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RESUMEN (en español) 

 
 
Esta tesis doctoral propone la creación y desarrollo de una nueva metodología que permita 
comprender el funcionamiento de sistemas fuzzy basándose en Fuzzy Inference-grams, o 
Fingrams. 
 
Los Fingrams son representaciones gráficas de sistemas de reglas fuzzy que muestran la 
interacción entre reglas a nivel de inferencia. Esta interacción se presenta a nivel de co-disparo 
entre reglas, esto es, reglas disparadas por una misma entrada. Los Fingrams muestran el 
mecanismo de inferencia de sistemas de reglas fuzzy tanto desde un punto de vista global, 
esto es, observando como todas las reglas cubren un conjunto de datos dado, como desde un 
punto de vista local, es decir, como una instancia es cubierta por el conjunto de reglas. Por 
tanto, podemos analizar un sistema en detalle, permitiendo su mejora con conocimiento 
experto, estudiando regla a regla e instancia a instancia como este se comporta. 
 
Aún más, los Fingrams son una herramienta de análisis efectiva y eficiente en varias 
aplicaciones tanto para el diseño como para la mejora de sistemas fuzzy. La mejora de 
sistemas fuzzy puede ser realizada de forma sistemática tras analizar los gráficos manualmente 
o apoyado en técnicas de análisis de redes sociales (como la detección de comunidades) e 
índices de calidad (como centralidad o page rank). El análisis de Fingrams ofrece muchas 
posibilidades: medir la comprensibilidad de sistemas fuzzy, detectar redundancias y/o 
inconsistencias entre reglas, descubrir y analizar instancias no cubiertas por el sistema, 
identificar las reglas más significativas, etcétera. 
 
La nueva metodología ha sido probada y validada sobre reglas de asociación, clasificadores y 
regresores de reglas fuzzy. La utilidad de los Fingrams sobre reglas de asociación fuzzy ha 
sido ilustrada en un problema real en el que se estima las valoraciones cualitativas de distintas 
muestras de diseño industrial. El algoritmo FURIA ha sido utilizado sobre un conjunto de datos 
real para mostrar las posibilidades de los Fingrams en un caso de clasificador basado en reglas 
fuzzy. Y hemos seleccionado un problema de distribución de la red eléctrica para presentar el 
potencial de los Fingrams en un contexto de sistemas de reglas de regresión. 
 
Finalmente, cabe destacar que la metodología ha sido integrada en distintas herramientas 
software gracias a implementaciones específicas realizadas durante el período doctoral. La 
herramienta de modelado fuzzy GUAJE, y las suites software para minería de datos KEEL y 
KNIME han sido dotadas de módulos para la creación y análisis de Fingrams. 

 
 
 
 



                                                                

 
 

 

 
 

RESUMEN (en Inglés) 
 

This doctoral dissertation proposes the creation and development of a new methodology for 
fuzzy system comprehensibility analysis based on fuzzy systems' inference maps, so-called 
fuzzy inference-grams, Fingrams in short. 
 
Fingrams show graphically fuzzy rule-based systems, presenting the interaction between rules 
at the inference level in terms of co-fired rules, i.e., rules fired at the same time by a given input. 
Fingrams depict the inference mechanism of fuzzy rule-based systems from a global view point, 
i.e. observing how all the rules covered the complete given dataset, and from a local view point, 
i.e. illustrating a partial view of the system when focusing on those rules that participate in the 
inference process regarding a single instance, by the so-called instance-based Fingrams. In 
consequence, we can analyze the system in detail, and even improve it with expert knowledge, 
carefully checking rule by rule and instance by instance. 
 
Even more, Fingrams are likely to act as an effective and efficient tool in several applications 
regarding both design and refinement of fuzzy systems. The human centric improvement of a 
fuzzy rule-based system could be done after analyzing the resulting graphs manually or 
assisted by well-known social network analysis techniques (such as community mining) and 
quality indexes (such as centrality, page rank and so on). The analysis of Fingrams offers many 
possibilities: measuring the comprehensibility of fuzzy systems, detecting redundancies and/or 
inconsistencies among fuzzy rules, finding out and analyzing instances not covered, identifying 
the most significant rules, and so forth. 
 
The new methodology has been tested and validated for fuzzy association rules, fuzzy rule-
based classifiers and regressors. The utility of Fingrams over fuzzy association rules was 
illustrated in a real-world problem dealing with qualitative assessment of industrial objects 
designed through cognitive engineering. FURIA algorithm was used over a real dataset to show 
the possibilities of Fingrams in fuzzy rule-based classifiers. And, we selected an electrical 
network distribution problem to present the potentials of Fingrams in the context of fuzzy rule-
based regressors. 
 
Finally, it is worthy to note that Fingrams are fully integrated in different software tools thanks to 
the specific software implemented during the thesis period. The fuzzy modeling toolbox GUAJE, 
and the software suites for data mining KEEL and KNIME have been enhanced allowing the 
creation and analysis of Fingrams.  
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Abstract

This doctoral dissertation proposes the creation and development of a new methodology

for fuzzy system comprehensibility analysis based on fuzzy systems’ inference maps, so-

called fuzzy inference-grams, Fingrams in short.

Fingrams show graphically fuzzy rule-based systems, presenting the interaction be-

tween rules at the inference level in terms of co-fired rules, i.e., rules fired at the same

time by a given input. Fingrams depict the inference mechanism of fuzzy rule-based

systems from a global view point, i.e. observing how all the rules covered the complete

given dataset, and from a local view point, i.e. illustrating a partial view of the system

when focusing on those rules that participate in the inference process regarding a single

instance, by the so-called instance-based Fingrams. In consequence, we can analyze the

system in detail, and even improve it with expert knowledge, carefully checking rule by

rule and instance by instance.

Even more, Fingrams are likely to act as an e↵ective and e�cient tool in several

applications regarding both design and refinement of fuzzy systems. The human centric

improvement of a fuzzy rule-based system could be done after analyzing the resulting

graphs manually or assisted by well-known social network analysis techniques (such as

community mining) and quality indexes (such as centrality, page rank and so on). The

analysis of Fingrams o↵ers many possibilities: measuring the comprehensibility of fuzzy

systems, detecting redundancies and/or inconsistencies among fuzzy rules, finding out

and analyzing instances not covered, identifying the most significant rules, and so forth.

The new methodology has been tested and validated for fuzzy association rules, fuzzy

rule-based classifiers and regressors. The utility of Fingrams over fuzzy association rules

was illustrated in a real-world problem dealing with qualitative assessment of industrial

objects designed through cognitive engineering. FURIA algorithm was used over a real

dataset to show the possibilities of Fingrams in fuzzy rule-based classifiers. And, we

selected an electrical network distribution problem to present the potential of Fingrams

in the context of fuzzy rule-based regressors.

Finally, it is worthy to note that Fingrams are fully integrated in di↵erent software

tools thanks to the specific software implemented during the thesis period. The fuzzy

modeling toolbox GUAJE, and the software suites for data mining KEEL and KNIME

have been enhanced allowing the creation and analysis of Fingrams.
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Resumen

Esta tesis doctoral propone la creación y desarrollo de una nueva metodoloǵıa que permita

comprender el funcionamiento de sistemas fuzzy basándose en Fuzzy Inference-grams, o

Fingrams.

Los Fingrams son representaciones gráficas de sistemas de reglas fuzzy que muestran

la interacción entre reglas a nivel de inferencia. Esta interacción se presenta a nivel de

co-disparo entre reglas, esto es, reglas disparadas por una misma entrada. Los Fingrams

muestran el mecanismo de inferencia de sistemas de reglas fuzzy tanto desde un punto

de vista global, esto es, observando como todas las reglas cubren un conjunto de datos

dado, como desde un punto de vista local, es decir, como una instancia es cubierta por

el conjunto de reglas. Por tanto, podemos analizar un sistema en detalle, permitiendo su

mejora con conocimiento experto, estudiando regla a regla e instancia a instancia como

este se comporta.

Aún más, los Fingrams son una herramienta de análisis efectiva y eficiente en varias

aplicaciones tanto para el diseño como para la mejora de sistemas fuzzy. La mejora de

sistemas fuzzy puede ser realizada de forma sistemática tras analizar los gráficos manual-

mente o apoyado en técnicas de análisis de redes sociales (como la detección de comu-

nidades) e ı́ndices de calidad (como centralidad o page rank). El análisis de Fingrams

ofrece muchas posibilidades: medir la comprensibilidad de sistemas fuzzy, detectar redun-

dancias y/o inconsistencias entre reglas, descubrir y analizar instancias no cubiertas por

el sistema, identificar las reglas más significativas, etcétera.

La nueva metodoloǵıa ha sido probada y validada sobre reglas de asociación, clasifi-

cadores y regresores de reglas fuzzy. La utilidad de los Fingrams sobre reglas de asociación

fuzzy ha sido ilustrada en un problema real en el que se estima las valoraciones cualitativas

de distintas muestras de diseño industrial. El algoritmo FURIA ha sido utilizado sobre

un conjunto de datos real para mostrar las posibilidades de los Fingrams en un caso de

clasificador basado en reglas fuzzy. Y hemos seleccionado un problema de distribución de

la red eléctrica para presentar el potencial de los Fingrams en un contexto de sistemas de

reglas de regresión.

Finalmente, cabe destacar que la metodoloǵıa ha sido integrada en distintas herramien-

tas software gracias a implementaciones espećıficas realizadas durante el peŕıodo doctoral.

La herramienta de modelado fuzzy GUAJE, y las suites software para mineŕıa de datos

KEEL y KNIME han sido dotadas de módulos para la creación y análisis de Fingrams.

vii





Contents

Abstract v

Resumen vii

1 Introduction 1

1.1 The History of Interpretable Fuzzy Systems . . . . . . . . . . . . . . . . . 2

1.2 State of the Art on Visual Description and Analysis of Fuzzy Systems . . . 5

1.3 A Brief Review on Social Network Analysis . . . . . . . . . . . . . . . . . . 7

2 Objectives 13

3 Discussion of results 15

3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Fingrams Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.2 Fingrams Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.3 Fingrams Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.4 Types of Fingrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.4.1 Classification Fingrams . . . . . . . . . . . . . . . . . . . 22

3.1.4.2 Regression Fingrams . . . . . . . . . . . . . . . . . . . . . 23

3.1.4.3 Fuzzy Association Rule Fingrams . . . . . . . . . . . . . . 24

3.1.4.4 Instance-based Fingrams . . . . . . . . . . . . . . . . . . . 25

3.2 Cases of use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Case of use on fuzzy classifiers . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 Case of use on fuzzy regressors . . . . . . . . . . . . . . . . . . . . 37

3.2.3 Case of use on fuzzy association rules . . . . . . . . . . . . . . . . . 41

3.3 Software Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Fingrams Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.2 GUAJE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.3 KEEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.4 KNIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Conclusions and future work 59

ix



Conclusiones y trabajo futuro 61

A Publications 63

A.1 Compilation of publications . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.1.1 First publication: Methodology . . . . . . . . . . . . . . . . . . . . 64

A.1.2 JCR of IEEE Transactions on Fuzzy Systems . . . . . . . . . . . . 82

A.1.3 Second publication: Software . . . . . . . . . . . . . . . . . . . . . 83

A.1.4 JCR of International Journal of Computational Intelligence Systems 100

A.1.5 Third publication: Case of use . . . . . . . . . . . . . . . . . . . . . 101

A.1.6 JCR of Fuzzy Sets and Systems . . . . . . . . . . . . . . . . . . . . 144

A.2 Aditional publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.2.1 Book chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.2.2 Conference proceedings . . . . . . . . . . . . . . . . . . . . . . . . . 145

Bibliography 147



List of Figures

1.1 Publications per year related to interpretability issues. . . . . . . . . . . . 2

1.2 Scientogram with the main thematic areas where works dealing with inter-

pretability of fuzzy systems are published. . . . . . . . . . . . . . . . . . . 9

1.3 Scaled scientograms with edges among thematic areas thresholded. . . . . . 10

1.4 Scaled scientogram by extracting a minimum spanning tree. . . . . . . . . 10

1.5 Scaled scientogram by Pathfinder algorithm. . . . . . . . . . . . . . . . . . 11

3.1 Phases of building a Fingram. . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Interpretation of Fingrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Node of uncovered instances . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Example of node of uncovered instances. . . . . . . . . . . . . . . . . . . . 23

3.5 Analysis of inference for an instance using instance-based Fingrams . . . . 26

3.6 Fingram of the set of classification rules induced for Ecoli dataset. . . . . . 32

3.7 Fingram of the set of stretched rules for Ecoli dataset. . . . . . . . . . . . 35

3.8 Analysis of inference for I321 = {0.68, 0.67, 0.48, 0.5, 0.49, 0.4, 0.34, pp} in

the Ecoli classification problem. . . . . . . . . . . . . . . . . . . . . . . . . 36

3.9 Analysis of inference for I211 = {0.69, 0.39, 0.48, 0.5, 0.57, 0.76, 0.79, im}
in the Ecoli classification problem. . . . . . . . . . . . . . . . . . . . . . . . 36

3.10 Complete Fingram for the electrical distribution problem. . . . . . . . . . . 38

3.11 Fingram scaled with Pathfinder for the electrical distribution problem. . . 39

3.12 Fingram of the best simplified FRBS for the electrical distribution problem. 41

3.13 Examples of chairs used in the poll related to the quantification of intan-

gible assets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.14 FAR-Fingram for the femininity of chairs assessment problem. . . . . . . . 43

3.15 Filtered FAR-Fingrams for the femininity of chairs assessment problem. . . 44

3.16 Structure of .fs files handled by Fingrams Generator software. . . . . . . . 45

3.17 Software scheme of Fingrams Generator software. . . . . . . . . . . . . . . 47

3.18 Screenshot of resultant window of Fingrams Generator software. . . . . . . 48

3.19 Generation of Fingrams in the software tool GUAJE. . . . . . . . . . . . . 50

3.20 GUAJE Fingrams window. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.21 Fingram analysis window in the software tool GUAJE. . . . . . . . . . . . 52

3.22 Experiments window of suite KEEL. . . . . . . . . . . . . . . . . . . . . . 53

xi



3.23 Fingrams workflow in KNIME software platform. . . . . . . . . . . . . . . 55

3.24 Illustrative example (IRIS) using KNIME software platform. . . . . . . . . 56

3.25 Comparison of layouts in KNIME. . . . . . . . . . . . . . . . . . . . . . . . 57



List of Tables

1.1 Quadrant of interpretability indices. . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Characteristics of visualization methods for multi-dimensional fuzzy rules. . 6

1.3 Most important areas where works related to fuzzy interpretability issues

are published (ranked by number of publications) . . . . . . . . . . . . . . 8

3.1 Information of the set of classification rules induced for Ecoli dataset. . . . 31

3.2 Information of the set of stretched rules for Ecoli dataset. . . . . . . . . . . 34

3.3 Quality evaluation of the FRBSs proposed for the electrical distribution

problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xiii





Chapter 1

Introduction

Fuzzy set theory –introduced by L. A. Zadeh in 1965 [83]– deals with the uncertainty and

fuzziness arising from interrelated humanistic types of phenomena such as subjectivity,

thinking, reasoning, cognition, and perception. Fuzzy systems can model complex phe-

nomena yielding good results when conventional mathematical methods perform poorly.

In general, fuzziness describes objects or processes that are not amenable to precise def-

inition or measurement vaguely defined and have some uncertainty in their description.

Fuzzy systems are widely used over di↵erent scenarios, e.g. control systems [78], classifi-

cation [53] or regression tasks [22].

Since Zadeh’s proposal [83] and Mamdani’s seminal ideas [54], interpretability is ac-

knowledged as one of the most appreciated and valuable characteristics of fuzzy systems.

Interpretability of fuzzy systems represents their ability to formalize the behavior of a

real system in a human understandable way [7, 19], becoming an essential requirement

for those applications that involve extensive interaction with human beings. It takes

advantage of the use of linguistic variables [85] and rules [54, 84] with high semantic

expressivity close to natural language. According to some authors, interpretability is of

subjective nature and depends on the expertise and background of the end-user [10].

Here we will focus on the so-called humanistic systems, defined by Zadeh [85] as

those systems whose behavior is strongly influenced by human judgments, perceptions

or emotions. For example, decision support systems in medicine [6, 60] must be easily

understandable, for both physicians and patients, with the intention of being reliable, i.e.,

widely accepted and successfully applicable.

Unfortunately, fuzzy systems are not interpretable per-se. Although the use of linguis-

tic variables and rules favors interpretability, this does not guarantee it. A careful design

is demanded to simplify their understanding and ensure their interpretability [57, 80].

The rest of this chapter overviews the main fields of study of this thesis. It starts

with an historical review of interpretable fuzzy systems; it continues reviewing the main

works that graphically represent fuzzy systems; and it ends contextualizing social network

analysis methods and applications.

1



2 Chapter 1. Introduction

1.1 The History of Interpretable Fuzzy Systems

The historic evolution of fuzzy modeling –system modeling of fuzzy systems– include three

main periods regarding interpretable issues, as sketched in [7]: from 1965 to 1990 the

focus was on expert knowledge, from 1990 to 2000 the focus shifted towards automatic

knowledge extraction from data, and from 2000 until now the main challenge regards

interpretability-accuracy trade-o↵. Figure 1.1 shows the distribution of publications per

year along with the presented periods regarding interpretability issues1.

Figure 1.1: Publications per year related to interpretability issues.

In the early days of fuzzy systems, from 1965 to 1990, interpretability naturally

emerged as the main advantage of fuzzy systems. Fuzzy models were mainly built up

from expert knowledge, using simple linguistic variables and rules. As a result, those

designed fuzzy models were characterized by their high interpretability. Moreover, in-

terpretability was assumed as an intrinsic property of fuzzy systems. The first proposal

of a fuzzy rule-based system (FRBS) was presented by Mamdani [54] who was able to

augment Zadeh’s initial formulation [83] allowing the application of fuzzy systems to a

control problem. Mamdani-type FRBSs soon arised as the most popular tool to develop

linguistic models. Other rule formats were developed in that period, but probably the

most famous among them are those proposed by Takagi and Sugeno, the popular TSK

fuzzy systems, where the conclusion is a function of the input values.

In the second period, from 1990 to 2000, researchers focused in improving the accuracy

of fuzzy systems. They had realized that expert knowledge was not enough to deal with

complex systems and they introduced the use of fuzzy machine learning techniques to

automatically extract knowledge from data. Those designed fuzzy models presented ad-

vanced mechanisms in all the elements of the fuzzy system (antecedents, rules, inference

mechanism, and so on). As a consequence, those systems were rarely as interpretable

1Data retrieved from the Thomson Reuters ISI Web of Science(http://www.webofscience.com/ ) on
May the 28th 2015.
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as desired. Along this period some researchers claimed that fuzzy models are not inter-

pretable per se; they have to be designed carefully to fulfill that characteristic. Although

the amount of publications related to interpretability issues was still small in this period,

it began to grow exponentially at the end of this second phase.

In the last years, from 2000 until now, authors noticed that both previous approaches

have their advantages and drawbacks, but they are complementary. As a result, the

main challenge has been how to combine expert knowledge and knowledge extracted from

data, with the aim of designing compact and robust systems with a good interpretability-

accuracy trade-o↵.

In addition, fuzzy modeling has been carried out through two alternative approaches

attending to the interpretability-accuracy trade-o↵: producing linguistic or precise fuzzy

modeling. Linguistic fuzzy modeling (LFM) prioritizes interpretability, yielding fuzzy

rules composed of linguistic variables taking terms with a real-world meaning. On the

contrary, precise fuzzy modeling (PFM), which has accuracy as its main objective, con-

structs FRBSs that jeopardizes semantic expressivity. An e↵ort has been done to obtain

intermediate approaches that keep a good interpretability-accuracy trade-o↵. On the one

hand, some works propose to improve accuracy of LFM [20]. On the other hand, others

introduce techniques to enhance interpretability of PFM [19].

