear
information of the actual electron distribution. Many of the chemical
and physical properties of a system are inferred from this electron
distribution and therefore it is crucial to have as much information as
possible about it. The fact that the full Hamiltonian of the system Ĥ

depends on only 2-particle operators,

Ĥelec = T̂ + V̂Ne︸ ︷︷ ︸
1−particle

+ V̂ee︸︷︷︸
2−particle

, (43)

where T̂ , and V̂Ne and V̂ee keep the same meaning as in equation
4, suggests that the high complexity of the wave function contains
redundant information that does not need to be unavoidably consid-
ered. The electronic Hamiltonian operator can be actually re-written
in terms of the one- and two-particle density matrices, on which we
will take soon in this section[75].

It is usually admitted that all the physical information of a system
can be obtained from the square of the wave function (equation 7)

ρN(x) = |Ψ(x)|2, (44)

where ρN(x) is the N-electron density function.

By integrating all electrons in 7 over spin and all electrons but one
over the spatial coordinates we get, due to the indistinguishable char-
acter of the electrons, N-times the probability of finding one electron
of any spin in dr1 whereas the rest of the electrons may be anywhere
in space. This quantity is known as simply the electron density2

ρ1(r1) = N

∫
Ψ(x1, x2 . . . xN)Ψ∗(x1, x2 . . . xN)ds1dx2 . . . dxN. (45)

The electron density is a non-negative quantity and an observable
of the wave function —it can be obtained by acting on the wave func-

2 Strictly speaking it is a probability density but it is usually given the name electron
density, since the electrons can be understood as “smeared out” within the volume
element, with a certain density P.
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tion with an hermitian operator— that integrates to the total number
of electrons N (equation 9) and vanishes at infinity for a finite system:

ρ1(r→∞) = 0.

The pair function is the corresponding probability density of two
particles, also known as the electron pair density:

ρ2(r1, r2) = N(N− 1)

∫
|Ψ(x1, x2 . . . xN)|2ds1ds2dx3 . . . dxN. (46)

Similarly, the electron pair density is defined as the probability of
finding one electron within the volume element dr1 and simultane-
ously another one in dr2, whereas the remaining N− 2 electrons are
anywhere in space, regardless of their spin.

How the motions of two electrons are correlated is described by
the pair function. It is normalized to the total number of ordered-
electron pairs that can be formed N(N− 1), according to McWeeny’s
normalization[112]. For non-interacting particles, the probability of
finding one of them at one point of the space and simultaneously
another one at any other point, would be just the product of the indi-
vidual probabilities:

ρ2(r1, r2) =
N− 1

N
ρ1(r1)ρ1(r2). (47)

The term (N − 1)/N arises due to the indistinguishability of the
electrons.

1.5.1 Density Matrices

It is extremely useful to slightly generalize the density functions of
equations 45 and 46. For a 1-electron system, the expectation value
of any operator F̂ when the electron is located in the spin orbital ψ is
given by

〈F̂〉 =
∫
ψ∗(x)F̂ψ(x)dx. (48)

When F̂ is a real operator that acts only on the right term ψ(x),
ψ∗(x) being unaffected by it. Hence the factors order matters and it
cannot be expressed as

〈F̂〉 =
∫
F̂ψ∗(x)ψ(x)dx.

This can be solved by changing the name of the variables in ψ∗

from x to x′ making them immune to the action of F̂. The electron
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density from equation 45 is now generalized to the non-diagonal re-
duced 1-density matrix, which takes the form

ρ1(r1; r′1) = N
∫
Ψ(x1, x2 . . . xN)Ψ∗(x′1, x2 . . . xN)ds1dx2 . . . dxN. (49)

The prime plays its role during the action of the operator F̂ and
does nothing just before the integration. That way F̂ acts only on the
unprimed wave function while the subsequent integration affects all
terms.

Of course the same applies to the two-electron case, where the non-
diagonal reduced 2-density matrix, has the following expression.

ρ2(r1, r2; r′1, r′2) =

N(N− 1)

∫
Ψ(x1, x2 . . . xN)Ψ(x′1, x′2 . . . xN)ds1ds2dx3 . . . dxN.

(50)

Both the electron density and the electron pair density are recov-
ered as the diagonal part of the corresponding density matrices

ρ(r) = ρ1(r1; r1), ρ2(r1, r2) = ρ2(r1, r2; r1, r2).

The information about the correlation of the electronic motion is
contained in the electron pair density function. This electron correla-
tion can be of two distinct types:

- Fermi or exchange correlation: In equation 50 the 2-RDM is de-
fined, where the primed coordinates are not integrated. The an-
tisymmetry of the wave function established by the Pauli prin-
ciple states that interchanging the positions of two electrons (r1
and r2) for example, will cause ρ2(r1, r2; r′1, r′2) to have its sign
changed

ρ2(r1, r2; r′1, r′2) = −ρ2(r2, r1; r′1, r′2)

In the specific case where we take the diagonal part of this ma-
trix (r1 = r′1 and r2 = r′2, cf. Section 1.5.1) we recover the
pair density ρ2(r1, r2) as defined on equation 46. For the spe-
cial case in which two same-spin electrons are sharing the same
position r1 = r2,

ρ2(r1, r1) = −ρ2(r1, r1), (51)

which is the probability that both electrons are identical and oc-
cupy exactly the same location, relation that is satisfied solely by
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the condition ρ2(r1, r1) = 0. This type of interaction is the ex-
change correlation, inherently considered by the HF approach
as it is one of the properties of Slater determinants. It has how-
ever nothing to do with the correlation included in the correla-
tion energy EHFC in the previous chapter (see equation 23).

- Coulomb correlation: Unlike in the case of alike spins, electrons
of opposite spin do not suffer Fermi correlation but are sub-
ject to an electrostatic interaction coming from the term 1/rij in
equation 4. This is a repulsion force that applies to all electrons
—regardless of the spin— due to their charge that prevents them
to approximate to each other. The interaction between the mo-
tion of the electrons due to their charge is the Coulomb correla-
tion or simply the electron correlation and is not treated at all
by the HF approach.

Whereas for the parallel spin situation the Pauli principle is ful-
filled, as already mentioned ρHF,σ1=σ2

2 (r1, r2) = 0, if the elec-
trons have opposite spin, the pair probability equals the product
of the individual probabilities and does not take into account
the electron correlation ρHF,σ1 6=σ2

2 (r1, r2) = ρ1(r1)ρ1(r2).

The Fermi and Coulomb correlation can now be included into a cor-
relation factor f(r1; r2), a term that allows the correlation of electronic
motion to be separated from the non-interacting situation, yielding
an alternative definition of the pair density expression also known as
the second-order reduced density matrix or 2-RDM in short, which is as
follows:

ρ2(r1, r2) = ρ(r1)ρ(r2)
[
1+ f(r1; r2)

]
. (52)

This correlation factor will vanish in case the electrons do not feel
each other.

After developing the product, the right term on the last equation
is the exchange-correlation density, which describes to what extent the
electrons differ from the independent particle situation.

ρxc(r1, r2) = ρ(r1)ρ(r2) − ρ2(r1, r2). (53)

We will be often referring to this equation later on, as it is in ρxc
where many of the tools of this study have their origin.

A new function can now be defined: the conditional probability
Ω(r1; r2). As its name indicates, it describes the probability of find-
ing one electron at position r2 subject to the condition that another
one is already at r1

Ω(r1; r2) =
ρ2(r1, r2)
ρ1(r1)

. (54)
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This conditional density integrates to N − 1, the total number of
electrons ercept the reference electron at r1. If we make the difference
between the conditional density and the uncorrelated probability of
finding an electron at r2, we get the exchange-correlation hole

hXC(r1; r2) =
ρ2(r1, r2)
ρ1(r1)

− ρ(r2). (55)

This hole describes the change in the conditional probability pro-
voked by the self-interaction correction, and the Fermi and Coulomb
correlation in comparison to the totally uncorrelated situation. It is
called a hole for it normally causes depletion of electron density at
r2 compared to the independent particle situation. Since the pair
density integrates to N− 1 and the density at r2 to N, the exchange-
correlation hole integrates to −1. In other words, it contains exactly
the charge of one electron∫

hXC(r1; r2)dr2 = −1.

There are no many-body interactions among electrons in the
Coulomb approximation, and consequently there is no need to con-
sider distribution functions of higher order than the pair function ρ2
to get the energy of a system.

The orbital expansion of the RDMs

Within the orbital approximation the wave function is approximated
as a linear combination of 1-electron spin orbitals {ψ} (see equation
12 and Section 1.1.3), and so are the density matrices. It is hence
common to find the 1- and 2-RDM expanded as:

ρ(r; r′) =
M∑
ij

1Dijψ
∗
i (r
′)ψj(r), (56)

ρ2(r1, r2; r′1, r′2) =
M∑
ijkl

2D
ij
klψ
∗
i (r
′
1)ψ
∗
j (r
′
2)ψk(r1)ψl(r2), (57)

where 1Dij and 2Dijkl are the matrices with the coefficients of the linear
combination, and the spin coordinates are dropped off.

The actual computation of ν-RDMs is extremely demanding with
today’s computers for orders ν > 4 because of high memory de-
mands. Fortunately, the 1- and 2-RDM are easy to obtain, and even 3-
and 4-RDMs[55] are affordable in simple systems.
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The form of the 2-RDM is particularly simple in the case of a 1-
determinantal wave function, for it is written in terms of the 1-RDM:

ρSD2 (r1, r2; r′1, r′2) = ρ1(r1; r′1)ρ1(r2; r′2)−ρ1(r1; r′2)ρ1(r2; r′1). (58)

If the primes drop, equation 58 becomes

ρSD2 (r1, r2) = ρ(r1)ρ(r2) − ρ1(r1; r2)ρ1(r2; r1). (59)

The analogy with equation 53 is perceptible: the first term is the direct
product of the 1-particle densities and the second is the exchange-
correlation contribution, whose form in the monodeterminantal case
is worth writing

ρxc(r1, r2) = ρ1(r1; r2)ρ1(r2; r1) =
∑
i,j

ψi(r1)ψj(r1)ψi(r2)ψj(r2),

(60)

where the sum runs over all occupied states.

It is important to note that, even in the unprimed case, the 2-
RDM of 59 still contains non-zero terms out of the principal diago-
nal that correspond to 1-RDMs with non-diagonal terms of the kind
ρ(ri; rj) i 6= j.

The factorization of the 2-RDM in terms of the 1-RDM is possible
only in case of 1-determinantal wave functions (thus within both HF
and DFT), and implies that any magnitude of the system is deter-
mined by ρ(r1; r′1), which is also known as the Fock-Dirac density
matrix.

1.5.2 Cumulant densities

The νth-order (reduced) density matrices (ν-RDMs) play a funda-
mental role in the analysis of the chemical bond in the real space.
The attentive analysis of their structure reveals that there are parts
that cannot be expressed in terms of RDMs of lower-order than ν.
Those terms are given the name ν-th order cumulant densities (ν-CDs)
or simply νth-order cumulants and are denoted by ρνc . In general, a
νth-order cumulant determines the irreducible part of the central mo-
ments of the same order in a statistical distribution function, which
is saying that part of this distribution cannot be expressed in terms
of lower-order moments[87].

The cumulants are key objects in the determination of chemical
bond indices in the real space, for they determine the level of fluc-
tuation of ν particles in a statistical distribution, that is to say, their
correlation. Francisco and co-workers published in 2013 a procedure
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to obtain the ν-CDs from the diagonal terms of the RDMs[55]. The
expressions for the 1- and 2-CDs are

ρ1c(r1) = ρ(r1),
ρ2c(r1, r2) = ρ(r1)ρ(r2) − ρ2(r1, r2).

(61)

The 1-CM ρ1c = ρc is the electron density ρ and the 2-CM the exchange-
correlation density ρxc.

It is worth noting that one important property of the CDs is their
recurrence: the (ν− 1)-CD can be obtained from the ν-CD by integrat-
ing the νth electron:

ρν−1c (r1, . . . , rν−1) =
∫
ρνc (r1, . . . , rν)drν. (62)

The successive application of equation 62 from ν,ν− 1,. . . ,1 recov-
ers the total number of electrons N

ρc(r1, . . . , rν)dr1 . . . rν = N, (63)

which is the second relevant property of the CMs: their extensivity.





2 I N T R O D U C T I O N TO S O L I D
S TAT E T H E O R Y [ 7 , 7 4 ]

2.1 basic crystallography

In principle, the treatment of a solid, understood as a huge molecule
with an Avogadro number of ions or atoms, cannot be theoretically
tackled and is as well computationally unworkable. In the particular
case of a solid with crystalline structure, the atoms are arranged with
translational symmetry, meaning that an atomic pattern can be found
that is invariant under translation operations. Although a crystal is
a finite macroscopic object, due to its huge number of atoms it can
be said that this invariance is applied ad infinitum. The ratio between
the number of atoms on the surface and the number of atoms in the
crystal N is small and proportional to N−1/3. If N is large and we
are dealing with a neutral surface, the effects of the superficial limits
affect only a few layers of the crystal, not reaching its internal part.
Therefore the macroscopic solid shows the properties of the nucleus
of the crystal and the surface effects can be disregarded, unless we
are intentionally interested in the surface itself. Under such condi-
tions, the crystallographic model is adequate for the description of
an infinite crystal showing translational invariance, and there exist
many computational procedures to treat it. It is therefore important
to clearly state that all the references to a solid or condensed system
in the following will be referring to a system with crystalline struc-
ture.

2.1.1 The Bravais lattice

A 3D Bravais lattice is a collection of points indefinitely repeated
in intervals of length a1, a2 and a3 along three different directions.
In figure 2 a 2-dimensional Bravais lattice of vectors a1 and a2 is
shown as an example. The three magnitudes a1, a2 and a3 are named
the lattice parameters and the vectors a1, a2 and a3, oriented in the
same three non-coplanar directions with the three lattice parameters
as norm are the primitive vectors (see figure 2 for a 2-dimensional
example).

Any vector R connecting two points of the lattice is a lattice vector
and can be expressed as a linear combination of the primitive vectors
with the corresponding coefficients n1, n2 and n3

R = n1a1 +n2a2 +n3a3, (64)

37
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P

a2

a1

Figure 2: General 2-dimensional Bravais lattice. Primitive vectors a1 and
a2 are shown. Any point of the net can be expressed as a linear
combination of the primitive vectors; for instance P = a1 + 2a2.

as in the example for 2-dimensions of figure 2.
The primitive vectors define a parallelepiped that receives the name

of unit cell. The definition of the unit cell of a system is arbitrary and
there are an infinite number of them, since all the cells containing the
same number of lattice points are equivalent. By translating a unit
cell in the 3 dimensions, one can completely fill the space. Each of
these unit cells is tagged by a vector R that characterizes it and that
allows us to differentiate it with respect to the original unit cell.

The unit cell of a crystal can be of two types: it is a primitive cell
if it contains only one lattice point, i.e., one atom in the particular
case of a crystal. The geometry of the primitive cell characterizes the
lattice, but it does not show intuitively the symmetry of the crystal.
Alternatively, a unit cell containing in general a larger number of lat-
tice points can be defined which presents the symmetry of the crystal.
This other unit cell is a centered or conventional cell.

As an example, a body centered cubic (bcc) crystal structure has a
conventional cell that is represented in figure 3. The three vectors
drawn within this cell delimit a parallelepiped, which is its primitive
cell. The primitive lattices in the 3-dimensional space are divided
in 7 different crystalline systems, each of them characterized by a
particular relative length of the lattice vectors and the angles between
them. Additionally, another 7 non-primitive cells complete the full set
of possible lattices in the ordinary space, which are all the possible
Bravais lattices, summarized in figure 3.

Now if at any of the points of a Bravais lattice we place a motif,
which can be an atom, an ion or a molecule and we translate the
lattice repeatedly in all the 3 directions of the space, the crystal is
created. The symmetry of the motif, applying the crystallographic
restriction theorem[16], is one among the 32 so called point groups. A
point group consists in a set of five different symmetry operations,
all of which leave a central point fixed: reflection, rotation, improper
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Figure 3: The 14 Bravais lattices in 3 dimension.

rotation, the screw axis and the glide plane. The combination of one
of the 32 point groups and the 14 Bravais lattices gives the space group,
which gathers the full symmetry of the crystal. In the ordinary space,
there exist 230 of this possible combinations. See the bibliography for
a deeper exposition of group theory and symmetry[35, 65, 111].

The 230 space groups are fully characterized in the “International
tables for crystallography”, a collection of eight volumes published
nowadays by the International Union of Crystallography[138].

Some points of the crystal are invariant under one or more sym-
metry operations. In this case, the number of symmetry equivalent
points, known as multiplicity, is smaller than the total number of sym-
metry operations of the space group. Those points are the special
positions, whereas the remaining are called the general positions. The
minimum set of atoms, both in general and special positions, that
fully generates the unit cell after applying all the symmetry opera-
tions that define the space group is named the asymmetric unit.

The full characterization of a crystal requires information about

• the space group,

• the cell parameters,

• the type and position of the atoms in the asymmetric unit.

The position of an atom r in the unit cell can be expressed either in
Cartesian or in crystallographic coordinates, also known as fractional
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coordinates. The edges of the unit cell are used as the basic vectors,
and the position of the atoms are given by fractions of them as

r = x1a1 + x2a2 + x3a3, (65)

where x1, x2 and x3 are real numbers.

2.1.2 The reciprocal lattice

Any direct lattice allows a geometric construction such that

b1 = 2π
a2 ×a3

a1 · (a2 ×a3)
,

b2 = 2π
a3 ×a1

a1 · (a2 ×a3)
,

b3 = 2π
a1 ×a2

a1 · (a2 ×a3)
, (66)

and the primitve vectors of the reciprocal lattice b1, b2 and b3 are
obtained from the primitive vectors of the direct lattice. Aditionally,
bi satisfies that

bi ·aj = 2πδij, (67)

where δij is the Kronecker delta

δij = 0 if i 6= j,
δij = 1 if i = j.

Equivalently as in direct space, any vector in the reciprocal lattice
can be expressed as a linear combination of its primitive vectors with
integer coefficients so that

k = k1b1 + k2b2 + k3b3. (68)

Every point in the reciprocal space represents a family of planes of
the direct lattice evenly spaced. The reciprocal lattice is a Bravais
lattice. Let us now define a primitive cell of a lattice point, known
as the Wigner-Seitz cell, as the primitive cell that includes all points of
the space that are closer to that lattice point than to any other. The
Wigner-Seitz cell in the reciprocal space is known as the first Brillouin
zone (BZ). Although there are higher-level Brillouin zones, we are only
interested here in the first one for it plays a fundamental role within
Bloch’s interpretation of solids, according to which the description of
a crystal is restricted to the treatment of states lying within the first
Brillouin zone only.
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2.2 electronic structure methods in the
solid state

The Schrödinger equation 1 in its most general form, involves a
wave function dependent on the coordinates of the particles and on
time Ψ(r, t). For stationary states, this wave function can be sepa-
rated into a term independent of time, and time-dependent phase
terms Ψ(r, t) = Ψ(r)f(t). If we consider the time-independent wave
function, it is now the time-independent Schrödinger equation which
must be solved

ĤΨk = EkΨk, (69)

where Ĥ is now the time-independent Hamiltonian of equation 3. Rel-
ativistic effects are also neglected in equation 69. Therefore, the state
k described by Ψk has an energy Ek that does not change with time.
In general, we will be interested in the determination of the ground
state of the system, denoted by equation 2, in which the state indices
k are dropped off. We will also assume the BO approximation already
described in Section 1.1.1.

2.2.1 Bloch’s theorem

Because the entities forming a perfect crystal are arranged in a regu-
lar periodic array, the electrons are considered under a potential U(r)
with the periodicity of the underlying Bravais lattice vectors G

U(r+G) = U(r). (70)

In the mean field approximation, electrons move independently in
the average field created by the others. One of these independent
electrons, ruled by a one-electron Schrödinger equation, is known as
a Bloch electron, in contrast to a free electron, which is just a special
case of a Bloch electron when the periodic potential is zero. A Bloch
electron is then subject to

ĥψ =

(
−

 h2

2m
∇2 +U(r)

)
ψ = εψ, (71)

a special case of which, if U(r) = 0, is the free-electron Schrödinger
equation. For this one-electron Hamiltonian, the Bloch theorem states
that the eigenstate ψ can be chosen to be a plane wave times a func-
tion with the periodicity of the Bravais lattice:

ψn,k(r) = e
ik·run,k(r), (72)
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where k is the wave vector, fixed in the last expression, which labels
the different solutions to equation 71, and un,k(r) has the periodicity
70 of the Bravais lattice, all k-vectors being in the reciprocal space.
The number n is the band index and tags the different independent
eigenstates for a given wave vector k.

Once the wave function ψ has acquired the form stated by the Bloch
theorem, the Fockian equation shown in equation 71 becomes

ĥkun,k(r) =

[
 h2

2m

(
1

i
∇+k

)2
+U(r)

]
un,k(r) = εn(k)un,k(r). (73)

The periodic function un,k must satisfy that

un,k(r+G) = un,k(r), (74)

for all vectors G in the Bravais lattice, which is equivalent to con-
fine the solutions of equation 71 to the primitive cell of the crystal.
Equations 72 and 74 imply that

ψn,k(r+G) = eik·rψn,k(r), (75)

for all G in the Bravais lattice, which is another common form of
stating Bloch’s theorem.

As they are ψ-modulated plane waves, Bloch functions span the
whole space and do not decay to zero at infinite. Therefore no nor-
malization is in principle possible. To overcome this problem, we can
consider a finite crystal formed by N = N1 ×N2 ×N3 cells, where N
tends to infinity. To maintain the periodicity, we impose the Born-von
Karman boundary condition, so that if there are Nj cells along the j
direction (j = 1, 2, 3) in the macroscopic crystal, it must be satisfied
that for any integer m and any j

ψn,k(r+mNjaj) = e
imNjk·ajψn,k(r), (76)

since the crystal is a infinite 3-dimensional lattice of identical finite
juxtaposed crystals, with the shape of a parallelepiped, each of them
formed by N primitive cells.

Comparing equations 75 and 76, it becomes clear that

eimNjk·aj = eik·r = 1. (77)

If we define the component kj of the wave vector as

kj =
nj

Nj
bj, (78)

nj being an integer, k can be interpreted from equation 67 as a point
in the reciprocal space, and therefore there are Nk points per cell.
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Each of those points can be described as a combination of the primi-
tive vectors of the reciprocal lattice as

k =
(n1
N1
b1 +

n2
N2
b2 +

n3
N3
b3
)
. (79)

When N1, N2 and N3 tend to infinity, the number of k-points in
all the cells of the reciprocal lattice also tends to infinity until it com-
pletely fills the space, and k can be considered a continuous variable.

The periodicity has reduced the problem of solving the Schrödinger
equation 71 for an infinite system to that of solving it for the finite first
BZ through the Born-von-Karman boundary condition. This confine-
ment implies an infinite number of solutions un,k(r) with eigenval-
ues εn(k), distributed in a discrete manner. The term εn(k) contains
the wave vector as a parameter and is therefore a continuous func-
tion of it. In spite of the boundary condition imposed, k appears as a
continuous variable since in a although macroscopic, finite lattice, the
density of k-points is so high that it becomes a continuous variable
that can take any possible value within the BZ.

The Bloch theorem reduces the problem of calculating an infinite
number of functions by that of calculating a finite number of them in
an infinite number of k-points. As a consequence of the continuous
nature of k, the electrons occupy a dense set of states that form a
band structure, analogous to the discrete set of orbitals in a molecule.
Each band n has associated an energy εn(k). As in the case of atoms
and molecules, the Pauli principle rules the filling of the bands with
the electrons. The energy of the highest occupied state is known as
the Fermi energy, and the surface of the k space with energy constant
and equal to the Fermi energy is the Fermi level EF. This surface
separates the occupied from the empty electronic states. The bands
are separated from each other by gaps of forbidden energies, known
as band gaps. According to this scheme, an insulator is characterized
by the existence of a large band gap between the occupied and the
empty states. Contrarily, in a metal, the existence of partially occu-
pied states causes that there is no gap between the occupied and the
empty states, allowing the electrons to wonder between both regions.

2.2.2 k-points sampling

The integration of the functions of k in the first BZ is a crucial
aspect in the actual ab initio calculations of periodic structures. A
numerical integration using a standard numerical technique, though
feasible in principle, turns to be computationally prohibitive, for it
involves the integration of a huge number of wave vectors. For suf-
ficiently smooth functions, one can take advantage of the fact that
the functions suffer almost no change within small distances in the
k-space and approximate the integral by a sum over a discrete set K
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kx
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Figure 4: Simplified cubic net of side L, with the k-points are located at
kr = 2πnr/L forming a 3-dimensional k-space. To each point
corresponds a volume of (2πL)3.

of sampling points ki(i = 1, . . . , I) (see figure 4), carefully selected to
ensure convergence.

The number I of k-points is usually indicated by a vector k =

(ki,kj,kk) with the number of points along each direction. As very
often the same number of points is used in the three directions, one
might also see the notation k3i , if ki = kj = kk. The final number
I of k-points used in the calculation determines the actual number
of bands available to be occupied by the electrons, and therefore the
number of electrons considered in the calculation, as the periodicity
of the crystal makes that the last k-point of the original cell kI is the
first of the second, in a sort of cyclic loop. This is then specially rele-
vant for the calculation of the electron distribution functions that we
will be dealing with further on in this work, for the number of them
that can be obtained is directly related to the number of electrons
(bands) that the wave function consists of.

