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Abstract: Reactive oxygen species (ROS) carry out vital functions in determining appropriate stress
reactions in plants, but the molecular mechanisms underlying the sensing, signaling and response
to ROS as signaling molecules are not yet fully understood. Recent studies have underscored the
role of Protein Phosphatase 2A (PP2A) in ROS-dependent responses involved in light acclimation
and pathogenesis responses in Arabidopsis thaliana. Genetic, proteomic and metabolomic studies have
demonstrated that trimeric PP2A phosphatases control metabolic changes and cell death elicited
by intracellular and extracellular ROS signals. Associated with this, PP2A subunits contribute to
transcriptional and post-translational regulation of pro-oxidant and antioxidant enzymes. This
review highlights the emerging role of PP2A phosphatases in the regulatory ROS signaling networks
in plants.

Keywords: plant; reactive oxygen species (ROS); signaling; protein phosphorylation; Protein
Phosphatase 2A (PP2A)

1. Introduction

Plants are frequently challenged by changing weather conditions and the presence of detrimental
biotic stress factors, including microbial pathogens and insect herbivores. To cope with the
ever-changing natural circumstances, plants have evolved mechanisms to sense and respond to
the external factors to optimize their fitness. To achieve this, stress-exposed plant tissues must decide
whether it is advisable to sacrifice the tissue through a tightly regulated process of programmed
cell death, or whether it is more beneficial to invest in energy-consuming acclimation processes in
order to ensure seed production. The “choice” is the outcome of signal integration from multiple
sources, and deploys signaling pathways elicited by reactive oxygen species (ROS) in different cellular
compartments [1,2]. Analysis of cross-communication among different pathways is a modern trend in
plant biology [3]. This review focuses on the emerging role of PP2A phosphatases as a regulator of
antioxidant activities and ROS signaling in plants.

During the past decade, intensive research has demonstrated that ROS signaling is a common
factor in biotic and abiotic stress responses. In biotic interactions, recognition of external factors
by plasma membrane receptor kinases leads to activation of plasma membrane NADPH oxidases
causing an ROS burst in the apoplast, with a consequent activation of phosphorylation-relay cascades
that trigger the first line of defense gene expression in the nucleus [4–6]. Abiotic stresses in turn are
generally considered to involve alterations in organellar redox biology and ROS signaling, albeit the
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exact mechanisms remain unsolved [2]. Various combinations of light stress, heat and drought are,
however, well known to promote increased formation of ROS, and the photosynthetic machinery is
generally considered the major site of this ROS production [7–10]. While harsh abiotic stress conditions
may cause oxidative damage to the photosystems [11,12], studies have demonstrated that ROS-induced
signals also essentially regulate the expression of nuclear-encoded genes responsible for defensive
measures and antioxidant functions, thereby triggering acquired stress resistance in aboveground
organs [10,13–16].

More recently, the role of organellar ROS signaling in plant biotic interactions has also been
recognized [17,18]. Recognition of a presence of a pathogen in the apoplast is rapidly relayed into the
chloroplasts, where Ca2+-dependent signaling interactions are needed to trigger additional signaling
events, which further modulate immunity-related gene expression in the nucleus ([19,20], Figure 1).
The importance of chloroplast ROS burst in plant immunity is also reflected by a recent report by
Zabala et al. [21], who showed that the bacterial pathogen Pseudomonas syringae secretes pathogen
effectors that are targeted to chloroplasts, where they prevent the organellar ROS burst by modulating
the function of the photosynthetic electron transfer chain.
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Figure 1. Protein Phosphatase 2A as a regulator of ROS signaling in plant leaves. In plant biotic 
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membrane receptor kinases leads to NADPH oxidase-driven ROS burst in the apoplast and activation 
of phosphorylation-relay cascades that trigger defence gene expression in the nucleus. Abiotic 
stresses, such as light stress, in turn promote alterations in organellar redox biology and ROS 
signaling, which also modulate nuclear gene expression and stress resistance in green plant tissues. 
Recognition of attempted infection is also rapidly relayed into the chloroplasts, where Ca2+-dependent 
signaling interactions are needed to trigger additional signaling events, which further modulate 
immunity-related gene expression in the nucleus. PP2A protein phosphatase limits the activity of the 
plasma membrane receptor kinase BAK1, and, consequently, the flagellin-induced ROS burst into the 
apoplast. Additionally, PP2A modulates photo-oxidative stress responses by controlling organellar 
ROS signaling and the abundance of alternative oxidases in leaf mitochondria. 