At the same time, during this last period, there has been a great e↵ort for formalizing

interpretability issues. According to some researches the assessment of interpretability

has to face two main issues [10]: (1) readability (transparency) of the system description,

related to the view of the model structure as a gray-box, and (2) comprehensibility of the

system explanation, which is closer to cognitive aspects because it is always related to

human beings. Of course, the analysis has to take into account all elements included in a

fuzzy system, from the lowest (fuzzy partitions) to the highest (fuzzy rules) abstraction

levels [88].

There are lots of interpretability indices focusing on specific characteristics of fuzzy

systems. As exposed in [40], interpretability indices can be grouped according to two

orthogonal criteria: the nature of the interpretability index (structure vs. semantics) and

the elements of the fuzzy knowledge base that it considers (fuzzy partitions vs. rule base).

Thus, Table 1.1 sketches the four derived groups: (Q1) structure at partition level, (Q2)

structure at rule base level, (Q3) semantics at partition level, and (Q4) semantics at rule

base level.

Most well-known existing interpretability indices correspond to groups Q1 and Q2,

thus they focus on readability (in terms of complexity at structural level) of fuzzy sys-

tems. In consequence, they are objective indices since they basically count the number of

elements (features/variables, membership functions, rules, premises, etc.) existing in the

fuzzy system.

Indices included in group Q3 usually measure the degree of fulfillment of semantic

constraints that should be overimposed during the design process. In [29] Oliveira pro-
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Table 1.1: Quadrant of interpretability indices [40].
Fuzzy Partition Level Rule Base Level

Structural-based
Interpretability

Q1 Q2

Number of membership functions Number of rules
Number of features/variables Number of conditions

Semantic-based
Interpretability

Q3 Q4

Completeness or coverage
Normalization Consistency of rules
Distinguishability Rules fired at the same time
Complementarity Transparencey of rule structure
Relative measures Cointension

posed some semantic constraints (coverage, normalization, distinguishability, etc.) re-

quired to have interpretable fuzzy partitions from the semantical point of view. The use

of strong fuzzy partitions (SFP) [73] satisfies all these semantic constraints. Nonethe-

less, notice that, breaking the SFP property can yield more accurate systems. Therefore,

there are proposals that ensure a good interpretability at this level without considering

SFP [2, 36, 39].

The last group Q4 is the one that contains the lowest number of works in the liter-

ature. These indices advocate for extending the analysis of readability to evaluate the

comprehensibility, i.e., the implicit and explicit semantics embedded in fuzzy systems [56].

There are also some papers dealing with the consistency of fuzzy rule bases and with the

number of co-fired rules, i.e., rules simultaneously fired by a given input [9, 24, 55].

Finally, the comprehension of the fuzzy inference process is one of the key, and still

open, issues regarding the interpretability of fuzzy systems [86]. Understanding such

process becomes an arduous task even for fuzzy modeling experts. Fuzzy systems usually

cover the input space densely, that is, several rules jointly cover same parts of the input

space in common. When studying the inference of a single instance, some rules are

simultaneously fired hindering its comprehension. Even more, fuzzy systems usually use

weighted rules, advanced defuzzification strategies, and a high number of rules, variables

or antecedents per rule, that occlude the system behavior at inference level [8, 19].

The use of di↵erent t-norms, t-conorms and fuzzy implication operators may also oc-

clude the comprehension of the fuzzy inference process. Some works have put the e↵ort

in the semantics along with implicative and conjunctive fuzzy rules [50, 33]. Implicative

fuzzy rules describe pieces of generic knowledge, while conjunctive fuzzy rules encode

instances-originated information expressing either mere possibilities or how typical situa-

tions can be extrapolated. Depending on their interpretation, rules have to be represented

and processed in a specific way at the inference level [32].
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1.2 State of the Art on Visual Description and Anal-

ysis of Fuzzy Systems

Very few publications deal with visual analysis of fuzzy systems. Probably, this is due to

the well-known linguistic expressivity of such systems what gives prominence to linguistic

representations. However, when dealing with complex real-world problems, even when the

design is made carefully to maximize interpretability, the number of elements (rules and/or

antecedents) can become huge because of the curse of dimensionality characteristic of

FRBSs. In those cases, looking for a plausible linguistic explanation of the inferred output,

derived from the linguistic description of the fuzzy knowledge base, is not straightforward.

When many rules are fired at the same time for a given input, explaining the inferred

output as an aggregation of all the involved rules turns up very complicated, even when

considering Mamdani fuzzy systems.

Phan and Brown provided in [70] a complete analysis of visualization requirements

for fuzzy systems. That contribution overviews existing methodologies to yield two-

dimensional (2D) and three-dimensional (3D) graphical representations of fuzzy data,

fuzzy partitions, and fuzzy rules. Di↵erent alternatives are available depending on the

requirements of the end-user (fuzzy designer, domain expert, etc). Moreover, require-

ments may change depending on the visualization tasks: interactive exploration; au-

tomatic computer-supported exploration; receiving feedback from users; and capturing

users’ profiles and adaptation. Notice that, the correspondence of generality and speci-

ficity in between the extracted knowledge and the available data instances is not always

straightforward and may become a handicap. So for, a visual representation of the FRBS

inference process allows us to find out how rules cover instances and how rules are related

among them, because they interact to produce the overall behavior of the system.

Therefore, we will highlight here some of the most relevant works that propose graph-

ical visualizations of fuzzy systems, from the most restrictive to the most general, empha-

sizing those that consider the inference mechanism of fuzzy systems.

First we spotlight the work [17] by Buck and Keller. Although it does not actually

represent fuzzy systems, it reports valuable innovations and possibilities to be extended

to deal with fuzzy systems. Authors proposed a method for visualizing vectors of fuzzy

numbers developing extensions of the standard polar area diagrams that include uncer-

tainty.

Some works [47, 48, 49] focused on providing visual representations able to explain

the output of fuzzy rule-based classifiers to human users establishing a set of design

constraints. They advocated for using sets of rules with only two antecedent conditions

that can be represented in 2D. Nevertheless, considering only two antecedents per rule is

a strong limitation that may penalize the accuracy of the system, especially when dealing

with complex and high dimensional problems.

On a di↵erent basis, Casillas and Mart́ınez-López [21] presented the so-called “tran-
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Table 1.2: Characteristics of visualization methods for multi-dimensional fuzzy rules.
[15, 43] [21] [34, 35] [38] [72]

Represent data samples X X X X
Represent fuzzy rules X X X X X
Represent overlapping among rules at descriptive level X X X X
Represent rule interaction at inferential level X X

sition chromatic maps” for fuzzy rules generated from uncertain data. These maps are

generated by a visual modeling process that represents the extracted knowledge in a more

understandable way. Thus, these maps help in the postprocessing, interpretation stage of

knowledge discovery in databases. We can uncover relations among variables by observing

the chromatic evolution of the surfaces at the map.

Gabriel et al. proposed in [38] a mapping from high dimensional feature spaces onto

two-dimensional spaces which maintains the pairwise distances between rules. The estab-

lished mapping also displays an approximation of each rule spread and overlapping. As a

result, it is possible to visualize and explore multi-dimensional FRBSs in a 2D graphical

representation. Authors claim such representation yields a user friendly and interpretable

exploratory analysis. However, the complexity of the analysis grows exponentially with

the number of variables and rules to be displayed. In consequence, in complex and high

dimensional problems, the interpretation of the resulting graph is not straightforward.

Following a similar approach, Evsuko↵ et al. [34, 35] proposed the use of an interpre-

tation framework that helps understanding multidimensional fuzzy rules. They assigned

a symbol to each rule, which is represented by a Gaussian membership function. The

model interpretation is based on the analysis of rule weights and on a 2D linear principal

component analysis projection to visualize the model.

Rehm et al. introduced in [72] a 2D visualization for fuzzy classifiers where rules

and data samples are represented. They used multidimensional scaling to estimate the

position of rule centers. Rules are linked according to their neighborhood regarding their

core region. Finally, data instances are placed in between the two rules that yield the

highest firing degree.

Berthold and Hall represented rule interaction in terms of rule overlapping in [15].

Namely, they graphically represented fuzzy rules antecedents in parallel coordinates to

visualize the overlapping among rules. Later, Henzgen et al. [43] enhanced the graphical

representation of [15] for observing changes in evolving fuzzy rule-based systems.

Table 1.2 summarizes the main characteristics of the most relevant visualization meth-

ods for fuzzy systems previously introduced. All methods make a 2D representation of

fuzzy rules. Some of them represent data and some others show the existing overlapping

among rules at descriptive level, but only [15, 43, 72] partially represent rule interaction

at inference level. This brief review shows that there is a lack of methods depicting the

interaction among fuzzy rules that, however, could strongly help in the comprehension of

the behavior of fuzzy systems.
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1.3 A Brief Review on Social Network Analysis

A social network is a social structure made up of individuals called “nodes”, which are

connected or tied by “edges” (also called ties, links, or connections) corresponding to one

or more specific types of interrelations, such as friendship, common interest, or knowledge.

Social network analysis (SNA) [76, 82] views social relationships in terms of network theory

regarding nodes and edges. Nodes represent individuals within networks, and ties are the

relationships among individuals. Research in a number of academic fields has shown that

social networks operate on many levels, from families up to the level of nations, and play

a critical role in determining the way how problems are solved, organizations are run, and

individuals succeed in achieving their goals.

The combination of SNA techniques has proved its capability to get high quality,

schematic visualizations of the resulting networks in various fields: psychology (to rep-

resent the cognitive structure of a subject [30, 75]), software development (for debug-

ging of multi-agent systems [77]), scientometrics (for the analysis of large scientific do-

mains [59, 81]), etc.

The term scientogram, a particular case of social network, is coined in the specialized

literature to make reference to visual science maps, i.e., visual representations of scientific

domains. Moya-Anegón et al. [58, 59, 81] proposed a methodology to create scientograms

with the aim of illustrating interactions among authors and papers through citations and

co-citations. The basic idea turns up from the notion of manuscript co-citation which

represents the frequency with which two documents are simultaneously cited by others.

It is possible to group them by author, journal, or thematic category, for example. Of

course, depending on the kind of grouping, the information that can be extracted from

the generated maps is di↵erent.

The standardized co-citation measure was originally defined by Salton and Bergmark [74]:

MCN(ij) =
Cc(ij)p
c(i) · c(j)

(1.1)

where Cc means co-citation, c stands for citation, i and j represent two di↵erent entities

(authors, documents, journals, categories, institutions, countries, etc).

As an illustrative example, we present the main areas of science where fuzzy inter-

pretability issues have been studied. For that we use the Thomson Reuters ISI Web of

Science2, WoS now on, which is globally recognized as the premier research platform.

This platform provides a unique search method that allows users to navigate through

the literature to uncover all the information relevant to their research (filtering works by

authors, publication types, time spans, etc.) and to access electronic full text journal

articles. With the aim of exploring the visibility of interpretable fuzzy systems at the

WoS, we query the following expression in “Advanced Search”:

2http://www.webofscience.com/
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TS=( ((interpretab*) OR (understandab*) OR (intelligib*) OR (complexity) OR

(transpar*) OR (readab*)) ) AND (TS=“fuzzy*” OR SO=“fuzzy*” OR CF=“fuzzy*”)

As result, we obtain 7455 records3. Table 1.3 summarizes the most representative

fields of study and thematic areas where works related to fuzzy interpretability issues

have been published. As seen, most publications belong to the fields of Computer Science,

Engineering, and Mathematics. Artificial Intelligence and Electrical and Electronic are

by far the two most important thematic areas.

Table 1.3: Most important areas where works related to fuzzy interpretability issues are
published (ranked by number of publications)

Field of Study Thematic Area # publications

Computer Science Artificial Intelligence 3684
Engineering Electrical & Electronic 2116
Computer Science Theory & Methods 1227
Engineering Automation & Control Systems 878
Computer Science Information Systems 832
Computer Science Interdisciplinary Applications 770
Mathematics Applied 469
Mathematics Operations Research & Man-

agement Science
457

Computer Science Cybernetics 375
Computer Science Software Engineering 303
Engineering Telecommunications 265
Mathematics Statistics & Probability 258
Engineering Multidisciplinary 204
Engineering Industrial 202
Computer Science Hardware & Arquitecture 202
Computer Science Imaging Science & Photo-

graphic Technology
197

Engineering Manufacturing 187
Engineering Mechanical 174

Environmental Sciences 173
Computer Science/Engineering Robotics 172
Engineering Biomedical 152
Engineering Instruments & Instrumentation 147

Management 139
Engineering Civil 132

Mathematical & Computa-
tional Biology

123

Optics 103
Materials Science Multidisciplinary 101

Then, we have depicted in Figure 1.2 the scientogram of thematic areas relating them

according to Eq. 1.1. The picture shows nodes proportional to the volume of produced

3Data retrieved on May the 28th 2015.
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documents, and edges among nodes represent the connections among the related areas.

Notice that this graphical representation is usually very hard to understand because net-

works are usually very dense, i.e. most of the nodes are related to each other, thus

hindering the important edges in the scientogram.

Given a network, scaling algorithms have the goal to take proximity information and

to obtain structures revealing the underlying organization. They use similarities, correla-

tions, or distances to prune a graph based on proximity among pairs of nodes. The three

predominant ways of network scaling which are proposed in the literature are presented

below [23].

The first option introduces an edge weight threshold and it only maintain those edges

with weights above that threshold [89]. This approach is straightforward and easy to

implement. However, it does not take the intrinsic structure of the underlying network

into account, so the transformed network may not preserve the essence of the original one.

Furthermore, the value of the threshold is usually hard to be adjusted by the user.

ENVIRONMENTAL-SCIENCES

AUTOMATION & CONTROL SYSTEMS

THEORY & METHODS

OPERATIONS-RESEARCH-&-MANAGEMENT-SCIENCE

APPLIED

STATISTICS & PROBABILITY

ELECTRICAL & ELECTRONIC

IMAGING-SCIENCE-&-PHOTOGRAPHIC-TECHNOLOGY

INFORMATION SYSTEMS

INDUSTRIAL

ENGINEERING,-MANUFACTURING

ARTIFICIAL INTELLIGENCE

INTERDISCIPLINARY APPLICATIONS

MULTIDISCIPLINARY

CIVIL

MANAGEMENT

BIOMEDICAL

MATHEMATICAL-&-COMPUTATIONAL-BIOLOGY

INSTRUMENTS & INSTRUMENTATION

HARDWARE-&-ARCHITECTURE

MECHANICAL

TELECOMMUNICATIONS

CYBERNETICS

OPTICSSOFTWARE ENGINEERING ROBOTICS

MATERIALS-SCIENCE,-MULTIDISCIPLINARY

Figure 1.2: Scientogram with the main thematic areas where works dealing with inter-
pretability of fuzzy systems are published.

Here, we scaled the scientogram in Figure 1.2 considering two di↵erent thresholds. Re-

sults are depicted in Figure 1.3. As seen, the use of a low value as threshold yields several

connections that are not properly represented (Figure 1.3(a)). On the other hand, consid-

ering a high (and thus more restrictive) value as threshold produces several unconnected

nodes that previously were connected (Figure 1.3(b)).

The second option extracts a minimum spanning tree from the network [61]. This

approach formes trees by set of connected nodes, and guarantees the number of edges
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(a) Low threshold.
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MECHANICAL

TELECOMMUNICATIONS

CYBERNETICS

OPTICS

SOFTWARE ENGINEERING
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(b) High threshold.

Figure 1.3: Scaled scientograms with edges among thematic areas thresholded.

in this sets is always N � 1 (with N the number of connected nodes). Unfortunately,

that does not always reflect all the subjacent relevant information. Figure 1.4 shows the

scientogram in Figure 1.2 scaled extracting a minimum spanning tree.

ENVIRONMENTAL
SCIENCES

ARTIFICIAL
INTELLIGENCE

AUTOMATION &
CONTROL SYSTEMS

THEORY & METHODS

OPERATIONS RESEARCH & MANAGEMENT SCIENCE

APPLIED

STATISTI S & PROBABILITY

IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY

INFORMATION SYSTEMS

INDUSTRIAL
ENGINEERING,-MANUFACTURING

INTERDISCIPLINARY
APPLICATIONS

MULTIDISCIPLINARY

CIVIL

MANAGEMENT

BIOMEDICAL

COMPUTATIONAL BIOLOGY

INSTRUMENTS & INSTRUMENTATION

HARDWARE & ARCHITECTURE

MECHANICAL

TELECOMMUNICATIONS

CYBERNETICS

OPTICS

SOFTWARE ENGINEERING

ROBOTICS

MULTIDISCIPLINARY

ELECTRICAL &
ELECTRONIC

Figure 1.4: Scaled scientogram by extracting a minimum spanning tree.

The third option imposes several constraints on paths and then excludes those edges

that do not satisfy such constraints. One of the most known methods, the Pathfinder

algorithm [30, 75], is frequently used due to its mathematical properties related to the

preservation of the triangular inequality. Those properties include the conservation of

edges, the capability of modeling symmetrical but also asymmetrical relationships, and

the representation of the most salient relationships present in the data.
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Figure 1.5 depicts the scientogram in Figure 1.2 after network scaling by Pathfinder

algorithm. This scientrogram nodes are colored depending on the fields of study to which

they belong to. It is easy to appreciate how this scaling highlights the backbone in

Figure 1.2. It is worthy to note that important thematic areas naturally take a central

position in this representation. This solution do not produce unconnected nodes as occurs

using thresholding (Figure 1.3). Even more, Pathfinder is deterministic keeping all the

edges that produce ties, outperforming the use of minimum spanning trees (Figure 1.4).

We can see that thematic areas in the field of Computer Science are in a central position

and highly related. On the contrary, Engineering thematic areas are spread along the

scientogram. Finally, thematic areas published in other fields are in the borders of the

graphical representation.

Areas

Computer Science

Engineering

Mathematics

Other

MATERIALS SCIENCE

Figure 1.5: Scaled scientogram by Pathfinder algorithm.

There are many di↵erent methods for automatic visualization of social networks.

Force-based or force-directed algorithms are the most widely used class of algorithms

for drawing graphs in the area of information science [31, 52]. Their purpose is to locate

the nodes of a graph in a two or three dimensional space so that all edges are approxi-

mately of equal length and there are as few crossing edges as possible, trying to obtain

the most aesthetically pleasing view. All the visual representations of this section (from

Figure 1.2 to Figure 1.5) are created using Force-based algorithms.
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Chapter 2

Objectives

The main goal of this thesis is the study, representation and analysis of fuzzy systems

emphasizing the search for a good interpretability-accuracy trade-o↵. We proposed taking

advantage of social network analysis techniques for the understanding of the fuzzy systems’

inference process.

Namely, the following enumeration summaries the objectives established at the begin-

ning of the thesis:

1. To propose a new graphical representation based on techniques of social network

analysis that shows the behavior of fuzzy systems at inference level.

2. To study the interaction among elements in fuzzy systems in order to include it in

the new graphical representation.

3. To introduce a new interpretability index that reflects how complex the inference

mechanism of the given fuzzy system is according to the complexity of the graphical

representation.

4. To evaluate alternative metrics that relate rules of a fuzzy system.

5. To study di↵erent alternatives for the filtering, scaling, and drawing of the social

networks that represent fuzzy systems.

6. To establish a methodology for designing and improving interpretable fuzzy systems

guided by their graphical representation.

Note that these objectives have been successfully fulfilled along the thesis period, as

we will thoroughly overview in the following chapter.

13
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Chapter 3

Discussion of results

3.1 A new methodology for visual representation and

exploratory analysis of the fuzzy inference pro-

cess in fuzzy systems

This dissertation proposes a new methodology for visual representation and exploratory

analysis of the fuzzy inference process in fuzzy systems. In such systems, an instance can

simultaneously fire various rules. Moreover, the usual behavior of FRBSs is that, given a

set of problem instances, several fuzzy rules are fired at the same time. In other words,

the input space is usually covered by rules with dense overlapping among them.