Starting from the lowest k = 0 level, electrons will be placed accord-
ing to the Pauli principle on each electron level, filling up a region
which in the non-interacting particle situation will be a sphere of ra-
dius kF. The sphere containing all the occupied one-electron levels is
known as the Fermi sphere and the surface that represents the frontier
between occupied and unoccupied states is named Fermi surface.
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2.3 the family of (l)apw methods

Elk [1] is an all-electron full-potential linearized augmented-plane
wave (FP-LAPW) code, one of the most accurate computational
schemes for solving solid-state DFT equations [3], originally written
at Karl-Franzens-Universität Graz as a milestone of the EXCITING
EU Research and Training Network. As it is the code we use for all
solid state calculations throughout this study we believe it necessary
to give a brief explanation of the basic theoretical concepts it is built
upon.

The Kohn-Sham equations (see expressions 41 and 42) are solved
using a basis set that approximates the wave function of the solid
state Hamiltonian. Ideally this basis set satisfies two requirements:
it should be unbiased: approximate wave functions carry too much
information from the basis functions and errors are introduced to the
system wave function; and efficient, only a few basis functions are nec-
essary if they are similar to the wave function that is to be expanded.
In summary, we are seeking a basis set efficient and simple; both
requirements are satisfied by plane waves in real space.

Bloch’s theorem, discussed in Section 2.2.1, states that any one-
elecgron eigenfunction ψn,k of a periodic Hamiltonian can be ex-
panded using a basis set of the form:

ψn,k(r) =
∑
G

cnk−Ge
i(k+G)·r, (80)

where G is any reciprocal lattice vector.

The part to be determined are the coefficients cnk−G. It can be seen
from the previous expression that the wave function is both depen-
dent on the Brillouin zone designated by n (also called the band in-
dex) and k. For a certain k value within a determined Brillouin zone
n, the wave function is hence expanded as a sum over the discrete
though infinite basis set determined by G. However, in practice the
infinite sum is truncated limiting the set of all G to G 6 Gmax. This
limits the choice of G to only the vectors contained within a sphere
with radius Gmax. This “cut-off” value, also known as energy cut-off
or plane-wave cut-off is of great importance in solid state calculations
since it controls the number of plane-waves that are to be used by the
code.

The usage of plane-waves to approximate the wave function of spa-
tially periodic Hamiltonians, namely Hamiltonians for crystal sys-
tems, was first introduced by Slater in 1937[156]. It is certainly ad-
vantageous to use such an expansion because of the aforementioned
simplicity and moderate computational cost of the plane-wave treat-
ment. Nevertheless a serious problem arises when trying to properly
describe the region close to the nucleus.



46 solid state theory

The oscillating behaviour of the wave function affects its tails, that
stretch into regions close to the nucleus. However, the nuclear region
in a solid is quite shielded from the outer chemically relevant levels.
The electrons occupying these low-lying regions of a solid behave not
different from electrons forming part of free atoms. The potential
they suffer can therefore be replaced by a smoother pseudopotential
that yields very smooth tails in the region close to the nucleus and
require only a few plane-waves to describe it.

2.3.1 The APW method

The pseudopotential method is very useful in many situations but:

- the choice of a pseudopotential is to a certain extent arbitrary,

- information contained in regions close to the nucleus is lost.

The first improvement of the quality of the basis set was achieved
by the augmented plane-wave (APW) basis set {φAPWG }. The APW
method is motivated by the different behaviour of electrons depend-
ing on whether they are close or far from the nucleus. The space
is partitioned into the muffin tin (MT) and the interstitial (I) regions.
The muffin tin region is delimited by a sphere of radius Rα around
each atom, where electrons behave in a manner similar to that of the
electrons in a free atom: the MT sphere comprises the region where
a pseudopotential used to be applied. The interstitial region is the
space between muffin tin regions where electrons, far from the nu-
cleus, are free-like. Plane-waves are appropriate to treat free-like elec-
trons as those in the I region (see below), while atomic-like functions
are suitable to describe the low-lying electrons within the MT region.
Such a prescription is mathematically formulated as

φAPWG (r,E) =


1√
V
ei(k+G)·r r ∈ I

∑
l,m

a
α,(k+G)
l,m uαl (r

′,E) Yl,m(r̂′) r′ < RαMT ,
(81)

where α is an index to differentiate among MTs.
The APW basis functions φAPWG consist of plane-waves in the inter-

stitial region that are augmented inside the MT spheres with radial
solutions of atomic Schrödinger equations.

The symbols k, G and r maintain their usual meaning and V is
the volume of the unit cell in the real space. The coefficient aα,(k+G)

l,m
and E are still undetermined and uαl are radial functions, through
which the Schrödinger equation is numerically solved. Every radial
function corresponds to a solution for the electron α with energy E.
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The determination of the parameters aα,(k+G)
l,m is done by imposing

the condition to the plane-wave that it must match the function inside
the MT over the whole sphere surface. Each plane-wave is then ex-
panded at r = rMT into spherical harmonics, which yields an infinite
number of coefficients that have to be truncated at some value lmax
1.

The APW method is not of much practical use today due to its en-
ergy dependence. In order to describe an eigenstate ψn,k(r) properly,
the energy E of that state has to be set equal to its eigenvalue (or band
energy) εn,k. But this eigenvalue is exactly what we are looking for.
The search must hence start from an initial guess of εn,k, for which
the APW functions are evaluated, and whose result feeds the E of the
next iteration and so on. The method becomes thus too slow to be
applied to real systems and further improvements must be achieved.

2.3.2 The linearized augmented plane-wave method

Among the numerous works where the linearized augmented plane-
wave (LAPW) method is discussed (as for instance those by
Andersen[4] or by Koelling[76]), we precisely cite the book by
Singh[152], for it contains a very detailed description on the method.
Within the LAPW, the radial function uαl (r

′, εn,k) is expressed as a
two-term Taylor expansion, which introduces a correction to the APW
analogous term. The LAPW radial function consists then of the same
radial function evaluated at some fixed linearization energy E0 and a
new term: its energy derivative computed also at energy E0:

uαl (r
′, εn,k) = u

α
l (r
′,E0) + (E0 − εk)

∂uαl (r
′,E)

∂E

∣∣∣∣∣
E=E0︸ ︷︷ ︸

u̇αl (r
′,E0)

. (82)

The energy difference of the second term is yet unknown and as
a consequence a new coefficient bα,k+G

lm appears in the expression of
the complete LAPW basis function φLAPWG :

φLAPWG (r) =



1√
V
ei(k+G)·r r ∈ I

∑
l,m

(
a
α,(k+G)
l,m uαl (r

′,Eα1,l)+

+b
α,(k+G)
l,m u̇αl (r

′,Eα1,l)
)
Yl,m(r̂′) r′ < RαMT

(83)

1 The boundary condition that both functions have to match at the sphere boundary
requires the number of nodes per unit length of the plane-waves (Gmax) to be simi-
lar to that of the angular functions (lmax): RαGmax = lmax [34].



48 solid state theory

The relative weight of u and u̇ does the matching between the
radial function and the plane-wave both in value and slope at the
MT radius, i.e. the coefficients bα,k+G

lm and aα,k+G
lm . The LAPWs

provide the basis flexibility necessary to properly describe eigenfunc-
tions with eigenenergies close to the linearization energy, which is
kept fixed.

The linearization energy E0 is not universally chosen. On the con-
trary, a different energy is used for each angular momentum l, con-
ferring s-, p-, d- or f- character to the basis set and hence adequately
describing the state. Consequently, E0 is replaced by a set of well-
chosen Eα1,l up to l = 3. If l > 3, a fixed energy value can be used
for all those l’s. The same procedure can now be used as in the APW
case, but the secular equation that must be solved here becomes linear
in energy and all eigenvalues can be obtained with a single diagonal-
ization of the secular matrix, unlike in the APW method.

2.3.3 LAPW with Local Orbitals: LAPW + LO

The LAPW method, though being among the most accurate ap-
plicable techniques for density-functional-based electronic-structure
and total-energy calculations, has some shortcomings, the most im-
portant one arising from the linearization itself. The electrons lying
close to the nucleus are called “core states” and behave quite like elec-
trons in a free atom. They do not have an important role in chemical
bonding and must lay completely inside the MT sphere. However,
states situated far from the nucleus leak out of the MT, sticking into
the interstitial region. Such states are nameds “valence states” and
actively participate on the chemical bond.

As a third group, electrons with the same l but different principal
quantum number than valence electrons, the so-called low-lying va-
lence states, located inbetween core and valence states, may have also
an important role in the chemical bond. For atoms with such states,
called “semicore states”, the basis functions are only approximately
orthogonal to the semicore states. The energies may then have a de-
pendency on the linearization energy El that has been chosen. LAPW
basis is a good basis set only for eigenvalues close to this energy. Va-
lence electrons sharing l with semicore states are poorly described,
since the El chosen is close to the eigenvalue of the semicore bands.
As El is arisen towards the valence bands semicore state will become
poorer described and its eigenvalue will increase. At some point El
will overlap with valence eigenenergies and a ghost state will appear,
making that the correct total energy cannot be calculated.

Singh et al.[151] proposed a method to solve these difficulties, based
on a change in the linearization that brings sufficient variational free-
dom to properly treat both semicore and valence states. All l’s except
those for which there are semicore states are treated exactly as within
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the LAPW method, with both ul(r) and u̇l(r) functions. Those l’s
that have semicore states accompanied are described by the usual
ul(r) and u̇l(r) at the linearization energy E1,l in the valence region,
but supplemented with a second ul(r) for the l of the semicore states,
at a second linearization energy E2,l. A new type of basis function
uαl (r

′,Eα2,l) named local orbital (LO) is added to the standard LAPW
basis set,

φα,LO
l,m (r) =



0 r ∈ I[
aα,LO
l,m uαl (r

′,Eα1,l) + b
α,LO
l,m u̇αl (r

′,Eα1,l)+

+cα,LO
l,m uαl (r

′,Eα2,l)
]
Yl,m(r̂′) r′ < RαMT

(84)

This new type of basis function is called local since it does not match
the plane-waves in the interstitial region. A new boundary condition
is hence added: the basis function must be continuous in value and
slope at the MT radius and additionally, goes to zero at the sphere
boundary r > RMT . These boundary conditions allow to find the
coefficients aα,LO

l,m , bα,LO
l,m and cα,LO

l,m .

2.3.4 The APW-lo method

The linearization of the pure APW basis functions made in the
LAPW method is energy-dependent. This was removed at the cost
of a somewhat larger basis set in the LAPW+LO method. Sjöstedt et
al. [153] proposed a new method that expands the wave function by
means of a energy-independent basis set that still has the same size
as the APW basis set.

The APW+lo method provides higher variational freedom using
a complementary basis set consisting of local orbitals for physically
important l-quantum numbers, generally l 6 3. The orbitals used
in the APW+lo are local in the same sense as used by Singh [151],
i.e., to treat semicore states: they are totally confined inside the MT
spheres. It therefore consists of two different kinds of basis functions:
APWs and los. The first kind are exactly the same as described in
2.3.1 (equation 81). The second have the form:

φα,lo
l,m (r) =



0 r ∈ I∑
l,m

(
aα,lo
l,m uαl (r

′,E1,l)+

+bα,lo
l,m u̇αl (r

′,E1,l)
)
Yl,m(r̂′) r′ < RαMT

(85)
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The energies Eα1,l used are again the same as for the correspond-
ing APWs. The coefficients aα,lo

lm and bα,lo
lm are found by requir-

ing the functions to be normalized and that they must vanish at
the MT sphere boundary, respectively. Energies are found as in the
LAPW+LO method by a single matrix diagonalization but requiring a
lower plane-wave cut-off and hence similar number of functions than
in APW but smaller than in the LAPW+LO case.

The APW+lo basis set appears not only to be faster than LAPW
but also to provide a better description of eigenfunctions close to
Eα1,l. Both ul(r,Eα1,l), as used within the APW method for efficient
description of the eigenfunctions close to Eα1,l, and a more relaxed
linear combination of ul(r,Eα1,l) and u̇l(r,Eα1,l), to make an accurate
description of states away from Eα1,l, are included in the APW+lo
method.

2.3.5 Mixed basis sets

A combination of some of these methods may be suitable to treat
certain special systems:

lapw with apw+lo basis sets can solve situations hardly handled
by LAPW as atoms with d- and f- valence states or systems
whose atoms have very different muffin tin spheres. APW+lo
basis set is used only where it is needed while the rest of the
electrons are treated with LAPW.

apw+lo with lo. The same problem with semicore states that the
APW method had, solved with LAPW+LO in section 2.3.3 is en-
countered in the APW+lo. LOs used for APW+lo look however
differently:

φα,LO
l,m (r) =



0 r ∈ I[
aα,LO
l,m uαl (r

′,Eα1,l)+

+cα,LO
l,m uαl (r

′,Eα2,l)
]
Yl,m(r̂′) r′ < RαMT

(86)
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3 C H E M I C A L B O N D
D E S C R I P TO R S I N R E A L S PA C E :
T H E Q U A N T U M T H E O R Y O F
ATO M S I N M O L E C U L E S

Many quantum chemical concepts introduced on an empirical ba-
sis several decades ago can be assigned a physical reasoning through
the quantum theory of atoms in molecules (QTAIM). Taking the elec-
tron density ρ as the central observable, the QTAIM is able to confer
physical meaning, via the topology of the electron density, to basic
chemical concepts as bonds or atoms. A full, authoritative account of
the theory is found in [8, 9].

In order to obtain a well-behaved quantum-mechanical description
of an open region of a quantum system, this region must be bounded
by a surface whose flux of the gradient of the electron density van-
ishes [97]. Defined within the QTAIM, equation 87, is the mathemati-
cal formulation of such a region

∇ρ(rs) · n = 0, (87)

where n is a vector normal to the boundary surface and rs indicates
that the electron density is evaluated at each point of the surface.

The result is a division of the space into non-overlapping basins
Ωi, enclosed by a surface of zero-flux of the electron density ρ. These
basins are assigned to a nucleus, conferring this way physical mean-
ing to the resulting regions. The atomic basins satisfying equation 87

are also space-filling since the procedure is exhaustive ∪aΩa = R3.
Alternatively, the partition of the space can be done according to

scalar fields other than the electron density, such as the electron lo-
calization function (ELF) of Becke and Edgecombe[21] or the electron
localisability indicator (ELI) of Kohout[81], which result in a finer
division of the space into core, valence, bonding or lone-pair regions.

53
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3.1 localization and delocalization indices

Within the QTAIM theory developed by professor R.F.W. Bader [9],
a description of the localization (LI) and delocalization (DI) indices
is given that allowa us to determine the extent to which electrons are
tied to a portion of the total space. For a more detailed description
of LI and DI the reader is referred to the references[10, 11, 13, 47, 48].
Surely, information about localization and delocalization of electronic
charge is contained in the quantum mechanical distribution function
Ψ∗Ψdr1dr2 . . . drN (see equation 7). For a system of N electrons di-
vided into an m number of Ω regions, Pn(Ω)

Pn(Ω) =
N!

n!(N−n)!

∫
Ω

dr1 · · ·
∫
Ω

drn·∫
Ω′
drn+1 · · ·

∫
Ω′
drNρN(r1, r2, . . . rN), (88)

is the event probability that n electrons occupy Ω while the other
are in Ω′, ρN is the diagonal part of the spinless N-particle density
matrix as given by equation 7 —after integrating over spin—. ri keeps
its usual meaning. Since the wave function is normalized, summation
over all possible events leads to certainty,∑

n

Pn(Ω) = 1. (89)

Just like the integration of the electron density over the whole space
yields the total number of electrons

∫
R3
ρ(r)dr = N, integration of the

same function over an atomic basin Ω yields the average number of
particles within that region

〈NΩ〉 =
∑
n

nPn(Ω) =

∫
Ω

ρ(r)dr. (90)

In order for the electrons of a system to be almost fully localized,
one of the events described in equation 88 must have a probability
close to one, whereas the remaining should have very low contribu-
tions. In other words, it would be very convenient to have a expres-
sion that carries the information of to what extent the condition 89

is determined by just one probability, whilst the rest are negligible
and can be left out

∑
n Pn(Ω) = 1 ≈ P(Ω). The fluctuation function

closely describes this situation and does not require the evaluation
of the full Nth-order density matrix ρN, but is on the contrary ex-
pressed in terms of the diagonal elements of the 2-RDM ρ2 defined
in equation 46.
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The fluctuation in the average number of electrons in a region Ω is
evaluated as

σ2(Ω) = 〈N2Ω〉− 〈NΩ〉2 =
∑
n

n2Pn(Ω) −
(∑
n

nPn(Ω)
)2

, (91)

which can be also expressed in terms of ρ2. That possibility entails
a “great conceptual advantage since the extent to which a set of indistin-
guishable particles is spatially localized is determined by the system’s pair
density”, literally quoting R.F.W. Bader [9], and the distribution that
also determines the fluctuation σ2. The relevant properties of the pair
density function are a consequence of the Fermi correlation, which re-
sults from the antisymmetrization of the wave function required by
the Pauli principle. The correlation causes the pair density function
to deviate from a simple product of independent densities. This cor-
relation is carried by the function f(r1, r2), defined in equation 52

and the pair density is expressed as in equations 52 and 53. This cor-
relation term measures not only the Fermi correlation —which exists
among electrons with identical spins— but also the Coulomb correla-
tion —affecting opposite-spin electrons—, as it is explained more in
deep in section 1.5. According to the Pauli exclusion principle, the
exchange of the coordinates of two electrons of identical spin —recall
that Fermi correlation occurs between same-spin electrons— causes
the sign of the pair density to change (see equation 51).

The aim of the present section is to show the expression which
describes “the spatial extent of the effects of the self-pairing correlation
on the motion of electrons, as well as whether or not the net effect of this
correlation for any one particle, the correlation hole, may be localized to one
particular region of space” [9]. In that sense the Fermi correlation is of
capital relevance since it solely determines the extent to which sets of
electrons may be localized in some region of real space.

The average number of pairs of σ-spin electrons in a region can be
expressed in terms of event probabilities

D2(Ω,Ω) =
1

2

N∑
n

Pn(Ω)(n− 1)n =
1

2
〈N2Ω〉− 〈NΩ〉. (92)

This average number of electron pairs can also be expressed by in-
tegrating both coordinates of the pair density over Ω region yielding

D2(Ω,Ω) =

∫
Ω

dr1

∫
Ω

ρ(r1, r2)dr2 =
1

2

[
〈N2Ω〉+ F(Ω,Ω)

]
, (93)
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F(Ω,Ω) accounts for the correlation of the σ-spin electrons

F(Ω,Ω) =

∫
Ω

dr1

∫
Ω

ρ(r1)ρ(r2)f(r1, r2)dr2. (94)

A limiting situation will occur when the probability of one particu-
lar event Pn(Ω) equals unity whereas the other probabilities of the re-
maining events vanish. In such situation the summatory in equation
92 reduces to just one term. The pair population within the region
will be n(n− 1)/2 and it is referred to as a “pure pair” population.
Electrons are uncorrelated and hence perfectly localized within re-
gion Ω. They behave as distinguishable particles that do not see each
other and the wave function for the total system could be written as a
simple product of separately antisymmetrized wave functions, with n
electrons in Ω and the remaining N−n in Ω′. The magnitude F(Ω) is
a measure of the total Fermi hole of the NΩ particles that lies within
region Ω. In such limiting situation the Fermi hole for any of the n
electrons in Ω is entirely contained in this region.

The term F(Ω,Ω) is in general far from this ideal situation and
normally the Fermi hole of the electrons in Ω extends out of this
region. The magnitude F(Ω,Ω) is given the name atomic localization
index LI, or λΩ [45].

It can be also measured how much of the Fermi hole generated by
the electrons occupying a region A is localized not in the same but
within a different region B. This information is contained in F(A,B),
which is defined in the expression for the average number of electron
pairs formed from the electrons located at A and those at B. It is
obtained by integrating the coordinates of one electron over region A
and the coordinates of the other over region B

D2(A,B) =
∫
A

dr1

∫
B

ρ(r1, r2)dr2 =
1

2

[
〈NA〉〈NB〉+ F(A,B)

]
, (95)

where F(A,B) = F(B,A). The sum of both magnitudes F(A,B) +
F(B,A) defines the delocalization index δA,B, or DI and quantitatively
measures the sharing of electrons between regions A and B [45]. A
reorganization of equation 95, equivalent to equation 53 where the
exchange-correlation density ρxc is defined, leads to the most usual
definition of the DI

δA,B = 2

∫
A

dr1

∫
B

dr2ρxc(1, 2). (96)

Equivalently, the LI has the shape

λA =

∫
A

dr1

∫
A

dr2ρxc(1, 2). (97)
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Within the HF approach, the exchange-correlation density can be
expanded in terms of the spin orbitals as in equation 60, which would
yield a very common definition of the DI

δA,B = 2
∑
i,j

∫
A

ψi(r1)ψj(r1)dr1

∫
B

ψi(r2)ψj(r2)dr2 (98)

= 2
∑
i,j

SAijS
B
ij, (99)

where each of the integrands is the domain-restricted atomic over-
lap matrix (AOM) SAij between spin orbitals ψi and ψj, whose spin
coordinates have been left out

SAi,j =

∫
A

ψi(r1)ψj(r1)dr1. (100)

The number of electrons 〈NA〉 —charge— in the region A can be
expressed as

〈NA〉 = λA +
1

2

∑
X 6=A

δA,X, (101)

and the fluctuation σ2(A) of equation 91 may be now rewritten as

σ2(A) = D2(A) + 〈NA〉− 〈N2A〉 (102)

= 〈NA〉− λA =
1

2

nearest∑
X 6=A

δA,X, (103)

from where it can be seen that the variance is given by the electron
and electron pair populations. For situations where the electrons are
perfectly localized, that is λA = 〈NA〉, the fluctuation σ2(A) will at-
tain a value of zero.

The fluctuation defined in 91 measures the variance between the
number of electrons occupying a region of the space and the local-
ization of electrons within this region. It is also useful to consider
whether electrons are shared between close or distant regions. We
name close regions those having common zero-flux surfaces, that
is, having direct contact with the region occupied by the electrons,
whereas distant refers to regions located beyond the first neighbour-
hood. As defined in [18], the number of close shared pairs σc(A) for
basin A is the sum of the DI of the nearest basins

σc(A) =
∑
B 6=A

δA,B. (104)
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The difference between twice the fluctuation (total shared pairs)
and the sharing among the closest basins σc(A) yields the distant
shared pairs σd(A) for basin A

σd(A) = 2σ
2(A) − σc(A). (105)

Finally, it will be meaningful to express the fraction of the total
shared electron pairs that are shared with distant basins χ(A)

χ(A) =
σd(A)

2σ2(A)
. (106)

3.2 the delocalization index in the solid
state

The exchange-correlation part of the pair density is not explicitly
available from DFT and a workaround has to be used in order to build
it from the Kohn-Sham orbitals using a HF-like formula (see [18] and
references therein). This approach is known to yield good results
in molecules and it may be also used in solid-state DFT, although
partially occupied KS orbitals may appear (mostly in metals, where
there are partially occupied bands).

In solid state calculations, the integration to find the DI is done over
the Brillouin Zone (BZ) with volume VBZ which is transformed into
a summation over a user-chosen number of k-points within it (KBZ)

δA,B =
2

K2BZ

∑
n,n′

∑
k,k′

Snk,n′k′(A)Sn′k′,nk(B)θ(n,k)θ(n′k′), (107)

which is the Ángyán formulation of the DI [5]. Also, an alternative
form of the LI and the DI is given by Ponec in [131]. The index n
runs over the bands and the occupation number θ(n,k) selects only
occupied states. S are the overlap integrals between the KS orbitals
of the crystal calculated over the region Ω

Snk,n′k′(Ω) =

∫
Ω

ψ∗n,k(r)ψn′,k′(r)dr. (108)

In a equivalent manner the LI over the region A are calculated as

λA =
∑
n,n′

∑
k,k′

S2nk,n′k′(A). (109)

Kohout and Baranov have explained in detail how to obtain the DI
and LI for extended systems (see reference [18]).