Figure 1. Protein Phosphatase 2A as a regulator of ROS signaling in plant leaves. In plant biotic
interactions, recognition of conserved microbial structures, such as bacterial flagellin, by plasma
membrane receptor kinases leads to NADPH oxidase-driven ROS burst in the apoplast and activation
of phosphorylation-relay cascades that trigger defence gene expression in the nucleus. Abiotic
stresses, such as light stress, in turn promote alterations in organellar redox biology and ROS
signaling, which also modulate nuclear gene expression and stress resistance in green plant tissues.
Recognition of attempted infection is also rapidly relayed into the chloroplasts, where Ca2+-dependent
signaling interactions are needed to trigger additional signaling events, which further modulate
immunity-related gene expression in the nucleus. PP2A protein phosphatase limits the activity of the
plasma membrane receptor kinase BAK1, and, consequently, the flagellin-induced ROS burst into the
apoplast. Additionally, PP2A modulates photo-oxidative stress responses by controlling organellar
ROS signaling and the abundance of alternative oxidases in leaf mitochondria.
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Even though it is evident that plants can sense the chemical nature (superoxide, hydrogen
peroxide, singlet oxygen and hydroxyl radical) and sub-cellular localization of ROS, and trigger
defense reactions accordingly, the signaling networks determining the acclimation response remain
poorly understood [22]. Even so, it is clear that evolution of mechanisms to sensitively respond to ROS
as signaling molecules has provided significant competitiveness to plants in different ecological niches.

Since redox regulation is a key component in plant acclimation to varying light conditions,
particularly in high light stress, light-dependent changes in gene expression may partially overlap
with those induced by pathogens [2]. Besides light intensity, the duration of the photoperiod has
proved to be a key component that modulates both the availability of ROS [23] as well as plant
responses to elevated ROS levels [24–26]. Yet another layer of cross-communication is commonly
observed as acquired cross-tolerance. Plants pre-exposed to high levels of light, for example, display
increased resistance to virulent strains of the bacterial hemibiotrophic pathogen Pseudomonas syringae
or green peach aphid (Myzus persicae) [27,28]. Such cross-tolerance commonly associates with enhanced
production of ROS and consequent oxidative signaling [29]. To keep the oxidative signals in balance,
plants deploy a multi-layered antioxidant network, including enzymes such as catalases (CAT),
superoxide dismutases (SOD), ascorbate peroxidases (APX), peroxiredoxins (PRX) and thioredoxins
(TRX) as well as the low-molecular-weight antioxidants ascorbate and glutathione, which maintain
ROS balance and metabolic homeostasis in different cellular compartments [30].

Beside antioxidant activities, post-translational regulation that modulates the activation state of
signaling proteins is an important level of regulation in ROS signaling. Reversible phosphorylation
of signaling proteins is an evolutionarily conserved mechanism that drives phosphorylation-relay
cascades and their signaling interactions in animals and plants. Controlled activities among
mitogen-activated protein kinases (MPKs) and Ca2+-dependent protein kinases (CDPKs, or CPKs in
Arabidopsis thaliana) are well known for their importance in cellular stress signaling [31,32]. Here, we
focus on the emerging role of type 2A protein phosphatases in these interactions.

2. PP2A Phosphatase as a Regulatory Enzyme in Plant Stress

Trimeric type 2A protein phosphatases, composed of a catalytic subunit C, scaffold subunit A and
regulatory subunit B, are evolutionarily conserved signaling components that regulate stress signaling
in both animals and plants [33]. The regulatory B subunit is commonly referred to as the “specificity
unit” that determines the target specificity of the trimeric PP2A holoenzyme [33,34]. The Arabidopsis
thaliana genome contains five different genes encoding C subunits, three genes for the A subunits
and 17 genes encoding the variable regulatory B subunits, which are further divided into B, B1 and
B” families [35]. The trimeric holoenzyme compositions therefore provide extensive variability and
versatility for PP2A in regulatory networks. Besides the regulatory B subunit, PP2A function is further
regulated by reversible methylation of a conserved C-terminal leucine residue [36]. Moreover, both
animals and plants possess regulatory components that further modulate the phosphatase activity as
has been shown e.g., for the regulatory TAP46 protein in Arabidopsis [37].