We take advantage of this characteristic using a set of problem instances to identify co-

fired rules. This co-firing information is used to create social networks representing fuzzy

systems’ inference maps, called fuzzy inference-grams or Fingrams in short. In these

kinds of social networks each fuzzy rule is represented by a node, and the relations among

rules are represented by weighted edges whose value is computed using a specific metric.

Di↵erent metrics can be used to construct a social network (as it will be sketched in

Section 3.1.1) given a dataset of intances representing the input-output relations existing

in the problem tackled, a set of fuzzy rules, and a fuzzy inference mechanism. As a result,

Fingrams graphically show the interaction among fuzzy rules at inference level in terms

of co-fired rules.

Due to the high overlapping among rules, the complete Fingram is usually very dense

di�culting its analysis even for medium-size FRBSs. Fortunately, network scaling meth-

ods can be used to simplify Fingrams while maintaining their most important relations,

as Section 3.1.2 will overview.

Social networks can be represented by the use of drawing methods especially designed

for that purpose. Here, a specific graph representation is developed to provide the relevant

information of the FRBS under study. Colors and sizes highlight distinguishing charac-

teristics of the system, allowing the end-user to do a thorough analysis. Section 3.1.3 will

give a deeper explanation about drawing methods used.

15
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From a formal viewpoint, we define a Fingram as follows:

Definition A Fingram is a tuple (R,P, I,D,m,NSM,NDM) in which:

R is the set of fuzzy rules (nodes), denoted R
i

, 1  i  r, with r being the number of

rules.

P is the set of fuzzy partitions of input and output variables.

I is the fuzzy inference mechanism used.

D is the set of problem instances, denoted I
k

, 1  k  d, with d being the number of

instances.

m is the metric used to create M , the square weight matrix (r ⇥ r) that represents the

firing interactions among fuzzy rules. The entries of that matrix are the weights

associated with the edges; m
ij

is the weight of the edge connecting R
i

and R
j

.

NSM is the considered network scaling method.

NDM is the considered network drawing method.⇤

The remaining of the section explains in detail the procedure followed to create Fin-

grams, sketched in Figure 3.1.

Network
Generation

Network
Scaling

Network
Drawing

FRBS

Instances

Figure 3.1: Phases of building a Fingram.

3.1.1 Fingrams Generation

Starting from a set of fuzzy rules R, a set of fuzzy partitions P , a fuzzy inference mech-

anism I, a set of problem instances D, and a metric m, a social network can be built,

represented by a matrix M , that shows the relations among rules.

Each instance (I
k

) is represented as an n-dimensional attribute vector (xk) plus its

output (y
k

):

I
k

= {(xk, yk) | xk = {x1
k

, ..., xn

k

}, xh

k

2 R, h 2 [1, n]} (3.1)
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In this context, we consider a set of r fuzzy rules of the form:

R
i

: IF X1 is Ai

1 & ... & X
n

is Ai

n

THEN Y is B
i

with wi (3.2)

whereAi

h

is the rule antecedent for variableX
h

(h 2 [1, n] with n the number of attributes),

B
i

denotes the consequent, and wi is the weight associated to rule R
i

.

We define the firing degree of a rule R
i

for a single instance (I
k

) as:

µ
R

i

(I
k

) = µ
A

i

1
(x1

k

) ⌦ ... ⌦ µ
A

i

n

(xn

k

) (3.3)

with ⌦ being a t-norm.

We distinguish between covered and uncovered instances. We define the set of covered

instances (cv) as those firing at least one rule out of the set of rules, and the set of

uncovered instances (ucv) as those ones that do not fire any of the rules.

cv = {I
k

|
X

i=1,...,r

(µ
R

i

(I
k

)) > 0, k 2 [1, d]} (3.4a)

ucv = {I
k

|
X

i=1,...,r

(µ
R

i

(I
k

)) = 0, k 2 [1, d]} (3.4b)

where d is the number of problem instances and µ
R

i

(I
k

) is the firing degree as presented

in Eq. 3.3.

A square matrix M (r ⇥ r) contains all interactions among rules:

M =

0

BBB@

0 m12 . . . m1r

m21 0 . . . m2r

. . . . . . . . . . . .

m
r1 m

r2 . . . 0

1

CCCA
(3.5)

Di↵erent metrics have been proposed, named as m0
ij

, m1
ij

and m2
ij

.

The simplest metricm0
ij

, inspired by the co-citation measure of scientograms (Eq. 1.1),

relates two rules (R
i

and R
j

) according to the number of instances covered in common

by them (|D
i

\D
j

|) with respect to the total number of instances they individually cover

(|D
i

| and |D
j

|):

m0
ij

=

( |D
i

\D
j

|p
|D

i

||D
j

|
, if i 6= j

0 , if i = j
(3.6)

with D
i

representing the set of instances covered by rule R
i

:

D
i

= {I
k

| µ
R

i

(I
k

) > 0, k 2 [1, d]} (3.7)
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and µ
R

i

(I
k

) being the firing degree up to which a single instance (I
k

) fires the rule R
i

(as

presented in Eq. 3.3).

Notice that, m0
ij

is normalized and the matrix M is symmetrical. This metric obtains

zero (m0
ij

= m0
ji

= 0) when two rules do not cover any instance in common (D
i

\D
j

= ;),
and one (m0

ij

= m0
ji

= 1) when both rules cover exactly the same data instances (D
i

= D
j

,

i 6= j).

We have also defined a second more advanced metric m1
ij

which includes the firing

degree up to which the data instances activate the rules as well as the rule weights:

m1
ij

=

8
>><

>>:

P

I

k

2{D
i

\D

j

}

⇣
min(µ

R

i

(I
k

)·wi

,µ

R

j

(I
k

)·wj)

⌘

p
(FD

R

i

·wi)·(FD

R

j

·wj)
, if i 6= j

0 , if i = j

(3.8)

{D
i

\ D
j

} represents the set of instances firing both rules R
i

and R
j

at the same time.

µ
R

i

(I
k

) is the firing degree of R
i

given the data instance I
k

(Eq. 3.3). And FD
R

i

represents

the accumulated firing degree for all the instances in D that fire rule R
i

:

FD
R

i

=
X

k=1,...,d

(µ
R

i

(I
k

)) (3.9)

This metric produces symmetric relations and is normalized.

An asymmetric co-firing metric m2
ij

[63] is defined as:

m2
ij

= 1 �
P

I

k

2D
i

(|µ
R

i

(I
k

) � µ
R

j

(I
k

)|)
P

I

k

2D
i

µ
R

i

(I
k

)
(3.10)

with D
i

being all the instances firing rule R
i

(Eq. 3.7); µ
R

i

(I
k

) is the firing degree up to

which a single instance I
k

fires the rule R
i

(Eq. 3.3).

This co-firing metric characterizes generalization/specialization relations between pairs

of rules. Moreover, it yields a an asymmetrical matrix that produces a directed graph, i.e.,

each pair of nodes can be connected by two di↵erent edges. A rule R
i

is highly related

with another R
j

, i.e. m2
ij

⇡ 1, when R
j

is fired at similar degrees by the same set of

instances that fires R
i

.

3.1.2 Fingrams Scaling

As usual in social network design, the initial Fingram is commonly quite dense and di�cult

to analyze even for medium-size FRBSs. So for, a network scaling method is required to

simplify it, keeping all the nodes but only the most important relations.

Given a network, scaling algorithms have the goal to take proximity information and to

obtain structures revealing the underlying organization (as shown in Section 1.3). They

use similarities, correlations, or distances to prune a graph based on proximity among

pairs of nodes. The three predominant ways proposed in the literature as presented in
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section 1.3 are listed below [23].

1. Thresholding: It only maintains edges with weights above a given threshold [89].

This approach is straightforward and easy to implement. However, it does not take

the intrinsic structure of the underlying network into account, so the transformed

network may not preserve the essence of the original one. Furthermore, the value

of the threshold could be hard to adjust by the end-user.

2. Minimum Spanning Tree: It extracts a minimum spanning tree from a network

of N nodes [61]. This approach guarantees the number of edges in the transformed

network is always N � 1. However, this fact does not always reflect the subjacent

relevant information.

3. Imposing constraints: This option imposes constraints on paths and excludes

edges that do not satisfy the constraints. One of the most known methods, the

Pathfinder algorithm [30, 75], is frequently used due to its mathematical properties

that include the conservation of edges, the capability of modeling symmetrical but

also asymmetrical relationships, and the representation of the most salient relation-

ships present in social networks.

We performed an analysis of alternatives in [65] concluding that the use of Pathfinder

algorithm fits our requirements. It yields a close-to-tree global structure which provides

valuable information very easy to interpret. Namely, we use Fast Pathfinder [71], a variant

of Pathfinder that reduces the computational complexity of the original algorithm.

3.1.3 Fingrams Drawing

As previously outlined in Section 1.3, force-based algorithms are devoted to represent

social networks in an aesthetically pleasing way. Those methods try to clarify as much

as possible the resultant graph, allowing the user to easily identify and interpret the final

distribution of elements. Thus, to satisfy this goal, two requirements have mainly to be

achieved: reduce the crossover of edges and distribute the nodes and edges homogeneously

through the canvas.

In order to visualize the scaled network in a 2D space, force-based algorithms assign

coordinates to the nodes obtaining a graph with the most important elements placed

toward the center of the image. Kamada-Kawai [51] and Fruchterman-Reingold [37] are

the most representative force-based algorithms.

Kamada-Kawai [51] represents networks following aesthetic criteria trying to maximize

the use of the available space, to minimize the number of crossed edges, to force the

separation of nodes, etc. It assigns coordinates to the nodes trying to adjust as much as

possible the distances existing among them with respect to actual network distances.

In the Fruchterman-Reingold Algorithm [37], the attraction or repulsion among nodes

determines in which direction a node should move. Nodes move from an original layout
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(a) Classification.

(b) Regression.

(c) Fuzzy Association Rules.

Figure 3.2: Interpretation of Fingrams.

step by step. The step width of node movements decreases at each iteration. Once nodes

stop moving, the procedure ends.

Kamada-Kawai, through Graphviz implementation1, is used in our approach because

it has been proved very e↵ective in combination with Pathfinder [81]. This solution is

flexible to be adapted to the particularities of new scenarios.

The proposed representation includes graphical information of special interest for

FRBS inference analysis:

• Rules are represented by nodes and labeled with useful textual information that

depends on the type of problem we are dealing with (see Figure 3.2). Nodes are

labeled in all of the cases with the rule identifier, and can include more information

depending on the type of problem under consideration.

1http://www.graphviz.org/ [41]
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Figure 3.3: Node of uncovered instances

• Rules not covering any instance, FD
R

i

= 0 (as presented in Eq. 3.9), are colored

in red to facilitate their detection. Those rules are good candidates to be removed

from the rule set.

• The node size is established according to the number of instances covered by the

rule. The higher the amount of covered instances, the bigger the node size. For

example, rule R
h

covers more instances than R
k

according to Figure 3.2(a).

• Node color is used to identify di↵erent particularities depending on the problem.

For example, in classification problems node color indicates rule output, with same

color for rules of the same output class. Rules R
k

and R
h

have di↵erent output class

(as observed in Figure 3.2(a)).

• Node border indicates how complex the antecedents of the rules are. Single-line

border indicates one premise, double-line border two premises, and so on. Thus,

the rules R
i

and R
j

depicted in Figure 3.2(b) have three and two antecedents,

respectively.

• Edges among nodes represent rule co-firing information. Each edge represents the

relation between a pair of fuzzy rules. The higher the degree of overlapping existing

over rules, the higher the edge weight (m
ij

) and the thicker the edge width in the

visual representation.

• In case of directed graphs created using metric m2
ij

(Eq. 3.10), arrows indicate the

direction of the relation, as presented in Figure 3.2(c). On the contrary, Fingrams

constructed with symmetric metrics (Eq. 3.6 and Eq. 3.8) use plain lines, as pre-

sented in Figure 3.2(a) and Figure 3.2(b).

• A visual artifact presents the set of instances not covered by the given set of rules

(as presented in Eq. 3.4(b)). Instances not covered by any rule are represented by a

rectangular node labeled “UNCOVERED INSTANCES”. Its height is proportional

to the number of instances not covered by any rule. Figure 3.3 presents an example

where many instances are covered by none of the rules of the FRBS. In fact, more

than half of the instances are uncovered (ucv = 0.609).
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3.1.4 Types of Fingrams

Fingrams can already deal with fuzzy rule-based classifiers, fuzzy rule-based regressors [65],

and fuzzy association rules [63]. The di↵erent adaptations show relevant information ac-

cording to their characteristics.

3.1.4.1 Classification Fingrams

Fingrams that deal with fuzzy rule-based classifiers has colored nodes corresponding to

the rule output classes. Rules yielding the same class are depicted by the same node color.

Nodes include the following information line by line:

1. Rule identifier (R
i

)

2. Coverage of the rule (cov
i

) defined by:

cov
i

=
|D

i

|
|D| (3.11)

with D
i

the set of instances covered by rule R
i

(Eq. 3.7) and D the total set of

instances.

3. Goodness of the rule (G
i

) i.e. how the rule behaves with respect to the problem

instances available. This goodness measure reflects how well the problem instances

covered by a rule are classified or modeled.

G
i

=

P
I

k

2D+
i

µ
R

i

(I
k

) �
P

I

k

2D�
i

µ
R

i

(I
k

)

FD
R

i

(3.12)

where D+
i

and D�
i

denote respectively the sets of positive and negative instances for

rule R
i

. We call positive instances (D+
i

) to those covered by the rule in a consistent

manner, i.e. the output class is the same for the rule and the data instance, being

the remaining negative instances (D�
i

). FD
R

i

is as defined in Eq. 3.9.

D+
i

= {I
k

| µ
R

i

(I
k

) > 0 & y
k

= B
i

, k 2 [1, d]} (3.13a)

D�
i

= D
i

\ D+
i

= {I
k

| µ
R

i

(I
k

) > 0 & y
k

6= B
i

, k 2 [1, d]} (3.13b)

In a similar vein, some authors propose the use of purity to measure the rules

behavior [45]. We define the purity of rule R
i

(pur
i

) as follows:

pur
i

=

P
I

k

2D+
i

µ
R

i

(I
k

)
P

I

k

2D
i

µ
R

i

(I
k

)
(3.14)

where D+
i

and D
i

denote the set of positive and covered instances for rule R
i

re-

spectively (as presented in Eq. 3.13a and Eq. 3.7).
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4. Class coverage of a rule (cc
i

) as the proportion of covered instances consistent with

the rule output class (D+
i

) with respect to the total instances of the dataset consis-

tent with the rule output class (Dc

l).

cc
i

=
|D+

i

|
|Dc

l | (3.15)

where Dc

l are the set of instances with output class c
l

.

Dc

l = {I
k

| y
k

= c
l

, k 2 [1, d]} (3.16)

The node of uncovered instances is filled using vertical colored strips that give the

proportion of uncovered instances related to each class. Figure 3.4 presents an example

where there are instances not covered corresponding to classes C0 and C1.

UNCOVERED
INSTANCES
(ucv=0.036)

Output class

C0

C1

Figure 3.4: Example of node of uncovered instances.

The color of edges gives useful information as well. Edges between rules of the same

output class c
l

(B
i

= B
j

for rules R
i

and R
j

) are colored in green while potential incon-

sistencies, i.e. edges between co-fired rules pointing out di↵erent classes (B
i

6= B
j

) are

remarked with red color (See Figure 3.2(a)).

3.1.4.2 Regression Fingrams

We are capable of constructing Fingrams to deal with multi-input-single-output (MISO)

FRBSs for regression.

In this case, the output variable is ordered in its universe of discourse. This order is

used to assign grey tones to nodes background, from black to white. So for, the typical

behavior will relate nodes with similar greyness, and related nodes showing quite di↵erent

tones should be studied in detail.

In this case there is no di↵erence among edges, contrary to what happens in classifi-

cation problems with redundancies and inconsistencies, and they just inform about their

weight (See Figure 3.2(b)).

Nodes include the following information line by line:

1. Rule identifier (R
i

)

2. Coverage of the rule (cov
i

) as defined in Eq. 3.11
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3. Goodness of the rule (G
i

) similarly to the case of classification problems, but ex-

tended for regression problems.

In this case, the node of uncovered instances is colored in red in order to highlight the

existence of uncovered instances (Figure 3.3).

3.1.4.3 Fuzzy Association Rule Fingrams

Fingrams for fuzzy association rules, in short FAR-Fingrams, are aimed at dealing with the

particularities of those systems and facilitating their visual analysis and comprehension.

In this case, association rules uncover and represent dependencies among items in

a dataset [87]. These are represented like X * Y where X and Y are itemsets and

X \ Y = ↵ [1]. We should understand them as if X appears in a pattern is highly

probable that Y appears there as well.

More precisely, we define fuzzy association rules as (substituting definition of rules

gave in Eq. 3.2):

R
i

: {X1 is Ai

1 & ... & X
n

is Ai

n

} * {Y1 is Bi

1 & ... & Y
n

is Bi

n

} (3.17)

Let us show an easy example of fuzzy association rule from a dataset with three

attributes (Att1, Att2 and Att3) and three linguistic terms each one (Low, Medium, and

High). An illustrative fuzzy association rule could be:

R
i

: {Att1 is Low and Att2 is High } * {Att3 is Medium}.

In case of fuzzy association rules, and once they are considered as conjunctive rules in

contraposition to implicative rules, the matching degree of the rule is calculated consid-

ering the rule antecedent and consequent of rule (substituting Eq. 3.3):

µ0
R

i

(I
k

) = µ
A

i

1
(I

k

) ⌦ ... ⌦ µ
A

i

n

(I
k

) ⌦ µ
B

i

1
(I

k

) ⌦ ... ⌦ µ
B

i

n

(I
k

) (3.18)

with ⌦ being a t-norm.

Note that this substitution a↵ects in the construction of Fingrams, and an instance is

covered by a fuzzy association rule only when µ0
R

i

> 0. This influence metrics m0
i

(Eq. 3.6)

implicitly and m1
i

and m2
i

explicitly (Eqs. 3.8 and 3.10).

FAR-Fingram nodes are labeled with the following relevant textual information (as

shown in Figure 3.2(c)):

1. Rule identifier (R
i

)

2. Support of the rule (sup
i

).

sup
i

=

P
I

k

2D µ0
R

i

(I
k

)

| D | (3.19)
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being µ0
R

i

(I
k

) as defined in Eq. 3.18; and | D | the cardinality of the dataset D.

3. Confidence of the rule (conf
i

).

conf
i

=

P
I

k

2D µ0
R

i

(I
k

)
P

I

k

2D µ
X

i

(I
k

)
(3.20)

with µ0
R

i

(I
k

) the matching degree of the pattern I
k

with the rule R
i

; and µ
X

i

(I
k

)

the matching degree of I
k

with the rule antecedents of rule R
i

:

µ
X

i

(I
k

) = µ
A

i

1
(I

k

) ⌦ ... ⌦ µ
A

i

n

(I
k

) (3.21)

with ⌦ being a t-norm.

4. Lift of the rule (lift
i

).

lift
i

=
conf

iP
I

k

2D µ
Y

i

(I
k

)/|D| (3.22)

being µ
Y

i

(I
k

) the matching degree of I
k

with the rule consequent of R
i

.

µ
Y

i

(I
k

) = µ
B

i

1
(I

k

) ⌦ ... ⌦ µ
B

i

n

(I
k

) (3.23)

with ⌦ being a t-norm.

In the classification and regression Fingrams, the size of nodes is proportional to the

number of instances covered by the related rules. Dually, in FAR-Fingrams the node size

is determined by the Support of the corresponding rule, because it plays a central role in

the assessment of fuzzy association rules [79]. Even more, the number of node borders

also shows the number of rule antecedents.