4 D E C AY O F D I S A N D
M E TA L L I C I T Y AT T H E
U N C O R R E L AT E D L E V E L

4.1 introduction

Real space theories of the chemical bond[14, 109] have provided a
physically sound alternative to the molecular orbital (MO) paradigm
over the last two decades (see Section 1.1.3),[61] incorporating orbital
invariant descriptors endowed with chemical meaning to the chemi-
cal bonding toolbox. Among several proposals, commonly gathered
together under the Quantum Chemical Topology (QCT) umbrella, the
QTAIM described in Section 3 is of special interest because of a key
distinguishing feature that separates it from other techniques: its en-
ergetic face. All the standard components of the Coulomb Hamilto-
nian may be examined over QTAIM real space domains, providing
a unique route to bind the physicist and the chemist points of view.
In order to do so, the non-diagonal first order RDM (1-RDM) as well
as the diagonal 2-RDM are needed. The first is a standard ingredi-
ent of the orthodox QTAIM, and the second was shown to provide a
measure of electron delocalization in a seminal paper by Bader and
Stephens[10], as we have discussed. The 2-RDM was finally added to
the energy-related descriptors of the QTAIM in the interacting quan-
tum atoms (IQA) scheme.[50]

As the set of systems for which the QTAIM was applied increased
(including molecules, clusters, and solids), it soon became clear that ρ
and/or ∇2ρ contain a wealth of information about chemical bonding,
and that a simple classification of systems into shared-shell or closed-
shell types, in quite good agreement with the standard covalent/non-
covalent (including ionic) bonding models was possible. This knowl-
edge is now mainstream, reaching general chemistry textbooks, and
its success encouraged researchers to look for features in ρ peculiar
to metallic systems, an enterprise with little initial success. The den-
sity of conducting materials seemed not different from that of stan-
dard covalent ones. A proposal that non-nuclear maxima (or non-
nuclear attractors, NNAs), known in the Li2 molecule since 1956,[22]
and found in other lithium clusters[31, 58] might signal metallic be-
haviour was received with hope. Its chemical image matched well
with the qualitative idea that conducting electrons were transferred
to interstitial positions in crystalline lattices. However, when reliable
calculations of the topology of the electron density in solid alkali met-
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als were available, this initial hope vanished.[93] Only Li displayed
NNAs at equilibrium geometries. Since then, experimental densi-
ties have demonstrated that NNAs may appear in Beryllium,[72] but
are absent in the metals of largest conductivity, like Cu, Al, or Ag.
Whatever the origin of NNAs,[103] they do not signal conductivity.
Other attempts have shown that the density of metallic systems is
characterized by its interstitial flatness,[114] again in agreement with
conventional chemical wisdom, but no salient feature of the density
determining conductivity has ever been found.

From the purely theoretical side, the naïve difference between elec-
trical conductors and insulators lies in their excitation spectra,[74]
i.e. in the nature of their excited states, far from the real space realm.
However, a seminal paper by Kohn in 1964[77] showed that insulators
and conductors also differ essentially in the organization of electrons
in their ground state. In the former, the wave function is composed
of many-body building blocks localized in disconnected regions of
the many-particle configuration space. Long forgotten, Kohn’s the-
ory was reformulated by Resta in 1998,[139] in what today is known
as the modern theory of polarization, offering a new view deeply
linked to Berry phases.[84] Resta has shown that the finiteness or di-
vergence of Kohn’s localization tensor (LT) is the key to conductivity,
and that for one-determinant descriptions, the LT is closely related to
Boys theory of localization,[25] very familiar to the quantum chemi-
cal audience. Application of the LT (or total position spread tensor,
TPS) to chemical problems has been pioneered by Evangelisti and co-
workers.[27] An important point for what follows here is that Resta’s
formulation lies in real space. Thus, conductivity may not leave scars
in the plain density, but should lead to a recognizable imprint if we
examine other RDMs in real space.

Notwithstanding the role that the TPS should play in this impor-
tant problem, in this contribution let us focus on how the standard
real space measures of (de)localization may be related to metallic be-
haviour in molecular systems. To that end, we will start recalling
some known results based on Kohn’s near-sightedness principle.[78]
They show that the decay behaviour of the 1-RDM, ρ(r; r ′), deter-
mines the locality of all relevant observables. We will then relate the
1-RDM to the real space DI defined within the QTAIM by Bader and
Stephens,[10] δA,B (see equation 107). Armed with this, we will ex-
amine the analytical decay rate of δ for Hückel and tight binding (TB)
models of metals and insulators, comparing with simple calculations
in toy systems. The results will show that, as expected, the decay
rate of delocalization measures differs in insulating- or metallic-like
systems, being exponential in the former and algebraic in the latter.
Other interesting links, like that between the well known oscillations
of δ in conjugated molecules, clearly related to resonance and chemi-
cal behaviour, and Friedel oscillations in metals will be put forward.
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4.2 decay rate of 1-rdms and delocaliza-
tion indices

As commented, the decay rate of the density matrix, a fundamental
issue after Kohn’s insights on near-sightedness[78] has been widely
studied in the physical literature, usually under a one-electron pic-
ture within the DFT (see Section 1.4), or within a tight binding (TB)
Hamiltonian approximation. For instance, Goedecker[62] showed
that assuming the electronic structure of an isotropic 3D metal to be
dominated by its free-electron band structure, the 1-RDM ρ(r; r ′) =

ρ(|r− r′|) = ρ(s) decays algebraically at zero temperature,

ρ(s) =
−kF
π2s2

(cos(skF) − sin(skF))/(skF), (110)

where kF is the Fermi vector modulus, related to the valence elec-
tron density k3F/(3π

2) = Nel/V . As it can be seen, ρ(s) oscillates
on decaying like s−2, with zeros at skF ≈ 4.49, 7.73, 10.90, etc. For
reasonable valence density values, it can readily be found that these
zeros are close to lattice vectors. As we will see, this oscillatory be-
haviour, which is closely related to the well known Friedel oscillations
of metals,[74] has close relatives in finite molecules.

Taraskin and co-workers[159] have refined these results for 1D to
3D TB metals in simple linear, square, or cubic cells, showing that ρ
decays as s−(d+1)/2, d being the dimensionality of the system. These
authors[158] have also shown that, for two bands TB models of insu-
lating lattices the 1-RDM falls exponentially with s,

ρ(s) ≈ sd/2e−λs, (111)

where the inverse decay length λ depends on the gap, ∆, scaling lin-
early with it as ∆ → 0. ρ(s) turns out to be anisotropic, showing its
slowest decay along the (1,1) or (1,1,1) diagonals in 2D or 3D, respec-
tively. Effective λ values have been shown to lie between 1-5.

Once these results have been presented, let us turn to delocaliza-
tion measures in real space. Several indicators have been proposed
over the years, among which the electron localization function (ELF)
of Becke and Edgecombe,[21] very popular in theoretical chemistry
after the work of Savin and Silvi,[150] is probably best known. Other
possibilities like the electron localizability indicator (ELI) introduced
by Kohout,[80] valid for correlated descriptions, also exist. All of
these are local descriptors, bearing no decay information, and do not
serve our purposes.

Fortunately, the DI describes how many pairs of electrons are shared
(thus delocalized) between two finite regions A and B in real space
(see equation 107). In this expression, the integrand is the standard
exchange-correlation density, ρxc(r1, r2), obtained after integration
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of equation 53 over the spin coordinates of both electrons. δA,B is a
scalar parameter between any two regions —notice that if A = B we
usually talk about a localization index (see equation 109)— that due
to the extensivity of ρxc, adds to the total electron population (N),
1/2
∑
A,B δ

A,B = N.

The DI may be understood as a simple generalization of the Wiberg-
Mayer (WM) bond order,[110, 162] to which it reduces upon identifi-
cation of real space averaging with atom-centred, Mulliken-like basis
set condensation. Actually, for single determinant expansions with
one-electron spinorbitals ψi, the DI can be defined in terms of the
AOMs, defined in equation 100, as δA,B = 2

∑
i,j S

A
ijS
B
ij. To compare

this expression to the WM bond order, which is usually written as

WAB = 2

A∑
µ

B∑
ν

(PS)µν(PS)νµ, (112)

with sums running over primitive functions χµ centred on the A or B
nuclei, and P denoting the density matrix written in terms of primi-
tives, Pµν =

∑
i ciµc

∗
iν such that φi =

∑
µ ciµχµ, it is useful to turn

to a set of orthogonalized primitives χ ′µ. Using them,

WAB = 2

A∑
µ

B∑
ν

P ′µνP
′
νµ, (113)

that can immediately be recast as δA,B if the Mulliken condensation

SAij =

A∑
µ

c ′iµc
′
jµ (114)

is made. Although any orthogonalization procedure will destroy the
original ascription of primitives to centres, it is very often the case
that orthogonalization tails are not dominant, and that one can still
formally assign the new orthogonal primitives to nuclei. Although
this lies at the core of many of the problems of Mulliken or Löwdin
population analysis, it plays no role in the following.

The chemist bond order is a measure of delocalization that the DI
simply puts into a proper physical context. The above condensation
procedure will be used soon in what follows. DIs have been widely
used, providing a number of interesting insights. Particularly im-
portant in this context is the general finding that electron correlation
tends to decrease the covalent bond order well below the standard
integer numbers used by chemists.
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It is also important to recognize that, being a domain condensation
of the exchange-correlation density, the DI reflects the two-domain
statistics of electron populations. For instance

δA,B = −2cov(nA,nB) = −2 [〈nAnB〉− 〈nA〉〈nB〉] . (115)

Here, nA,nB are the domain electron counts, so that 〈nA〉 is the av-
erage electron population in region A. Delocalization, as sensed by
the DI, is a measure of the fluctuation of electron populations. In
chemical terms, two regions display a non-vanishing mutual bond
order (if we like, they are bonded) when fluctuations in the electron
population of one of them are sensed in the other, and vice versa.

At this point it was also noticed that most of the known results
about the decay rates that we have commented above are based on TB
Hamiltonians or effective one-electron formulations within DFT. In
such cases, which can be assimilated to one-determinant expansions
in a theoretical chemistry context, the exchange-correlation density
reduces to its Fock-Dirac expression of equation 60.

This means that the decay rate of DIs with A−B distance should be
a reason that allow to distinguish between metallic-like and insulating-
like behaviour in not only extended but also finite systems.

It is the purpose of the work presented here to show with the
help of Hückel and TB model Hamiltonians that the above insights
hold indeed for molecules and solids. DIs should fall algebraically
in metallic-like systems, possibly showing Friedel-like oscillations,
and exponentially in insulating-like molecules, with decay lengths
depending on the gap.

4.3 models, computational details

The study will be restricted to the simplest possible cases that
can be solved both analytically and modeled via single determinant,
Hartree-Fock (HF) or Kohn-Sham (KS) DFT, expansions. To simplify
as much as possible, we will consider homoatomic An linear chains
of growing size with one electron per node to model metallic-like
cases, and heteroatomic (AB)n ones with also one valence electron
sites to understand insulating-like behaviour. We will obtain DIs
from analytical Hückel solutions with Mulliken condensation, and
compare them to HF results in H and LiH chains obtained with the
GAMESS[142] code using 6-311G(p) and 6-311+G(p) basis sets, re-
spectively. In these cases, DIs for QTAIM topological partitions have
been computed through our PROMOLDEN[2] program.

We have also obtained TB solutions for linear, square, and simple
cubic one-electron per site extended lattices, and compared the decay
rate of their DIs to that obtained from hydrogen lattices computed
through the all-electron, full-potential linearized augmented plane
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wave (FP-LAPW) code ELK.[1] QTAIM DIs from Elk solutions were
obtained through the DGrid code.[82]

We will start considering our finite analytical models. Then we will
generalize to 1D-3D extended systems, and finally we will compare
results with HF and KS real data.

4.4 finite analytical models

4.4.1 The Hückel homoatomic chain

The Hückel homoatomic chain is an excellent semi-empirical model
not only of hydrogen chains, but also of the π skeleton of alternate
conjugated hydrocarbons, where a p, instead of an s function is placed
at each node. We will freely switch between the s-H chain and the
p-alternate hydrocarbon interpretations in what follows.

Let us label the n nodes of the chain with Latin indices, and build
each one-electron function ψµ =

∑
i c
i
µχi, where χi denotes each

node’s primitive and the orbital index µ runs from 1 to n. We can
both consider open-ended or closed chain conformations. Both admit
well-known analytical solutions, so to simplify, we will stay with the
open-ended, linear chain case. This is characterized by a Hamiltonian
matrix H = αI+ βT , where α,β are the standard Hückel Coulomb
and resonance parameters, respectively, and Tij is a Toeplitz tridiag-
onal adjacency matrix, with elements equal to 1 whenever |i− j| = 1

and equal to zero otherwise. Toeplitz systems are easily diagonalized
by discrete Fourier transforms.[20] To simplify further, let us assume
that n is even. Then, the eigenvalues of H and its associated spinor-
bital coefficients are

εµ = α+ 2β cos
µπ

n+ 1
.

ciµ =

√
2

n+ 1
sin

µiπ

n+ 1
. (116)

Similar solutions may be obtained for a closed chain, now by solving
a circulant matrix problem.
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Figure 5: Hückel DIs for n = 6 cyclic and open-ended homoatomic chains.
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Using Mulliken’s condensation, δi,j = 2(
∑
µ c
i
µc
j
µ)
2 (change the

prefactor from 2 to 4 if the sum runs over occupied orbitals). Notice
that the DI is built up from trigonometric functions, so a clearly os-
cillating behaviour is expected. Figure 12 shows all the DIs for both
open and closed n = 6 chains, which may be seen as models of hex-
atriene and benzene, respectively. DIs obtained with this simple pre-
scription have already been reported in several model systems.[104]

There are several points to be commented. First, notice that the DI
between nodes separated by an even number of edges is exactly zero,
which is valid for any value of n and for cyclic or open chains. A
chemically appealing connection between electron delocalization via
DIs and mesomerism thus appears.

The resonance link is very clear when the covariance interpretation
of the DI is taken into account. For instance, it is straightforward to
check that on building the standard Pauling resonance structures of
the hexatriene analogue, if the charge of node (atom) 1 (at one edge)
is altered, then only those charges of atoms 2, 4, or 6 will also be
found altered in the possible resonance schemes. This means that
only the 1-even populations will display non-zero covariance, thus
non-vanishing DIs. This interpretation may be generalized to other
dimensions.

The ortho (or 1,2) DI in Hückel’s benzene is 4/9, so adding the clas-
sical σ bond order would add to a total C-C bond order of 1.44, dif-
ferent from the naïve value 1.5. HF or DFT C-C DIs in benzene have
been calculated many times, giving values clustered around 1.4. The
1,4 (para) DI, or PDI is quite large in benzene (although smaller than
in the open chain), and has been successfully related to aromaticity
in real calculations.[128]

Secondly, DIs in the open-ended chain show the expected bond or-
der alternation of alternant hydrocarbons, with an oscillatory pattern
of partial double (if the σ component is added) bonds, in good agree-
ment with chemical wisdom. If the open chain is taken as a model for
Hn, DIs predict the Peierls distortion (dimerization) of the hydrogen
chain.[74] If, on the contrary, it is understood as an alternant hydro-
carbon model, then DIs predict bond length alternation. Finally, this
very simple example shows that DIs decay slowly in chains: the 1,6
value is as large as 0.0908.

Let us examine now the infinite chain (n → ∞) limit. It is easy to
show that

δi,j =

{
16
π2

j2

(i2−j2)2
(i+ j) odd

0 (i+ j) even
(117)

This analytical expression has several interesting readings. For in-
stance, the open chain does not lead to bond equalization at its ends.
The 1,2 and 2,3 DIs tend to 0.721 and 0.259, respectively. Equalization
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is however achieved far from the edges, i.e. when n ≈ n/2, where the
DI tends to 4/π2 ≈ 0.405.

As our main objective is regarded, if we take s = |j − i|, δ(s) →
16/(π2s2) (when non-zero), decaying algebraically as s−2, in agree-
ment with Taraskin and co-workers.[159] Figure 13 nicely shows the
oscillating behaviour and the decay of the non-vanishing envelope for
different sizes. Notice that, although the inverse square decay is only
strictly valid at the n → ∞ limit, this is reached very quickly. This
means that even for relatively small sized systems the polynomial de-
cay should be clearly visible, should these model results extrapolate
successfully to real systems.
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Figure 6: Hückel DI(1,i) for the homoatomic linear chain as its size (n sites)
grows. Different lines correspond to different length chains. At
the end of the chain j = n.

Let us finally recall that according to the eigenvalue expression
shown above, the set of orbital energies is always enclosed in the
α± β range, evolving in such a way that the HOMO-LUMO gap ∆
closes as n increases. Expanding with respect to γ = 1/n, we get that
∆(γ) = 2π(γ − γ2) + O(γ3). Similar expansions can be performed
with the mid-chain first neighbour DI, so the DI may be used as an
indicator of the gap for large chains, as figure 14 shows.

4.4.2 The Hückel AB heteroatomic chain

A model for a chain insulator may be easily constructed by inter-
penetrating two different α homoatomic lattices. Since all the physics
is contained in ∆α = α− α ′, we can arbitrarily set one of them (e.g.
α ′) to zero. This is a model for the valence electrons in LiH, for in-
stance. Let us construct a chain with n (n even) sites, and order them
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Figure 7: Evolution of the HOMO-LUMO gap against the midchain DI for
the Hückel homoatomic chain. The length of the chain increases
as the gap approaches zero (and the DI reaches its 4/π2 limit). All
data in a.u.

such that the first n/2 are A (α) and the second n/2 B (with α ′ = 0).
Then the Hückel matrix is square-blocked,

H =

(
αI βT

βT t 0

)
, (118)

where Tij is again a Toeplitz tridiagonal matrix. Splitting eigenvectors
into A and B components, the eigensystem is easily solved with a
simple generalization of the Coulson-Rushbrook[36] theorem. The
set of eigenvalues is

εµ =
1

2

(
α±

√
α2 + 16 cos2(µπ/(n+ 1))

)
,µ = 1,n/2, (119)

where the plus/minus sign differentiates the occupied/virtual solu-
tions. Similarly,

ciAµ =
√
2/(2− τ)ciµ,

ciBµ =
√
2(1− τ)/(2− τ)ciµ, (120)

with ciµ as in the homoatomic chain and τ = α/εµ.
It is not difficult to show that this is a gapped system. In the infi-

nite n limit, using a 1/n = γ expansion similar to that used before,
∆(γ) = α+ 2π2γ2/α+O(γ3), and the gap approaches α on growing
chain size, the faster the larger the α value. Figure 15 shows the evolu-
tion of DI(1, j) for the n = 10 heteroatomic chain with three different
α values. Notice how the results collapse on the homoatomic ones
if α = 0, and how the metallic-like oscillations get damped for small
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values of α to completely disappear as this parameter increases. This
is a very interesting insight. It is also pretty clear that heteroatomic
DIs decay much faster than homoatomic ones. All DIs converge ex-
tremely fast to the n → ∞ limit. For instance, with α = 2, DI(1,2)
attains the limiting 0.368 value at n = 8, with just 4 AB units.

Figure 15 also shows the onset of the exponential decay of DIs for
even pretty small n values. Our δ1,j = δ(s) falls off exponentially with
exponent λ approximately equal to 1.5, 1.8 for α = 3, 4 respectively.
Our finite chain results support the proportionality between the gap
and λ in the small gap limit. In this case, ∆ ≈ α ≈ 2λ. The faster the
decay rate, the larger the gap. This is a valuable insight in molecular
calculations.

4.5 periodic analytical models

The calculation of DIs from TB models in one to three dimen-
sions has been pioneered by R. Ponec, who first presented a simple
calculation,[132] later extended and reformulated.[133] His second
paper actually provides tight binding results under the Mulliken con-
densation approximation discussed previously. DIs from DFT calcu-
lations over QTAIM or ELI real space domains are available since the
work of Kohout and co-workers.[18, 80] However, all these authors
have been more interested in first or second-neighbour DI values
than in the decay rate of the indices. We will focus here on this sec-
ond aspect for homoatomic lattices, referring the reader to the above-
mentioned papers for further details.

Imposing periodic boundary conditions (PBC) on a lattice with one
primitive function χ per site allows us to use Bloch’s theorem[74] to
immediately write the one-electron Bloch functions as

ψk = (1
√
N)
∑
R

χ(r−R)eikR, (121)

where R runs over real space lattice vectors, N is the total number of
sites, and k runs over the first BZ. Under a nearest neighbours TB (or
Hückel) hamiltonian, the above Bloch ansatz leads to the following
one-electron eigenvalues:

εk = α+β
∑
Rn

eikRn , (122)

where Rn only covers nearest neighbours.

In a 1D lattice with lattice parameter a, where −π/a 6 k < π/a,
we will have εk = α+ 2βcos(ka), which may be compared with our
previous finite 1D results. To obtain the DI between two lattice sites,
let us centre our reference frame at one of them (the 0 site, with R =
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Figure 8: Top: δ1,j for the n = 10 AB heteroatomic chain at α = 0 (black),
1 (green), and 2 (blue). Oscillations rapidly disappear as α grows
from 0. Bottom: Evolution of the logarithm of δ1,j for a n = 20
chain with α = 3 (solid red with crosses) and 4 (dashed blue with
dots).
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0). The band (orbital coefficient) of this site is independent of k, c0k =

1/
√
N. That of site located r lattice parameters away, crk = 1/

√
Neikra.

Using then the Mulliken condensation scheme, and integrating over
the BZ,

δ0,r = 4

{
a

2π

∫+π/(2a)
−π/(2a)

dk eikra

}2
= 4 sin2(πr/2)/(r2π2). (123)

Of course, this result is equivalent to our previous infinite n limit, and
shows that only if r is odd the DI does not vanish. PBC also leads
to bond equalization. All nearest neighbour DIs are equal to 4/π2,
independently of the lattice parameter a. This is of course a flaw
of the TB hamiltonian. It is also relevant to comment on the on-site
localization index (half the diagonal δ0,0 value), which turns out to be
equal to 1/2, showing that half of the electron population is localized,
half delocalized over the full lattice. Notice also that the sum rule
1/2
∑
B δ
A,B = NA = 1 follows, since

∑∞
i=0 1/(2i+ 1)

2 = π2/8.

Integration over the BZ in a 2D square lattice of lattice parameter
a is again trivial, since the Fermi surface is a perfect square. Taking
an arbitrary site of the lattice as origin O, we will label any other site
with Cartesian coordinates (ra, sa) with the (r, s) integer pair,

δ0,rs = 4

{
a2

(2π)2

∫
∈FS

dkxdky e
i(rakx+saky)

}2
, (124)

which reduces to

δ0,rs =

{
16/(π4(−r2 + s2)2) r+ s odd

0 otherwise.
(125)

Our results show a more complex landscape than that provided by
Taraskin and co-workers, who would describe an inverse third power
decay. Here we show that the decay rate depends on the direction, fol-
lowing an inverse fourth power law envelope along the (1,0) direction.
The localization index of each site is again equal to 1/2.

The oscillatory pattern found in 1D is seen here to propagate in
2D. From a given site, the network of nodes with non-zero DIs resem-
bles a check board. This behaviour is clearly related to the ability of
this lattice to be decomposed into two 45◦ rotated interpenetrating
alternate sublattices, like in alternate hydrocarbons. It seems that DIs
between elements of the same sublattice vanish. Again, this may be
understood in terms of charge fluctuation (covariance) if the allowed
Pauling resonance structures are examined. Several interesting in-
vestigations regarding this should be undertaken. On the one hand,
it would be interesting to check the behaviour of frustrated lattices.
On the other, it would be of great interest to study also the chemical
consequences (as noticed with mesomerism in 1D) of these patterns.
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For the time being, it is relevant to shift to the crystalline coordi-
nates of the sublattices. This can be done by using two new orthogo-
nal coordinates p = r+ s, q = r− s. With this,

δ0,pq = 4/(π2p2)× 4/(π2q2), (126)

with p,q both odd, and δ = 0 otherwise. We thus see that the square
lattice behaves as a Cartesian product of two 1D networks. With this
expression, it is straightforward to show that the sum rule adding to
the site population of 1 electron is also fulfilled.

Nodes along the (1,1) diagonal belong to the same sublattice (r+ s
is even, or q = 0). The decay along p =constant-odd or q = constant-
odd diagonals follows an inverse square power law, and if particular
relations between p and q are satisfied along a nodes sequence, inter-
mediate power laws also appear. We have found it difficult to obtain
an analytical angularly averaged decay rate.

The non-trivial shape of the Fermi surface in the 3D case precludes
an analytical integration over the BZ. Anyway, if we label nodes on
the simple cubic lattice by the trio (r, s, t), then

δ0,rst = 4

{
a3

(2π)3

∫
∈FS

dkei(r,s,t)ak
}2

, (127)

which may be reduced to simple numerical quadratures. The symme-
try properties of the above expression allow us to assure that δ0,rst is
only non-zero when r+ s+ t is odd, and we can again consider the lat-
tice as composed of two interpenetrating sublattices such that δ only
communicates nodes belonging to different sublattices. We have no
analytical decay rates, but clear numerical evidence points towards
faster, likely inverse sixth power, decay speed. As an example, δ0,100,
the nearest neighbours DI, is equal to 0.112 (to be compared to 0.405
and 0.164 in 1D and 2D, respectively).

Summarizing, extended TB models show algebraic decay of DIs in
gapless homoatomic systems coupled to a very interesting interfer-
ence cancellation that leads to wild oscillations that may be traced
back to Friedel behaviour, from the physical point of view, or to reso-
nance and mesomerism, from the chemical one.