Recent studies have assigned functions for PP2A in plant stress signaling in several different
model crop species. The potato PP2A catalytic subunit StPP2Ac2 and the tomato subunits LePP2Ac1
and LePP2Ac2 mediate jasmonic acid signaling after wounding [38], while the tomato subunits
LePP2Ac1, LePP2Ac2 and LePP2Ac3 operate in cold stress [38]. Studies have also shown that the rice
PP2A catalytic subunit OsPP2A-1-5 as well as the potato subunits StPP2Ac1, StPP2Ac2a, StPP2Ac2b
and StPP2Ac3 become transcriptionally upregulated under salinity stress [38–40]. Moreover, in wheat,
TaPP2Ac-1 acts as a positive regulator of salt stress responses [41]. Most of the research efforts have
focused on unraveling the roles of the catalytic C-subunits, whereas little is known about the regulatory
B-subunits. In wheat, B11α subunit has been shown to positively regulate lateral root formation under
osmotic stress conditions [42]. Identification and characterization of other PP2A subunits in crop
species will help in interpreting how PP2A regulates abiotic stress responses in useful plants.
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In the model plant Arabidopsis thaliana, a recessive mutation of the catalytic subunit PP2A-C2
leads to enhanced sensitivity to abscisic acid (ABA), suggesting that this subunit is a negative
regulator of ABA-mediated responses [43]. The scaffold subunit PP2A-A1, or ROOTS CURL IN
NAPHTHYLPHTHALAMIC ACID1 (RCN1), in turn acts as a positive regulator in ABA-related
pathways, and rcn1 mutants additionally display pleiotropic phenotypes in other phytohormone
signaling pathways as well [44,45]. PP2A-A3 has been identified as an important element in the
low-temperature signaling pathway in Arabidopsis, inhibiting the cold adaptative response [46].
Regarding the regulatory B-subunits, B11α and B11β have been shown to modulate plant isoprenoid
biosynthesis pathway, B11α playing a distinct role in plants under salt stress [47]. The regulatory
subunit PP2A-B1γ, in turn, seems to be present in heterotrimers involved in heat stress response [48]. A
pp2a-b1γζ double mutant, deficient in two highly similar subunits B1γ and B1ζ showed increased
resistance towards photo-oxidative stress under a stress-combination of high light, elevated
temperature and limited water availability [49]. Hence, different PP2A subunits, presumably operating
in different trimeric PP2A holoenzymes, mediate both positive and negative regulation of abiotic stress
responses, allowing delicate fine-tuning of responses under a range of environmental challenges.

PP2A has also been shown to function in plant-biotic interactions. Catalytic PP2A subunits
of tobacco have been related to effector-triggered immunity (ETI) [50], a defense response which
commonly includes a hypersensitive response, a particular type of cell death in plants. In Arabidopsis,
the subunit B1γ negatively regulates defense against green peach aphids and is required for
transcriptional and post-translational control of immune processes [28,51]. Moreover, mutants
deficient in B1γ and B1θ were shown to display lowered susceptibility towards the bacterial pathogen
Pseudomonas syringae pv. tomato [52]. Mechanistic insights into PP2A-dependent regulation were
recently provided by Segonzac et al. [53], who showed that a trimeric PP2A protein phosphatase
composed of the catalytic subunit C4, the scaffold subunit A1 and regulatory B subunits B1η or B1ζ
binds and limits the autophosphorylation, and hence activity, of the plasma membrane receptor kinase
BAK1. These protein interactions also negatively regulate the flagellin-induced ROS burst into the
apoplast [53]. Consequently, pp2a-c4 and pp2a-a1 knock-out lines are more resistant to the virulent
bacterial pathogen Pseudomonas syringae pv. tomato [53]. Taken together, PP2A subunits respond to and
mediate various stress signaling effects in different plant species, but the molecular mechanisms are
only starting to emerge.

PP2A mutant lines with deficiencies in the regulation of stress responses may show simultaneous
changes both in hormone and ROS signaling. This stems from the fact that ROS signaling and hormonal
signaling pathways are tightly connected, not only in eliciting stress resistance but also in determining
developmental processes [54]. ROS act as secondary messengers in many hormone-signaling pathways,
but, in the case of stress signaling, ROS work also upstream by eliciting hormonal signals. In
Arabidopsis, PP2A-B1γ has been shown to be a negative regulator of organellar ROS accumulation and
the consequent salicylic acid (SA) signaling elicited by these ROS [55]. In ABA signaling, PP2A-B1α,
B1β and B1δ are direct interactors of the protein kinase OPEN STOMATA 1 (OST1), which is a major
component of ABA signaling in guard cells and has been shown to regulate apoplastic ROS production
through phosphorylation of the NADPH oxidase RbohF [56,57]. However, the physiological role of
PP2A in these interactions remains unclear. Altogether, further studies are needed to pinpoint the
specific regulatory nodes in the stress signaling networks governed by PP2A.