Regarding the color of nodes, FAR-Fingrams use a grey scale to indicate the Lift level

of rules which yields an idea about the goodness of the rules. The higher the Lift, the

darker the node background, being white the rule with the lowest Lift.

Thus, FAR-Fingrams show simultaneously information related to several quality mea-

sures. Obviously, this is much more e↵ective than considering only one-ranking evaluation

guided by a single measure as usual.

The node of uncovered instances is, as in the case of Regression Fingrams, colored in

red.

3.1.4.4 Instance-based Fingrams

Previously presented Fingrams showed the inference mechanism of FRBSs from a global

view point, i.e. observing how all the rules covered the complete given dataset. However,

this fails in assisting the analysis of the inference mechanism at local level, i.e. for a single

data instance.
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Figure 3.5: Analysis of inference for an instance using instance-based Fingrams

We proposed a new Fingram view aimed at illustrating a partial view of the system

when focusing on those rules that participate in the inference process regarding a single

instance. Thus, we focus on those rules that specifically cover the related part of the

input space. This allows us to better understand the behavior of the system in a specific

situation. This instance-based Fingrams filter the rules that are not fired by the selected

instance. Notice that this task is not easy to carry out manually when dealing with

complex sets of rules. Therefore, it provides a powerful filtering mechanism conducted by

data.

This new representation is valid for any of the existing types of Fingrams and very

valuable when studying instances that require a detailed analysis. The process to build

instance-based Fingrams includes four steps:

1. Generation of the network using the desired rule co-firing metric m taking as inputs

the whole set of fuzzy rules, the fuzzy inference mechanism, and the entire set of

instances.

2. Filtering the network by only considering those rules that take part in the inference

for the given instance I
k

.

3. Scaling the network through the use of the network scaling method.

4. Graphical representation of the resulting scaled network according to the network

drawing method.

The firing degree up to which the instance fires each rule (as seen in Eq. 3.3) is reflected

by a radius dark zone in the corresponding node. The angle of dark color is proportional

to the firing degree of the rule for the given instance, with a full dark colored node when

the firing degree is 1.

We are overviewing this graphical representation with an illustrative example of clas-

sification instance-based Fingram. We take a two class dataset (C0 and C1) covered by
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four rules, two of each class (B1 = B2 = C0 and B3 = B4 = C1). We select an in-

stance (I80 = {�0.61, 0.25,C0}) to analyze the inference mechanism locally. We follow

the building process previously presented, obtaining the Fingram of Figure 3.5.

We can see that the node related to R1 is fully dark colored (µ
R1(I80) = 1). On the

contrary, R2 is partially fired (µ
R2(I80) = 0.6), therefore the related node is colored with

a radius dark area. Both rules have the same output class (class C0), what is reflected

by the same node color. Class C0 is correctly inferred, and there is no rule with class C1

activated in this specific case.

3.2 Cases of use applying the proposed methodology

Fingrams provide an enormous potential for the representation and comprehension of the

FRBS inference process. They relate rules jointly fired by a given input vector, allowing

to understand how the rules of a FRBS actually cover the input space. Hence, Fingrams

can be viewed as a powerful tool for dealing with FRBS comprehensibility analysis tasks

related to the semantics at rule base level. It is worthy to note that as presented in

Section 1.1, quadrant Q4 at Table 1.1) is the less studied category in the existing fuzzy

system interpretability assessment literature.

We proposed a novel interpretability [12] index that enriches Q4 set of indexes. The

proportion of co-fired rules can be considered to evaluate the global FRBS comprehen-

sibility. The assumption is the following: the larger the number of simultaneously fired

rules for a given input vector, the smaller the comprehensibility of the FRBS.

Thus, the Co-firing Based Comprehensibility Index (COFCI) [12] can be used to

evaluate the complexity of understanding the inference process in terms of rule co-firing

information. Eq. 3.24 presents this index:

COFCI =

(
1 �

q
CI

MaxThr

, if CI  MaxThr

0, otherwise
(3.24)

CI =
rX

i=1

rX

j=1

⇥
(P

i

+ P
j

) · ma

ij

⇤
(3.25)

where r is the total number of rules in the fuzzy rule base, P
i

and P
j

count the number of

premises (antecedent conditions) in rules R
i

and R
j

, while ma

ij

is the measure of co-firing

(computed by any of the metrics of Eqs. 3.6, 3.8 or 3.10) for the rules R
i

and R
j

, and

MaxThr is a maximum value heuristically established to get a normalized measure in the

interval [0,1].

The analysis of Fingrams o↵ers many di↵erent possibilities thanks to the high amount

of information this representation gives about a FRBS and its related fuzzy inference

process. For example, one can directly analyze its global structure by the exploration of

the number and location of the apparent groups of rules (nodes), analyze the respective



28 Chapter 3. Discussion of results

location of the rules coding for di↵erent outputs, etc.

Firstly, it should be reminded that, because of the specific way network scaling and

drawing are done, the most salient nodes and edges are likely to be placed towards the

center of the graphical representation. Therefore, the most frequently fired rules (repre-

sented with bigger nodes) are usually placed in the center because they also tend to be

co-fired with more rules. Those cases where nodes covering a large number of instances

are placed in the periphery must be carefully analyzed. This can be due to a fuzzy rule

which covers a large part of the input space in isolation.

Secondly, the interaction among fuzzy rules at inference level is very di�cult to be

appreciated by only reading the linguistic description of FRBSs. It should be remarked

that this interaction depends on the rule description but also on the fuzzy rule semantics

(fuzzy partitions included in the data base) and on the inference mechanism. Even when

a rule base is apparently consistent at linguistic level, some possible inconsistencies may

arise at inference level because of the FRBS semantics and fuzzy inference process. Such

potential conflicts are di�cult to detect mainly because they are partially hidden since

they are typically produced by new unknown situations that were not taken into account

during the learning stage (for example, data pairs not initially included when considering

a data-driven FRBS derivation). Of course, such analysis is di↵erent depending on the

kind of problem faced. For example, the meaning of overlapping rules is not the same

when considering either classification, regression or association problems.

Thirdly, the information provided by the node of uncovered instances helps in the

comprehension of the system and its behavior with respect to the given dataset. It

should be noticed that uncovered instances penalize the precision of FRBSs and their

early detection and correction is essential for the correct behavior of the system. We

can compare node size with the size of the rest of nodes, giving us an idea of how many

uncovered instances have.

The rest of the section presents three cases of use where the potentials of the Fingram-

based methodology are deeply analyzed.

3.2.1 Case of use on fuzzy classifiers

Here we analyze, through the use of Fingrams, a complex fuzzy rule-based classifier over

the real world dataset ecoli from UCI [14, 44]. Ecoli dataset includes 336 E.coli proteins

of 8 unbalanced classes with 7 attributes calculated from the amino acid sequences.

We use the Fuzzy Unordered Rule Induction Algorithm [45], or FURIA in short, to

induce rules and classify data instances. FURIA appears as one of the outstanding fuzzy

classification algorithms when attending to accuracy [46], demonstrating to be a robust

method and performing properly in a bunch of scenarios.

FURIA is a fuzzy rule-based classification method based on RIPPER algorithm [25]. It

presents some modifications and extensions that outperforms the original [45, 46]. FURIA

creates very compact FRBSs that achieve high performance thanks to a specific inference
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mechanism that operates as follows:

• If the instance I
k

is covered by the set of induced rules, FURIA predicts the output

class:

output(I
k

) = y0
k

) S
y

0
k

(I
k

) = max
l=1...p

S
c

l

(I
k

) (3.26)

where l iterates over the p possible classes and S
c

l

represents the activation level

per class:

S
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l
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2Rc
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R

i

(I
k

) · wi
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(3.27)

where µ
R

i

(I
k

) is the firing degree of rule R
i

for instance I
k

(as presented in Eq. 3.3)

and wi is the weight associated to rule R
i

.

• If I
k

is not covered, FURIA dynamically creates a new set of rules (now on SR
k

)

from the induced ones by the so-called rule stretching mechanism. It iteratively

tours every induced rule removing antecedents in order one by one from the least

to the most important, until the instance is covered. If all antecedents are removed

from an individual rule, then this rule is discarded. When a stretched rule covers the

instance I
k

then the stretching mechanism stops for this rule, adds that stretched

rule to SR
k

and goes on with the next rule until all induced rules are checked for

the given instance. Therefore, the new rule set SR
k

includes at most the number of

initially induced rules.

– If SR
k

is empty, i.e. all the rules are discarded: The majority class in the

dataset D is taken as output for the instance I
k

.

– Otherwise: FURIA produces as output the winner class with the final set of

rules (SR
k

) for the instance I
k

:

output0(I
k

) = y0
k

) S
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0
k

(I
k

) = max
l=1...p

S 0
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) (3.28)
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and

wi.q = wi · q + 1

P
i

+ 2
(3.31)
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being wi the weight of the induced rule R
i

, P
i

the number of antecedents in the

induced rule R
i

, and q the number of antecedents in the stretched rule R
i.q

.

In case of a tie, no matter if the instance is handled by the set of induced rules or by

the stretching mechanism, a decision in favor of the majority class is made. The interested

reader can find a deeper explanation of FURIA in [45, 46].

Although FURIA produces compact rule bases, its interpretability is arguable [18],

being jeopardized by the absence of linguistic readability. Notice that FURIA usually

generates low number of rules (and antecedents per rule), but they lack of linguistic

readability because there is no global semantics. Rule antecedents are rule dependent

and do not have linguistic terms associated. In addition, FURIA’s inference mechanism

occludes interpretability. It is based on a winner class method with weighted rules in

combination with the rule stretching mechanism. In consequence, FURIA includes a

close-to-black-box inference mechanism, very hard to predict and understand.

FURIA produces an accurate fuzzy system for ecoli dataset that outperforms several

alternative methods as shown in [45]. It induces the following 20 fuzzy rules from the

complete dataset. This is a compact but hard to interpret set of fuzzy rules.

R1: IF alm1 in [�1,�1, 0.38, 0.39] & gvh in [�1,�1, 0.55, 0.57] THEN class is cp with w=0.973

R2: IF mcg in [�1,�1, 0.44, 0.52] & alm1 in [�1,�1, 0.55, 0.58] THEN class is cp with w=0.951

R3: IF alm1 in [�1,�1, 0.47, 0.49] & mcg in [�1,�1, 0.59, 0.63] & gvh in [�1,�1, 0.57, 0.59] THEN class is cp with

w=0.955

R4: IF alm1 in [0.75, 0.76,1,1] & mcg in [�1,�1, 0.61, 0.62] THEN class is im with w=0.956

R5: IF alm1 in [0.55, 0.61,1,1] & mcg in [�1,�1, 0.45, 0.47] THEN class is im with w=0.951

R6: IF alm2 in [0.59, 0.63,1,1] & mcg in [�1,�1, 0.74, 0.79] & alm2 in [�1,�1, 0.73, 0.74] & gvh in [0.45, 0.46,1,1]

THEN class is im with w=0.904

R7: IF alm1 in [0.82, 0.85,1,1] & mcg in [�1,�1, 0.74, 0.86] & gvh in [�1,�1, 0.52, 0.53] THEN class is im with

w=0.902

R8: IF alm1 in [0.55, 0.62,1,1] & alm1 in [�1,�1, 0.72, 0.74] & mcg in [�1,�1, 0.61, 0.63] & gvh in [�1,�1, 0.55, 0.6]

THEN class is im with w=0.916

R9: IF alm2 in [0.35, 0.74,1,1] & alm1 in [�1,�1, 0.72, 0.73] & mcg in [0.81, 0.83,1,1] THEN class is im with w=0.692

R10: IF alm2 in [0.7, 0.74,1,1] & aac in [0.7, 0.71,1,1] THEN class is im with w=0.615

R11: IF gvh in [0.58, 0.59,1,1] & aac in [�1,�1, 0.47, 0.57] & alm1 in [�1,�1, 0.65, 0.67] & alm1 in [0.35, 0.36,1,1]

THEN class is pp with w=0.954

R12: IF gvh in [0.53, 0.56,1,1] & mcg in [0.61, 0.63,1,1] & aac in [�1,�1, 0.63, 0.65] & alm1 in [�1,�1, 0.52, 0.53]

& aac in [0.45, 0.46,1,1] THEN class is pp with w=0.911

R13: IF mcg in [0.67, 0.7,1,1] & aac in [�1,�1, 0.5, 0.51] & mcg in [�1,�1, 0.74, 0.75] THEN class is pp with w=0.899

R14: IF alm2 in [0.39, 0.62,1,1] & mcg in [0.74, 0.75,1,1] THEN class is imU with w=0.800

R15: IF alm2 in [0.46, 0.66,1,1] & mcg in [0.58, 0.62,1,1] & gvh in [�1,�1, 0.45, 0.46] & mcg in [�1,�1, 0.67, 0.69]

THEN class is imU with w=0.713

R16: IF alm2 in [0.73, 0.74,1,1] & alm1 in [�1,�1, 0.75, 0.76] & mcg in [0.45, 0.47,1,1] THEN class is imU with

w=0.581

R17: IF aac in [0.66, 0.68,1,1] & alm2 in [�1,�1, 0.38, 0.66] & mcg in [0.31, 0.52,1,1] THEN class is om with w=0.891

R18: IF gvh in [0.67, 0.68,1,1] & mcg in [�1,�1, 0.61, 0.62] THEN class is om with w=0.687

R19: IF lip in [0.48, 1,1,1] & alm2 in [�1,�1, 0.36, 0.52] & chg in [�1,�1, 0.5, 1] THEN class is omL with w=0.719

R20: IF lip in [0.48, 1,1,1] & aac in [�1,�1, 0.51, 0.52] & mcg in [�1,�1, 0.75, 0.77] THEN class is imL with w=0.503

Rules involve the complete set of attributes and cover 7 out of the 8 classes in the

dataset (there is no rule for the minority class imS, which cannot be predicted). Notice

that rules R6, R8, R11, R12, R13, and R15 repeat attributes in their antecedents (attributes

alm2, alm1, alm1, aac, mcg and mcg respectively). This fact does not a↵ect the inference

performed by the set of induced rules but is transcendental in the stretching mechanism.
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Table 3.1 summarizes the information of the set of rules induced by FURIA –rule

identifiers R
i

, rule output class B
i

, coverage of rules cov
i

(Eq. 3.11), purity of rules pur
i

(Eq. 3.14), weights of rules wi and coverage of rule output class cc
i

(Eq. 3.15).– Last line

in the table indicates the amount and output class of instances not covered by any of the

induced rule, which take advantage of the stretching mechanism.

Table 3.1: Information of the set of classification rules induced for Ecoli dataset.

Ri Bi covi puri wi cci

R1 cp 0.339 0.535 0.973 0.427
R2 cp 0.393 0.485 0.951 0.469
R3 cp 0.405 0.502 0.955 0.476
R4 im 0.098 0.030 0.956 0.013
R5 im 0.092 0.136 0.951 0.052
R6 im 0.042 0.071 0.904 0.013
R7 im 0.045 0.000 0.902 0.013
R8 im 0.051 0.113 0.916 0.026
R9 im 0.012 0.000 0.692 0.013
R10 im 0.009 0.000 0.615 0.013
R11 pp 0.113 0.029 0.954 0.019
R12 pp 0.057 0.000 0.911 0.019
R13 pp 0.057 0.000 0.899 0.019
R14 imU 0.065 0.182 0.800 0.114
R15 imU 0.015 0.941 0.713 0.114
R16 imU 0.057 0.053 0.581 0.029
R17 om 0.051 0.000 0.891 0.050
R18 om 0.015 0.000 0.687 0.050
R19 omL 0.018 0.000 0.719 0.200
R20 imL 0.009 0.000 0.503 0.500

Instances Stretching cp/im/pp/imU 0.039

Figure 3.6 presents the Fingrams2 depicting the induced rule set built with m1
ij

co-

firing metric (Eq. 3.8). In the top left square we have included the same Fingram built

with m0
ij

co-firing metric (as presented in Eq. 3.6) just for comparison purpose. In this

case, both Fingrams present quite similar structure but weaker edges appear when using

m1
ij

metric. Thus, we can analyze the system by studying any of them interchangeably.

Therefore, we continue the analysis by regarding the Fingram built with m1
ij

metric.

The Fingram in Figure 3.6 includes one node per rule. These nodes take 7 di↵erent

colors (out of the 8 possible, as presented at the bottom right legend) showing the 7

di↵erent classes the rules have as output. An additional multi-color node presents the

instances not covered by any of the induced rules, i.e. the instances to be handled by the

stretching mechanism.

Studying the structure of the Fingram in detail we can see that almost all the edges

have low values meaning that rules cover few instances in common. Only rules of class

cp (rules R1, R2 and R3), colored in gray, cover several instances in common, showing

high relations among them. This indicates that rules induced by FURIA cover instances

2Contrary to the previous Fingrams, those in Figs. 3.6 and 3.7 only include the rule identifiers in the
nodes for the sake of clarity. Table 3.1 and Table 3.2 include additional information about them.
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Figure 3.6: Fingram of the set of classification rules induced for Ecoli dataset.

scattered and as result most of the instances are just covered by a single rule. Moreover, it

is easy to appreciate clusters of nodes of the same color showing that rules with di↵erent

output class are rarely related. This is also reflected by the majority of green edges in

the representation. This particularity indicates that rules of the same class jointly cover

parts of the input space.

Focusing our attention in subsets of rules we observe that rules of class cp cover a
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large amount of instances (coverage larger than 0.3 as seen in Table 3.1) with a good ratio

of correctly classified instances (purity larger than 0.48). Even more, they cover several

instances in common, as previously mentioned. Notice that cp is the majority class in

the dataset. On the contrary, rules R19 and R20 cover just a few instances, and not in

accordance with their corresponding class, as we can find out observing that they have

purity equal to zero. It is worthy to note that both rules are in charge of handling two

of the minority classes (omL and imL). In an intermediate situation we find rules with

output classes im and imU (yellow and blue nodes) that only cover a few instances in

common and have a diverse range of purity values. This situation occurs when instances

of two classes are spread along the same part of the input space and turn di�cult the

classification task.

As previously mentioned, a non negligible part of the instances are fired by none of

the 20 induced rules. This information is given by the node labeled as “INSTANCES

STRETCHING” (zoomed in the top right square to appreciate its details) which shows

that 13 instances (3.9% of the total) were not covered, and their corresponding class

distribution is depicted in color sector areas (5 of class cp, 5 of im, 2 of pp, and 1 of imU ).

These instances trigger the stretching mechanism.

18 rules were dynamically generated by the stretching mechanism to deal with the

13 uncovered instances. Table 3.2 shows the information of those stretched rules –rule

identifiers R
i

.q where R
i

is the original rule from the rule derives and q the number of

antecedents kept, Antecedents shows the rule antecedents of each rule. In addition, the

table includes rule output class B
i

, coverage of rules cov
i.q

(Eq. 3.11), purity of rules

pur
i.q

(Eq. 3.14), weight of rules wi.q (Eq. 3.31), and coverage of rule output class cc
i.q

(Eq. 3.15).– The last line in the table shows the amount and output class of instances

even not covered by the stretching mechanism.

Figure 3.7 presents the Fingram representing the set of stretched rules. Metric m1
ij

yields the principal Fingram in the figure whereas Fingram in the bottom left square was

constructed with metric m0
ij

. We observe that metric m1
ij

better avoid subsets of highly

connected nodes and it allows an easier analysis.

The set of stretched rules covers 5 classes (classes cp, im, pp, imU, and om) out of the

8 classes in the dataset, even though the distribution of uncovered instances in Figure 3.6

was related to only four of such classes. Notice that class om was not among instances

for stretching.

FURIA builds a high number of rules (18 rules) to deal with a few instances (13

instances). These rules are quite specific and they cover very few instances (rules R1.1,

R3.1 or R7.2 just one instance each) while each single instance is usually covered by several

fuzzy rules. This particularity of the stretching mechanism occludes the interpretability

of FURIA.

The structure of the Fingram of stretched rules is more complex than the previous.