4.6 single determinant (hf, ks) results

We will discuss here how the analytical models compare to actual
one-determinant (or pseudo-determinant, in the case of DFT) calcula-
tions in hydrogen and lithium hydride toy systems. We have chosen
interatomic separations for which these methods are known to pro-
vide reasonable answers, and a QTAIM space partitioning. We leave
the true role of electron correlation aside, that we expect to consider
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soon elsewhere. All calculations have been performed at fixed ge-
ometries. As we will see, the exact interference cancellation behind
zero DIs disappears as we allow for the primitive functions to over-
lap. However, many of the insights developed from the Hückel or TB
models remain valid.
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Figure 9: Logarithmic plot of δ1,j against the H-H distance in the H 1D in-
finite (black), cyclic finite with 42 atoms (green), and open-ended
finite with 28 atoms (red) hydrogen chain. Linear fittings are su-
perimposed to clearly observe the algebraic decay rate. The expo-
nent of the power law decay, f, is to be compared with the Hückel
or TB result, f = 2. This inverse square law is also represented in
blue. The lattice parameter, or nearest neighbour H-H distance, is
set to 1.84 bohr the theoretical limiting equilibrium parameter for
a HF cyclic chain as n grows.

Figure 16 shows that actual calculations in 1D chains display deep
oscillations, and that δ1,2i+1 values are non-zero, but certainly much
smaller than δ1,2i ones. Both odd and even envelopes evolve alge-
braically, with exponents larger than 2, but close to it. Several other
points may be highlighted. For instance, f decreases approaching 2,
as we move from open-ended finite to cyclic finite, and finally to PBC
infinite chains. This is to be expected, since open finite chains differ
considerably from the stringent approximations of the Hückel or TB
models. We have also found that results in finite chains converge very
quickly with size, as in the models, and that our computed values are
quite close to those provided by the latter. For instance, DIs δ1,2(4)

computed in the infinite chain are 0.44, 0.04, to be compared with the
TB results, 0.39, 0.04, respectively.

Changing the lattice parameter does only introduce quantitative
changes in the picture. For instance, at a = 2.5 bohr, probably out of
the confidence window where KS-DFT is reliable for this system (see
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figure 17), the PBC chain f value equals 2.21, slightly closer to 2, the
value that it should attain at dissociation values of a.
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Figure 10: Logarithmic plot of δ1,j against the H-H distance in the H 1D
(blue), 2D square (red), and 3D simple cubic (green) H infinite
lattices for a = 2.5 bohr along the 1, (1, 0), and (1, 0, 0) directions,
respectively.

Changing the dimensionality alters qualitatively the analytical re-
sults. We will show only PBC calculations in square and simple cubic
2D, and 3D H lattices, both computed at a = 2.5 bohr. This is the
lattice parameter used by Baranov and Kohout[18] (BK) in a seminal
study of first neighbours DIs in solids. We use it here so that the
reader may compare our values with those obtained by BK. Results
at a = 1.84 bohr do not differ qualitatively from those shown here.
Figure 17 depicts that the decay is algebraic in the three cases, with f
values roughly increasing in 2 units as we change dimension. What
is noticeable is that oscillations disappear in 2D and 3D, while they
widely persist in the TB models. We think that this is due to the in-
crease in the number of neighbouring overlaps that contribute to the
cancellation the destructive interference that lies behind the oscilla-
tions found in TB. In 1D, each site’s primitive overlaps with 2 nearest
neighbours, while in 2D and 3D this number increases to 4 and 6, re-
spectively, or even more if we consider second neighbours. Be it as it
may, our results clearly support an algebraic decay of DIs in gapless
systems, with f values increasing steadily on going from 1D to 3D.

We now turn to insulating materials. This time we will present HF
finite calculations in a (LiH)9 1D chain and a 9× 9 LiH square 2D foil,
both with fixed Li-H distances equal to 3.0 bohr. In order to avoid
as much as possible termination effects, we have built in each case
models in which a Li or a H atom is placed at the centre of the chain
(or foil). Figure 11 (top) shows the QTAIM DIs. As expected, their de-
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Figure 11: Top: Semilogarithmic plot of the QTAIM δ1,j against the node
index in a LiH 1D chain (with 9 LiH units, solid line), and a LiH
2D square foil (9× 9, dotted line), both with a = 3.0 bohr. The
red (for Li) and black (for H) colours distinguish which atom is
placed at the centre of the model and labeled as node 1. Only the
(1, 0) direction is shown in the 2D case. Bottom: Semilogarithmic
plot of Löwdin δ1,j against the node index j in a LiH 1D chain
of 17 LiH units, using also a = 3.0 bohr. DI(Li,H) is shown with
crosses, and DI(Li,Li) with squares. Minimum square lines are
also shown just to aid the naked eye.
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cay with distance is extremely fast. So fast, indeed, that we have not
been able to obtain numerically reliable values beyond fourth neigh-
bours. Notice that the existence of an AB lattice introduces three
types of DIs: Li-Li, Li-H, and H-H. This is the origin of the kinks in
the plot. For instance, the second neighbours (j = 3) DI between Li
atoms is almost one order of magnitude smaller than that between H
atoms. With such a quick decay we have not enough data to support
an exact exponential decay, but we can rule out a slow polynomial
one. Notice also that the exponent seems to increase with dimension-
ality. This also explains why we have not added 3D data to the figure:
numerical issues render even fourth neighbours unreliable for them.
Decay rates do also depend on the direction, as expected, but numer-
ical problems again preclude us from extracting precise conclusions.
Numerical issues are much less important if instead of QTAIM basins
we use equation 114 together with, for instance, Löwdin’s orthogonal-
ization. figure 11 (bottom) shows the exponential-like decay of these
Löwdin DIs in a (LiH)17 linear chain. DIs decrease 8 orders of mag-
nitude on traversing the chain. Although the chemical interpretation
of these Löwdin indices is prone to severe criticisms, they serve well
our purpose of showing the evolution of decay rates.

Overall, analytical and real models support an exponential, non-
algebraic decay of DIs in gapped systems.

Let us then wrap this Chapter up by gathering up the ideas we
have been presenting. The search for real space descriptors that could
discriminate metallic from insulating materials has been a recurrent
quest in chemical bonding theory in the last decades. After the refor-
mulation of Kohn’s theory of the insulating state by Resta,[139] it is
now known that electrical conductivity does not leave recognizable
scars in the electron density itself. However, the modern theory of
polarization, as the reformulation is known, points towards a possi-
ble link between electron delocalization measures and the insulating
or conducting nature of a material. Previous knowledge in the phys-
ical literature had noticed that the decay rate of the 1-RDM changes
from algebraic to exponential when going from metals to insulators
in tight binding models. Here we have shown that since the delocal-
ization index of real space theories of the chemical bond is dominated
by the square of the 1-RDM, it must follow the same behaviour, so a
link between bond orders (that is what the DI measures in isolated
molecules) and conductivity appears.

To that end, we have solved several Hückel finite and TB extended
models. As it turns out, even in fairly small molecular chains the
shift from polynomial to exponential decay is evident when a gap
is forced in the system, and the larger the gap, the faster the decay.
Our results show that in metallic-like systems (because the gap does
only close when we go from finite to infinite systems) the DI decays
algebraically, wildly oscillating due to quantum mechanical interfer-
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ence cancellations that annihilate the DI between nodes belonging to
the same alternating sublattice. These oscillations have been shown
to be intimately linked to Pauling resonant structures and chemical
mesomerism, well known in alternant hydrocarbons. The dimension-
ality of the system simply changes the decay exponent, larger as we
go from 1D to 3D.

Real computations within the HF or KS single (pseudo)determinant
schemes together with a space partitioning according to the quantum
theory of atoms in molecules, show that DIs decay algebraically in
metallic-like molecular systems, and very like exponentially, or at
least extremely fast, in insulating-like ones. Oscillations persist after
the inclusion of overlap in 1D chains, although the vanishing DIs in
the analytical models are now small, but non-zero. Overlap seems to
block interference in larger dimensions, making oscillations to disap-
pear (or at least dampen substantially).

Examining the decay of DIs in real molecules and extended materi-
als may provide very interesting clues to their conducting behaviour.
Since DIs may be computed between any pair of atoms, their decay
may be followed along particular directions, making it possible to
detect facile or non-facile conductivity channels. This may provide
relevant information in material science and molecular electronics.

The impact of electron correlation on these results remains to be
ascertained. We expect it to be small in simple systems at geome-
tries close to equilibrium, but it should be important, yielding in-
teresting insights into metal-insulator transitions, when the single
(pseudo)determinant approximation ceases to be useful.



5 D E C AY O F D I S A N D
M E TA L L I C I T Y AT T H E
C O R R E L AT E D L E V E L

5.1 introduction

Although the DIs have been computed in many systems, usually
under the single determinant Hartree-Fock (HF) or Kohn-Sham (KS)
approximations, the exact behavior of DIs is not known in general
circumstances. This is particularly true as regards their response to
changes in the A,B distance, since in most cases this implies an appro-
priate treatment of electron correlation. It has already been shown[57]
that the profile of DIs along reaction coordinates reveals the nature
of chemically relevant interactions, with sigmoidal profiles signaling
the formation or breaking of chemical bonds and exponential shapes
detecting non-bonding clashes. If read in terms of plain physical
quantities, these findings tell us about the different patterns of elec-
tron delocalization taking place in both kinds of chemical processes.

As it was previously shown (see Section 4 and references[56, 56,
139, 158, 159]), in both finite molecules and extended systems DIs
decay algebraically/exponentially for metallic-/insulating-like mate-
rials. This is true both in Hückel or TB models and in actual simple
systems computed at the HF or KS levels. It was also found that DIs
show an oscillatory behavior in metallic-like Hückel or TB models,
vanishing whenever simple selection rules were satisfied. This behav-
ior, related to quantum mechanical interference, persists in HF or KS
calculations only in one-dimensional chains, disappearing in 2D and
3D systems. The oscillations observed in the DIs are interpreted in
previous chapter in terms of the classical Pauling resonance theory
or mesomerism, establishing a link between physical behaviour and
chemical reactivity.

To close the loop, let us go one step further now and examine how
the decay rate of DIs behaves under geometrical changes. In extended
systems, this is coupled to the possible shift between a metallic and
an insulating state, a metal-insulator transition (MIT). In molecules,
to the shift from a sigmoidal to an exponential DI shape. Little is
known about how DIs behave in these cases, since examining their
long-range behavior in a geometrical rearrangement normally implies
entering strong correlation regimes, which are difficult to deal with
in large molecules.

To keep the discussion as simple as possible, the focus will be
placed on the 1D cyclic hydrogen chain. This is no doubt one of

77
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the simplest systems where a possible metal to insulator transition
may occur, induced by the localization of electrons in their original
potential wells as the H–H distance increases. This collective change
is known as a Mott transition,[117] which is difficult to model with
standard theoretical chemistry tools.

In a simple chemical language, increasing the H–H distance in
the H-chain is equivalent to doing so in the H2 molecule. The sim-
plest qualitatively correct solution in this case involves mixing two
Slater determinants or, similarly, performing a complete active space
CAS[2,2] calculation. Since the size of the CAS space explodes com-
binatorially if we consider a CAS[n,n] model when the number of
atoms in the chain, n, increases, the problem soon becomes intractable
with usual techniques. Notice that standard KS density functional
theory (DFT) calculations are of no help here.

Many models have been proposed to cope with strongly correlated
systems, being usually formulated in second-quantized language. For
the problem treated here, the Hubbard hamiltonian[68] is the sim-
plest one, since it allows for controlling the strength of electron cor-
relation through a continuous parameter. When this parameter van-
ishes, the Hubbard model with nearest neighbour couplings falls onto
the Hückel or TB one, so a relatively simple comparison with stan-
dard quantum chemical results is also at hand.

The Hubbard model has been extensively studied in one, two, three
and infinite dimensions, at zero and finite temperatures, in all kind of
lattices.[15] In 1968, Lieb and Wu[92] (LW) showed that the 1D Hub-
bard chain admits an analytical solution and that there is no Mott
transition for this model, the ground state remaining a gapped anti-
ferromagnetic singlet at any non-zero value of the correlating param-
eter. No analytical solutions have been found in 2D or 3D, but almost
all approximate methods predict MITs.[15, 59]

Interestingly, a possible order parameter for the MIT is the so-called
double occupancy, D, that measures the probability of finding two
electrons at a given node in the lattice (necessarily of opposite spin,
for only one spinless state is available per site). At the MIT, D drops
to exactly zero, remaining so in the insulating phase. As it will be
shown, D is directly related to the real space (de)localization mea-
sures used in QCT, so another unexpected relation between seemingly
unrelated concepts appears that deserves being considered.

This chapter will explore and compare the behavior of DIs in both
the Hubbard model at different correlating parameters and in corre-
lated descriptions of hydrogen chains. In the process, the origin of the
sigmoidal shape of the DI in bond breaking processes will be proved
to lie in the non-linear relation between the Hubbard correlating pa-
rameter and the interatomic distance. It will also be verified that the
DI oscillations that characterize 1D metals in single determinant de-
scriptions vanish as correlation increases and that their onset may be
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understood as a transition from a tail-overlap-dominated regime to
one in which quantum mechanical interference becomes prominent.

5.2 delocalization measures and the 1d hub-
bard chain

The DI (equation 107) and the LI (equation 109) are defined as
delocalization measures in real space, interpreted as descriptors that
quantify the number of pairs of electrons shared (i.e. delocalized)
between two real space domains of an N-electron system[10, 46].

As already noticed, the DI is a real space extension of the Wiberg-
Mayer (WM) bond order[110, 162] (see equation 112). DIs and WM
bond orders can be considered equivalent if we identify averaging
over a real space domain with Mulliken condensation.[56, 106] DIs
have been successfully used to quantify covalent bond orders for sev-
eral decades, showing how a key chemical concept may be derived
from orbital invariant quantities. The interacting quantum atoms
(IQA) approach[51, 96] allows us to show that DIs are related to the
covalent component of interatomic interaction energies.

Interestingly, as it is the case for the DIs (equation 115), the LIs also
admit a statistical interpretation. It can be shown that

λA = nA − var(nA) = nA − 〈(nA − 〈nA〉)2〉 = nA − (〈n2A〉−n2A).
(128)

Notice that only in the case that the electron population in a region
does not fluctuate at all will λA be equal to nA. The statistical connec-
tion introduces new insightful interpretations in chemical bonding
theory. For instance, whenever the DI between two regions is non-
zero, i.e. whenever they are bonded, the population of one responds
to a fluctuation in the population of the other and vice versa. In other
words, two regions are bonded together if there is a delocalization
channel between them. In those circumstances, any perturbation in
the electron population of one of them will be followed by a change in
the population of the other. The interpretation of chemical bonding
in terms of the fluctuation of electron populations or electron number
distribution functions (EDFs) is being actively developed.[52, 54, 101]

Importantly, statistical variances and covariances may also be com-
puted from EDFs, i.e. from the probabilities of finding a given num-
bers of electrons, p(n), in each region. In this sense, it becomes
clear now how the standard metal-insulator transition (MIT) order
parameter, the probability of double occupancy of a site, D = p(2),
is related to our real space descriptors. On the one hand, D only
vanishes for a Hubbard system when the variance at a site is zero.
This is clear, but stems naturally from the average site population,
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Figure 12: DI(H,H) for the X1Σ+g (sigmoidal curve in red) and b3Σ+u
(blue) states of the H2 molecule computed at the CAS[2,2]//6-
311++G(d,p) level.

〈n〉 = 2p(2) + p(1) = 1, and the sum rule p(0) + p(1) + p(2) = 1. If
p(2) = 0, then p(1) = 1 and p(0) = 0. This means that, in terms
of order parameters, var = 1 − λ, plays the same role as D. Actu-
ally, the variance is more general and it only vanishes if the electrons
are completely localized. It is also possible to resolve EDFs in spin
components[101] and to define p(↑↓), etc. It is also immediate to show
that for the ground state H-chains with one average electron per site
and using the symmetry p(2) = p(0), var = 1 − λ = 2p(2) = 2D.
With this, many of the results found in the physics literature about
the Hubbard model can be directly read on the chemical scale.

Figure 12 shows the evolution of the DI with the internuclear dis-
tance in the singlet and triplet states of the H2 molecule, computed
at the qualitatively correct CAS[2,2] level. This well-known behav-
ior has been published many times[57] and is reproduced here for
convenience.

Notice that in a diatomic, var(nA) + cov(nA,nB) = 0, so δH,H =

−2cov(H, H) = 2var(H) = 4p(2) = 4D is the direct analogue of the ex-
tended order parameter D. As previously commented, the sigmoidal
shape of the ground state DI is characteristic of (homolytic) bond
breaking processes. The inflection point occurs at d(H, H) ≈ 2.90 a.u.,
where the DI is extremely close to half its maximum value. Similarly,
the exponential behavior of the triplet is typical of non-bonded con-
tacts. The origin of the ground state sigmoid is basically unknown.
However, since the appearance of this shape is usually associated to
cooperative effects, the relation between the DI and a phase transition
order parameter points towards a possible clue that deserves further
work.
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5.2.1 The 1D Hubbard chain

One of the simplest models proposed to gain insight into the dif-
ficult strong correlation regime in the thermodynamic limit was pro-
posed by Hubbard[68] and has been extensively studied so far. In
its basic formulation it models a one-dimensional chain composed of
identical single energy level sites (that can thus harbour two opposite
spin electrons at most), subject to nearest neighbour interactions. In
the half-filled band case, each site accommodates an electron on av-
erage, so it corresponds to an N-sites, N-electron problem. Usually,
periodic boundary conditions are imposed and N is made to tend to
infinity.

Two electrons are supposed to interact strongly only when located
at the same site via a positive interaction energy U > 0, the so-called
on-site Coulomb repulsion. They are also allowed to delocalize be-
tween neighbouring sites through a kinetic-like parameter t, known
as the hopping energy, which is envisioned to be determined by the
effective overlap of their site states. Although no exact link exists
between the t,U Hubbard parameters and those of a conventional
quantum chemical Hamiltonian, there have been many attempts that
try to fit or approximate them. Particularly interesting in this sense
is the work of Spalek and coworkers[86] who, through variationally
determined renormalized single-particle wave functions, provide a
chemically intuitive way to establish that connection.

With this, the Hubbard hamiltonian is now written in second quan-
tized form as

H = −t
∑
〈i,j〉,σ

(c+iσcjσ + c
+
jσciσ) +U

∑
i

ni↑ni↓. (129)

In the above expression, the c+iσ and cjσ are fermionic operators
that create or annihilate a σ spin electron at site i, respectively. They
are subjected to standard anticommutator relations
{ciσ, c+jσ ′} = δi,jδσ,σ ′ , {ciσ, cjσ ′} = {c+iσ, c+jσ ′} = 0. The 〈i, j〉 sum runs
over first neighbours only, with each term describing the hopping of
an electron from site j to site i. Notice that the anticommutation re-
lation guarantees that the maximum occupation of a site is 2. Finally,
the second term adds a Coulombic repulsion energy (a positive en-
ergy U) to each site that is doubly occupied. t and U play opposing
roles, so the model is conveniently described by the U/t dimension-
less correlating parameter. Small U/t values favor hopping, thus de-
localized solutions. As the correlating parameter increases, so does
the penalty for electron hopping.

At a MIT, the system ceases to delocalize and each electron sits
permanently at the same site. It is important to note on passing that
the MIT parameter D = p(2) equals 〈ni↑ni↓〉, so D = de/dU, e being
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the energy per site. This means that if D = 0 in the Mott insulating
state, the energy ceases to change with U.

From the quantum chemical point of view, it is interesting to ex-
amine the two sites Hubbard system, which is an analogue of the
H2 molecule in a minimal basis. This textbook model is immedi-
ately solvable in the 6D space formed by the

(
4
2

)
states constructed

by arranging two electrons in two nodes. Using r = U/(4t) as corre-
lating parameter and defining κ =

√
1+ r2 − 1, the two lowest states

are a singlet, at energy E = −2tκ, and a triplet at energy E = 0.
The probability of any electron configuration may be read directly
from the square of the coefficients of the eigenvectors. The singlet
is a mixture of Heitler-London-(HL) like covalent and ionic forms,
while the triplet is fixed at its HL-like state. Notice that, since no
explicit overlap appears, the triplet, for instance, is 1/

√
2(↑↓ + ↓↑).

With this, it is clear that D = p(2) vanishes for the triplet and that
without overlap but with the antisymmetry restrictions, no interac-
tion may occur, so E = 0 constantly. Using the singlet eigenvector
p(2) = 1/2

(
κ/(1+ κ2)

)
, which decays smoothly towards zero from its

1/2 starting value at r = 0 as r increases. The statistics of the electron
distribution for the singlet and triplet states follows the same trend
as in a minimal basis full configuration interaction (FCI) under Mul-
liken condensation, and has the same r = 0,∞ limits. In this sense,
the Hubbard model correctly captures the basic population correla-
tions of the H2 molecule. Moreover, the U = 0 limit of the Hubbard
model may be mapped onto the Hückel (or TB) approximation if the
Hückel α and β parameters are set to 0 and −2t, respectively.

Surprisingly, Lieb and Wu (LW) showed in 1968[92] that the Hub-
bard infinite 1D chain has analytic solution and that the half-filled
ground state is a gapped antiferromagnetic singlet at any U 6= 0 value.
The gap only vanishes at U = 0. There is no MIT transition, and the
double occupancy D ceases to behave as an order parameter, reach-
ing zero only at its r → ∞ limit. No analytic solutions are known in
2D or 3D, but simulations[15, 59, 86] show that in these cases MITs
develop at well defined r values.

It has also been shown[43] that, although not obvious from the
Bethe Ansatz, all density-density correlations, i.e. the 〈ninj〉 expec-
tation values for any two sites i, j, decay exponentially with intersite
distance, as expected for an insulator. However, since at the U = 0

limit the Hubbard solution falls into a metallic state with algebraic
decay and oscillations in its DIs, it remains interesting to examine
the behavior of this model and compare it with standard quantum
chemical results.
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5.3 results

In this Section some results concerning the decay of DIs in Hub-
bard and real hydrogen chains are considered. To that end, Hubbard
cyclic chains for lattices of increasing size with 4m+ 2,m = 0, 1, 2, . . .
sites have been exactly solved, examining their evolution with the
correlating parameter r. 1D chains show very clear bond length alter-
nation (precursors of Peierls distortions, as already shown[56]), so to
simplify as much as possible, only aromatic-like cycles are considered.
The Hubbard model effectively includes the Hückel or TB approxima-
tions when U = 0. Calculations have been performed using Lanczos
diagonalization within the SPINPACK code.[144] As it will be shown,
DIs (or density-density correlations) get quickly saturated towards
the LW limit. The same H-cycles at different H-H distances a have
been solved in regular polygon geometries with standard quantum
chemical tools. Results at the HF, valence CAS, singles and doubles
configuration interaction (CISD), and FCI levels using the GAMESS[142]
code will be shown. Focusing on qualitative rather than on quantita-
tive reasoning, simple 6-311+G, or even STO-3G basis sets in the FCI
calculations, have been used. Delocalization measures have been ob-
tained from QTAIM space partitionings, using the PROMOLDEN[2] code.

5.3.1 Saturation rate

The existence of the LW analytic solution allows to study the speed
at which the quantum chemical or finite Hubbard chain results ap-
proach the infinite limit. There has been previous interest in the lit-
erature about the evolution of LIs or DIs in H-chains as regards their
possible behavior as order parameters in MITs. For instance, Baranov
and Kohout [17, 18] showed that symmetry broken (unrestricted KS,
UKS) DFT LIs experience an abrupt transition from low to high LI
as the lattice parameter of the infinite H-chain increases. Since many
models, like the Gutzwiller Ansatz,[64] show a MIT in the 1D H chain,
these results might simply signal that UKS displays a MIT transition,
but do not help much in showing the proper behavior of the LI as r
changes.

Figure 13 shows how size extensive valence CAS DIs, as well as
finite Hubbard DIs and LI, behave with the lattice parameter a and
4r = U/t, respectively, in cyclic chains with 4m+ 2 nodes. Do not
confuse the correlation strength r with the lattice parameter a. The
saturation is very quick, at any a or r value, but only after com-
paring with the LW limit does it become clear that this rapid con-
vergence is not an artifact of finite size models. Notice that it is
possible to compare with analytic results at U/t = 0. In this case,
δ1,2 = 0.444, 0.419, 0.413, 0.409 for m = 1, . . . , 4, respectively, and the
n → ∞ value tends to 4/π2 ≈ 0.405. All the CAS results show an in-
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Figure 13: Saturation of LIs and nearest neighbour DIs with size for 4m+ 2 cyclic chains.
The upper diagram shows the evolution of DIs in valence CAS H-chains and the
middle and bottom pictures those of DIs and LIs for Hubbard chains, respectively.
The middle plot also shows a mapping of the a,U/t relation, that should be read
on the right scale, obtained from matching the CAS and Hubbard results. The
bottom diagram contains the LW limiting LIs. All distances are in bohr.
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flection point at about a ≈ 3.6 bohr that is absent in the DI versus U/t
Hubbard plots, much as shown in the H2 case. To understand the
origin of the sigmoid from the CAS and Hubbard data a r(a) map is
generated. This has been done before with different models,[86] and
as the middle plot in figure 13 reveals, the mapping is non-linear and
quickly convergent. It appears that r grows slowly at small internu-
clear distances and faster as the distance increases.