3. PP2A-B1γ as a Regulator of ROS Signaling and Cell Death

Attempts to understand the role of PP2A in stress resistance led to the identification of PP2AB1γ
as a putative component in light acclimation and defense signaling in Arabidopsis [51]. When grown
under 50% humidity and moderate light intensity, pp2a-b1γ mutant displayed premature yellowing
and constitutive activation of salicylic acid-(SA-) and jasmonic acid-(JA-) dependent pathogenesis
responses, whereas growth under high levels of light abolished the yellowing phenotype and also
the immune reactions become alleviated. Notably, even slight variations in the growth conditions,
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such as growth under 65% humidity at 200 µmol¨ m´2¨ s´1 [50] was sufficient to rescue the yellowing
pp2a-b1γ mutant phenotype, which makes it a tricky tool for analysis of PP2A mediated phenotypes by
mutant approaches. The yellowing pp2a-b1γ mutant phenotype was accompanied by elevated foliar
ROS levels and eventually cell death under moderate light intensities, but significant alterations in the
redox status of the main antioxidants ascorbate and glutathione were not observed [51,55,58].

Recently, by taking advantage of selective reaction monitoring (SRM) mass spectrometry,
Konert et al. [58] showed that pp2a-b1γ may partially circumvent the constitutive ROS accumulation
through a feedback loop where ROS induce up-regulation of the mitochondrial bypass pathways
employing alternative oxidases AOX1A and AOX1D. AOX1A has been extensively studied and shown
to operate in diverting excess reducing equivalents and hence in minimizing the formation of ROS
within the photosynthetic and mitochondrial electron transfer chains [59,60]. The other AOX isoforms
have remained less well characterized and their importance in stress responses is not well understood.
Shuttling of redox-active intermediates between the organelles and the cytoplasm has a very likely
impact on the formation of ROS in different cellular compartments and hence modulate redox signaling
effects within the entire cell [59,61].

To promote organellar ROS signaling effects and to stabilize the pp2a-b1γ mutant phenotype,
Li et al. [55] took advantage of the catalase 2 (cat2) mutant as a tool to trigger oxidative signaling in the
pp2a-b1γ mutant background. CATALASE 2 (CAT2) is the major antioxidant enzyme that quenches
photorespiratory H2O2 in peroxisomes, and hence provides a highly informative system to study
factors involved in intracellular ROS signaling [62]. Intriguingly, however, SA-induced cell death
of cat2 is conditioned by day length and becomes observable only under long-day conditions, even
though oxidative stress in the cat2 mutant prevails also under short photoperiods [24,25,63]. Recently,
Li et al. [55] showed that, under short photoperiods, the ROS-induced cell death becomes suppressed
through pathways that require the activity of PP2AB1γ. This conclusion was supported by proteomic
analysis, which showed that PP2A-B1γ is required to control ROS-induced changes in the abundance
and phosphorylation of the key pathogenesis-associated marker proteins PATHPGENESIS-RELATED
PROTEIN 2 (PR2) and PATHOGENESIS-RELATED PROTEIN 5 (PR5) in short-day conditions [55].

Even though PP2A-B1γ is required to control intracellular oxidative stress responses and associated
cell death in Arabidopsis [55], analysis of PP2A-B1γ and the highly similar PP2A-B1ζ in stress responses
revealed that deficiencies in these PP2A subunits lead to alleviation of biotic stress responses and
induction of photoprotective mechanisms and enhanced tolerance against abiotic stress [28,49].
Hence, PP2A-B1γ and PP2A-B1ζ appear to mediate opposing effects on cell death regulation and
impact the decision between ROS-induced cell death and acclimation [49]. However, the underlying
mechanisms remain to be established, and hence what determines the threshold is not well understood.
It has been suggested that the ultimate outcome of ROS-induced responses, which may lead to
activation of a strictly controlled cascade of programmed cell death or elicit protective mechanisms
and acclimation, becomes determined by opposing actions of pro-cell death and anti-cell death
signaling mechanisms [22]. Intriguingly, the outcomes of the genetic interactions in the cat2 pp2a-b1γ
double mutant and in the pp2a-b1γζ are very different. While salicylic acid signaling and cell death are
promoted in the cat2 pp2a-b1γ double mutant that experiences oxidative stress [55], in the double mutant
combination pp2a-b1γζ, protective photo-oxidative stress responses are activated at an increased level,
resulting in an enhanced activation of light acclimation [49]. Signaling in plant cells is characterized by
interplay between different signal transduction pathways, often also such diverse ones as biotic and
abiotic stress response pathways. PP2A-B1γ and PP2A-B1ζ control intracellular ROS homeostasis and
signaling and thereby influence the plants different physiological outcomes, comprising cell death,
growth and acclimation upon environmental perturbations.