All the nodes are connected and the edges present higher values meaning that the rules
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Table 3.2: Information of the set of stretched rules for Ecoli dataset.

Ri.q Antecedents Bi covi.q puri.q wi.q cci.q

R1.1 alm1 in [�1, �1, 0.38, 0.39] cp 0.006 0.000 0.486 0.007
R3.1 alm1 in [�1, �1, 0.47, 0.49] cp 0.006 0.000 0.382 0.007
R4.1 alm1 in [0.75, 0.76, 1, 1] im 0.018 0.167 0.478 0.013
R5.1 alm1 in [0.55, 0.61, 1, 1] im 0.006 1.000 0.475 0.013
R6.2 alm2 in [0.59, 0.63, 1, 1] im 0.018 0.167 0.452 0.013

& mcg in [�1, �1, 0.74, 0.79]
R7.2 alm1 in [0.82, 0.85, 1, 1] im 0.006 1.000 0.541 0.013

& mcg in [�1, �1, 0.74, 0.86]
R9.2 alm2 in [0.35, 0.74, 1, 1] im 0.006 0.000 0.415 0.013

& alm1 in [�1, �1, 0.72, 0.73]
R11.3 gvh in [0.58, 0.59, 1, 1] pp 0.006 1.000 0.636 0.019

& aac in [�1, �1, 0.47, 0.57]
& alm1 in [�1, �1, 0.65, 0.67]

R11.1 gvh in [0.58, 0.59, 1, 1] pp 0.009 0.000 0.318 0.019
R12.4 gvh in [0.53, 0.56, 1, 1] pp 0.006 1.000 0.651 0.019

& mcg in [0.61, 0.63, 1, 1]
& aac in [�1, �1, 0.63, 0.65]
& alm1 in [�1, �1, 0.52, 0.53]

R12.3 gvh in [0.53, 0.56, 1, 1] pp 0.009 0.000 0.520 0.019
& mcg in [0.61, 0.63, 1, 1]
& aac in [�1, �1, 0.63, 0.65]

R12.2 gvh in [0.53, 0.56, 1, 1] pp 0.009 0.000 0.390 0.019
& mcg in [0.61, 0.63, 1, 1]

R13.1 mcg in [0.67, 0.7, 1, 1] pp 0.012 0.273 0.360 0.019
R14.1 alm2 in [0.39, 0.62, 1, 1] imU 0.021 0.000 0.400 0.029
R15.3 alm2 in [0.46, 0.66, 1, 1] imU 0.009 0.000 0.475 0.029

& mcg in [0.58, 0.62, 1, 1]
& gvh in [�1, �1, 0.45, 0.46]

R15.2 alm2 in [0.46, 0.66, 1, 1] imU 0.015 0.000 0.356 0.029
& mcg in [0.58, 0.62, 1, 1]

R17.1 aac in [0.66, 0.68, 1, 1] om 0.006 0.000 0.356 0.050
R18.1 gvh in [0.67, 0.68, 1, 1] om 0.012 0.000 0.343 0.050
Uncovered instances im 0.006

densely cover the input space. Most of those edges correspond to inconsistencies, i.e. they

relate rules with di↵erent output class.

The special node that is labeled as “UNCOVERED INSTANCES” shows that there are

some instances which remain uncovered even after running the rule stretching mechanism.

In such case, the inference mechanism produces as output the majority class, cp.

Finally, we study in detail the inference mechanism for a couple of instances. This way

we show the benefits of considering instance-based Fingrams to locally view the FRBS

inference mechanism. We graphically observe the rules that participate in the inference

process, understanding the behavior of the system in a specific situation.

Firstly, Figure 3.8(a) presents the instance-based Fingram for an instance covered

by the set of induced rules (instance I321 = {0.68, 0.67, 0.48, 0.5, 0.49, 0.4, 0.34, pp}).
This instance only fires rules R11, R12 and R13 with level of firing 0.80, 1.00 and 0.33

respectively as shown by the colored sectors in the picture. The three rules have the
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Figure 3.7: Fingram of the set of stretched rules for Ecoli dataset.

same output class pp, therefore the three related nodes have the same green color in the

representation. The level of S
c

l

(Eq. 3.27) for the given instance is presented in the bar

chart of Figure 3.8(b). We clearly see that the system correctly infers class pp.

Secondly, we selected an instance that is not covered by the set of induced rules (in-

stance I211 = {0.69, 0.39, 0.48, 0.5, 0.57, 0.76, 0.79, im}). In consequence, the stretching

mechanism is run as part of the inference process. I211 is handled by the stretched rules

R4.1, R6.2, R13.1, R14.1 and R15.3, as seen in Figure 3.9(a). In this case, all but rule R13.1 are
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(a) Instance-based Fingram. (b) Levels of SCl .

Figure 3.8: Analysis of inference for I321 = {0.68, 0.67, 0.48, 0.5, 0.49, 0.4, 0.34, pp} in
the Ecoli classification problem.

fired to level 1 (µ
R13.1(I211) = 0.67). The stretching mechanism correctly inferred class im

because it is the winner class for S 0
c

l

(Eq. 3.29) as can be seen in Figure 3.9(b). Anyway,

we observe that S 0
im

⇡ S 0
imU

what is not desirable because it may produce ambiguity since

a small variation in the input may incorrectly infer imU as output class.

The interested reader can find additional examples on the of Fingrams on fuzzy clas-

sifiers at [65, 68].

(a) Instance-based Fingram. (b) Levels of S0
Cl

.

Figure 3.9: Analysis of inference for I211 = {0.69, 0.39, 0.48, 0.5, 0.57, 0.76, 0.79, im} in
the Ecoli classification problem.
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3.2.2 Case of use on fuzzy regressors

When dealing with regression problems, the well-known FRBS approximation capability

is mainly based on the interpolative reasoning carried out among overlapping rules. Typ-

ically, two rules with similar premises may yield two di↵erent wrong outputs but their

aggregation may result in the right inferred interpolated output. Unfortunately, this kind

of situations are quite common but very di�cult to identify. Of course, from the compre-

hensibility point of view it would be desirable to have only one rule that directly yields

the right inferred output. However, this may produce a huge number of rules what is also

undesirable. Fingrams permit the analysis of such behavior as we will overview in this

section.

We selected an electrical network distribution problem [26, 27] to be analyzed. The

system aims to estimate the length of the low voltage line installed in a certain village.

The problem has two input variables (the population of the village and its radius) and

one output variable (the total length of the installed line). Real data of 495 villages are

available. The training set contains 396 elements and the test set includes 99 elements,

randomly selected from the whole sample, taken from KEEL dataset repository3. Here

we will use just the training set to create the Fingrams thus being able to compare the

accuracy results with previous works.

First of all, the problem variables are partitioned using strong fuzzy partitions as pre-

sented in [65]. The partitions of the input variables (Inhabitants and Distance) are tuned

to improve the performance, while the output variable is partitioned homogeneously cov-

ering the interest range, i.e., the range where problem instances are located. Using these

fuzzy partitions along with the Fuzzy Prototype Algorithm FPA[42] the following set of

rules is generated:

R1: IF Distance is Very Low THEN Length is Very Low

R2: IF Inhabitants is (Very Low OR Low OR Average) AND Distance is Low THEN Length is Low

R3: IF Inhabitants is Very Low AND Distance is Average Low THEN Length is Low

R4: IF Inhabitants is (Low OR Average) AND Distance is Average Low THEN Length is Average Low

R5: IF Inhabitants is High AND Distance is Low THEN Length is Average Low

R6: IF Inhabitants is (Very Low OR Low) AND Distance is Average High THEN Length is Average

R7: IF Inhabitants is Very High AND Distance is Average Low THEN Length is Average

R8: IF Inhabitants is Average AND Distance is (Average High OR High) THEN Length is Average High

R9: IF Inhabitants is Very High AND Distance is Average High THEN Length is High

R10: IF Inhabitants is Very High AND Distance is High THEN Length is Very High

3http://sci2s.ugr.es/keel/datasets.php



38 Chapter 3. Discussion of results

This FRBS exhibits a good accuracy 4 (MSE = 130, 045), similar to the one obtained

in [26] (MSE = 133, 763). Anyway, we should again remind that we are not focused

on finding the most accurate FRBS for the tackled problem. Our target is showing the

utility of Fingrams in the context of a real-world regression problem.

As explained previously in Section 3.1.4.2, the output of each fuzzy rule will be reflected

in the color of the nodes. From dark to light the node colors represent a range from low

to high values, and red nodes indicate rules not covering any instance. So for, the output

label “Very Low” will be represented by the darkest node while “Very High” corresponds

to the lightest one close to white. Naturally, the system will have relations among close

labels and close colors, and when nodes of quite di↵erent darkness are related the expert

should focus her/his attention on them.

Figure 3.10: Complete Fingram for the electrical distribution problem.

Figure 3.10 shows the non-scaled Fingram constructed using metric m0
ij

for the FRBS

previously presented. It can be seen that the two dimensions and the use of strong fuzzy

4Accuracy is computed as the mean square error (MSE).

MSE =
1

d

dX

k=1

(yk � ŷk)
2 (3.32)

where d means the number of problem instances, yk is the real output value of instance Ik, and ŷk is the
inferred output by the FRBS.
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partitions allow the Fingram to spread the nodes in a grid, relating close outputs, i.e

the evolution of darkness of the nodes is mapped smoothly. Rules R2 and R4 are quite

general, covering almost half of the problem instances (cov2 = 0.427 and cov4 = 0.467).

Contrary, rules R5, R7, R9 and R10 cover a small amount of problem instances, thus being

very specific. Moreover, rule R10 does not cover any instance (cov = 0), easily appreciated

by the red node, and thus it can be eliminated without any accuracy loss. In addition,

all rules but R1 have two antecedents, as it is appreciated in the single-line border of the

nodes.

The Fingram analysis lets us discover a special relation between rules R7 and R9 that

appear isolated in a group, composing a kind of “fuzzy rule cluster” in a specific problem

domain region. They cover instances that no other rule covers. Moreover, they cover

exactly the same instances (m0
79 = 1.0) but having di↵erent outputs. Even more, rule

R9 has a negative goodness, �0.725, so for it is a candidate to be removed, adjusting, if

necessary, the output of R7. A thorough analysis of these rules is required to avoid this

kind of behavior. Notice that only looking R7 and R9 at linguistic level is not enough for

detecting this kind of potential problems, but our Fingram-based analysis methodology

allows us to quickly identify them.

Figure 3.11: Fingram scaled with Pathfinder for the electrical distribution problem.

Figure 3.11 shows the network corresponding to the Fingram scaled with Pathfinder.

It emphasizes a high relation among rules R3, R4, and R6 showing that they cover many

instances in common. This interrelation suggests to merge the three rules in a single one.

To do so, a new rule, R346, is constructed from R3, R4, and R6 in an expert way. The

antecedents of these rules are combined and the output is taken from the middle term.
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This is done just as an illustrative example, and a more complex process, testing the

alternatives, could be done.

R3: IF Inhabitants is Very Low AND Distance is Average Low THEN Length is Low

R4: IF Inhabitants is (Low OR Average) AND Distance is Average Low THEN Length is Average Low

R6: IF Inhabitants is (Very Low OR Low) AND Distance is Average High THEN Length is Average

R346: IF Inhabitants is AND Distance is THEN Length is Average Low

(Very Low OR Low OR Average) (Average Low OR Average High)

We developed the suggested changes in a sequential fashion (i.e., first removing R10,

then removing R9, and finally merging R3, R4, and R6) and then we checked how they af-

fect the resulting FRBS accuracy and interpretability (see Table 3.3). As was pointed out

in Section 1.1, taking only one index is not enough to evaluate interpretability. Therefore,

we have considered some of the interpretability indices that are commonly used in the

literature. Probably, the most popular index is the number of rules (NR). As an alter-

native, the total rule length (TRL) represents the total number of linguistic propositions

into the whole rule base. Another simple index is average rule length (ARL), computed

as ARL = TRL/NR. We will also report the average number of fired rules with respect

to problem instances (AFR).

Table 3.3: Quality evaluation of the FRBSs proposed for the electrical distribution prob-
lem.

Quality index Original FRBS R10 removal R9 removal R3-R4-R6 fusion

MSE 130,045.827 130,045.827 125,510.863 155,838.13

NR 10 9 8 6

TRL 19 17 15 11

ARL 1.9 1.889 1.875 1.83

AFR 2.463 2.463 2.446 1.695

COFCI 0.971 0.971 0.974 0.981

Analyzing the reported results we can conclude that the removal ofR10 does not change

the behavior of the system because, as mentioned, it does not cover any problem instance.

Thus, MSE, AFR and COFCI remain the same while the interpretability indices related

to transparency (NR, TRL and ARL) are improved. However, deleting the rule R9

simplifies the FRBS improving both accuracy (MSE decreases) and interpretability (all

the considered interpretability indices get better values). The new Fingram resulting from

these two eliminations can be observed in Figure 3.12.

Although the fusion of R3, R4, and R6 reduces the accuracy of the FRBS, it could

still be a good option to get a more compact and understandable FRBS (notice that, all

the interpretability indices are clearly improved). Besides, a more elaborated rule fusion

mechanism could be considered by the expert to minimize the accuracy loss.

The interested reader can find additional details about the use of Fingrams in regres-

sion problemas at [65].
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Figure 3.12: Fingram of the best simplified FRBS for the electrical distribution problem.

3.2.3 Case of use on fuzzy association rules

The analysis of Fingrams for fuzzy association rules (FAR-Fingrams) permits the detection

of some common behaviors in groups of this kind of rules. The way how rules are connected

to each other gives an idea of the complexity and interrelation among them. Sparse rules

are usually easier to understand, whereas densely connected rules are more complex to

comprehend. However, there may be cases that produced complete subgraphs with very

tight relations what reflects a common behavior. On the one hand, highly related rules

are candidates to be merged into a more general one because they normally share most of

the antecedents and consequents. Those are easily recognized in Fingrams because they

usually produce very dense structures. On the other hand, isolated sets of rules covering

disjoint sets of instances appear like islands. Those connected rules inside the island do

not share any instance with other external rules.

The utility of FAR-Fingrams is illustrated in a real-world problem dealing with qual-

itative assessment of industrial objects automatically designed through cognitive engi-

neering, in the context of QualeR� research line5. Namely, we focused on finding out the

most interesting fuzzy association rules related to explain how di↵erent users evaluated

the degree of femininity of a set of chairs. We considered data coming from a project6

where people had to evaluate the femininity degree of 23 models of chairs. They were

sequentially displayed, in a poll, allowing the users to introduce their appreciations in

5Quale R� is a research line of the European Centre for Soft Computing that supports the human-
centered design of customized products/services, considering the analysis and quantification of qualitative
assessments. More info at: http://www.softcomputing.es/quale/.

6Project “Development of a Fuzzy Inferential System for the Quantification of Intangible Assets” at the
European Centre for Soft Computing in collaboration with Vortica. More info at: http://bit.ly/18ZsEt7
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turn (see two examples of chairs in Figure 3.13). The poll received 644 evaluations from

28 users (11 males and 17 females).

(a) Model with femininity
“high”.

(b) Model with femininity
“low”.

Figure 3.13: Examples of chairs used in the poll related to the quantification of intangible
assets.

It is possible to relate the femininity degree associated to each chair with its physical

properties. With that aim, once analyzed all collected data, we decided to induce fuzzy

association rules from the aggregated answers provided by di↵erent groups of users. In

this section, for the sake of clarity we will discuss only the analysis for the group of

women who participated in the poll. Notice that, we use this real case study just as an

illustrative example, giving an overview of the potentials of FAR-Fingrams. The main

goal is to identify and analyze subsets of fuzzy association rules from an expert analysis

point of view.

The learning algorithm used [3] extracted both membership functions (MFs) and fuzzy

association rules for the given dataset. It tackles with quantitative values by means of

a genetic learning of the MFs based on the 2-tuples linguistic representation model and

the use of a basic method for mining the fuzzy association rules. The initial linguistic

partitions are comprised by 5 linguistic terms with uniformly distributed triangular MFs.

The parameters of the algorithm were selected according to the recommendations of the

authors, which are the default parameter settings included in the KEEL software tool [4].

Notice that, in this case we have used 0.25 and 0.9 for the minimum support and minimum

confidence, respectively.

As result, we generated 31 rules that relate the variables Femininity, Distance be-

tween legs, Distance between armrests, Distance from the seat to the ground, Type of base,

and Type of structure. Then, we built FAR-Fingrams using metric m2
ij

(as presented in

Eq. 3.10) to represent and analyze the set of fuzzy association rules. We looked for the

most interesting rules, thus illustrating the potentials of FAR-Fingrams.
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Figure 3.14: FAR-Fingram for the femininity of chairs assessment problem.

First of all, we constructed the complete FAR-Fingram regarding all the 31 rules (Fig-

ure 3.14). The structure of this Fingram reflects a clear separation among two groups

of rules, those dealing with high femininity (left hand side of the figure) and those cor-

responding to low femininity (right hand side). Notice that weights of edges connecting

rules inside each group are much greater than the weights of those edges connecting rules

belonging to the two distinct groups. This is something really close to the so-called com-

munity mining in social network analysis. A group of nodes forms a community when

inner connections among group members are stronger than outer connections with mem-

bers of other groups. So, we can say that the two identified groups of rules form two well

defined communities according to social network analysis. Moreover, rules referring to

high femininity have higher Lift too. This fact is reflected with darker nodes.

Then, we conducted a detail analysis of each community in the quest for the most

interesting rules regarding high or low femininity. In both cases, we discarded rules with

more than 2 antecedents (giving priority to more general and shorter rules, from the

interpretability viewpoint) and with lower Lift. We actually discarded those rules with

Lift under the thresholds 1.44 and 1.21 in high and low femininity rules respectively.

Figs. 3.15(c) and 3.15(d) show the resultant FAR-Fingrams. They include the rule de-

scriptions at the bottom.

Figure 3.15(c) permits appreciating that rules R9 and R15 cover the same instances

with the same levels of firing (the related edge weight equals 1.0). Looking carefully at the

rule description, it is easy to deduce that variable Distance between legs is not changing
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R9: {Distance between legs is Very Low AND Feminin-
ity is High} * {Distance between armrests is Very
Low}

R11: {Distance between legs is Very Low AND Femininity
is High} * {Distance between armrests is Low}

R15: {Distance between legs is Low AND Femininity is
High} * {Distance between armrests is Very Low}

R17:{Distance between legs is Low AND Feminin-
ity is High} * {Distance between armrests is
Low}

(c) High femininity.

R12:{Distance between legs is Very Low AND
Femininity is Low} *{Base is Traditional}

R13:{Distance between legs is Very Low AND
Femininity is Low} * {Structure is Geomet-
ric lines}

R20: {Distance between armrests is Low AND Femininity
is Low} * {Base is Traditional}

R21: {Distance between armrests is Low AND Femininity
is Low} * {Structure is Geometric lines}

(d) Low femininity.

Figure 3.15: Filtered FAR-Fingrams for the femininity of chairs assessment problem.

the firing degree of the handled instances. Moreover, R9 and R15 have lower Support

(smaller nodes) and higher Lift (darker nodes) with respect to rules R11 and R17. In

addition, we can see that all the rules are very similar and highly related. Therefore, we

can look for the most interesting one considering measures of Support, Confidence and

Lift, and highlight our selection. To do so, we have remarked, in bold, R17.

A dual analysis of Figure 3.15(d) leads us to highlight R12 and R13 as the most

interesting rules among those ones related to low femininity. Moreover, pairs of rules

R12–R13 and R20–R21 are covering exactly the same instances. Paying attention to

the symmetrical structure in Figure 3.15(d) we see that R12 and R13 are equivalent.

They emphasize a strong relation between low femininity and both traditional base and

structure with geometric lines.

The interested reader can find additional information about FAR-Fingrams and the

femininity of chairs assessment problem at [63, 64].
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3.3 Software Implementations

This section presents the software designed and implemented during this dissertation to

work with the Fingram-based methodology.