The r(a) non-linearity explains the sigmoidal shape of DIs as fol-
lows. A DI will show a zero second derivative with respect to a due
to the opposite signs of both terms in the following expression,

d2δ

da2
=

(
dr

da

)2
d2δ

dr2
+
dδ

dr

d2r

da2
≡ ((r′)2δ′′ + δ′r′′), (130)

so that the inflection point condition will be met when δ ′′/δ ′ =

−r ′′/(r ′)2. From the presented data, this occurs at about U/t ≈ 4

or r ≈ 1, when the nearest neighbour DI is very close to half its max-
imum value (at r = 0). This is an important insight, since it was
previously shown[57, 102] that important chemical processes occur
close to points where δ ≈ δmax/2.

The saturation data show that the convergence of actual QTAIM LIs
or DIs with n is similar to that shown by Hubbard models towards
the LW solution. We are thus in a position to state that the evolution
of either the LI or the nearest neighbour DI in the infinite H chain
will be sigmoidal with a, due to the non-linear r,a map smoothly
decaying with r, and that the discontinuity in the LI shown by UKS
data[17] points to a fictitious MIT due to symmetry breaking.

5.3.2 Decay rate of DI(1,j)

The inter-site decay rate of DIs is a much less explored subject with
possibly relevant repercussions on chemical thinking. Let us label
the nodes of the cyclic chains from 1 to n and recall from a previous
contribution that in the Hückel, TB, or Hubbard at U = 0 models, δi,j

shows an oscillatory pattern, vanishing whenever i+ j is even. This is
a result of exact interference cancellation, that may be successfully in-
terpreted in terms of Pauling resonance structures. In fact,[56] many
important chemical effects, like mesomerism in conjugated systems,
rely on this oscillatory propagation of electron delocalization. In the
n → ∞ limit, the envelopes of all non-vanishing DIs decay with an
inverse square law, δ1,j → 4/

(
π2(j− 1)2

)
. This signals the closure of

the gap and the transition to a metallic extended system. It was also
shown in that work that, although the long-range decay of the DIs for
finite (gapped) chains might be exponential, their behavior for inter-
mediate j values converges quite rapidly with n towards the inverse
square law.
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Exact vanishing of the odd j DIs is only observed if no direct
through-space overlap between the nodes is allowed, as in the Hück-
el/TB cases. Real HF/KS calculations show that the oscillations per-
sist in real systems when the geometries (a values) lie in a range
where we can trust in mean field calculations. However, exact can-
cellation conditions are now not met, and odd j DIs do not vanish,
although their values are considerably smaller than their neighbour-
ing even j partners. This is, in our opinion, sufficient to warrant
mesomeric effects: non-monotonous decay of influence (delocaliza-
tion) along the chain. Interestingly, exact cancellations do also occur
in 2D and 3D Hückel/TB models, but seem to disappear in single-
determinant computations.

The effect of electron correlation on this picture is not well known.
On the one hand, on finite systems, correlation does not influence the
presence of a gap, so the long-range decay of δ should be exponential.
On the other, the exact, true thermodynamic limit of the H chain is
not available, but the LW solution also shows long-range exponen-
tial decay at any r. This does not preclude interesting chemistry at
mid-range distances. By naïvely interpolating these ideas, a possible
scenario appears in which, at large a or r values DIs do not show any
anomaly, decaying exponentially such that δ1,i > δ1,j if i < j. For
small a or r parameters, however, a transition towards an oscillatory
pattern, converging on the j-parity rule, should be found.

Figure 14 shows the decay of δ1,j with the intersite H-H distance
for a H14 cyclic chain with a = 1.84 bohr for several levels of theory.
Each type of result has also been fitted to a polynomial decay law to
show the shift in tendencies. As expected, once the zero j values have
been removed from the Hückel results, we get the slowest decreasing
model, with an exponent f ≈ 1.43. This tends to exactly 2, the the-
oretical value in the n → ∞ limit. As it can be clearly seen, all the
other theory levels predict oscillations compatible with mesomeric or
medium-range delocalization effects, much as in a metallic-like sys-
tem, but with all odd j DIs not vanishing now. Among the realistic
models, the mean-field HF solution is the one with slowest decay, and
the main effect of including electron correlation is a general decrease
of all DIs. Interestingly, the situation is quite similar to that already
examined in the H2 molecule, where the DI converges toward the ex-
act value in a damped oscillatory pattern as the amount of correlation
considered increases.

Inclusion of only static correlation at the CAS level has a large im-
pact on DIs. As f tells us, the CAS data decay fastest of all. Ad-
dition of dynamical correlation at the CISD level dampens the CAS
decrease and consideration of all possible excitations at the FCI level
(even with a minimal basis) again reacts back slightly. In any case, at
this internuclear distance where the HF approximation is still reason-
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Figure 14: Evolution of δ1,j with j, equivalent to the intersite distance for
the H14 cycle at different levels of theory, with a = 1.84 bohr.
Notice the double logarithmic scale. A linear fit of each set of
data, with explicit description of the f exponent is also shown,
so that δ1,j ≈ (j− 1)−fδ1,2. Be aware that the fit is done with
both high and low values. Odd j δ’s vanish at the Hückel level,
so only even j’s are included in that case.

able, introduction of correlation seems to alter quantitative, but not
qualitatively, the oscillatory decay.

Figure 15 shows two examples (with 6 and 14 sites) of the effect
of the increase of r on the oscillatory pattern of DIs in the Hubbard
chains used here. The behavior exemplified is general. At sufficiently
large r, the canonical decay expected for an insulator is recovered and
δ1,j decreases on increasing j. Decreasing r takes us to a point where
a first crossing is met. This signals the onset of quantum mechanical
interference in electron delocalization and once this barrier is crossed,
the δ1,j order is no longer canonical. Successive crossings end up
with the Hückel alternation, with vanishing odd j DIs. Interestingly
enough, the first crossing between DIs on decreasing r occurs again,
independently of m, very close to r = 1 or to U/t = 4.

As expected, the Hubbard chains show a very interesting transition.
Whatever the number of sites, the DIs go from an asymptotic regime
with large r, decaying smoothly with intersite distance, to a regime
at small r, where interference effects give way to a non-monotonous
oscillatory decay. Since these oscillations are one of the fingerprints
of mesomeric effects, we firmly think that electron correlation plays
against it. This adds to other studies showing that the classical rules
used in light element chemistry may not hold at all with heavy ele-
ment analogues as electron correlation strengthens its role.
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Figure 15: Decay of δ1,j for 4m+ 2 cyclic Hubbard lattices with m = 1, 3
versus U/t.
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The transition from the oscillatory to the monotonous decay regime
in the 14 sites chain is also shown in figure 16. Not surprisingly, r ≈ 1
(or U/t ≈ 4) is found to be the approximate boundary between the
two situations. At U/t = 8 delocalization is hampered so much that
the asymptotic infinite n limit has been fully entered, which is found
to be exponential.[43]

How this image readjusts in real H chains is the next focus. Figure
17 shows the quantum chemical results on the H10 chains, at sev-
eral levels of theory and at varying a values. Most of the relevant
points regarding the behavior at small H-H distances have already
been commented. The parity rule (odd-even j alternation) is obeyed
at all theory levels, with damped CAS, CISD, and FCI alternation.

As a increases, the mean-field, single-determinant HF model be-
comes unable to localize the electrons in their atomic domains (or
sites), and the DI continues oscillating. At a = 3.5 bohr, close to r = 1
according to the r,a mapping, the parity alternation of DIs no longer
holds for both the CAS and the FCI descriptions, but continues at
the CISD level. At larger distances all signs of oscillatory behavior
disappear for the CAS and FCI, and continue at the HF and CISD lev-
els. A first obvious conclusion is immediate. In order to qualitatively
follow the evolution of electron delocalization, size consistency is a
must and the CISD method soon ceases to behave properly.

A second important point is that, once the consistency issue is as-
sumed, quantum chemical and Hubbard data are surprisingly com-
patible, pointing towards the generality of our results. Although
density-density correlations are known to decay exponentially in the
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long range regime at any r 6= 0 for the Hubbard infinite chain,[43] this
by no means excludes interesting phenomena at short- or mid-range.
We think to have convincingly shown that this is the case and that
delocalization of electrons in real chains will suffer a transition from
oscillatory to monotonous decay as correlation is increased.

To summarize, in this Chapter, the spatial decay rate of real space
delocalization measures as electron correlation increases has been an-
alyzed. After showing that DIs decay according to inverse power laws
in metallic-like cases and exponentially in insulating-like moieties[56]
for single-determinant and Hückel models, we go one step further,
examining the validity of those insights when electron correlation is
switched on.

The consideration of electron correlation as a variable opens the
possibility of examining transitions between insulating and metallic
phases upon simple geometrical rearrangements. These Mott insu-
lating transitions (MIT) play an important role in contemporary con-
densed matter physics. Correlation also poses important problems
for standard quantum chemical procedures, since MITs are collective
phenomena (involving many particles) in the strong correlation limit
(that needs from considering a combinatorial number of Slater deter-
minants). It is therefore important to combine standard calculations
with models of strong correlation to ascertain the reliability of the re-
sults. By using the standard Hubbard hamiltonian at half-filling, the
amount of correlation can be controlled by a simple parameter r.

The systems analyzed here are restricted to simple finite and in-
finite H rings, examined under several standard quantum chemical
theoretical levels and the Hubbard approximation. The latter admits
an analytic solution in the infinite 1D chain, as found by Lieb and
Wu[92] who showed that no MIT exists and that the system is an
insulator for any r 6= 0.

A first insight is that the standard order parameter used to detect
MITs, the double occupancy probability of a site, that vanishes at the
MIT, is directly related to the localization index (LI). In fact, the latter
is a generalization that might be used in general systems. LIs and
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DIs show a quasi-universal sigmoidal behavior with intersite distance
in bond breaking processes[57]. It is shown that the origin of this
sigmoid lies in the non-linear relation between inter-site distance and
the r correlating parameter, and that its inflection point is found at
r ≈ 1.

It has also become clear that DIs and LIs converge quickly with
chain size. We can confidently state that the LI in the H chain will
decay smoothly to zero as r or a increases and that the jump shown
in a previous work[17] is due to symmetry breaking.

Although DIs must decay exponentially at long range for the infi-
nite Hubbard chain, light has been cast on the behavior of the metallic-
like oscillations shown in mean-field models, that survive at short
and midrange when r is small, to further disappear as r increases.
At about r = 1 they vanish and a clear exponential behavior sets in.
Due to the link between DIs and core chemical concepts like bond
order, bond conjugation, mesomerism, etc, these results imply a pos-
sible wide impact in chemistry. Conjugation and mesomerism, for
instance, will not survive in strongly correlated analogues of alter-
nant hydrocarbons.

Extension to further dimensions and/or systems should be done.
As soon as the 1D chain is abandoned in favor of 2- or 3D analogues,
true MIT will appear. After the analysis set forth, it comes out that the
variance of the electron population at a given site (VAR, related to the
LI) may be used as a general order parameter in real simulations. At a
MIT, the VAR will show a jump, but will not vanish exactly, as it hap-
pens in the Hubbard model (where, for instance, VAR is null in the
triplet state of H2). VAR will remain non-zero when computed quan-
tum chemically, due to exponentially decreasing, but non-vanishing
overlap of same spin electrons onto neighbouring atomic domains.

Finally, the results shown here have implications about the profile
of DIs in chemical processes. Inflection points in those cases where
sigmoidal shapes appear mark the switch from short to long range
delocalization. At smaller a, r values the regime is bonded, covalent-
like, while at larger ones it turns to the non-bonded, exponential over-
lap region. Given the a, r map, increased correlation will suppress co-
valency. This has been put forward repeatedly, but stems very neatly
from our results.





Part IV

The Electron Distribution
Function (EDF) in the solid

state

93





6 E L E C T R O N D I S T R I B U T I O N
F U N C T I O N S ( E D F ) [ 1 0 0 ]

As already mentioned above, the most common strategy to con-
front the study of the chemical bond is to partition the space into
chemically meaningful regions. Among the many proposed schemes,
the QTAIM [12] has been a rather successful one for it yields a par-
tition in regions embodied with a very convenient physical meaning:
once the space is divided into regions or basins, we can take any
point of the 3D space r ∈ R3 and assign it to the atomic region Ωi
that encloses it, or mathematically P : r → Ωi, r ∈ Ωi. The partition
P is exhaustive and can be envisaged as a coarse–grained mapping
of the electron network since it consists of the replacement of every
point inside a given basin by the basin itself. So gathering together all
the information given in this paragraph, starting from a partition of
the space in atomic regions that exhaustively fills the space, we make
every electron correspond to its basin (or we coarse-grain, condense
or basin average them) and we end up with a real space image of a
resonance structure.

Let us make a set of snapshots of the positions of the electron of
a system. Given a sufficiently large number of them, their statistics
will be those of the quantum mechanical behavior. Let now a given
number of electrons of the system cA, . . . , cM be condensed, i.e., al-
ways associated to them, over each of the m basins ΩA, . . . ,ΩM in
which we divide the system, and let us group them in the vector
C = (cA, . . . , cM). Since not all the electrons are necessarily con-
densed, some of them can be left free, albeit still being assigned to
a basin F = (fA, . . . , fM) at each snapshot. If we do not distinguish
between condensend and free electrons within each basin, we speak
of a real space resonance structure,

S = C + F,

a partition of the electrons in regions, that describes the total num-
ber of electrons in each basin S = (nA, . . . ,nM). In these expres-
sions, cj, fj and nj correspond to cΩj , fΩj and nΩj , respectively, and∑
j cj = i,

∑
j fj = N and

∑
j nj = N. Note that we can condense any

number of electrons 0 6 N 6 N.

Both the partition and coarse-graining are now used to define from
the N-electron density matrix (DM) or the probability density

95
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ρN(1, . . . ,N) = Ψ∗(1, . . . ,N)Ψ(1, . . . ,N), the coarse-grained density
matrices (CGDMs), which have the form

ρi(r1, . . . , ri)[C] = I
∫
Dc

dri+1 . . . drNρN(1, . . . ,N). (131)

With Dc we mean a domain such that each of the condensed elec-
trons is integrated over its associated basin: electrons (i+ 1) to (i+

cA) are integrated over basin ΩA, electrons (i+ cA + 1) to (i+ cA +

cB) over basin ΩB, etc. I = N!/(i!cA · · · cM!) accounts for the indis-
tiguishability of the electrons.

The sum over all possible condensations of the N = N− i electrons
over all the CGDMs yields the traditional total reduced DM

ρi(r1, . . . , ri) =
∑
{C}

ρi(r1, . . . , ri)[C] (132)

Let us now consider the special case where only one big basins ex-
ists, Ωi = R3. In that case F = 0 since it is not possible to define free
electrons as there is no neighbour basin they can move to, and only
one resonant structure is possible, result of the condensation of all the
electrons, so C ≡ S = (N). The total reduced DM is ρ0()[N] = 1 since
all the electrons have to exist within the basin and it carries no rele-
vant information. However, in the case of a partition that results in m
basins, the zeroth order CGDMs yields the probability of a total con-
densation of the electrons in a given configuration over the m regions
the space was divided into, that is to say, the probability of a reso-
nant structure, also called a coarse-grained probability distribution
(CGPD) or electron distribution function (EDF). If we use p = ρ0(),
the probability of finding the N electrons distributed according to
S ≡ C is given by

p(S) = ρ0()[S ≡ C] = p(nA, . . . ,nM) (133)

Usually, one is only interested in a subset of the m atomic basins.
Let us then call this subset k and define an aditional basin formed by
the union of the rest m− k basins. The total number of basins is then
k+ 1. The probability are obtained according to:

p(nA, . . . ,nK,nM) = ρ0[nA, . . . ,nK, (N−N)Ā] = I

∫
D

|Ψ|2dτ, (134)

where the electrons in the subset of interest are fully condensed N =

nA +nB + · · ·+nM = N+nM and we have grouped together all the
basins outside the subset of interest under the superbasin Ā = ΩM.
From equation 134 we obtain then the probabilities of finding nA
electrons within basin ΩA, nB electrons within ΩB and nM electrons
within basin ΩM. D specifies a domain where the nA electrons are
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integrated over basin ΩA, the nB electrons over ΩB and the rest N−

N electrons contained in the m− k over the superbasin ΩM.

The subindex i designates the nucleus of the atom embraced by the
atomic basin Ωi, so that one possible resonant structure in Pauling’s
terms will be S = (nA, . . . ,nM), noting that any basin can be empty,
ni = 0. There are NS = (N+m− 1)!/(N!(m− 1)!) of these structures,
a combinatorial number that is 3 in H2, 66 in H2O or 286 in NH3, but
climbs to 76 223 753 060 in benzene. This number is in reality reduced
to just a few chemically relevant structures. In the case of C6H6 for
instance, condensing all the 46 electrons in one H basin will have a
negligible weight. The probabilities that result from the NS resonant
structures can be grouped in an EDF vector pN. The addition of all
the probabilities follows of course∑

{S}

p(S) =
∑
{S}

p(n1, . . . ,nm) = 1, (135)

so p(S) can be considered as the weight of a certain resonant structure,
that is obtained from the wave function of a system, or a model of it,
regardless of the origin of it and with no previous assumptions or
prescriptions.

6.1 the 2-center, 2-electron paradigm

Let us consider a partition of the space into two distinct regions
A and B as in figure 18. The probability of finding one electron in
region A is p1(1, 0) = π, and as the particle must exist somewhere,
the probability of the same event in region B must be p1(0, 1) = 1−

π. If we deal with independent particles, the probabilities resulting
from adding one more independent particle to a system formed by
one electron will be just products of the former probabilities p2 =

p1 ⊗ p1 = (π, 1− π)⊗ (π, 1− π). Following a Tartaglia-like order, the
probability vector for a system of N electrons and two basins pN will
be pN = (p(nA = N,nB = 0),p(nA = N− 1,nB = 1), · · · ,p(nA =

0,nB = N)). In the case of 2 electrons in 2 regions

p2
(
(2, 0), (1, 1), (0, 2)

)
=
(
π2, 2π(1− π), (1− π)2

)
, (136)

and there are only three possible setups for both electrons between
the two basins, distributions that are described by only one proba-
bility π in what we know as a binomial distribution (BD). It can be
generalized as

p(nA,nB) =
2

nA!nB!
πnA(1− π)nB . (137)
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Figure 18: The binomial distribution implies independent particles and
only one probability suffices to describe all the possible ways
of distributing two electrons in two basins.

A B

π 1− π

Since for two electrons there are 3 probabilities, it is useful to visu-
alize the probabilistic lanscape in a triangular diagram, as shown in
figure 19. Any point within figure 19 is fully determined once any
two independent probabilities are fixed. Let us then carefully inpect
this diagram and, passing through, take advantage of the fact that it
also contains information on electron delocalization to introduce the
connection between DIs and EDFs.

The three corners of the triangle correspond to the three possible
ways of locating two electrons in two regions. The probabilities of
each configuration are obtained from the axis clockwise from the cor-
ner it corresponds to. Besides the two bonding paradigms of non-
interacting particles p(1, 1) = 1 and ionic bonding p(2, 0) = p(0, 2) =
1 represented by the corners, there are two additional cases that are
also chemically relevant: the covalent and charge-shift or VB ionic
bonding situations. We will briefly go through all these four cases,
which are summarized in figure 20.

Let us focus on the red curve of figure 19, which shows the in-
dependent particle situation where the electronic correlation is zero,
and hence represents the BD described by Equation 136. As it was al-
ready mentioned, along the BD line the p2 vector is fully determined
by just one quantity π: the probability that one electron occupies one
of the regions. Let us take the point of zero slope of the red curve
(blue circle in figure 19) as an example of how to read the diagram.
The probability of the (1,1) event is read in the right axis, which takes
the maximum value at the (1,1) corner. We follow then the line paral-
lel to the axis opposite to our corner rightwards (orange line in figure
19) and we will find a probability of 0.5. The event (2,0) has a value
of 0.25 obtained by sliding upwards along a line parallel to the (1,1)–
(0,2) axis that crossed the point we are analyzing (gray line). The
same probability is obtained for the (0,2) event if we now go until the
crossing between a line parallel to (2,0)–(1,1) that passes through the
point of interest and the (2,0)–(0,2) axis (blue line). The dotted curves
are there to help us find the different probabilities of any point within
the triangle.
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Figure 19: Ternary representation of the (2c,2e) EDF. Each corner represents
the events p(1,1), p(2,0) and p(0,2) equal to unity, respectively,
and in terms of which, the coordinates of any point in the dia-
gram are given. As an example, the coordinates of the blue circle
are obtained from the distances between the point and the side
opposite to each corner, as the gray —p(2,0)—, orange —p(1,1)—
and blue —p(0,2)— lines show (see text for details). Isolines of f
start at the bottom (f = −1) and increase in 0.25 units following
the solid lines until the top corner (f = 1) is reached. Dashed
curves are δA,B isolines that decrease 0.25 from δA,B = 2 at the
bottom to δA,B = 0 at the top. Constant values of charge transfer
(also constant π = (1+ q)/2) are found along the vertical dashed
lines, that increase 0.2 e from q = −1 e to q = 1 e on going
from left to right. Any point on the red curve would represent
a f = 0 binomial distribution pb2 , which in turn separates the
upper (shadowed) region of normal bonds (NBs) from the lower
charge-shifted bonds or valence bond ionic (CSBs) region. The
(1,1) corner and the middle point of the (2,0)-(0,2) side are the
pn2 and pcs2 , respectively.
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This blue point has a probability vector of

pb2 (1/2) = (1/4, 1/2, 1/4), (138)

which is the real space image of perfect covalency. The electrons move
between both basins and can be found with the same probability ei-
ther together in the same basin or in separate basins if we think of
them as distinguishable particles.

As the real analogue to the 2-electrons-in-2-centers model, the EDFs
for the H2 molecule have been evaluated. Following the prescription
of the QTAIM to partition the space, the user ends up with a division
of the space into basins that correspond to atoms (see section 3). A
QTAIM partition of the H2 molecule yields then two atomic regions
HA–HB that correspond to the two H atoms. If the EDF is now eval-
uated from a HF calculation, the most probable resonant structure
exactly matches the perfect covalency scene of equation 138. For the
sake of clarity, this situation is graphically represented in figure 20

(upper right diagram).
However, instead of an homopolar covalent bond as that of the H2

molecule, we could be facing a heteropolar union with an unequal
sharing of the electrons, i.e., one of the two atoms is more likely to
retain the electron pair than the other. The limiting case of a complete
electron transfer to one of the regions is depicted at both ends of the
red line of BD: the lower corners of diagram 19. The bottom left
corner represents a situation where the electrons are fully localized
in region A πA = 1, which is totally equivalent to the opposite case
in which they are in region B πA = 1 and the probability vector

pb2 (1) = (1, 0, 0), (139)

is that of an ionic bond. The lower left diagram of figure 20 graphi-
cally illustrates this case. We ask ourselves whether the EDF of a real
ionic compound would be in agreement with the theoretical model,
so we performed a HF calculation in the LiH molecule. Although
we are now dealing with a 4-electron problem, it can be reduced and
renormalized to a 2-electron case[99] and the probability vector of the
real system will be

pLiH
2 = (0.003, 0.096, 0.895),

that closely follows the theoretical vector 139.
The red line we have been discussing until now is that of a BD, i.e.,

the line of zero electron correlation f = 0. A displacement upwards
(downwards) from the BD curve gives rise to an increase (decrease)
in the correlation in steps of 0.25 units and the binomial behaviour
of the p2 vector is of course destroyed. The f = 0 line is the frontier
between two chemically very relevant regions: an upper, negatively
correlated −1 < f < 0 and a lower, positively correlated 0 < f < 1
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half. We already consider the importance of the frontier f = 0 itself,
let us now discuss the lower, positively correlated part.

In order to do so, let us go to a limiting situation, in which we
move downwards from the blue point of a covalent bonding situa-
tion (see figure 19) following a straight line until we reach the (0,2)
edge of the triangle. At that point, p(0, 2) = p(2, 0) = 1/2, which
means p(1, 1) = 0, the electrons always following each other, causing
that way a charge shift to happen (see lower right diagram in figure
20). As already stated, this is a limit case of a positively correlated sit-
uation: the presence of an electron in basin A is favourable in order
for a second electron to occupies the same region. The probability
vector would now be

pcs2 = (1/2, 0, 1/2). (140)

In such unusual scenery the Pauli principle, that states that two same-
spin electrons cannot occupy the same region of the space, would
be violated, event that yet feasible in theory, has yet never been de-
scribed.

Any point lying below the f = 0 line will correspond to a system
of positively correlated electrons. In most cases, however, we will
be dealing with systems whose description is found in the upper
0 < f < 1 part, that is, negatively correlated electron networks, where
the presence of an original electron dampers the probability of second
one to approach it, being zero at the coalescence.

At exactly the opposite side of the charge shift point, the limiting
situation of non-interacting particles is found, just in the upper corner
of the diagram labeled (1,1). We are now within the negatively cor-
related half of the triangle. As we see if we observe figure 19, going
up from the charge shift case means a lowering in the probabilities of
having both electrons on the same basin. If we are at the peak of the
f = 0.5 line for instance, the maximum the probability of both elec-
trons occupying the same basin is ∼ 0.13. The more correlation the
larger the inclination of the electrons to be located on different atoms.
Exactly at the corner, the correlation is at its maximum f = 1 and as
it is depicted in the upper left diagram of figure 20 the electrons do
not interact with each other, therefore never sharing the same basin
p(2, 0) = p(0, 2) = 0 but being always separated p(1, 1) = 1. The
probability vector will now be

pn2 = (0, 1, 0). (141)

Diagram 19 also contains information about the charge q. If we are
in the (2,0)–(0,2) segment, the charge in region let us say A changes
from q = −1 on the left corner, where both electrons are in region
A to q = +1 in the (0,2) corner, situation in which region A has no
electrons. Vertical dashed green lines are q isolines equispaced 0.2
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electrons. Coming again to our demo point, we see that on average
there is one electron per region, that is q = 0, as a consequence of the
electrons being with the same probability in the same or in different
regions p(2, 0) + p(0, 2) = p(1, 1) = 0.5.