4. PP2A as a Regulator of Antioxidant Activities

Proteomic studies suggested that PP2A-B1γ is required to control the abundance of antioxidant
enzymes, such as the chloroplastic copper/zinc SOD 2 (CSD2) and monodehydroascorbate reductase 2
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(MDAR2), as well as the mitochondrial AOX1A and 1D, all of which have well-known roles
in the maintenance of cellular ROS homeostasis [51,55,58]. The AOX1A gene is a target for
ANAC013-mediated transcriptional activation in response to mitochondrial stress signals [64].
ANAC013 is an important regulator of mitochondrial retrograde regulation/signaling, since it controls
a set of genes that are common and robust candidates for mitochondrial retrograde regulation
under different types of stresses (denoted Mitochondrion Dysfunction Stimulon Genes) [64]. Indeed,
Giraud et al. [65] showed that AOX1A is required for full tolerance against combined effects of light
stress and drought.

While the pp2a-b1γ mutant may partially circumvent ROS accumulation through enhanced
quenching of redox equivalents by mitochondrial AOX activity [58], transcript profiling of high
light acclimated pp2a-b1γζ double mutants did not show up-regulation of AOX1A gene expression [49].
Instead, pp2a-b1γζ double mutants displayed increased transcript abundance for the H2O2 scavenging
enzyme ascorbate peroxidase 2 (APX2), heat shock transcription factor A3 (HSFA3) and the heat shock
proteins HSP18.2, HSP21 and HSP22, which are transcriptionally co-regulated targets of HSFs [49].
The APX2 gene is transcriptionally highly responsive to a number of factors, including reduction
state of the photosynthetic electron transfer chain, ABA signaling, chloroplastic and apoplastic ROS,
and metabolic signals exemplified by accumulation of phosphoadenosine 51-phosphate (PAP) in
stress-exposed leaves [13,66–68]. Jung et al. [69] suggested, that HSFA3 would modulate APX2
expression under high levels of light and high temperature but would not mediate signals arising from
reduction of the plastoquinone pool in the photosynthetic thylakoid membranes. A good candidate for
mediating the HSFA3-dependent activation of APX2 is H2O2, which is generated in both heat- and
light-induced stresses [70]. Through a yet unidentified mechanism, PP2A-B1γ is required to control
the extent of photo-oxidative stress responses, exemplified here by enhanced expression of APX2 in
Arabidopsis leaves.

5. Conclusions

PP2A phosphatases appear to control multiple targets in the stress signaling networks in plants.
Such modulation of different signaling nodes is likely to involve PP2A phosphatases with different
heterotrimeric compositions. Besides resolving the identity of the regulatory PP2A holoenzymes and
the functional redundancy among individual PP2A subunits, the key research questions still to be
resolved include elucidation of the PP2A target phosphoproteins and their functional significance and
co-operation in the stress resistance in plants.
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Abbreviations

The following abbreviations are used in this manuscript:

ABA abscisic acid
AOX alternative oxidase
APX ascorbate peroxidases
CAT catalase
CDPK, CPK calcium-dependent protein kinase
CSD copper/zinc superoxide dismutase
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ETI effector-triggered immunity
H2O2 hydrogen peroxide
HSF heat shock factor
HSP heat shock protein
JA jasmonic acid
MDAR monodehydroascorbate reductase
MPK mitogen activated protein kinase
PAP phosphoadenosine 51-phosphate
PP2A Protein Phosphatase 2A
PRX peroxiredoxin
ROS Reactive oxygen species
SA salicylic acid
SOD superoxide dismutase
TRX thioredoxin
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