3.3.1 Fingrams Generator

Fingrams Generator software is a command-line tool that allows Fingram generation

and analysis. It has been designed as a stand-alone tool which can be invoked from

any fuzzy design software. With this solution, we encourage developers of fuzzy system

software to enhance their own tools by adding modules able to take profit of the Fingrams

produced by this tool. Fingrams Generator is freely available as open source software at

https://sourceforge.net/projects/fingrams/.

This tool requires a .fs input file with all demanded information about the designed

fuzzy system, such as the set of rules, the instances covered by each rule, the set of

uncovered instances, and so on. More concisely, Figure 3.16 details the structure of such

configuration file.

• The first line should contain the type of rules to construct Fingrams from (Classifi-

cation, Regression or Association).

1 Classification/Regression/Association
2 C1(100),C2(50), .../Low(20), Medium(10), .../Vble_1(LABEL_0,LABEL_1), Vble_2(LABEL_0), ...
3

4 Source: GUAJE/FURIA/KEEL/...
5 Blank threshold: 0.1
6 Goodness Threshold (high): 0.5
7 Goodness Threshold (low): 0.1
8

9 Rules: 11
10 Instances: 200
11

12 Rule1: If Vble_1 is Low THEN Class is C1 (W=1)
13 Correct Instances => (22.93300) (0.63703) => 98(0.333), 99(0.264), 100(0.123), ...
14 Incorrect Instances => (4.89900) (0.22268) => 17(0.109), 21(0.235), 47(0.212), ...
15 Positive Instances => (20.47700) (0.68257) => 98(0.333), 100(0.123), 102(0.421), ...
16 Negative Instances => (4.89900) (0.22268) => 17(0.109), 21(0.235), 47(0.212), ...
17

18 Rule2: If Vble_2 is Medium THEN Vble_Output is Low (W=0.982)
19 Correct Instances => (3.00300) (0.25025) => 7 (1.0), 14(0.352), 17(0.829), ...
20 Incorrect Instances => (0.00000) (0.00000) => There are no items
21 Positive Instances => (0.00000) (0.00000) => There are no items
22 Negative Instances => (0.00000) (0.00000) => There are no items
23

24 Rule3: IF Vble_3 is LABEL_1 THEN Vble_4 is LABEL_0
25 Rule Support => (737.32151) (0.67830) => 1(0.561), 2(0.407), 3(0.872), ...
26 Antecedent Support => (747.00990) (0.68722) => 1(0.561), 2(0.407), 3(0.872), ...
27 Consequent Support => (998.73089) (0.91879) => 1(0.561), 2(0.407), 3(0.872), ...
28

29 ...
30

31 Rule11: UNCOVERED INSTANCES
32 80(C1), 90(C1), 93(C2), ... / 1, 2, 3, ... / 4, 5, 6, ...

Figure 3.16: Structure of .fs files handled by Fingrams Generator software.
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• The second line changes depending on the selected type of rules. It includes the

classes (with the number of instances per class in brackets) for classification prob-

lems; the output linguistic labels (with number of instances corresponding to each

label in brackets) in case of regression problems7; and the possible output variables

along with the attached linguistic terms for fuzzy association rules.

• The next four lines show information about the origin of the fuzzy system and the

thresholds used. The first shows the software used to create the .fs file (GUAJE,

FURIA and KEEL are shown as example). The next three show merely informative

values of three thresholds. Blank threshold represents the minimum level an instance

should fire a rule to be taken into account. Goodness thresholds (low and high)

correspond to the minimum and maximum levels of rule firing that are considered

when computing the goodness measure (as presented in Eq. 3.12) in classification

and regression problems. These two final thresholds are not taken into account in

case of fuzzy association rules.

• The next two lines yield the total number of rules (plus one in case of having

uncovered instances) and the total number of data instances.

• Then, information related to each rule is detailed. For illustrative purposes, we

have included three examples of rules (each one corresponding to one of the three

types of rules that are considered) and a final line showing how to specify uncovered

instances. Thus, Rule1, Rule2, and Rule3 exemplify rules of classification, regression

and association respectively. In all cases the first line gives the rule identifier along

with its linguistic description and their weight, if specified.

– In case of classification rules, each rule is accompanied by four lines. The first

two lines give the enumeration of correct and incorrect covered instances, i.e.

data instances covered concordant or not with rule output class. The next

line lists the positive instances, i.e. correct instances that fires the rule above

the high goodness threshold. The last line enumerates the negative instances,

i.e. incorrect instance plus the correct instances that are fired below the low

goodness threshold. In all the four cases, the values in parenthesis at the

the beginning of lines are the accumulated and average firing degrees of the

enumerated instances, and the value after each instance identifier gives the

level up to which it fires the corresponding rule.

– For regression problems, each rule comes with almost the same information.

Formally, the four lines are the same. The only di↵erence turns out in the inter-

pretation of the meaning of correct/incorrect and positive/negative instances.

The interested reader can get additional information in [65].

7The software permits the use of multi-input-single-output (MISO) FRBSs for regression problems.
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Figure 3.17: Software scheme of Fingrams Generator software.

– In case of fuzzy association rules, each rule description is accompanied by three

lines. They are related to the support of the entire rule, of its antecedent and

consequent parts alone. For each of them, we enumerate the list of supported

instances along with the total accumulated support (first parenthesis) and the

average support (second).

– Last part of Figure 3.16 shows how to specify uncovered instances (as presented

in Eq. 3.4(b)) in this configuration file. First line shows the text UNCOVERED

INSTANCES. Second line includes the identifier of instances not covered by the

set of rules. Only in case of classification rules this identifier is accompanied

by the output class of the instance in brackets.

We developed the software using Java. We chose this programming language because

it is characterized by high penetration in academic and professional tools, modular design

and maintenance, and interoperability through operating systems. The creation, visual-

ization and analysis of Fingrams are done in four steps as sketched in Figure 3.17. The

first three are as presented in Section 3 and the forth is in charge of showing the generated

Fingrams to the user.

Some implementation details are given below:

1. Network generation: We have developed ad-hoc software for this task. It is in

charge of creating the co-firing matrix that characterizes all the relations among

rules.

2. Network scaling: We have included a Java implementation of Fast-Pathfinder [71],

a variant of Pathfinder that reduces the complexity of the original Pathfinder algo-

rithm.
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Figure 3.18: Screenshot of resultant window of Fingrams Generator software.

3. Network drawing: We generate the layout of the final Fingram using the open

source visualization software Graphviz8. By default neato option is chosen to gener-

ate a layout based on the Kamada-Kawai [51] spring embedded algorithm. We can

store the resultant image in di↵erent picture formats, but .svg is chosen by default.

4. Network visualization: We developed a SVG viewer (using Batik library for

Java9) aimed at making user-friendly the visualization of the generated Fingrams.

It includes three tabs: (1) Fingram tab; (2) Measures tab; and (3) Legend tab as

presented in Figure 3.18.

Thanks to the use of SVG format the user can interact with the graph in the first

tab (Figure 3.18) through zooming, moving, and/or exploring in depth some zones

of interest in the Fingram. In addition, when the user passes the mouse over a node

or an edge, a text pops up with the additional information of the related element.

The Measures tab gives several rule rankings based on some of the most popular

measures in the context of social network analysis, such as Page Rank or Centrality.

Finally, the Legend tab present a specific legend that helps in the comprehension of

the Fingram.

8Graphviz is freely available at: http://www.graphviz.org.
9Batik is freely available at: http://xmlgraphics.apache.org/batik/.



3.3. Software Implementations 49

Fingrams Generator allows di↵erent parameters to construct Fingrams as presented

below. A deeper explanation of those parameters is available at:

https://sourceforge.net/projects/fingrams/.

Usage: <main class> [options]

Options:

-d, --drawing

Drawing algorithm

Default: neato

-e, --example

Example to construct the instance-based Fingram for

Default: -1

-g, --guaje

Execeute the code in GUAJE mode

Default: -1

-h, --help

Shows the help of the Fingrams generator

Default: false

* -i, --input

Input file

-m, --metric

Metric used to construct the social network

Default: 0

-n, --noWindow

Do not show the Fingrams in a window

Default: false

-o, --output

Format of the output file

Default: SVG

-t, --threshold

Threshold to scale the network previous to apply Pathfinder

Default: 0.0

-v, --verbose

Show the expended times per phase

Default: false

-q

Parameter ’q’ for pathfinder algorithm (N-value), default is

1 (N-1) with N the number of nodes

Default: 1



50 Chapter 3. Discussion of results

3.3.2 GUAJE

A software package for Fingrams generation and analysis is already implemented as part

of the GUAJE tool10. GUAJE stands for Generating Understandable and Accurate fuzzy

models in a Java Environment. It consists on a computational environment aimed at

yielding a good interpretability-accuracy trade-o↵ thanks to combining expert and induced

knowledge in a common framework. GUAJE takes profit from the main advantages of

several preexisting open source tools, as the Fingrams Generator software presented in

the previous section.

GUAJE has been enhanced with a software module for Fingram generation and anal-

ysis. It permits the creation of classification and regression Fingrams.

(a) Expert window.

(b) Selection of parameters.

(c) Selection of metric.

Figure 3.19: Generation of Fingrams in the software tool GUAJE.

Once a FRBS is generated, we can use Fingrams with the aim of understand the

FRBS behavior at inference level. Several windows are presented, following a sequential

procedure to construct Fingrams:

1. First of all, we have to launch the Fingrams module by clicking the corresponding

button in the GUAJE expert window (highlighted in Figure 3.19(a)).

2. Then, we must set some parameters (see picture in Figure 3.19(b)):

• Goodness Threshold. Upper and lower thresholds for estimating the good-

ness of coverage regarding each single rule. The goodness measure informs

about how well each rule classifies the problem instances that it covers. A rule

10 GUAJE is freely available as open source software at http://sourceforge.net/projects/guajefuzzy/.
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covers one problem instance when the rule firing degree for that instance is

greater than a predefined threshold.

• Pathfinder Threshold. This parameter is used for pruning the initial graph

(removing those edges with weights smaller or equal than the threshold), before

running Pathfinder.

• Q. This is the specific parameter of Pathfinder which limits the number of edges

in the paths respecting the triangle inequality. GUAJE suggests assigning to

Q the maximum number of rules that can be simultaneously fired, which is

estimated in an inferential way regarding the available dataset. In consequence,

the network scaling will take shorter time. Anyway, by default Q = N � 1,

with the aim of assuring that all paths are properly analyzed.

3. A popup panel messages allow us to select the metric used to construct Fingrams

(Figure 3.19(c)). Three metrics (Symmetric Relation (Basic) corresponds to m0
ij

,

Symmetric Relation (Advanced) tom1
ij

and Asymmetric Relation tom2
ij

) are allowed

in GUAJE.

4. Afterwards, we have to choose a layout algorithm among those provided by Graphviz

(neato corresponds to Kamada-Kawai [51], fdp to Fruchterman-Reingold [37], circo

to a circular layout, and so on).

5. After that, we can also select an instance to create an instance-based Fingram from

it.

6. Then, the GUAJE window of Figure 3.20(a) appears. The body of the window is

structured in the form of a tabbed panel. The Quality tab gives an overview of

the quality of the designed FRBS. It provides a list of quality indices11 regarding

both accuracy (on the left) and interpretability (on the right). Moreover, the user

can interpret Fingrams according to the information presented in the Legend tab

(Figure 3.20(b)).

(a) Quality view. (b) Legend view.

Figure 3.20: GUAJE Fingrams window.

11Such indices are thoroughly explained in the GUAJE user manual.
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7. Once selected the Fingrams to display, the GUAJE window for Fingram analysis

turns out (Figure 3.21). This window is dual to the presented in section 3.3.1.

Moreover, in this implementation the user can disable rules by clicking on its cor-

responding node, i.e., a rule is temporally deactivated in the rule base, and the

Fingram is generated again without taking care of that rule. In consequence, fuzzy

systems design in GUAJE becomes an interactive process which is e↵ectively guided

by decisions drawn from the expert analysis of Fingrams.

(a) Fingram tab. (b) Legend tab.

(c) Measures tab.

Figure 3.21: Fingram analysis window in the software tool GUAJE.

Finally, it is worthy to remark that GUAJE comes with several intuitive and interactive

tutorials. One of them shows the benefits and potentials of Fingrams for aiding the design

of FRBSs [13]. It details, step by step, first how to build an interpretable fuzzy rule-based

classifier and then how to simplify and optimize it, looking for the best balance between

accuracy and interpretability supported by Fingrams.

The interested reader can find an illustrative case study in [67] where he/she can better

understand the GUAJE module for creation of Fingrams.
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3.3.3 KEEL

We have designed and developed a module that permits the creation of FAR-Fingrams

(as introduced in Section 3.1.4.3) in the suite KEEL.

KEEL12 is a software tool to assess computational intelligence algorithms for Data

Mining problems including regression, classification, clustering, pattern mining and so

on [5, 4].

Fingrams module takes as input the fuzzy association rules generated by one of the

algorithms into KEEL and constructs FAR-Fingrams in vectorial SVG format. It can be

used over fuzzy association rules created by the algorithms Alcalaetal-A, FuzzyApriori-A,

GeneticFuzzyAprioriDC-A, and GeneticFuzzyApriori-A available in KEEL.

Figure 3.22 illustrates the use of this module. The blue nodes in background create

fuzzy association rules, while the brown ones are in charge of constructing FAR-Fingrams.

The dialog presented in the foreground of the figure shows the possibilities Fingram mod-

ule provides. Fingrams module requires Graphviz 2.30 (or later) libraries installed in the

computer. Thus, a pop-up message warns about that when first use of the module.

We will overview here the possibilities the KEEL Fingram module provides and how

the di↵erent parameters should be selected (see Figure 3.22).

Figure 3.22: Experiments window of suite KEEL.

1. Rule selection: This option allows selecting those rules with a value for the Lift

measure higher than a threshold. This reduces the number of rules to consider and

allows the user to focus his/her attention in those more relevant.

2. Fingram generation: Two parameters can be selected in the dialog for this step.

Parameter “Fingrams Generation ! Metric” permits constructing FAR-Fingrams

through m0
ij

and m2
ij

co-firing metrics (as presented in Section 3.1.1. And “Fingrams

12KEEL is freely available as open source software at: http://www.keel.es/.
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Generation ! Blank threshold” lets the user to discard instances that fire rules

below a threshold.

3. Fingram scaling: This option allows us to create the complete and scaled FAR-

Fingrams, allowing the user to study both in detail. Pathfinder algorithm requires

a Q parameter that constrains the number of indirect proximities examined when

generating the network. It must be an integer value between 1 and N � 1, where

N is the number of nodes to take into account. The configuration window of the

module allows changing that value.

4. Fingram drawing: Fingrams can be displayed using Kamada-Kawai [51] and

Fruchterman-Reingold [37], two of the most representative and used methods of

force-directed algorithms. As result, we obtain SVG images enriched with addi-

tional information. The use of this vectorial format permits a comfortable analysis,

zooming and moving around the interesting zones.

A deeper explanation of this software module and cases of use can be found in [63, 64].

3.3.4 KNIME

We designed and developed a set of software nodes that permit the creation and visual-

ization of Fingrams in Konstanz Information Miner (KNIME) [16].

KNIME13 is a modular, open platform for data integration, processing, analysis, and

exploration. KNIME is increasingly used in industry and in academia in various areas of

data mining and machine learning. Due to the modular nature of KNIME, it is straight-

forward to add other data types such as sequences, molecules, documents, or images.

Fingram nodes for KNIME take advantage of the KNIME plug-in for social networks

as well as the KNIME fuzzy types and nodes. The modular environment of KNIME allows

us to reuse the social networks plug-in nodes to filter, visualize and analyze Fingrams.

Moreover, we developed a Pathfinder node to scale not only Fingrams but any social

network in KNIME.

• Fingram Generator: This is in charge of creating Fingrams from a given fuzzy

rule-based classifier, a set of data instances, and an empty social network. The

output is a social network reflecting rule interaction at inference level.

• Fingram Generator From File: This node creates a Fingram from a .fs config-

uration file (as presented in Figure 3.16) that provides information related to fuzzy

rules along with the lists of data instances firing them. As result, this node admits

fuzzy association rules, fuzzy rule-based classifiers and regressors developed outside

KNIME. It is important to remark that it requires an empty network as input, like

13KNIME is available as open source software at http://www.knime.org
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Figure 3.23: Fingrams workflow in KNIME software platform.

all social network nodes in KNIME. The output is a social network like the one

given by the previous “Fingram Generator” node.

• Edge Pathfinder Filter: It permits the scaling of social networks using the

Pathfinder Algorithm [75]. An edge is filtered if and only if it exists a path of

length Q or smaller with higher associated value (minimum of the values along the

path) than the direct edge. The parameter Q can be set in the configuration dialog

and takes values between [1, N � 1] (with N the number of vertices).

Figure 3.23 illustrates the common use of the nodes introduced above. “Fingram Gen-

erator” and “Fingram Generator From File” construct Fingrams that are then scaled using

“Edge Pathfinder Filter”, and finally presented to the user with the KNIME “Network

Viewer” node.

Figure 3.24 shows a Fingram constructed in KNIME. Nodes only include rule identifiers

in this implementation More information of the elements of the Fingram is given in the

right side table, such as the number of antecedents of the rules, weight of the edges or the

text of the rule.

The implementation of these modules, along with exploration of other metrics and

layouts, were done from May to July of 2013, during a stay at Department of Computer

and Information Science, University of Konstanz, Germany. From this collaboration, we

have published two congress papers [66, 69].

During this stay, we developed a new Fingram layout based on a multidimensional scal-

ing approach. We take advantage of a mapping from high dimensional feature spaces onto
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Figure 3.24: Illustrative example (IRIS) using KNIME software platform.

two-dimensional spaces which maintains the pairwise topological distances between fuzzy

classification rules proposed by Gabriel et al. [38]. That method uses multi-dimensional

scaling to place the rule centers and subsequently extends the rules regions to depict their

overlap. This results not only in a visualization of the distribution of rules (coherent

with the underlying data distribution) but also enables the relationship to their immedi-

ate neighbors to be judged. Notice that such relationship does not pay attention to rule

co-firing. Therefore, we construct Fingrams as usual and the nodes are placed according

to the multi-dimensional scaling.

As example, we present Figure 3.25 where both layout algorithms are presented.

We can conclude that they provide complementary information. Kamada-Kawai (Fig-

ure 3.25(a)) o↵ers a symbolic representation that allows to easily visualize all the elements

of the graph. Complementary, the multi-dimensional scaling layout (Figure 3.25(b)) yields

a topological representation, which helps in the comprehension of the system better show-

ing the proximity of rules, but neglects aesthetical issues, di�culting the visualization of

all the elements of the Fingram.
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Figure 3.25: Comparison of layouts in KNIME.
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Chapter 4

Conclusions and future work

This Ph.D dissertation has introduced Fingrams as a new powerful methodology for ex-

ploratory analysis of fuzzy systems. An overview of the possibilities that Fingrams o↵er,

for both design and analysis of fuzzy systems, has been illustrated through some cases

of use. Moreover, we have provided free software implementations that permits the con-

struction and analysis of Fingrams.

Fingrams show the inference mechanism of FRBSs from a global view point, i.e. ob-

serving how all the rules covered the complete given dataset, and from a local view point,

i.e. illustrating a partial view of the system when focusing on those rules that partici-

pate in the inference process regarding a single instance, by the so-called instance-based

Fingrams. In consequence, we can analyze the system in detail, and even improve it with

expert knowledge, carefully checking rule by rule and instance by instance.

Additionally, Fingrams allow us to detect and analyze uncovered instances, a key

behavior in fuzzy modeling because those instances directly penalize precision.