6.1.1 Electron delocalization from the EDF

The DI is a measure of how often electrons travel out of the region
they belong to, i.e., how likely it is to find the electron in a neighbour-
ing region (see section 3.1 for a more in detail definition of the DIs).
As we saw (see equation 107) the DI is is defined from the exchange-
correlation density ρxc but also admits a statistical interpretation. It
can be defined as the covariance of the electron population between
two regions A and B (see equation 115)

δA,B = −2cov(nA,nB), (142)

where nA,nB are the electron populations of regions A and B, respec-
tively.

The EDF is a function out of which many relevant statistical mea-
sures can be constructed. From a given EDF, the covariance[23, 50, 98]

cov{pB} = 〈(nA − 〈nA〉)(nB − 〈nB〉)〉

=

∫
ΩA

dr1

∫
ΩB

dr2ρ
xc
2 (r1, r2) (143)

allows us to connect with the DI:

δA,B = −2cov{pB}. (144)

In the special case of a perfect BD the covariance might be easily
obtained from the probabilities given above as −2π(1− π).

The triangular diagram we are describing also contains information
on the DI as a quantity related to the EDF. On it, the DI value changes
from δ = 2, which is a point exactly in the middle of the (2,0)–(0,2)
segment to δ = 0 in the (1,1) corner, decreasing by intervals of 0,25

each indicated by a dashed curve from 0 at p(0, 2) = 0.5 to 2 at the
(1,1) corner. If we consider again the blue point depicted in the figure,
to the blue point corresponds a δA,B = 1, indicating a situation in
which the full electron pair is shared between the two regions. The
use of the DIs as bond orders should be taken with care for strongly
non-binomial EDFs. For instance, at the limit case of pcs2 , δA,B = 2,
which implies that two pairs of electrons are shared whereas we only
have one.
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Figure 20: Electron number probability distribution functions in the real
space description of the three model cases: non-interacting, co-
valent, ionic and charge-shift (or valence-bond ionic), for two-
center (A,B), two-electron bonds (2c,2e). In the diagram the
reader can find the probabilities of the different distributions to-
gether with the vector notation used. The abscissa contains the
population of each basin A or B as well as the traditional Lewis-
like diagrams.

6.2 electron distribution functions in the
1-determinantal case

In the case described by equation 15, where the wave function Ψ
is approximated as a single Slater determinant and the expression to
find the EDFs, formulated in equation 131 adopts a specially simple
form (see [30, 32, 141] for a more detailed description of how to obtain
probabilities from monodeterminantal wave functions)

p(nA,nB, . . . ,nN) =
1√
N!

det[ΨΨt]

=
1√
N!

N∑
k1=1

. . .

N∑
kN=1

det

ψ1(k1)ψ1(k1) · · · ψ1(kN)ψN(kN)
...

. . .
...

ψN(k1)ψ1(k1) · · · ψN(kN)ψN(kN)

 ,

(145)

where only terms with all the kj(j = 1, . . . ,n) different contribute to
det[ΨΨt].

Each of the products of the determinant is an AOM of the form
given in equation 100. If this expression is applied, equation 146

becomes

p(nA,nB, . . . ,nm) =
1√
N!

N∑
{kj}∈SN

det

S
A
11(k1) · · · Sm1N(kN)

...
. . .

...
SAN1(k1) · · · SmNN(kN)

 ,

(146)
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where SN is the set of all N! permutations of {1, 2, . . . ,N} and {kj} is
one of these permutations, satisfying that for kj ∈ {1, . . . ,nA} integra-
tion is done over region A, for kj ∈ {nA+ 1, . . . ,nA+nB} over region
B and kj ∈ {N−nm + 1, . . . ,N} over region m.

The calculation of EDFs for one- and many-determinant wave func-
tions has been implemented in the code EDF by Francisco and co-
workers [53, 54].



7 E D F I N T H E S O L I D S TAT E

As already mentioned (see Section 3.2), the calculation of the DI
for extended systems is done from KS orbitals, according to a HF-like
formula. The calculation of the EDF is analogous, for it derives as well
from the exchange-correlation density and the only difference with
respect to the 1-determinant expression introduced in the previous
Section (see equation 146) is the form of the AOMs, which are now
defined as in equation 108, for the one-particle spin-orbitals are now
Bloch functions.

105
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7.1 natural adaptive orbitals

7.1.1 The domain average Fermi hole

The Fermi hole, which should be better called here the exchange-
correlation hole, as it was defined in equation 55, describes the dif-
ference between the total density at the spin-spatial point x2 and the
conditional density of the situation in which one electron is at posi-
tion x2, when another one is already at x1. In other words, it mea-
sures to what extent the probability of one electron to be at one point
is depleted by the presence of other electron at another point of the
space, i.e., the Fermi correlation.

However, the Fermi hole is a complex object as it dependens on x1
and x2 and it is natural to think of the electrons, rather than being at
a fixed point, occupying any position within a region Ω. That way,
we would obtain the Fermi hole averaged over a domain: the DAFH,
introduced by Ponec [129, 130]

hΩXC(x1; x2) = ρ(x2) −

∫
Ω ρ2(x1, x2)dx1∫
Ω ρ1(x1)dx1

, (147)

where signs have been exchanged for convenience with respect to
equation 55.

Taking into account that at x2 the electron density is ρ(x2), a charge-
weighted Fermi hole is usually defined, named the charge-averaged
Fermi hole, DAFH from here on, which can be formulated as

gΩ(x2) = 〈NΩ〉hXC(x2). (148)

The spinless DAFH can also be defined from the 2-RDM of equa-
tion 53 as

gΩ(r) =

∫
dσ1

∫
dσ2

∫
Ω

ρxc(x1, x2)dr1. (149)

Let us consider only the spatial coordinates in what follows. Among
the many interesting properties of the DAFH, we may point out that
it integrates to the total number of electrons within a region∫

gΩ(r) = NΩ. (150)

For an exhaustive partition such as the QTAIM partition ∪aΩa =

R3 (see section 3 for a description of this partition strategy) it satisfies

∑
a

gΩa(r) = ρ(r), (151)
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which means gΩa yields a partition of the density at each point of
the space into domain contributions.

On the other hand, as the DAFH derives from the same quantity
as the delocalization measures LI and DI (see section 3.1), they are
tightly related. In the special case where the Fermi hole lies com-
pletely within region Ω, equation 150 becomes

∫
Ω g

Ω(r) = λΩ, and
the electrons are perfectly localized within the basin. As this is a
limiting situation, usually the Fermi hole spreads out of the atomic
basin1 and λΩ < 〈NΩ〉. The difference between both quantities is
measured by the fluctuation, defined in equation 102, and gives us
the fraction of electron pairs that are not contained in region Ω, that
is, delocalized across the system.

The charge delocalized to other regions different than Ω is again
captured by the DI, which in terms of the DAFHs can be calculated
as

δΩ,Ω′ =

∫
Ω

gΩ(r)dr+

∫
Ω′
gΩ

′
(r)dr. (152)

That way, the average population 〈NΩ〉 is either localized within
the region Ω, which is measured by the λΩ or it smears out and
delocalizes to other neighbouring regions, which is felt by the δΩ,Ω′

〈NΩ〉 = λΩ +
1

2

∑
Ω′ 6=Ω

δΩ,Ω′ . (153)

The DAFH in the 1-Slater determinant case

Let us now write gΩa(r) in the orbital basis. In the 1-determinant
case, the exchange-correlation density takes the form of equation
60. The DAFH adopts in the monodeterminantal case the following
shape

gΩ(r) =

N∑
ij

ψi(r)G
Ω
ijψj(r), (154)

where

GΩij =

N∑
ij

δ(σi,σj)SΩij . (155)

The SΩij are the atomic overlap matrix (AOM) defined in equation 100,
which contains information about the overlap between the molecular
spin-orbitals ψi and ψj within region Ω.

The matrix GΩ = SΩ represents the Fermi hole in the orbital basis.
The set of eigenvalues and eigenvectors resulting from a diagonaliza-

1 We assume here a QTAIM partitioning, but any other strategy to partition the space
is up to the user’s will.
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tion GΩU = Un, given the unitary transformation U†U = I, contain
information about how the electrons are distributed in an arbitrary
region Ω. The eigenvectors define a new basis of occupied orbitals,
the DAFH orbitals φ = χU, in terms of which the Fermi hole gΩ(r)

can be rewritten as

gΩ(r) =

N∑
i

ni|ϕi(r)|
2. (156)

The functions ϕi are effective monoelectronic states, called domain
natural orbitals (DNOs), that were introduced by Ponec[129, 130]. The
hole gΩ can be understood as a 1-order density confined to the do-
mainΩ, so that the ϕi functions can be seen as orbitals describing the
distribution of the electron population within the region Ω. The par-
tition of the electron population of atomic basins into orbital contribu-
tions has been analyzed in molecules, see for instance [33, 134, 135],
and in the solid state, see the work by Baranov[19]. The eigenval-
ues ni are understood as occupation numbers for they resemble the
occupation numbers of the natural orbitals[157] and also recover the
average population of the region∑

i

ni = 〈NΩ〉. (157)

7.1.2 Natural adaptive orbitals

We are going to recall here the cumulant densities (CD), previously
introduced in section 1.5.2. Based on the idea that ν-centre bonding is
a measure of the ν-centre statistical dependence that simultaneously
occurs among the electron population of those regions. The ν-centre
bonding indices are obtained by domain-averaging the appropriate
CDs. Making use of the CDs, it is therefore possible to define a set
of functions that divide any bond index, no matter how many cen-
ters are involved, in monoelectronic contributions[55]. Let us call
these monoelectronic functions, which are just a generalization of the
DAFH (see section 147), natural adaptive orbitals (NAdOs)[113].

As they are obtained from the CDs, they inherit the extensivity
(equation 63)—they integrate to the total number of electrons— and
the recurrence properties (equation 62) —the CD of (ν − 1)th-order
can be obtained from the CD of higher order—. Under these condi-
tions, in a partition of the space into m space-filling basins Ω, the
recurrence property of equation 62, if we domain-integrate ρν+1C ν
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times we obtain a partition the electron density ρ(r) = ρ1c(r) into
ν-centre contributions

ρ(r) =
∑
AB...ν

ρ1AB...ν(r)

=
∑
AB...ν

∫
Ωa

dr2

∫
Ωb

dr3 · · ·
∫
Ων

drν+1ρ
ν+1
c (r, r2, . . . , rν+1).

(158)

If for instance, among all these domain-patritioned densities, we
write ρ1AB...ν(r) in terms of the occupied MOs ψi,

ρ1AB...ν(r) =
∑
ij

ψi(r)G
AB...νψj(r), (159)

where G is a Hermitian matrix. Diagonalization of the above expres-
sion

ρ1AB...ν(r) =
∑
i

nAB...νi |ϕAB...νi |2, (160)

defines the ν-centre NAdOs ϕAB...νi (r) and their natural adaptive
occupation numbers (NAdOccs) nAB...νi . The NAdOccs, generalizing
equation 157, recover the ν-centre DI∑

i

nAB...νi = 〈NAB...ν〉. (161)

If ν = 1, the 2-CD ρ2c(r1, r2) = ρxc(r1, r2) and equation 158 be-
comes

ρ1c(x) =

ν∑
A

∫
Ωa

dx2ρ
2
c(x1, x2) =

ν∑
A

ρ1A(r). (162)

In this particular case, ρ1A(r) ≡ gΩa(r) is just the DAFH, which has
been described more extensively in section 147. That way, the DNOs
are recovered by expanding gΩa(r) in terms of the orbital basis as
in equation 154 and after diagonalization (equation 156), the gener-
alized densities are exactly Ponec’s DAFH, and the ϕAi (r)’s are the
DNOs and the nAi ’s their occupation numbers. If the one-electron
function ϕAi (r) spreads out of region Ωa into other regions Ωb . . .,
the electrons in the former are sensed by the electrons in the other re-
gions and a statistical dependence between bothΩaΩb is established.
In the opposite case, if a given ϕAi (r) is fully contained in Ωa, exactly
one electron will be localized in it. In other words, ρ1a(r) gives the av-
erage distribution of the 〈NA〉 electrons that should not be included
in ρwhen all the reference electrons inΩa are considered. The DNOs
defined that way constitute a description of the monoelectronic states
that contribute to the population of the domain Ωa.
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The same rule applied in equation 162 can be extended to ν > 2

and for the ν = 3 case, ρ3c(r) allows for a partition in 2 basins the
1-order cumulant ρ1c(r):

ρ1c(r) =

ν∑
AB

∫
Ωa

dr2

∫
Ωb

dr3ρ
3
c(r1, r2, r3) =

ν∑
AB

ρ1AB(r), (163)

which is a partition in two centres of the electron density.
The same procedure can be followed in the case of the 2-RDM,

which can be obtained by condensation of higher-order CDs. In terms
of the 3-RDM, for instance

ρ2c(r1, r2) =
ν∑
A

∫
Ωa

dr3ρ
3
c(r1, r2, r3) =

ν∑
A

ρ2c,A(r1, r2). (164)

A schematic representation of ρ1A in a system divided into two re-
gions A and B is shown in figure 21 (left side). As it can be deduced
from there, integration of ρ1A(r) over the whole space yields the aver-
age population of fragment A∫

R3
ρ1A(r)dr = 〈NA〉. (165)

If ρ1A is totally contained in region A, the population is equal to the
localization within this atomic region 〈NA〉 = λA. But in general, as
the electronic population can delocalize ρ1A spreads out of A and into
region B, so the domain-integration recovers the localization index
λA, defined in equation 109∫

A

ρ1A(r)dr = λ
A. (166)

Figure 21: Schematic representation of the ρ1A and ρ1AB domain-partitioned
electron densities, the space divided into 2 and 3 regions, respec-
tively.

In the 2-centre case, equation 164 yields a description of how the
A,B-delocalized electrons 〈NAB〉 are distributed in the space. The 2-
centre electron density ρ1AB(r) is represented again schematically in
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figure 21 (right side). If it spreads out of the Ωa ∪Ωb joint region
there is, at least, three-centre statistical correlation and three-centre
bonding, so that further condensation from ν = 4 or higher order-
CDs is motivated. A integration of ρ1AB over the whole space yields
〈NAB〉, which is half the delocalization index δA,B (see equation 107

for definition)∫
R3
ρ1AB(r)dr = 〈NAB〉 =

1

2
δA,B. (167)

The GAB...m matrices are particularly simple in the case of single
determinant wave functions, depending only on the so-called AOMs
(see equation 100). If for ν = 1, GA = SA (see above), in the ν = 2

case, GAB = (SASB + SBSA)/2. After diagonalization a new set of
one-electron functions ϕABi or 2-NAdOs is obtained and associated,
the occupation numbers denoted by nABi . As it is usually the modus
operandi in a DAFH analysis, plotting the 2-NAdOs (or simply ϕ in
the following) would provide a MO-like representation, but now tak-
ing into account the bonding electrons rather than the electrons of
the whole molecule, between 2 atomic regions, with the respective
occupations.

The extensivity property of the cumulant densities (as formulated
in equation 63) is noticeable here if the integrations in equations 162

and 164 are carried out over the remaining electron

〈NA〉 =
∫
A

ρ1c(r)dr (168)

〈NAB〉 =
∫
A

dr1

∫
B

ρ2c(r1, r2)dr2 =
1

2
δA,B. (169)

Note that likewise the integration of the 1-CD over region A yields
the electron population within that basin 〈NA〉, the same operation
over the 2-CD recovers half the DI between regions A and B 6= A. The
same procedure would allow to recover the ν-center δ from higher
order ν-CDs.
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7.2 edf results

As in the publication by Baranov and Kohout [18], for this is the
first study where EDF are evaluated for solid systems, we have chosen
model systems for each type of bonding situation: NaCl as ionic, dia-
mond and graphite as covalent, Na in its bcc phase as metal. All those
systems are described with a DFT wave function, obtained with the
solid state FP-LAPW code Elk[1], using the local spin density approx-
imation with the Perdew-Wang exchange-correlation functional[125].
All calculations were done using a fine logarithmic mesh, by setting
the parameter lradstp=1 in Elk. Additionally, a very small smear-
ing width was used (usually swidth ≈ 1e−08) in order to avoid frac-
tional occupations of the orbitals. The expansion cutoff for the wave
function is 7.0 a.u. (parameter rgkmax). Default parameters were
used except otherwise indicated. The posterior space partitioning
into QTAIM basins, as well as the integration of the electron den-
sity to obtain the AOMs was carried out with the program DGrid[82]
by M. Kohout, which also allowed, after an adaptation of the code
done in collaboration with A. Baranov, the generation of the files for
the representation of the NAdOs. The evaluation of molecular EDFs
from both HF and correlated wave functions is implemented in the
code EDF[54] by E. Francisco in our group. This is code used for cal-
culating EDFs in the solid state, which required a generalization of
the matrix diagonalization algorithm which must now handle com-
plex matrices (AOMs), produced by DGrid. This also implies that the
resulting orbitals are complex as well, so they are characterized by
not only the amplitude, but by the phase too. Let us start then by
discussing the ionic case.

7.2.1 The ionic case: crystalline NaCl

The NaCl molecule is a typical example of an ionic bond. The
high electronegativity difference between both atoms makes the shar-
ing of electrons to be asymmetric: the Cl atom keeps one electron
that is stolen from the Na atom, the picture being Na+Cl−. The
DIs and NAdOs were evaluated for the NaCl crystal from a calcu-
lation with 4× 4× 4 k-points, with a shift in the k-mesh of kshift =
(0.25, 0.5, 0.75), specified with the vkloff parameter. The localization
within the QTAIM basins is found to be very high λNa = 9.9747
and λCl = 17.6911 and is very similar to the QTAIM populations
nNa = 10.1418 and nCl = 17.8582. The variance or the fluctuation
in the electronic population, obtained as the difference between the
QTAIM population and λ (see equation 102) can be considered to be
low in both cases σ2Na = σ2Cl = 0.16710. High localization values that
besides coincide to a large extent with the electronic population are in
good agreement with the results obtained for the simplest prototype
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of ionic bond LiH[10, 45], with fluctuations on the atomic popula-
tions having the values σ2Li = σ2H = 0.099[45]. The DI and LI values
for the NaCl molecule are summarized in Table 2, to which we will
be referring very often in the successive pages of our discussion.

As we have shown, the analysis of the EDF gives the probability of
the different real space resonant structures (RSRS) in Pauling’s terms
of a system (see section 131 for a discussion on its usefulness and a
more in detail definition of the EDF). According to the known nature
of the chemical bond in the sodium chlorine, it did not surprise us
to obtain the configuration P1(nNa = 10) = P(nCl = 18) = 0.838,
where the Na atom cedes an electron captured by the chlorine, as the
most probable resonant structure of the NaCl molecule. This exactly
corresponds to the expected Na+Cl− case. The probability of the
sodium to loose an electron is identical to that of the chlorine to win
an electron, originated from the fact that in the molecule there are
only two atom basins, i.e., each electron has only one basin available
to delocalize. Under this restriction, the electrons being shared by
the sodium atom have hence no other possibility than going to the
chlorine basin.

The scenario is quite different in the NaCl extended system. The
delocalizing electrons are now allowed to go to any of the basins
of the solid, either the Na or the Cl basins, with no restriction at
all. The probabilities of the different resonant structures for the NaCl
crystal are gathered up in Table 1. Let us start with the one centre
probabilities, calculated letting n electrons be inside the Na or Cl
basin, whereas the remaining N − n electrons are anywhere in the
solid.

Figure 22: QTAIM basins of the NaCl, Na atoms are magenta and smaller
than the Cl atoms, in green.

The most likely event that can happen to a Na atom is to loose one
electron P1(nNa = 10) = 0.792, in agreement with our expectations.
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The opposite one is the most probable event for the Cl atom: the gain
of one electron P1(nCl = 18) = 0.6197. The most probable situation
therefore is the same as in the molecular case, with the important
difference that however now both probabilities are not equal anymore
P1(Na+) 6= P1(Cl−). If we give the electrons freedom to delocalize
over any of the atoms in an infinite network, the atom does not have
to follow the restricted molecular situation, where only one basin was
available for the electron to go. The electron that leaves its Na basin
has now not one but infinite different chlorine basins where it can go
to, although it mainly goes to the 6 closest ones.

The Na atom has a more rigid nature as a cation and is found as
Na+ 79% of the time, whereas the more flexible chlorine, as an anion,
shares the electron it receives with other Cl atoms and has a lower
probability 62.5% of being Cl−. The difference between them resides
in the amount of electronic charge that each atom exchanges with
the second neighbourhood, which is formed by alike atoms. The Na
shares electrons mainly with the Cl and not with the other Na atoms,
but the Cl atom is a more bountiful species that shares its electron
with other Cl atoms. The DI bolsters our interpretation: on the one
hand the sodium has a much lower delocalization with the whole
solid, δNa,solid = 0.4549, than the chlorine, δCl,solid = 1.0378 (see
Table 2). On the other, taking a look at the delocalization between
second neighbours, we see how the Cl atom behaves more covalently
δCl,Cl = 0.0482 in comparison with the tightfisted Na with δNa,Na =

0.0002. This asymmetrical sharing tells us that the network formed by
the Cl atoms behaves in a more covalent way although it is in an ionic
context, for the δ1,3 is similar to the equivalent value for the diamond
system (see Table 2). On the contrary, the Na network is much more
ionic, with a very small internal sharing as the second-neighbours DI
suggests.

The covalent-like behaviour of the chlorine is nevertheless limited
to the first Cl neighbourhood. To help the reader follow the num-
bers we present here, the QTAIM basins of the NaCl crystal are
shown in figure 22. Proceeding in the same manner as Baranov and
Kohout[18], we note that each chlorine atom has a sodium neighbour-
hood of 6 Na atoms and a chlorine neighbourhood of 12 Cl atoms.
Thus the total delocalization between the chlorine and its first nei-
hbourhood (including closest Na and Cl atoms) is 6× δCl,Na + 12×
δCl,Cl=0.4416+0.5784=1.02, which means δCl,solid − 1.0200 = 0.019 elec-
tron pairs shared with the atoms further away from the first vicinity.
The same analysis in the case of the sodium yields 6× δNa,Cl + 12×
δNa,Na=0.4416+0.0024=0.4440, and the sharing with atoms beyond the
first vicinity is in this case δNa,solid − 0.4440 = 0.011 which is of the
same order than that for chlorine. According to the expectations for
an ionic compound, a very low delocalization with distant atoms is
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observed, only broken by the chlorine closest vicinity behaving in a
more covalent-like manner.

This situation can be studied from the statistical point of view as
well, since as we have seen the DI can also be seen as the covariance
of the electron population[5, 13, 45, 107] (see chapter 3.1 for a deeper
discussion). It can be said that the Cl atoms admit a higher mobility
of the electrons, so that if we take a finite number of pictures of the
electrons with their positions, the Na electrons will appear in the ma-
jority of them in their original Na basin but on the contrary, electrons
in the Cl will be found with much higher frequency in other Cl atoms
of its vicinity.

Let us now have a look at the 2-NAdOs for the NaCl crystal, for
they may graphically illustrate the ideas we have just commented.
As it was said in the introductory Section (see Section 7.1.2), the ν-
NAdOs are one-electron decompositions of any multicentre delocal-
ization index: for ν = 1 the 1-NAdO ϕA (identical to the DNO or
DAFH) is a partition of the A-domain population where the NAdO
was evaluated. A ν-centre NAdO is either partially or totally local-
ized within the ν centres. A total localization of the DAFH tells us
this region does not take part in a bonding scenario (it is a core, lone
pair,. . . ). Partial localization of the DAFH evidences a breakout of
the population to the neighbouring basin and therefore the existence
of at least 2-centre bonding. The DAFH were already analyzed by
Baranov et al.[19] in the same typical ionic, covalent and metallic solid
state systems. As it is usually found in ionic compounds, low delocal-
ization values were expected in NaCl crystal. Accordingly, the cited
work shows that 100% and 99% of the DAFH with the largest eigen-
value is contained within the Na and Cl basin, respectively, which
tells us those are the core regions of the respective atoms. The sec-
ond largest DAFH shows however larger delocalization, with values
99% and 95% again for the Na and Cl basins, respectively. Although
small, this indicates that some 2-centre correlation is taking place,
which would be better analyzed from the 2-NAdOs.