Fingrams are likely to be applied to several applications to design or improve fuzzy

systems. The human centric simplification of an FRBS by means of the elimination

or modification of rules could be done after analyzing the resulting graphs manually or

assisted by well-known social network analysis techniques (such as community mining)

and quality indexes (such as centrality, page rank and so on). For example, the detection

of rules that do not cover any example is very easy using Fingrams; rules that have a low

overlapping with others can be detected to proceed as desired; and so forth.

Three metrics have been proposed to construct Fingrams along the Ph.D. dissertation.

The simplest symmetric metric (m0
ij

), inspired by the co-citation metric usually used in

scientometrics, relates two rules (R
i

and R
j

) according to the number of instances covered

in common by them [65]. A more advanced symmetric metric (m1
ij

) includes the firing

degree up to which the data instances activate the rules as well as the rule weights [68],

allowing to understand more subtly the behavior of fuzzy inference mechanisms. Finally,

an asymmetric co-firing metric (m2
ij

) characterizes generalization/specialization relations

between pairs of rules [64].

Fingrams can already deal with fuzzy association rules [63], fuzzy rule-based classifiers

59
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and regressors [65]. The di↵erent adaptations show relevant information according to their

characteristics.

We validated our proposal building Fingrams over three cases of use. FURIA algorithm

was used over a real dataset to show the possibilities of classification Fingrams. We

selected an electrical network distribution problem to present the potentials of regression

Fingrams. The utility of fuzzy association rules Fingrams was illustrated in a real-world

problem dealing with qualitative assessment of industrial objects automatically designed

through cognitive engineering, in the context of Quale R� research line1.

We have implemented Fingrams in di↵erent software tools as well as in a specific

command-line software. Fingrams Generator [62] permits the creation of Fingrams no

matter how the depicted FRBS was generated. The fuzzy modeling toolbox GUAJE [67],

and the software suites for data mining KEEL [64] and KNIME [69] already allow the

creation and analysis of Fingrams.

The future of this methodology is very promising. Notice that, there are still many

research tasks to carry out.

The concept of Fingram can be extended to relate not only fuzzy rules, but also

attributes/fuzzy terms appearing in the fuzzy rules. So for, new metrics will be proposed in

the near future to produce complementary information about the system to the designer.

In addition, the metrics presented in this thesis are biased by the available training

data. The availability, representability and quality of this data directly determine the

validity of the obtained Fingrams. Other measures of overlapping between rules may be

proposed for avoiding these limitations.

On the other hand, we will propose adaptations to other type of FRBSs, such as

Takagi-Sugeno FRBSs. Even more, the methodology could be generalized to non-fuzzy

rule based systems.

Moreover, we will propose a generalized local view of the system guided by a set of

instances. This will extend instance-based Fingrams, allowing a detail study of a set of

instances of special interest. For example, key instances that produce failure in known

situations may be selected for observing their inference in detail.

Finally, the last but not the least important future challenge comes with the auto-

matic creation of linguistic descriptions from Fingrams that explain the system behavior.

These descriptions can textually summarize the behavior of a FRBS, highlighting its most

relevant elements, such as, the number of uncovered instances, the most important rules,

or rules that behave incorrectly.

1Quale R� is a research line of the European Centre for Soft Computing that supports the human-
centered design of customized products/services, considering the analysis and quantification of qualitative
assessments.



Conclusiones y trabajo futuro

Esta tesis doctoral ha presentado una nueva metodoloǵıa para el análisis de sistemas

fuzzy mediante los denominados Fuzzy Inference-grams o Fingrams. Se han ilustrado las

posibilidades que ofrece esta metodoloǵıa tanto para diseño como para análisis de sistemas

fuzzy, con algunos casos de uso. Durante la realización de la tesis se han implementado

herramientas software que permiten la construcción y análisis de Fingrams, facilitando y

extendiendo su uso.

Los Fingrams muestran el mecanismo de inferencia de sistemas de reglas fuzzy tanto

desde un punto de vista global, esto es, observando como todas las reglas cubren el

conjunto de datos completo, como desde un punto de vista local, es decir, como una

instancia es cubierta por el conjunto de reglas, por los Fingrams basados en instancias. Por

tanto, podemos analizar un sistema en detalle, permitiendo su mejora con conocimiento

experto, estudiando regla a regla e instancia a instancia como éste se comporta.

Adicionalmente, la metodoloǵıa facilita la detección y análisis de instancias no cubier-

tas, comportamiento muy importante en este tipo de sistemas ya que penaliza la precisión

del mismo.

Los Fingrams pueden ser utilizados en múltiples aplicaciones para diseñar y/o mejo-

rar sistemas fuzzy. Tras analizar un sistema fuzzy utilizando la representación gráfica

propuesta, podemos simplificar el sistema de forma guiada. Por ejemplo, la detección

de reglas que no cubren ninguna instancia es realizada de forma intuitiva con Fingrams;

reglas que cubren pocas instancias en común con otras se identifican de forma sencilla

pudiendo proceder como se desee; etcétera.

Hemos propuesto tres métricas para la construcción de Fingrams. La más simple (m0
ij

),

inspirada por la métrica de co-citación habitualmente usada en cienciometŕıa, relaciona

dos reglas de acuerdo al número de instancias que cubren en común [65]. Una segunda

métrica más avanzada (m1
ij

) incluye el nivel de disparo de las reglas para las instancias

dadas aśı como el peso que pudieran tener las reglas [68]. Esto permite comprender más

en detalle el comportamiento del mecanismo de inferencia. Finalmente, una métrica de

co-disparo asimétrica (m2
ij

) caracteriza las relaciones de generalización/espeficidad entre

pares de reglas [64].

La metodoloǵıa puede ser utilizada en reglas de asociación fuzzy [63], clasificadores y

regresores basados en reglas fuzzy [65]. Las distintas adaptaciones muestran información

relevante en cada uno de los casos.
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Hemos validado nuestra propuesta utilizando Fingrams en tres casos de uso. Mostramos

las posibilidades de los Fingrams de clasificación para un ejemplo construido con el al-

goritmo de modelado preciso FURIA. Para el caso de Fingrams de regresión hemos se-

leccionado un problema de distribución de la red eléctrica. Por último, la utilidad de

Fingrams en reglas de asociación ha sido ilustrado por un problema real que estima las

valoraciones cualitativas de distintas muestras de diseño industrial.

Se han implementado módulos software para utilizar Fingrams dentro de distintas

paquetes software, aśı como una herramienta de ĺınea de comandos espećıfica. Fingrams

Generator [62] permite la creación de Fingrams independientemente de la herramienta

de diseño utilizada para generar el sistema de reglas fuzzy. La herramienta de diseño

GUAJE [67], y las suites software de mineŕıa de datos KEEL [64] y KNIME [69] cuentan

con módulos que permiten la creación y análisis de Fingrams.

El futuro de esta metodoloǵıa es muy prometedor, con mucho recorrido de investigación

y aplicación de la misma.

El concepto de Fingram puede ser extendido no sólo relacionando reglas, sino también

atributos o términos fuzzy presentes en el sistema fuzzy. Por tanto, se propondrán nuevas

métricas que proporcionen información complementaria al diseñador sobre el sistema.

Las métricas propuestas a lo largo de la tesis están condicionadas por los datos

disponibles. Su disponibilidad, representatividad y calidad directamente condicionan la

validez de los Fingrams obtenidos. La propuesta de otras medidas de solapamiento entre

reglas podŕıan proponerse para evitar estas limitaciones.

Por otro lado, se plantea la adaptación de Fingrams para representar otros tipos de

reglas fuzzy, tales como sistemas fuzzy tipo Takagi-Sugeno. Aún más, la metodoloǵıa

puede ser generalizada a sistemas de reglas no fuzzy.

Se planea extender la vista local para que permita visualizar conjuntos de reglas que

son activadas por un conjunto de instancias, en vez de instancias individuales. De esta

forma se permite estudiar conjuntos de instancias de especial interés. Por ejemplo, in-

stancias que produzcan fallo en circunstancias conocidas pueden ser seleccionadas para

estudiar la inferencia del sistema en detalle.

Finalmente, un desaf́ıo al que enfrentarse será la creación automática de descripciones

lingǘısticas de Fingrams que expliquen el comportamiento del sistema. Estas descripciones

podrán resumir textualmente el comportamiento de un sistema de reglas fuzzy, destacando

aquellos elementos más importantes, tales como, el número de instancias no cubiertas, las

reglas más importantes o las reglas que funcionan de forma incorrecta.



Appendix A

Publications

A.1 Compilation of publications

This section contains the three journal publications produced along the thesis. Each

section contains the citation information of the corresponding publication, a briefly de-

scription of its content, the number of citations of each publication1 and its final version.

Additionally, and after each publication, we include the last published Journal Citation

Reports, year 2013, of the journals where the previous publications appeared.

The impact factor of an academic journal is a measure reflecting the average number

of citations to articles published in that journal. In any given year, the impact factor of

a journal is the average number of citations received per paper published in that journal

during the two preceding years.

This is frequently used as a proxy for the relative importance of a journal within its

field. Journals with higher impact factor tend to be more important than those with

lower. Impact factors are calculated yearly, since 1975, for those journals indexed in the

Journal Citation Reports.

1We include information of Google Scholar and Web of Science retrieved on August the 13th 2015.
We indicate with a � when we do not obtain any information from the mentioned web services.
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64 Chapter A. Publications

A.1.1 First publication: Methodology

[65] Pancho, D. P., Alonso, J. M., Cordón, O., Quirin, A., and Magdalena,

L. FINGRAMS: visual representations of fuzzy rule-based inference for expert analysis

of comprehensibility. IEEE Transactions on Fuzzy Systems 21, 6 (2013), 1133–1149

This publication sets the methodology of Fingrams and presents the procedure to

create and analyze them. A brief overview of the possibilities that Fingrams o↵er, for

both design and analysis of fuzzy systems, has been illustrated through classification and

regression fuzzy systems. The interpretability index is introduced.

Citations Google Scholar: 13

Citations Web of Science: 7
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Abstract—Since Zadeh’s proposal and Mamdani’s seminal
ideas, interpretability is acknowledged as one of the most appre-
ciated and valuable characteristics of fuzzy system identification
methodologies. It represents the ability of fuzzy systems to for-
malize the behavior of a real system in a human understandable
way, by means of a set of linguistic variables and rules with a high
semantic expressivity close to natural language. Interpretability
analysis involves two main points of view: readability of the knowl-
edge base description (regarding complexity of fuzzy partitions
and rules) and comprehensibility of the fuzzy system (regarding
implicit and explicit semantics embedded in fuzzy partitions and
rules, as well as the fuzzy reasoning method). Readability has been
thoroughly treated by many authors who have proposed several
criteria and metrics. Unfortunately, comprehensibility has usually
been neglected because it involves some cognitive aspects related
to human reasoning, which are very hard to formalize and to deal
with. This paper proposes the creation of a new paradigm for fuzzy
system comprehensibility analysis based on fuzzy systems’ infer-
ence maps, so-called fuzzy inference-grams (fingrams), by analogy
with scientograms used for visualizing the structure of science.
Fingrams show graphically the interaction between rules at the
inference level in terms of co-fired rules, i.e., rules fired at the same
time by a given input. The analysis of fingrams offers many possibil-
ities: measuring the comprehensibility of fuzzy systems, detecting
redundancies and/or inconsistencies among fuzzy rules, identify-
ing the most significant rules, etc. Some of these capabilities are
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I. INTRODUCTION

INTERPRETABILITY of a fuzzy system involves the skill or
talent of the specific end user, i.e., the person who interprets

its linguistic description with the aim of inferring (conceiv-
ing) the significance of the system behavior. In consequence,
characterizing and assessing interpretability is a very subjective
task, which strongly depends on the background (experience,
preferences, knowledge, etc.) of the person who makes the eval-
uation [1].

Interpretability is a distinguishing capability of fuzzy sys-
tems that is really appreciated in most applications. Even more,
it becomes an essential requirement for those applications that
involve extensive interaction with human beings. Thus, we
will focus on the so-called humanistic systems, defined by
Zadeh [2]–[4], as those systems whose behavior is strongly
influenced by human judgment, perception, or emotions. For
instance, decision support systems in medicine [5] must be eas-
ily understandable, for both physicians and patients, with the
intention of being reliable, i.e., widely accepted, and success-
fully applicable.

Unfortunately, fuzzy systems are not interpretable per se;
they have to be designed carefully to fulfill that characteristic.
Of course, the use of linguistic variables [2]–[4] and rules [6],
[7] favors interpretability due to their high semantic expres-
sivity close to natural language. Nevertheless, there are many
different issues that must be taken into account in order to de-
sign interpretable fuzzy systems. First, several interpretability
constraints [8], [9] have to be imposed along the whole de-
sign process with the aim of producing fuzzy systems with the
required interpretability level, i.e., systems capable of being un-
derstood, described, or accounted for by a human being. As a
result of these constraints, interpretability is usually achieved
at the cost of penalizing accuracy. For this reason, most fuzzy
systems are built jeopardizing interpretability, only paying at-
tention to accuracy. Even in those cases, authors usually claim
that their fuzzy systems are much more interpretable than those
systems based on black-box techniques, like neural networks,
because they are based on fuzzy logic. Those claims are quite
questionable and should be rejected because they are deceptive.
Obtaining interpretable fuzzy systems is a matter of design,
which must be carefully considered. Unless this is done neatly,
produced fuzzy systems will be hardly interpretable, becoming
black-boxes in that interpretability sense.

The assessment of interpretability has to face two main is-
sues [1]: 1) readability (transparency) of the system description,

1063-6706 © 2013 IEEE
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which is related to the view of the model structure as a gray-
box, and 2) comprehensibility of the system explanation, which
is closer to cognitive aspects because it is always related to hu-
man beings. Of course, the analysis has to take into account all
elements included in a fuzzy system, from the lowest (fuzzy
partitions) to the highest (fuzzy rules) abstraction levels [10].
Namely, the analysis must range from the design of each indi-
vidual linguistic term (and its related fuzzy set) to the analysis
of the cooperation among several rules, what depends on the
fuzzy inference mechanism.

Most previous works [11], [12] only analyze the readability
of the designed fuzzy system. Moreover, the analysis of read-
ability is usually reduced to a basic analysis of complexity, i.e.,
it consists of counting the number of elements included in the
fuzzy knowledge base (number of rules, premises, linguistic
terms, etc.). Other contributions also analyze structural proper-
ties of fuzzy partitions [8] such as distinguishability, coverage,
and so on. Recently, a few authors have shown the importance of
extending the analysis of readability to evaluate the implicit and
explicit semantics embedded in a fuzzy knowledge base [13],
[14]. Of course, keeping a small number of linguistic terms
is appreciated due to the limits of human processing capabili-
ties [15]. Nevertheless, not only the quantity but also the quality
is very important. Thus, the selection of the right linguistic terms
is essential to the yielding of interpretable systems. Notice that
interpretable fuzzy partitions must represent prototypes that are
meaningful for the interpreter.

Although there has been a huge effort for defining, charac-
terizing, and assessing interpretability in the last decade, there
is still a lot of work to be done. Namely, the comprehensi-
bility analysis of the system explanation is almost negligible.
Understanding the system behavior from its linguistic descrip-
tion becomes a very hard task that involves the inference level
going beyond the simple assessment of the system structure
readability.

This study presents a novel methodology, which was first
sketched in [16], to analyze the fuzzy inference layer of a fuzzy
rule-based system (FRBS) from the comprehensibility point of
view. It is mainly based on the adaptation of recent analysis
techniques from a completely different research field, that of
Scientometrics [17]. We will consider the use and enrichment of
existing techniques for visualizing scientific information based
on social network analysis (SNA) [18], [19], called scientograms
or visual science maps [20], to the visual analysis of the fuzzy
systems’ inference process. As a consequence, our new com-
prehensibility analysis tool will be called fuzzy inference-grams
(fingrams) from now on.

FRBSs can be either designed from expert knowledge or au-
tomatically generated from experimental data with a specific
learning technique. Anyway, the correspondence of general-
ity and specificity in between the extracted knowledge and the
available examples is not always straightforward. Moreover, this
fact may become a handicap. Therefore, a visual representation
of the FRBS inference process allows us to find out how rules
cover examples and how rules are related among them, because
they interact to produce the overall behavior of the system.

A first software package for generation and analysis of fin-
grams has been implemented. It is freely downloadable as open
source software as part of the GUAJE tool.1 All application
examples presented in this paper are conducted using this soft-
ware. Moreover, it includes an interactive guide tutorial that
allows the user to become familiar with the tool. As a result,
the interested reader can use GUAJE not only to reproduce the
illustrative examples presented in this paper, but also to generate
and analyze her/his own fingrams.

The rest of this paper is organized as follows. Section II
presents some preliminaries including basic aspects related to
interpretability assessment, a brief overview on existent method-
ologies for visual representation and analysis of fuzzy systems,
and a short introduction to the most widely known techniques
for SNA, extending the design and analysis of visual science
maps. Section III introduces the fingram generation process,
while Section IV presents the possibilities fingram analysis of-
fers. Section V shows some illustrative application examples.
Finally, some conclusions and future works are presented in
Section VI.

II. PRELIMINARIES

A. Assessing Interpretability of Fuzzy Rule-Based Systems

There are universal indices commonly accepted for accuracy
assessment. For instance, the mean square error (MSE) and the
number of misclassified patterns are widely used for regression
and classification problems, respectively. However, this is not
the case when dealing with interpretability evaluation, where
the definition of such indices remains an open hot topic.

There are lots of interpretability indices that focus on specific
characteristics of FRBSs. Nevertheless, finding a universal in-
dex for interpretability seems to be an impossible mission since
the considered concept is strongly affected by subjectivity. In
fact, there is a need to look for two kinds of complementary in-
dices: objective and subjective ones. On the one hand, objective
metrics are needed to make feasible fair comparisons among
different fuzzy systems. On the other hand, subjective measures
are demanded when looking for personalized fuzzy systems.
Such systems require a flexible index to be easily adaptable to
the context of each problem as well as to the end-user’s prefer-
ences.

Interpretability indices can be grouped according to two dif-
ferent criteria [22]: the nature of the interpretability index (struc-
ture versus semantics), and the elements of the fuzzy knowledge
base that it considers (fuzzy partitions versus rule base). The
four derived groups are (Q1) structure at partition level, (Q2)
structure at rule base level, (Q3) semantics at partition level, and
(Q4) semantics at rule base level (see Fig. 1).

Most well-known existing interpretability indices correspond
to groups Q1 and Q2; thus, they focus on readability (in terms of
complexity at structural level) of fuzzy systems. In consequence,
they are objective indices since they basically count the number
of elements (features/variables, membership functions, rules,
premises, etc.) existing in the FRBS.

1http://www.softcomputing.es/guaje [21]
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Fig. 1. Quadrant of interpretability indices [22].

Indices included in group Q3 usually measure the degree of
fulfillment of semantic constraints that should be overimposed
during the design process. In [8], de Oliveira proposed some
semantic constraints (coverage, normalization, distinguishabil-
ity, etc.) required to have interpretable fuzzy partitions from
the semantical point of view. The use of strong fuzzy partitions
(SFP) [23] satisfies all these semantic constraints. Nonetheless,
notice that breaking the SFP property can yield more accurate
systems. Therefore, there are proposals that ensure a good in-
terpretability at this level, without considering SFP [13], [24],
[25].

Finally, group Q4 is the one that contains the lowest number
of works in the literature. These indices advocate extending the
analysis of readability to evaluate the comprehensibility, i.e., the
implicit and explicit semantics embedded in fuzzy systems [14].
There are also some papers dealing with the consistency of
fuzzy rule bases and with the number of co-fired rules, i.e., rules
simultaneously fired by a given input [26]–[28].