In an analogous manner as the DAFH, the 2-NAdO ϕAB is a de-
composition of the delocalized electrons between regions A and B,
i.e., of the δA,B, which in the sodium chloride crystal is very low
δNa,Cl = 0.0736 for it is an ionic compound. Equivalently as in the
ν = 1 case, total localization of the orbitals within the Na–Cl region
would mean a pure 2-centre bond, while delocalization to other re-
gions is a sign that more basins are involved in the bonding scenario.
The sum of the eigenvalues fully recovers the DI 2

∑
i n
NaCl
i = 0.0736,

pointing out that no more than 2-centres are involved in the bonding.
The two largest bonding and antibonding 2-NAdOs are depicted in
figure 23. The bonding NAdOs are shown in the upper figures 23a
and 23b, which together represent 98% of the DI. Looking at them it
can be seen that the main contribution to the bonding is contained
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in the region formed by the joint of the Na and the Cl basin, the two
basins represented in figure 22, and that the part of the DI that travels
out of it goes almost exclusively to the closest 4 chlorine basins. In
other words, if we focus on the Na–Cl pair of atoms (in orange in
figure 23), the electron that the Cl atom gains comes mainly but not
solely from the Na atom in front of it. On the contrary, it retains a
part of this electron and the rest comes from other Cl around it, with
whom it also shares. That way, once the electron leaves the Na atom,
the electron travels from Cl to Cl according to the flexible nature of
the anion. The Na on the contrary behaves in a more rigid way and
does not share with other Na neighbours. The lower two figures 23c
and 23d are the anti-bonding NAdOs with negative NAdOccs, so the
sum of the percentages of the four orbitals is larger than 100%. In
this case, the actual delocalization is larger than the DI shows, but
some of it contributes negatively to the bonding. These negative con-
tributions are of one order of magnitude smaller (-0.0081 and -0.0034,
against 0.0591 and 0.0130), but still non-negligible. A careful inspec-
tion of the NAdOccs provides hence a finer analysis of the actual
bonding scenario.

It also informative to consider the RSRSs with smaller probability
to occur. In figure 24 we represent the one-centre probabilities of
the RSRS with the largest weights. The ∆Q = 0 bar corresponds to
the most probable RSRS and positive (negative) values of Q mean
the atom gained (lost) one electron with respect to it. In the case of
NaCl, the blue and red bars stand for Na and Cl, which at Q = 0

represent the most probable Na+ and Cl−, respectively. Both atoms
show a very asymmetrical distribution of their resonant structures,
but differentiating in the tail width of the distribution. The chlorine,
in its role of flexible atom shows a distribution with a notably wider
tail than that of the sodium, reaching the threshold value of P ≈ 1e−4
in the 7th most probable RSRS, whereas the sodium attains it in the
5th.

The consideration of resonant structures different from the most
probable is one of the most interesting uses of the EDF, that makes
it a powerful tool to analyze unexpected chemical behaviours, for
it provides the information that allows us to take into considera-
tion alternative chemical graphs that might surrogate the expected
one in certain uncommon chemical scenario. Although it is clear
to the expert eye what RSRSs will compete after the most probable
corresponding to Na+Cl−, this might be not so predictable in more
complex systems behaving atypically. It is in such cases where al-
ternative explanations than those that are already part of the chemi-
cal intuition have to be given and where EDF has valuable informa-
tion to offer. In the NaCl example that occupies us here, the order-
ing of the resonant structures is established by the EDF values as
Na+Cl− > NaCl > Na2+Cl2− > Na−Cl+, with probabilities 0.8388,
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(a) |ϕNaCl| = 0.023 a.u. isosurface. NAdOcc
nNaCl = 0.0591 (80.3%).

(b) |ϕNaCl| = 0.025 a.u. isosurface. NAdOcc
nNaCl = 0.0130 (17.7%).

(c) |ϕNaCl| = 0.03 a.u. isosurface. NAdOcc
nNaCl = −0.0081 (11.0%).

(d) |ϕNaCl| = 0.03 a.u. isosurface. NAdOcc
nNaCl = −0.0034 (4.6%).

Figure 23: 2-centre (first-neighbouring Cl —green— and Na —magenta— atom basins, in
orange in the figures) NAdOs ϕNaCl coloured with the phase according to the
attached scale, with the largest (2 bonding and 2 anti-bonding) NAdOccs for the
NaCl crystal.
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0.1391, 0.0138 and 0.0080, respectively. This behaviour is in tune with
the distributions found for the LiH molecule[99] and with data com-
ing from ionization potentials. The high energetic cost of removing
two electrons from an Na atom (47.286 eV) makes the Na2+Cl2− a
very costly species. The Na−Cl+ is in turn hindered by the expensive
ionization of the chlorine (12.967 eV).

Let us now move on to the two-centre case and consider three units:
the Na atom, the first Cl neighbour and the rest of the crystal. Joint
probabilities are gathered in the right part of Table 1, where one can
see that the most likely situation to be encountered is again the Cl
taking one electron that the Na has lost P2(nNa = 10,nCl = 18) =

0.5086. It is interesting what comes up if we note that the product of
the independent events of the Na atom having 10 electrons and the Cl
atom 18 P1NaP

1
Cl = 0.7982 ·0.6197 = 0.4946 is noticeably different than

the joint event P2NaCl = 0.5086, so one can conclude this is actually
not the case of an independent particle situation, yet it is not very
far from it neither: the difference P2NaCl − P

1
NaP

1
Cl = 0.0140 is in

fact not very large. Table 1 shows the probabilities of the one-centre
events (third and fourth columns), its product and the joint event
probability (seventh and eighth columns), and the difference between
both P2NaCl − P

1
NaP

1
Cl (last column).

RSRSs with lower probability than the usual Na+Cl− case may
throw valuable information on the behaviour trends of the system.
It is non negligible P(10, 17) = 0.1620 the likelihood of the chlorine to
loose one electron to the bulk of the solid, the system being Na+Cl.
One order of magnitude lower but with being still as frequent as
9.43%, 8.51%, 4.28% and 2.23% are the RSRS Na+Cl2−, NaCl−, NaCl
and Na+Cl2+, respectively (see Table 1). Again this results illustrate
the reluctance of the sodium atom not to behave as a cation, which
contrasts with the much flexible chlorine.
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Figure 24: Bar chart representation of the largest one-centre probabilities
for X = NaCl, diamond and Na bcc. Above: ∆Qref refers to
the deviations in the number of electrons nX of the atoms in the
most probable resonant structure PRSRS, so that at ∆Qref = 0 all
atoms have the electrons of the most probable RSRS. Below: Q
refers here to a true charge and at Q = 0 all atoms are neutral so
the probability will be that of the atom having its atomic number
ZX electrons.
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7.2.2 The covalent cases: diamond and graphite

Crystalline carbon provides us with two extensively studied sys-
tems with covalent bonding that suits our purpose of presenting the
wealth of information that can be obtained from the analysis of the
EDF, continuing our tour through the classic chemical bonding types.
To a covalent bond, as a bonding scenario where electrons are being
shared, we associate the image of tightly bound electrons occupying
the physical space between the two bonded atoms.

Figure 25: QTAIM basins of the diamond. The superbasin Csb is formed
by the joint of four basins: the three drawn and the one cor-
responding to the bare C atom in the middle. This C atom is
bonded to another carbon atom, also bare in the figure, which
equivalently forms the second superbasin with its three remain-
ing direct neighbours. The bond between the two bare C atoms
is therefore the bond between the superbasins too.

The wave function for diamond and graphite was obtained using a
4× 4× 4 and 4× 4× 3 k-mesh, respectively, in both instances shifted
according to the vector kshift = (0.25, 0.5, 0.625). The smearing width
was increased in both cases up to 1e−05.

Ionicity implies that in NaCl the electron is transferred from the
cation Na+ to the anion Cl− in an almost irreversible, electron trans-
fer mechanism, which from a statistical point of view has conse-
quently associated a very low variance of the electron population
nNa − λ

Na = 0.2275. The DI in NaCl is notably small when compared
to the value for diamond δC,C′ = 0.9138 and graphite δC,C′

‖ = 1.2109.
The diamond shows as well a noticeably larger variance σ2diam(C) =

nC − λC = 2.1858 as well as the graphite σ2graph(C) = 2.1270, ac-
cording to the expectations for a covalent arrangement (see Table 2),
where the electron moves back and forth from one carbon atom to the
other in an electron sharing process. This difference in the variance
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associated to the ionicity and covalency phenomena are graphically
illustrated in figure 24, where the EDFs distribution of diamond is
much wider than that of sodium chloride. The translation of DI into
bond order is in a covalent context straightforward, and they are in
harmony with the chemical wisdom in diamond and graphite, with
bond orders of 1.0 and 1.5, respectively.

Although in both diamond and graphite the atoms are covalently
connected, the bonding situation is different in both cases: single
bond in diamond and delocalized π-system of intralayer atoms in
graphite and weak interactions between layers. A δ-analysis of both
systems throws interesting insights. A diamond QTAIM basin (see
the basins of diamond in figure 25) has a δ1,2 very similar to the
δ1,2 = 0.988 in the analogous C–C single bond in C2H6[45]. From the
analysis of the DI between first- and second-neighbours, Baranov and
Kohout[18] gave sharing values of 83% with the first neighbourhood,
11% with the second and 6% with the rest of the solid in diamond.
In relative terms, 17% of the electronic population being shared goes
to atoms beyond the second coordination sphere, which can be com-
pared with the 5% and 2% of Na and Cl in NaCl, respectively[18].
Graphite has an almost identical relative distant sharing, with 15% of
the shared electrons.

The carbon atoms in graphite arrange in a hexagonal pattern (see
figure 26), as it does in the extensively studied case of benzene, the
aromatic system par excellence: a cyclic compound that follows the
rule N = 4n + 2,n ∈ N, where N is the number of atoms, which
is a configuration with a particularly high delocalization among the
carbon atoms[44, 107, 108]. This confers a high DI values on the
graphite for the shortest contact δ1,2 = 1.2109, notably higher than in
diamond δ1,2 = 0.9138 (see Table 2).

Figure 26: QTAIM basins of the graphite.
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If we take a look at the largest probabilities for both diamond (Table
3) and graphite (Table 4), one observes no striking differences in the
probabilities themselves nor in the electron distributions.

Table 3: Probabilities of different RSRSs for the diamond.

nC P1(nC) nC nC′ P1(nC) · P1(nC′) P2(nC,nC′) P2 − P1CP
1
C′

6 0.2640 6 6 0.0697 0.0708 0.0011

5 0.2200 5 6 0.0581 0.0587 5.8e-04

7 0.2078 6 7 0.0549 0.0556 6.8e-04

4 0.1158 5 7 0.0457 0.0507 0.0050

8 0.1079 5 5 0.0484 0.0437 -0.0047

9 0.0363 7 7 0.0432 0.0392 -0.0040

3 0.0349 4 6 0.0306 0.0302 -4.0e-04

Let us now have a look at the one-centre probabilities. In Table 3

and 4 we see that the highest probability comes when a carbon atom
has 6 electrons, which would be 26.4% and 26.7% of the times in di-
amond and graphite, respectively. In the same table, we see that the
two-centre largest RSRS is again that of having 6 electrons, now in
the region formed by the two first-neighbour atoms. If we now move
to Table 6, the n = ZA + ZB column explains the chance of the same
event, 6 electrons in the region formed by the first-neighbours, regard-
less in this case of the precise distribution of the electrons between the
two atoms. In other words, it simply contains the sum of P2(nC,n′C)
(P2‖(nC,n′C) in the case of graphite) satisfying that nC + n′C = 12. As
we are now considering the union of two regions and each of them de-
localizes to many other basins, the likelihood of such a circumstance
P2(12) has decreased and is now of 21.2% in diamond and 22.4% in
graphite. It is not only smaller but actually also noticeably different
in both systems: the electrons remain within the C–C superbasin with
higher probability in graphite than in diamond.

The reader may find this result counterintuitive as we were expect-
ing the graphite to be more delocalized than diamond. The reason
behind it is that we are comparing two numbers that can not be di-
rectly compared: whereas the electron in the diamond system delo-
calizes in all directions, in graphite it does only in 2 dimensions, that
is, within one of the layers[18]. Bearing that in mind, 77.6% of the
electrons spread out in graphite in 2 dimensions, which is a higher
delocalization degree than 78.8% in diamond in all 3 dimensions of
the space. The DI indicates a much smaller interlayer delocalization
in graphite δ1,2

⊥ = 0.0196, in the same order of the δ1,3 = 0.0388 in
diamond, also reflected in the probability of finding 6 electrons in
first-neighbours located in different layers P2⊥(12) = 0.1905, 2 points
smaller than the intralayer number. Travelling between different lay-
ers, even if the shortest way is taken, has a difficulty in the same
order of magnitude for an electron in graphite than that of travelling
between to the second neighbourhood in diamond.
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(a) Largest bonding |ϕCC| = 0.08 a.u. isosurface.
NAdOcc nCC = 0.4149 (90.81%).

(b) Second largest bonding |ϕCC| = 0.05 a.u. iso-
surface. NAdOcc nCC = 0.0733 (8.01%).

(c) Largest anti-bonding |ϕCC| = 0.05 a.u. isosur-
face. NAdOcc nCC = −0.0248 (2.71%).

(d) Second largest anti-bonding |ϕCC| = 0.14 a.u.
isosurface. NAdOcc nCC = −0.0248 (2.71%).

Figure 27: 2-centre (direct C neighbours, in orange in the figure) NAdOs ϕCC coloured with
the phase according to the scale, with the largest (2 bonding and 2 anti-bonding)
NAdOccs.
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As it is discussed in the DAFH analysis of Baranov and co-workers,
diamond has a core orbital almost completely contained within a C
basin, but only 48% of the second largest eigenvalue is contained
within the QTAIM basin, 43% is shared with the bonded neighbour
and 6% delocalizes to basins located beyond the first coordination
sphere of a C atom[19]. These the numbers for the bonding orbital of
a system with much larger delocalization as it is a covalent electron
network, and the DAFH analysis tells us there is a very important 2-
centre correlation involving both basins of the bounded atoms. Actu-
ally, the population of a single C basin spreads also into other basins
apart from the bounded neighbour, so higher order bonding is taking
place in the diamond system.

A 2-NAdO ϕCC analysis is offered in figure 27. The largest eigen-
value of figure 27a corresponds to the main contribution to the C–C
covalent bond in diamond. This orbital represents the highest con-
tribution to the DI, i.e., to the bond order accounting to 90.81% of
the total value. As it can be clearly seen in this picture, the NAdOs
have symmetry: the irreducible representation of the ν-centre group.
A DAFH has the symmetry of the centre for which it was calculated,
while it possesses the symmetry group of the bond in case of a 2-
NAdO. As expected from the known bond order of 1 for diamond
and from the DAFH drawings[19], the main largest bonding 2-NAdO
is a σ contribution. The image thrown by the NAdOs is, as this also
demonstrates, very much similar to the standard MO paradigm.

The second largest ϕCC contributes 8.01% and is of π-type. It is in
this NAdO where we see that some of the DI is not contained within
the C–C region, but invades other neighbouring areas, pointing to-
wards a higher-order bonding paradigm. The anti-bonding contribu-
tions are, as in the NaCl crystal, much smaller than the bonding ones,
though still noticeable. As the delocalization is larger in this case,
the largest negative eigenvalues have a share in the total DI of 2.71%,
smaller than in the NaCl instance.

Table 5: 1- and 2-centre probabilities between two bonded superbasins (see
figure 25), each of them formed by the four C atoms forming a
tetrahedron in the diamond crystal structure, for different RSRSs.

nC P1(nC) nC nC′ P1(nC) · P1(nC′) P2(nC,nC′)
24 0.1634 24 24 0.0267 0.0268 δ = 1.2193
23 0.1519 23 24 0.0248 0.0249 λ = 18.1011
25 0.1490 24 25 0.0243 0.0245

22 0.1192 23 25 0.0226 0.0232

26 0.1152 23 23 0.0231 0.0227

21 0.0786 25 25 0.0222 0.0219

27 0.0757 22 24 0.0195 0.0195

20 0.0433 24 26 0.0188 0.0190

28 0.0422 22 25 0.0178 0.0185

29 0.0199 23 26 0.0175 0.0183
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(a) Largest bonding |ϕCC‖ | = 0.09 a.u. isosurface.
NAdOcc nCC‖ = 0.8916 (75.9%).

(b) Second largest bonding |ϕCC‖| = 0.05 a.u. iso-
surface. NAdOcc nCC‖ = 0.3391 (28.5%).

(c) Largest anti-bonding |ϕCC‖ | = 0.065 a.u. iso-
surface. NAdOcc nCC‖ = −0.0834 (7.0%).

(d) Second largest anti-bonding |ϕCC‖ | = 0.09 a.u.
isosurface. NAdOcc nCC‖ = −0.0278 (2.3%).

Figure 28: 2-centre (direct intra-layer neighbours, in orange in the figure) NAdOs ϕCC‖
within a layer of graphite, coloured with the phase according to the scale, with
the largest (2 bonding and 2 anti-bonding) NAdOccs.

The first-neighbour NAdO analysis between carbon atoms is de-
picted in figure 27 and shows the major contribution to the bond of
90.81% to be σ-like (NAdO 27a). The second contribution is of π type
and has a notably lower weight of 8.02%.

The intra-layer 2-NAdOs for graphite ϕCC‖ are shown in figure
28. Similarly as for diamond, the DAFH analysis shows, besides the
usual core orbital, a σ-bonding orbital 51% of which is contained
within the C basin, while 44% is contained in the basin of the bonded
neighbour and just 5% is left for the remaining of the crystal[19]. This
suggests a bonding scenario mainly ruled by 2 centres. The bonding
2-NAdO with the largest contribution has as in diamond the expected
σ character as can be seen in figure 28a. The second largest ϕCC‖ is
a π-like orbital (see figure 28b) and has therefore a rather different
character, denoting a multi-centre delocalization. The DAFH analysis
recovered a 46% localization within the C basin, and 12% of delo-
calization to the three closest C basin[19]. The 2-NAdO also points
towards a multi-centre delocalization between carbon basins of the
same layer. The largest anti-bonding orbitals are of both π- (figure
28c) and σ-character (figure 28d), which represent 7.0% and 2.3% of
the δC,C

||
, respectively.
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According to equation , the δC,C
||

= 1.2109 can be divided into a σ
contribution that participates with 0.8916 and a π one, which repre-
sents 0.3391, in very good coincidence with the classical bond orders
of 1 and 1/3 for the σ and π components.

The intra-layer electron network is more delocalized in the case
of graphite when compared with diamond, which is clear from the
DI analysis (see table 2) and expected since the carbon atoms are ar-
ranged in an aromatic pattern within layers. This information is also
obtained from the 2-NAdO analysis. The 2-NAdOs recover practi-
cally 100% of the DI in diamond, whereas in the case of graphite,
98.2% of the δC,C

||
is reproduced. Whereas the 2-centre analysis fully

characterizes the diamond system, the 2-NAdOs tell us that we are
considering a multi-centre bonding scenario within layers in the case
of graphite.

It was said above that the delocalization in graphite is a within-
layer delocalization, unlike in diamond, where the sharing of elec-
trons is done in all the 3 directions. The inter-layer delocalization
is consequently much smaller (see table 2). The 2-NAdOs between
direct neighbour basins that belong to different layers (see figure 26

to get an image of how a C basin in graphite does look like) are
depicted in figure 29. The 2-NAdO with the largest NAdOcc repre-
sents 137.6% of the DI, the δC,C

⊥ of figure 29a, which evidences that
the inter-layer delocalization is mainly of π-type. As the NAdOccs
can adopt negative values, the contribution of a single NAdO can
be greater than the 100% and in this case, the anti-bonding orbitals
heavily participate on the DI, being the largest (figure 29c) 46.4% of
it, also of π type. The second contributions, both the bonding (figure
29b) and the antibonding (figure 29d) are much smaller and of simi-
lar importance, contribute 4.1% and a 3.1%, respectively and both are
of σ symmetry. In all cases, the orbitals stretch out of the C–C region
pointing towards a multi-centre delocalization.
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(a) Largest bonding |ϕCC⊥ | = 0.055 a.u. isosur-
face. NAdOcc nCC⊥ = 0.0270 (137.6%).

(b) Second largest bonding |ϕCC⊥ | = 0.09 a.u. iso-
surface. NAdOcc nCC⊥ = 8.01e−04 (4.1%).

(c) Largest anti-bonding |ϕCC⊥ | = 0.05 a.u. isosur-
face. NAdOcc nCC⊥

1 = −0.0091 (46.4%).
(d) Second largest anti-bonding |ϕCC⊥ | = 0.04

a.u. isosurface. NAdOcc nCC⊥ = −6.16e−04
(3.1%).

Figure 29: 2-centre (direct intra-layer neighbours, in orange in the figure) NAdOs ϕCC⊥
between layers of graphite, coloured with the phase according to the scale, with
the largest (2 bonding and 2 anti-bonding) NAdOccs.
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7.2.3 A metal: Na bcc

The tight association between metallic bond and high long-range
delocalization of the electron network has not only been put forward
in many instances (see [19, 94, 149] and references therein), but has
also been proven by us in reference [56] and in Section 5. Put it
in Pauling’s words, a metal can be seen as a system with its atoms
bonded by a partially covalent tie[123]. This is confirmed by a DI
value in crystalline sodium larger than in an ionic picture but smaller
than that of a pure covalent bond δNa,Cl < δNa,Na < δC,C (see table
2). The partial covalency of the metallic bond is also evidenced by
the EDFs’ distribution tail, wider than that of crystalline NaCl but
narrower than the distribution in diamond, as shown in figure 24.

Figure 30: QTAIM basins of the Na bcc.

For alkaline metals such as Na bcc one awaits even higher delo-
calization values according to the band theory point of view, for s-
electrons are thought to be nearly free in contrast to the in general
localized d-electrons of transition metals. Accordingly, as the DIs are
measures of the degree of delocalization, if they are truly sensitive
high DI values are expected between distant basins. The inspection
of the DIs in solid systems carried out by Baranov and Kohout[18]
shows a distant sharing of 0.44 pairs for Na bcc, which is notably
higher than the values obtained for NaCl crystal of 0.02 pairs but less
than the distant sharing observed in diamond and graphite, with 0.74

and 0.64 pairs, respectively. It is even smaller than 0.66, the number
of distant shared pairs in the metallic Cu fcc system. However, one
must take into account that the Na atom has formally only one va-
lence electron available for sharing. It is consequently informative to
take a look at the fraction of distant pairs being shared, defined in
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equation 105. This quantity indicates that the amount of distant shar-
ing is, as expected, almost twice the value for graphite, diamond and
crystalline copper[18].

Calculations were carried out in the case of Na bcc over a mesh
of 4× 4× 4 k-points, with the same shift and smearing width as in
crystalline NaCl. Each Na atom has 8 direct neighbours at a bond
distance of 3.66Å those depicted in figure 30 which makes a total de-
localization of 8× δNa,Na = 8× 0.0964 = 0.7712 (see table 2). Along
this direction, the second neighbourhood is formed again by 8 atoms,
which makes 8× δ1,3 = 8× 0.0030 = 0.0240 and the third in turn also
by 8× δ1,4 = 8× 0.0008 = 0.0032 (table 2). The delocalization with
the next nearest (nnn) and the next next nearest neighbours (nnnn)
is far from non-negligible, always along the specified direction, spe-
cially noticing that we have considered neither the nnn nor the nnnn
DI between sodium atoms along the direction of the 4.22Å bond.

The DAFH analysis tells us a similar interpretation[19]. The bond-
ing DAFHs have σ- and π-character, of which 30% and 6% are con-
tained within the basin. The part of the DAFH found in basins be-
yond the nearest neighbours at 3.66Å and the next nearest neighbours
at 4.22Å is 14.4% for the s-DAFH and 34% for the p-like one, thus
showing that the long-range delocalization is mainly of p-type[19].

The 2-NAdOs for the Na bcc crystal are shown in figure 31. The
main contribution to the δNa,Na (figure 31a) is, according to the 1-
NAdO analysis a σ orbital, which accounts for 108.2% of it. The π-
bonding contribution (figure 31b) has a weaker implication in the DI,
representing 5.0% of it. The anti-bonding ϕNaNas with the largest
and second largest NAdOccs (figures 31c and 31d, respectively), par-
ticipate with 12.0% and 4.3% each. As suggested in reference [18],
compounds with a low number of valence electrons often show mul-
ticentre bond in metals. Accordingly the 2-NAdO analysis offers a
more adequate image of the bonding scenario, since the main contri-
bution to the DI (figure 31a) is almost completely contained in the
corresponding region (that formed by the union of two Na basins,
depicted in figure 30), indicating that the s-interaction takes place
mainly between 2-centres. The p-delocalization is however found to
be the responsible for the long-range delocalization [19]. As it is ob-
served, the remaining figures of 31 are p-orbitals and a smaller frac-
tion of them is contained within the region they were calculated for,
pointing out it is a bond in which more than 2 centres are involved.

Table 7 gathers up the largest EDFs for crystalline sodium. We can
say that a metallic bond is a type of covalent bond in which the high
electron sharing takes place with different spatial extension: it is long-
range delocalization, instead of that happening in a pure covalent
compound that on the contrary is observed at short distances. This
fact motivated the analysis of Sections 4 and 5, that deal with the
behaviour of the DI with distance. Unlike in diamond, where the



134 edf in the solid state

(a) Largest bonding |ϕNaNa| = 0.022 a.u. isosur-
face. NAdOcc nNaNa = 0.1039 (108.2%).

(b) Second largest bonding |ϕNaNa| = 0.022 a.u.
isosurface. NAdOcc nNaNa = 0.0048 (5.0%).

(c) Largest anti-bonding |ϕNaNa| = 0.02 a.u. iso-
surface. NAdOcc nNaNa = −0.0116 (12.0%).

(d) Second largest anti-bonding |ϕNaNa| = 0.022
a.u. isosurface. NAdOcc nNaNa = −0.0041
(4.3%).

Figure 31: 2-centre (first-neighbouring Na atom basins, in orange in the figures) NAdOs
ϕNaCl coloured with the phase according to the attached scale, with the largest
(2 bonding and 2 anti-bonding) NAdOccs for the Na bcc crystal.
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electrons that travel out of a C basin are most likely found in one
of the nearest neighbouring basins, in a metal the electrons travel
far away from the atoms they belong to. We could therefore talk of
a short-range covalency, which would be that measured by the δ1,2

between nearest neighbours and a long-range one, between atoms
a given number of bond lengths away from each other, or simply
characterized by the decay of the DI with distance (see 4 and 5).

The EDFs in the sodium metal show a narrower distribution than
in diamond as it was said above (see figure 24 for a 2-centre EDF dis-
tribution scheme). As they are normalized and the sum of all of them
gives the unity (see equation 135), this is translated in a fewer number
of RSRSs with a probability to happen above a certain threshold value
than in diamond, but individually with a higher weight. It can be ob-
served in table 7, that the first three RSRSs occur with a probability
of 41.6% if the Na atom keeps its 11 electrons, 32.5% when it becomes
a cation and 20% as an anion. In the case of diamond, the largest
1-centre RSRS had a weight of 0.2640 (see table 3). The 2-centre EDFs
show something similar: both Na atoms are neutral with a proba-
bility of 17.3%, or one atom looses an electron with a likelihood of
13.5%, whereas in the case of diamond, the largest P2 does not reach
the 10% (table 3). According to its very low covalent character, the
NaCl crystal has only two EDFs with probabilities above the 10%, the
largest reaching values of 50.9% (see table 1).

It is worth noting that, despite its reluctance to gain one electron,
the Na− event has a probability of 20.2%. If not staying neutral, the
Na atom inclined to loose one electron, but unlike in NaCl or other
sodium ionic compounds, the electron that easily leaves its basin, trav-
els a long way but must find a new basin at some point. Its very
nature obliges the sodium to not only cede, but also accept electrons.
For the same reasoning, the P2 probabilities tell us that the most likely
events are those where either both atoms are neutral (17.3%) or just
acts as a cation (13.5%). The circumstance of both atoms being cations
is almost as likely to happen as one Na atom being an anion while the
other stays neutral, with probabilities of 9.7% and 8.4%, respectively.
One atom loosing one electron is favourable, but loosing two at the
same time costs the same effort as one atom gaining one electron. The
probability of both Na atoms being anions at the same time (3.8%) is
notably smaller.



Part V

The DI as a means to unveil
the metal-to-insulator

transition in MnO
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In 1937 de Boer and Verwey[38] presented conductivity data of var-
ious transition-metal oxides such as MnO, NiO or CoO among others
which in spite of being insulators, were predicted by the band theory
to be metals. These compounds are understood to be highly ionic,
with oxygen moieties close to oxides, O2−, and metallic cations with
a nominal charge of +2 or +3 a.u. This would then partially fill the 3d
bands of the system, and the solids arrangement showed be metallic
according to the conventional theory. After that, it became clear that
the band theory fails to describe systems where the electron inter-
actions are crucial, in what are known as highly correlated systems,
where the assumption that electrons do not interact with each other
breaks down.

According to Peierls (1937) the electron-electron correlation is at
the root of the origin of the insulating behaviour in systems with
partially filled d-electron bands[71]. The explanation of Peierls and
Mott (1937) consists in imagining a simple lattice of hydrogen atoms
with a large lattice constant so that atoms can be considered as in-
dependent particles, one electron assigned to each site[26, 116]. The
movement of an electron that leaves its original site and goes to a dif-
ferent location creates a charge flow which originates a conducting
state. There are in this process two energies involved: the destabiliza-
tion coming from pulling out one electron from its site (the ionization
potential) and the stabilization achieve by occupying a free site away
from the electron’s original position (the electron affinity). In normal
3d oxides, this competence leads to highly mobile electrons and to
metallic behaviour. However, in highly correlated systems the strong
Coulomb repulsion among electrons prevents them from moving at
all. At low temperatures, due to the electrostatic interaction the ma-
jority of the electrons are at their proper places in the ions and only a
few overcome the energetic barrier and get to leave their place. Those
must hence travel long in order to find an empty site and will spend
time on already occupied ions, at a high energetic cost. The metallic
behaviour is then strongly hindered by the nature of the electronic
configuration of transition metals, as Mott reported based on Peierls’
comments[115].

In the simple case of hydrogen atoms, the energetic penalty of lo-
cating two electrons at the same site from 1s orbitals is〈

φ1sφ1s

∣∣∣∣∣ e2r12
∣∣∣∣∣φ1sφ1s

〉
. (170)
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The previous equation is the on-site Coulomb repulsion energy de-
noted by U. This Coulomb repulsion competes with the effect of the
band width W in such a way that the actual insulating gap is given
by U−W. To a large lattice parameter d corresponds a small band
gap W and the potential energy dominates over the kinetic energy,
which localizes the electrons and creates an insulating state. On the
contrary, for small d the dominating magnitude is the band gap W
and the system is metallic [26].

The prescription we just described is the basis of the Hubbard
model and it is the first approximation to the treatment of a system
considering an electron-electron correlation term of the form e2

r12
that

goes beyond the tight-binding approximation, which includes a term
for the hopping of electrons between sites, but does not consider
the electron-electron repulsion appropriately. The treatment of the
Coulomb repulsion among electrons has made the Hubbard model
a successful approach that has explained the insulating character of
transition metal oxides and other materials with the same behaviour.
It consists of a potential term U which takes into account the repul-
sion energy for two electrons on the same atomic site and a kinetic
term that allows tunneling (hopping) of electrons between neighbour-
ing sites. The latter is mathematically represented by a ’hoping inte-
gral’ or ’transfer integral’ that is directly related to the band width W
[121].

As we have considered (see Section 5), some Transition Metal Ox-
ides (TMOs) are typical examples of strongly correlated systems with
partially filled d-bands that show insulating character in the ground
state. After the development of the Hubbard model, the work of Mott
pioneered the study of such systems and motivated the name of Mott
insulator. In his explanation, Mott assumes each atomic site to be
occupied by only one atomic orbital. In a situation with no electron-
electron interactions a single band would be formed from the overlap
of the atomic orbitals in a solid the same way as it was explained
above. A fully occupied band would mean two electrons, one spin-
up and one spin-down at each site. However the Coulomb repulsion
would destabilize this situation and according to Mott, the band will
split into two: the lower band filled with electrons occupying a free
site and the upper one, formed by electrons located at a site already
taken by another electron.

An alternative explanation by Slater [154] suggested the origin of
the insulating state to be in the superlattice structure of the mag-
netic periodicity. The key point arises when we leave the Hartree and
adopt the Hartree-Fock potential, that assigns different potentials for
electrons of different spins. In a simple system of a one dimensional
array of like atoms, in the antiferromagnetic case each atom would
have one electron with α and the next with β spin. This alternation
causes the periodic potential to have a period of two atoms in the
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Hartree-Fock potential, not a period of one, which means the bands
will split into two with a gap in the middle. Now if we were deal-
ing with half enough electrons to fill the whole band before splitting,
this would mean not one half-filled energy band but a half-band com-
pletely filled, predicting the system to be an insulator. Nevertheless,
several examples can be found of TMOs with no magnetic ordering,
which points out that magnetism does not lie in the origin of the
insulating character in Mott systems.

8.0.4 DFT and Hubbard alliance: LSDA+U approach

Among the many attempts towards a satisfying description of Mott
insulators using DFT, the LSDA+U has found particular success due
to its low computational cost, which makes it an affordable method
to treat the not only complex, but also large systems which are the
targets of nowadays’ interest. It consists of an LSDA functional plus
a “Hubbard-like” term U, that is, an augmented LSDA functional
that allows us to control how strong the on-site electronic repulsion
is and gain this way a deeper insight of the nature of the Coulomb
interactions. It also has an exchange interaction parameter J, which
is the Hund’s energy between electrons with like spin.

A major problem encountered when using LSDA+U comes from
the fact that electronic interactions are already partially taken into
account by the LSDA functional, therefore leading to double counting
(DC) errors. All those errors are accounted for by an additional term
that is subtracted from the total LSDA+U energy. The problem arises
because, whereas the U and J quantities are calculated ab initio, only
approximations to this “DC term” could be found till now, since there
is no rigorous derivation of how to construct it.

8.0.5 Mott transitions

Once we have introduced the Mott insulators and the standard
method to correctly treat them (LSDA+U), we can go one step fur-
ther and come closer to what it is our goal in this study. In short, a
system undergoes a Mott transition when an alteration of its electric
properties takes place, becoming conducting if it was an insulator or
vice versa, as a consequence of a change in the strength of electron
correlation. The reasons that might electronically alter a system might
be of an assorted nature: modifications of the pressure, the composi-
tion, the strain. . . can lead to a change in the correlation strength with
a concomitant switch in the ability of the system to conduct electric
currents.

In the chemical literature, a metallic behaviour is naïvely associated
to a large exchange of electrons among atomic sites, that is to say, to
a high degree of delocalization of the electronic network across the
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system. As we have shown, (see Sections 4 and 5) the DI conveys in-
formation about the insulating- or metallic-like properties of a system.
We thus expect it to be an adequate tool to examine the insulator-to-
metal transition and provide us with a better understanding of the
process taking place in a Mott transition.

Once we have the theoretical basis that will provide us with the
wave function of the system and the appropriate tool to capture the
transition from metal to insulator, the last missing piece to carry out
our study is the system that will be analyzed. Among all the TMOs
that show insulating behaviour in their ground state, MnO is one
of the simplest we can find, and as such, it is widely used as pro-
totype, subject to many theoretical as well as experimental studies
[6, 73, 85, 121]. MnO undergoes a first-order isostructural insulator-
to-metal transition when subject to pressure [166]. The fact that this
is not accompanied by a change in the crystal symmetry simplifies
considerably the theoretical treatment previous to the analysis of the
DIs itself, our final goal, making the MnO the most appealing system
to this study.



9 A FA I L U R E S TO R Y: D I S A N D
T H E M OT T I N S U L ATO R
T R A N S I T I O N I N M N O

9.1 lsda+U results in mno

We start with the real calculations by checking convergence of the
Elk parameters against some ground features of the MnO such as the
energy-volume (E-V) curve, using the LSDA+U approach.

Energy-volume curves are constructed by plotting the energy eval-
uated at different values of the lattice parameter. The minimum, cor-
responding to the equilibrium geometry, is found by a polynomial
fitting of the E-V curve, done with the code Gibbs2 [120]. The calcu-
lation with no magnetic ordering yields an equilibrium parameter of
7.6 bohr, 0.8 bohr different from the experimental value of 8.4 bohr
[140], which is a too large deviation. Including antiferromagnetism
in the calculation changes the bond parameter to 8.25 bohr, now only
0.15 bohr different from the experimental value. Nevertheless, we
checked whether that deviation from experiment is due to a bad be-
haviour of the code, so we repeated the search for the equilibrium
geometry using another code: VASP [83]. We see that the difference
is also ≈0.2 bohr as with Elk, concluding the deviation does not lie
in the code. Elk E-V curve with magnetic ordering using different
values of U is represented in figure 32.

We will use from now on the equilibrium lattice parameter of a =

8.25 bohr that we have found theoretically from the E-V curve. The
effect of changing U, since it is a parameter that is just added to the
energy, will consequently change the energy, so that the larger the
value of U, the more positive the energy (see figure 32). The U values
have been chosen taking as reference the value U = 6.9 from [49], and
adjusting it by increasing or decreasing this number.

The U parameter controls the separation between occupied and
empty states, that is to say the band gap, as can be seen in figure 33

where the total Density Of States (DOS) is represented for different
values of U. The LSDA+U is clearly able to recover the insulating
character of the Transition-Metal Oxide (TMO), but we are interested
here in the insulator-to-metal transition that takes place under pres-
sure, so it must also correctly describe the metallic condition at the
other side once the transition has occurred.

The Elk code does not include a keyword to explicitly control the
pressure exerted on the system. Alternatively, the lattice parameter
has to be manually tuned. MnO is known to change from insulator to
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Figure 32: Energy-Volume curves for different values of the U parameter.
The equilibrium lattice parameter is close to a = 8.25 bohr, ex-
cept for U = 7.5, where a = 8.33 bohr. All values are in atomic
units.

conductor under pressure, a transition that happens at around 90 GPa
[121]. The performance of the LSDA+U goes however in the opposite
direction: the band gap broadens as the pressure is increased (figure
34). At a value of around a ≈ 8 bohr an abrupt change of uncertain
origin takes place. After that point, the band gap starts to get thiner
until the interatomic distance is so small, that the muffin tins overlap.
In the Elk[1] code (see Section 2 for a description on the electronic
structure of solids), when the lattice parameter is sufficiently reduced,
the muffin-tins overlap and instabilities appear. When this happens,
the code automatically changes the radius of the spheres allowing for
the calculation to proceed, but causing a leap in the gap, as can be
seen at a ≈ 7.6 in figures 32 and 34.

To make sure we are obtaining reliable results from the LSDA+U
calculations we also analyzed some thermodynamic properties of the
MnO that will be compared with the experimental values. In Table
8 the values of three thermodynamic quantities (see table caption for
details) are shown to confirm that no significant difference exists be-
tween them theoretical and experimental results.

In agreement with the results shown in reference [73], increasing
the pressure beyond the point where according to the experiment the
transition occurs does not cause a change in the conducting prop-
erties of the MnO. The LSDA+U method is not able to describe the
insulator-to-metal transition, but points towards an insulator-to-insulator
transition, whose origin we have not studied in detail.
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Figure 33: Total DOS at different values of U against energy. All values are
in atomic units. Note the well-developed insulating gap.
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Table 8: Comparison between experimental and theoretical values of the
thermodynamic quantities: the heat capacity at constant pressure
Cp = (dH/dT)[JK−1mol−1], the adiabatic bulk modulus Bs =
−V(dP/dV)[GPa] and the volumetric thermal expansion coefficient
α = 1/V(dV/dT)p[10

−5K−1].

U Cp Bs α

Exp 44.16 142-160 3.36(±0.37)
7.5 B-M(3) 41.528 158.809 3.739

B-M(4) 41.544 158.644 3.831

6.9 B-M(3) 41.556 159.045 3.857

P-T(3) 41.543 157.835 3.944

4.5 B-M(3) 41.436 161.617 3.741

Once we have discarded the LSDA+U method that fails to correctly
map the transition, we search for an appealing alternative: reduced
density matrix functional theory.

9.2 a encouraging alternative: the reduced
density matrix functional theory

Reduced density matrix functional theory (RDMFT) is an alterna-
tive formulation of DFT originally developed by T.L. Gilbert in 1975

[60]. Gilbert introduced a generalization of the Hohenberg-Kohn the-
orem using instead of the density the first-order reduced density ma-
trix ρ1 (1-RDM) defined in equation 49, also referred to as the 1-
matrix.

In the single-determinant case, the diagonalization of the 1-matrix
produces a set of natural orbitals φik, characterized by fractional oc-
cupation numbers nik

ρ(r , r′) =
∑
i

nikφik(r)φ
∗
ik(r

′) . (171)

In order to avoid confusion with the electron density ρ(r), which
is the diagonal part of the 1-RDM, let us rename it so that ρ(r , r′) =
γ(r , r′). To satisfy the N-representability condition of γ, the only
requirement is that the occupation numbers must satisfy 0 < nik < 1
and sum to the total number of electrons,

∑
ik nik = N.

The generalization that Gilbert introduced guarantees in principle
the existence of a functional of γ whose minimum yields the exact
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ground state energy for systems characterized by an external poten-
tial V (r):

Ev [γ] =

∫
d3r

∫
d3r′δ(r − r′)

[
−
∇2

2

]
γ(r , r′)

∫
d3rV (r)ρ(r)

+
1

2

∫
d3r

∫
d3r′

ρ(r)ρ(r′)

|r − r′ |
+ Exc [γ] . (172)

The first two terms account for the kinetic and the external po-
tential energies, respectively. The third term describes the Coulomb
repulsion between electrons whereas the last term is the exchange-
correlation potential. The exact treatment of the kinetic energy in
terms of the 1-RDM implies an advantage of RDMFT with respect to
DFT. Although as in DFT the unknown part of the electron-electron
interaction is gathered together into an exchange-correlation (xc) term
Exc, this does not include contributions to the kinetic energy, which
is on the contrary treated exactly [161]. Approximate functionals for
the xc energy in terms of the 1-matrix have been constructed, taking
the original functional of Müller [118] as the starting point. One of
them is the power functional [146], which describes the xc energy as

Exc [ρ1 ] = −
1

2

∫ ∫
d3r′d3r

|ρα1 (r , r′) |2

|r − r′ |
. (173)

The system-dependent parameter α regulates the electron correlation
included in the calculation. This functional interpolates between the
α = 1 case which is the uncorrelated HF limit and the Müller pre-
scription, which offers an alternative to the HF functional setting
α = 1/2 but on the other hand overcorrelates the system[146]. The
parameter α has been found to have its peak performance at the value
α = 0 .656, which is fixed for all our calculations [146].

Up to now RDMFT has been applied to both finite [88] and infinite
systems [89, 146]. For extended systems, RDMFT faces the challenge
of correctly describing the insulating nature of TMOs such as MnO or
NiO in absence of magnetic treatment, where usual local/semi-local
density approximations to the xc functional of DFT fail. The devel-
opers of Elk, the code we use in our solid state calculations, have im-
plemented the RDMFT approach for many electron systems in their
code [146] and have shown that, in principle, this method success-
fully describes the insulating state of MnO with no spin polarization
[147], although antiferromagnetism had to be later considered [148].

Most approximations in RDMFT are explicit functionals of and
minimized in terms of the natural orbitals φj(r) (NOs) and their
occupation numbers nj. Unlike Kohn-Sham orbitals, which only ac-
cept being either fully occupied or empty, the NOs used by RDMFT
have fractional occupations, which motivates their name despite the
fact that ρ1 is not explicitly constructed. Contrary to what hap-
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Figure 35: RDMFT (α = 0.65) energy-volume curve for MnO Fm3̄m using
a k-point shift vkloff=(0.25,0.5,0.625). The experimental lattice
parameter is aexp = 8.40. Atomic units used throughout.

pens in classical DFT, the functional optimization with respect to the
NOs does not reduce to an iterative eigenvalue problem, and specific
techniques had to be introduced ([161] and references therein). On
the other hand, it is favourable for us to deal with those “pseudo-
NOs” since there is a way open for the evaluation of DIs from a
RDMFT calculation. In their publication in 2002, Buijse and Baerends
[28] provide us with a tool to approximately describe the exchange-
correlation hole density and from it the 2-matrix, the required quan-
tity for the evaluation of the DIs.

We hence performed test calculations adjusting the parameters of
the code and tried to reproduce the equilibrium geometry. After a few
trials we soon confirm that RDMFT does not reproduce the experi-
mental equilibrium geometry of MnO (see figure 35). By establishing
contact with the developers, they warned about the challenge that
represents trying to reproduce equilibrium geometries with RDMFT.
They suggested to instead try to reproduce the insulating nature of
the MnO directly. As said before, the main bottleneck of RDMFT is its
very demanding nature. A calculation of the MnO within a k-mesh of
k = (4, 4, 4) (43) points, although it takes already a couple of weeks
to complete, is too coarse and still non-converged, as it is revealed
by the effect that shifting the k-point mesh has on the DOS (figure
36). The keyword vkloff is a vector, through which the displacement
of the mesh with respect to the default settings is specified. By a
shift in the k-point mesh, the actual number of k-points sampled in
the calculation might be reduced according to the symmetry of the
system treated, operation that by no means affects the final results. A
calculation where using a specific vkloff causes a different DOS spec-
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Figure 36: RDMFT (α = 0.65) DOS for MnO Fm3̄m using a k-point mesh
of 4

3 points shifted according to three different vkloff vectors.
Atomic units used throughout.

trum, as it is our case, signals that convergence has not been attained
yet (see figure 36). The k-point mesh used is still not fine enough,
consequently yielding no reliable results. Improving the quality of
the calculation by increasing the number of k-points is the immediate
step, but means the computational time to complete the calculation
will make it last more than one month in our cluster, which forces us
to find another walk-around better than this.

One way to overcome that difficulty is to resort to more power-
ful computational resources: the Barcelona Supercomputing Center
(BSC-CNS)1. This facility gives access to machines that are among the
most powerful ones in Spain and is available for free for researchers
working at a public institution. We submitted a project asking for
stronger computational resources to test a solution to our problem
and were assigned with calculation time in the Pablo Picasso node at
the University of Málaga. Among all the machines available from the
BSC-CNS, Pablo Picasso was the most convenient for us since it has
the largest memory as well as the largest number of cores that can
be used without the implementation of a protocol for node commu-
nication (MPI). The RDMFT algorithm, and we come here to another
bottleneck of the theory nowadays, is still in an early phase of devel-
opment, and the MPI protocol has not been implemented yet. This
limitation in the parallelization adds to the large time demand, since
the standard use of large number of cores in most supercomputers
requires efficient communication between nodes. Although ≈80 pro-
cessors were available by only using the OpenMP protocol, supported

1 For more information about the BSC, check the web site: http://www.bsc.es/.
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by RDMFT, this did not seem to speed up the calculation enough and
did not allow us to have the calculations with large number of k-
points done.

At the 2013 CECAM workshop about the Elk code celebrated in
Laussanne a discussion related to this was held. It was discussed
there that the calculations made in the original MnO RDMFT papers
were done using ≈300 processors with only OpenMP implemented,
something unreachable for us. Interestingly, the Elk authors sug-
gested that the algorithm is still not mature enough in order to be
used for scientific production. Accordingly we decided to follow the
advise of the Elk programmers and leave the topic in standby for
further study waiting for coming improvements.



Part VI

Conclusions
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To wrap up, let us summarize some of the main conclusions that
stem from our work:

Part III:

- The DI, as a real space index dominated by the square of the
1-RDM, is linked to conductivity.

- This link is perceptible in form of an exponential decay rate of
the DI in insulators and algebraic in metals. The rate increases
with the dimensionality of the system.

- This behaviour is present both in Hückel and TB models, as
well as in real molecules, even if they are small and in solid
state systems.

- The DI decays oscillating, which are linked to Pauling resonant
structures and chemical mesomerism, well known in alternant
hydrocarbons.

- Within the Hubbard model, correlation can be included through
the parameter r. That way, transitions between insulating and
metallic phases, where electron correlation plays a fundamental
role can be studied, as well as the behaviour of the DIs and LIs
under strongly correlated regimes.

- The costly correlated calculations restricted the systems ana-
lyzed to simple H finite and infinite rings, where both the DIs
and LIs show a sigmoidal decay with the intersite distance.

- The origin of this sigmoidal decay lies in the non-linear relation
between the intersite distance and the correlating parameter r.

- Both indices converge quickly with chain size. In th H chain, the
LI decays smoothly to zero as either r or the chain size increases.

- In an infinite Hubbard chain, oscillations persist at small values
of r to further dissappear as r increases and a clear exponential
decay sets in.

- If the dimension of the system is increased to 2D and 3D, a
true MIT occurs and the variance of the electron population,
related to the LI can be used as an order parameter to study the
transition.

Part IV:

153
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- The analysis of the electron distribution function (EDF) in the
solid state provides us with a wide view of the possible real
space resonant structures (RSRSs) —in Pauling’s terms— that a
system can adopt and what is the probability of each of them to
occur.

- For it derives from the same quantity as the DI, the EDF gives
similar information but at a finer level, therefore complement-
ing it.

- The high electron sharing of covalent compounds gives rise to
a wide distribution of the RSRSs. The opposite situation of an
ionic crystal has usually a single RSRS that represents its most
common electron distribution. A metal, in agreement with Paul-
ing words, is a partial covalent bond, which is confirmed by the
EDFs which show an intermediate width.

- It is the long range delocalization that causes the EDF distribu-
tion to be narrower than that of a covalent compund, not its
ionic character.

- RSRSs with probabilities below the most important one are re-
vealing in atypical chemical behaviours.

- In graphite, the delocalization is mainly two-dimensional (intra-
layer), whereas in diamond it spreads in the three directions.

- No higher orders than the 2-NAdOs are in most cases necessary
to explain the bonding situation in a crystalline solid.

- Whereas in NaCl, Na bcc and diamond the bond is mainly a
σ-type bond, in graphite the π-like contribution dominates.

Part V:

- The DIs are suitable tools to capture insulating and metallic
behaviour, and it is therefore applicable to use them to map a
Mott transition in a real compound, such as the MnO.

- Although it seemed that the band theory limitation to treat such
oxides had been overcome, the published results were not repro-
ducible in spite of the effort we put.

- We think the main reasons for that arise from the early stage of
the development of the algorithms and the high computational
resources associated with RDMFT.
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