B. Visual Description and Analysis of Fuzzy Rule Bases

There are not many papers tackling visual analysis of the
fuzzy system inference process. This is probably due to the
well-known linguistic expressivity of fuzzy systems that gives
prominence to linguistic representations. However, when deal-
ing with complex real-world problems, even when the design is
made carefully to maximize interpretability, the number of rules
can become huge because of the curse of the dimensionality
characteristic of FRBSs. In those cases, looking for a plausible
linguistic explanation of the inferred output, which is derived
from the linguistic description of the fuzzy knowledge base, is
not straightforward. When many rules are fired at the same time
for a given input, explaining the inferred output as an aggrega-
tion of all the involved rules can be very complicated.

Some authors [29] have searched for understandable ways of
interpreting the system output by describing the inferred output
possibility distribution with a set of previously defined linguis-
tic terms and some linguistic modifiers and connectives. As an
alternative, other authors have made a bet for searching visual
explanations of the system output [30]–[32]. In these papers,
Ishibuchi et al. established a set of design constraints with the
aim of producing groups of rules with only two antecedent con-
ditions that can be represented in a 2-D space. These works
focus on providing a visual representation that is able to ex-
plain the output of fuzzy rule-based classifiers to human users.
Nevertheless, considering only two antecedents per rule is a

TABLE I
CHARACTERISTICS OF VISUALIZATION METHODS FOR MULTIDIMENSIONAL

FUZZY RULES

strong limitation that may penalize the accuracy of the system,
especially when dealing with complex and high-dimensional
problems.

A complete analysis of visualization requirements for fuzzy
systems is provided in [33]. That contribution gives an overview
on existing methodologies to yield 2-D and 3-D graphical repre-
sentations of fuzzy systems. It comprises visualization of fuzzy
data, fuzzy partitions, and fuzzy rules. Different alternatives are
available, depending on the requirements of the end user (fuzzy
designer, domain expert, etc.). Moreover, requirements may
change according to the visualization tasks to perform: inter-
active exploration; automatic computer-supported exploration;
receiving feedback from users; and capturing users’ profiles and
adaptation.

The most relevant works on the design of visual representa-
tions for multidimensional fuzzy rules are those developed by
Berthold et al. [34], [35]. They make a mapping from high-
dimensional feature spaces onto 2-D spaces, which maintains
the pairwise distances between rules. The established mapping
also displays an approximation of each rule spread and over-
lapping. As a result, it is possible to visualize and explore mul-
tidimensional FRBSs in a 2-D graphical representation. The
authors claim such a representation yields a user-friendly and
interpretable exploratory analysis. However, the complexity of
the analysis grows exponentially with the number of variables
and rules to be displayed. In consequence, in complex and high-
dimensional problems, the interpretation of the resulting graph
is not straightforward.

Evsukoff et al. [36], [37] propose the use of an interpretation
framework that helps understanding multidimensional fuzzy
rules. They assign a symbol to each rule, which is represented
by a Gaussian membership function. The model interpretation
is based on analysis of rule weights and on a 2-D linear principal
component analysis projection to visualize the model.

On a different basis, Casillas and Martı́nez-López [38] present
the so-called “transition chromatic maps” for fuzzy rules gener-
ated from uncertain data. These maps are generated as result of a
visual modeling process that represents the extracted knowledge
in a more understandable way, thus helping in the postprocess-
ing, interpretation stage of knowledge discovery in databases.
They allow us to see the relations among variables by observing
the chromatic evolution of the surfaces on the graph.

Table I summarizes the main characteristics of the most rel-
evant visualization methods for multidimensional fuzzy rules
previously introduced. All methods make a 2-D representation
of fuzzy rules. Some of them represent data, and some others
show the existing overlapping among rules at descriptive level,
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but none of them represents rule interaction at inference level.
This brief review shows that there is a lack of methods depict-
ing the interaction among rules that would strongly help in the
comprehension of the rule base behavior.

C. Social Network Analysis

A social network is a social structure made up of individuals
called “nodes,” which are connected or tied by “edges” (also
called ties, links, or connections) corresponding to one or more
specific types of interrelations, such as friendship, common in-
terest, or knowledge. SNA [18], [19] views social relationships
in terms of network theory regarding nodes and edges. Nodes
are the individual actors within the networks and ties are the re-
lationships among the actors. Research in a number of academic
fields has shown that social networks operate on many levels,
from families up to the level of nations. They play a critical role
in determining how problems are solved, organizations are run,
and individuals succeed in achieving their goals.

Given a network, the goal of the scaling algorithms is to take
the proximity information and obtain structures revealing the
underlying organization. The scaling algorithms use similarities,
correlations, or distances to prune a graph based on proximity
among pairs of nodes. The three predominant ways proposed in
the literature to perform this task are analyzed in the following
[39].

The first option introduces a link weight threshold, and it
only considers the links having weights above this threshold
[40]. This approach is straightforward and easy to implement.
However, it does not take the intrinsic structure of the underlying
network into account; therefore, the transformed network may
not preserve the essence of the original one. Furthermore, the
value of the threshold could be hard to adjust for the user.

The second option extracts a minimum spanning tree (MST)
from a network of N vertices [41]. This approach guarantees that
the number of links in the transformed network is always N � 1.
However, that does not always reflect the subjacent relevant
information.

The third option imposes constraints on paths and excludes
links that do not satisfy the constraints. One of the most known
methods, the Pathfinder algorithm [42], [43], is frequently used
due to its mathematical properties related to the preservation of
the triangular inequality. Those properties include the conser-
vation of links, the capability of modeling symmetrical but also
asymmetrical relationships, and the representation of the most
salient relationships present in the data. The result of applying
Pathfinder to a network is a pruned network called PFNET.

Once PFNETs or any other kind of pruned networks are gen-
erated, there are many different methods for their automatic
visualization. Force-based or force-directed algorithms are the
most widely used class of algorithms for drawing graphs in the
area of information science [44], [45]. Their purpose is to locate
the nodes of a graph in a 2-D or 3-D space so that all the edges
are approximately of equal length and there are as few crossing
edges as possible, trying to obtain the most aesthetically pleas-
ing view. The best representations of this family of methods are
Kamada–Kawai [46] and Fruchterman–Reingold [47].

Kamada–Kawai [46] is one of the most extended methods
for visualizing PFNETs. Starting from a circular position of the
nodes, it generates networks with aesthetic criteria such as the
maximum use of the available space, the minimum number of
crossed links, the forced separation of nodes, the generation of
balanced maps, etc. It assigns coordinates to the nodes trying to
adjust as much as possible the distances existing among them
with respect to actual network distances.

In the Fruchterman–Reingold algorithm [47], the attraction
or repulsion among nodes determines in which direction a node
should move. Nodes move from an original layout step by step.
The step width of node movements decreases at each iteration.
Once nodes stop moving, the procedure ends.

The combination of SNA through the use of network scaling
algorithms and visualization methods has proved its capability
for getting high-quality schematic visualizations of the resulting
networks in various fields: psychology (to represent the cogni-
tive structure of a subject [42], [43]), software development (for
debugging of multiagent systems [48]), scientometrics (for the
analysis of large scientific domains [20], [49]), etc.

D. Scientogram Design and Analysis

The term scientogram, which is a particular case of social net-
work, refers to visual science maps, i.e., visual representations
of scientific domains. Vargas-Quesada et al. [20], [49], [50] pro-
posed a methodology for creating scientograms with the aim of
illustrating interactions among authors and papers through cita-
tions and co-citations. The basic idea arises from the notion of
manuscript co-citation that represents the frequency with which
two documents are simultaneously cited by others. It is pos-
sible to group them by author, journal, or thematic category,
for instance. Of course, depending on the kind of grouping, the
information that can be extracted from the generated maps is
different.

The standardized co-citation measure was originally defined
by Salton and Bergmark [51]

MCN(ij) =
Cc(ij)p
c(i) · c(j)

(1)

where Cc means co-citation, c stands for citation, and i and j
represent two different entities (authors, documents, journals,
categories, institutions, countries, etc.).

As an illustrative example, Fig. 2 represents the scientogram
of the world production in 2002. It consists of 16 thematic areas
where the volume of the nodes is shown proportional to the
volume of produced documents. The links represent the main
connections among these areas.

Notice that the combination of entities co-citation, PFNETs,
and Kamada–Kawai considered building this scientogram
makes the most important entities in the network (i.e., those
sharing more sources with the rest) tend to be placed toward the
center.

Finally, concerning the analysis of scientograms, according
to [20] and [50], there are three main measures of centrality
that yield useful information, with the aim of detecting and
identifying the most significant nodes in a PFNET: centrality
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Fig. 2. Scientogram of the thematic areas of world science, 2002.

degree (regarding the number of direct links gathering in a node);
closeness centrality (measuring the shortest paths among nodes,
for which the inverse of the sum of the distance of a node to all
other nodes would indicate its importance); and intermediation
centrality or betweenness (looking at nodes that act as links
between other nodes contained in the shortest path, for which
the highest value would highlight the most central node).

III. FUZZY INFERENCE-GRAMS DESIGN

This paper proposes a new methodology for visual represen-
tation and exploratory analysis of the fuzzy inference process
in FRBSs. In such systems, various rules can be fired simulta-
neously by an input. Moreover, the usual behavior of FRBSs
is that, given a set of problem inputs, several fuzzy rules are
fired at the same time. In other words, the input space is usually
covered by rules with dense overlapping among them.

In this proposal, we take advantage of this characteristic of
FRBSs using a set of problem instances to uncover co-fired rules.
This co-firing information is used to create social networks rep-
resenting fuzzy systems’ inference maps, the so-called fingrams.
In these kinds of social networks, each fuzzy rule is represented
by a node, and the relations among rules are represented by
weighted edges whose value is computed using a specific met-
ric. Different metrics can be used to construct a social network,
given a dataset of cases representing the input–output relations
existing in the problem tackled, a set of fuzzy rules, and a fuzzy
reasoning mechanism. As a result, fingrams show graphically
the interaction among fuzzy rules at the inference level in terms
of co-fired rules.

Due to the high overlapping among rules, the complete fin-
gram is usually quite dense and difficult to analyze even for
medium-sized FRBSs. Fortunately, network scaling methods
can be used to simplify fingrams, while maintaining their most
important relations.

As seen in Section II-C, social networks can be represented
by the use of drawing methods, especially designed for that pur-
pose. Here, a specific graph representation is developed to pro-
vide the relevant information of the FRBS under study. Colors
and sizes are also used to highlight distinguishing characteristics
of the system, allowing the end user to do a systematic analysis.

From a formal viewpoint, the proposed fingram definition is
as follows:

Definition A fingram is defined by a tuple (R, P, I, E, m,
NSM, NDM) in which:
R is the set of fuzzy rules (nodes), denoted Ri , 1  i  r, with

r being the number of rules;
P is the set of fuzzy partitions of input and output variables;
I is the fuzzy inference mechanism used;
E is the set of problem instances, denoted Ek , 1  k  d, with

d being the number of instances;
m is the metric used to create M , a square weight matrix (r ⇥ r)

that represents the firing interactions among fuzzy rules. The
entries of that matrix are the weights associated with the links;
mij is the weight of the link connecting Ri and Rj ;

NSM is the considered network scaling method;
NDM is the considered network drawing method.

The remainder of this section explains, in detail, the proce-
dure followed to create fingrams and ends with an illustrative
example.

A. Fingram Generation

The generation of a fingram from an FRBS, a fuzzy inference
mechanism, and a set of problem instances is made by means
of the following procedure.

Next, we will explain each of the steps of the procedure in
detail.

1) Network Generation: Starting from a set of fuzzy rules
R, a set of fuzzy partitions P , a fuzzy inference mechanism I , a
set of problem instances E, and a metric m, a social network can
be built, represented by a matrix M , which shows the relations
among rules.

A square matrix M (r ⇥ r) that contains all interactions inside
R is computed, regarding the proportion of problem instances
co-firing the rules

M =

0

BBB@

0 m12 . . . m1r

m21 0 . . . m2r

. . . . . . . . . . . .

mr1 mr2 . . . 0

1

CCCA
. (2)
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We propose the following metric, which is inspired by the
co-citation measure of scientograms (1):

mij =

8
><

>:

SFRijp
FRi · FRj

, if i 6= j

0, if i = j.

(3)

SFRij corresponds to the number of instances for which rules
Ri and Rj are fired simultaneously, while FRi and FRj account,
respectively, for the total number of data pairs for which rules
Ri or Rj are, respectively, fired, without taking care if they are
fired together or not. Notice that mij is thus normalized, and the
matrix M is symmetrical when using this metric.

2) Network Scaling: As usual, in a social network design,
the initial fingram is commonly quite dense and difficult to
analyze even for medium-sized FRBSs. Therefore, a network
scaling method is required to simplify it while keeping the most
important relations. Three options have been considered.

a) Prune the network to eliminate the least informative links,
according to an expert. Contrary to what one may think
by intuition when confronting the problem of pruning the
graph, using a threshold to filter the graph is not worthy.
There exist a large number of links with high weights
that would imply the selection of a high threshold value,
thereby producing a disconnected network. Of course, the
latter does not help in the comprehension of the global
system, which is our ultimate goal in this contribution.

b) Use a specific scaling algorithm that preserves the most
important links without producing isolated nodes, such as
Pathfinder,2 previously introduced in Section II-C.

c) Use a combination of the previously mentioned alterna-
tives. First, links are pruned, and then, Pathfinder scales
the resulting graph. As we will show later, this hybrid
option can be used to analyze classification problems. In
such a case, potential inconsistencies among rules, i.e.,
relations among rules pointing out different classes, have
to be treated carefully. Therefore, noninconsistent links
can be pruned, keeping just inconsistent links. Finally, as
the resulting graph is still likely to be quite complicated,
Pathfinder is used to simplify it.

3) Network Drawing: As previously outlined in Section
II-C, force-based algorithms are devoted to represent this kind
of information in an aesthetically pleasing way. In order to visu-
alize the pruned network in a 2-D space, they assign coordinates
to the nodes obtaining a graph with the most important elements
placed toward the center of the image. Kamada–Kawai through
Graphviz3 will be used in our approach because it has been
proved very effective in combination with Pathfinder [20]. This
solution is flexible enough to be adapted to the particularities of
new scenarios with which we have to deal.

Nodes are represented by circles and labeled with useful tex-
tual information (see Fig. 3):

a) The first line shows the rule identifier Rk .

2MST-Pathfinder [52], a variant of Pathfinder that reduces the complexity of
the original algorithm, is the method considered in this paper.

3http://www.graphviz.org/ [53]

Fig. 3. Fingram’s interpretation. (a) Classification. (b) Regression.

b) The second line provides the relative coverage of that rule
(cov), i.e., the number of covered instances divided by
the total number of instances. One problem instance is
covered by rule Rk when the rule firing degree for that
instance is greater than a predefined threshold (0.1 in this
contribution)

covRk
=

#instances covered by Rk

# instances
.

c) The third line shows the goodness of the rule (G), i.e., how
the rule behaves with respect to the problem instances
available. This goodness measure reflects how well the
problem instances covered by a rule are classified or mod-
eled. It is computed as the ratio between the differences of
cumulated firing degrees produced by positive instances
(properly issued) and negative ones with respect to the total
cumulated firing degrees regarding all covered instances.
Hence, it can take values from �1 to 1, assigning �1 to
rules with low number of problem instances correctly is-
sued, and close to 1 when the rule correctly handles most
problem instances

GRk
=

P
FDPI for Rk �

P
FDNI for RkP

FDCI for Rk

where FDPI stands for firing degree of positive instances;
FDNI means firing degree of negative instances; and FDCI
is the firing degree regarding all covered instances.

d) The fourth line of the nodes appears only in classification
problems. It reflects the relative coverage of the rule output
class, i.e., the number of problem instances covered by rule
Rk that belong to class n divided by the total number of
instances related to class n

CRk
=

# instances of class n covered by Rk

# instances of class n
.

B. Additional Fingram Visualization Capabilities

The proposed representation includes graphical information
of special interest for FRBSs. Hence, once the fingram is pruned
by Pathfinder and drawn by Kamada–Kawai, some additional
visualization capabilities are incorporated that are specific to
FRBS fuzzy inference analysis.
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In this context, nodes represent the fuzzy rules of an FRBS,
which are of the form:

Rx : IF Input 1 is LV1AND Input 2 is LV2 AND . . .

. . . AND Input n is LVn THEN Output is CC

with (Input i is LVi) being the antecedents of the fuzzy rule, and
CC the output of the fuzzy rule.

The node size is established according to the number of ex-
amples covered by the rule. The higher the amount of covered
examples, the bigger the node size. For instance, Fig. 3(a) shows
an example of a network with two rules (Rk and Rh ) where rule
Rh covers more examples than rule Rk . In addition, the border
of the nodes indicates how complex the antecedents of the rules
are. Single-line border indicates two premises; double-line bor-
der means three premises; and so on. Thus, the rules Rk and Rh ,
which are depicted in Fig. 3(a), have three and two antecedents,
respectively.

Furthermore, edges (links) among nodes represent rule co-
firing information. Each link represents the relation between a
pair of fuzzy rules. The higher the degree of overlapping existing
over rules, the higher the edge weight and the thicker the link
width in the visual representation to clearly represent this fact.

We deal with problems having either categorical or con-
tinuous outputs. Therefore, we distinguish between classifica-
tion and regression problems, providing particularities in their
representations.

1) Classification: Rules that yield the same class are depicted
by the same color of nodes. The color of links gives useful
information as well. Links between rules of the same class
(output) are colored in green, while potential inconsisten-
cies (links between co-fired rules pointing out different
classes) are marked with red color [see Fig. 3(a)].

2) Regression: The output variable4 is ordered in its universe
of discourse. This order is used to assign gray tones to
nodes, from black to white. Therefore, the typical behav-
ior will relate nodes with similar grayness, and related
nodes showing quite different tones should be studied in
detail. In this case, there is no difference among links,
contrary to what happens in classification problems with
redundancies and inconsistencies, and they just inform
about their weight [see Fig. 3(b)].

C. Illustrative Example

In this section, a fuzzy rule-based classification system
(FRBCS) created for the popular WINE dataset [54] is consid-
ered. The dataset is made up of 178 examples and 13 attributes
(alcohol, malic acid, ash, etc.) found in three types of wines.
The FRBCS has 24 rules with three different output classes,
corresponding to the three different kinds of wine.

Several fingrams are built with the aim of illustrating the ef-
fect of the different network scaling methods used. The fingram
plotted in Fig. 4(a), which is obtained without applying any net-
work scaling technique, clearly shows the previously mentioned

4We will only consider multi-input single-output (MISO) FRBSs.

(a) (b)

(d)

(c)

Fig. 4. Example of fingrams. (a) Complete fingram. (b) Fingram scaled using
pruning with threshold (� = 0.6). (c) Fingram scaled using Pathfinder. (d)
Fingram scaled using a hybrid method: pruning + Pathfinder.
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scaling motivations. A quite dense set of relationships among
rules does not allow us to analyze easily the FRBCS behavior.

Then, the three scaling methods previously described are used
to simplify the network. Fig. 4(b) shows the result of using a
user-defined threshold (� = 0.6) to prune edges. It can be seen
how the network is still quite dense, some groups of rules are
isolated, and the network is not visualized in an aesthetic way,
thus hindering the comprehension of the whole set of rules. On
the other hand, Fig. 4(c) shows the result of applying Pathfinder,
whose global close-to-tree structure provides valuable informa-
tion that is easy to interpret. As an illustration of the hybrid
scaling method, Fig. 4(d) is created from the complete fingram
of Fig. 4(a). There, nonpotential inconsistencies are pruned first
(once we deal with a classification problem), while the resulting
graph is simplified with Pathfinder. It can be seen how this graph
only relates nodes of different colors (rules with a different out-
put class).

It is remarkable that, thanks to the combination of rule co-
firing, PFNETs, and Kamada–Kawai’s algorithm, information
related to the inference process of the FRBSs is displayed in
pretty nice scalable fingrams, as seen in Fig. 4(c). As a side
effect, the most relevant fuzzy rules, i.e., those more often fired,
tend to be located toward the center of the scaled fingrams,
while less salient ones (in this case, rules with the lowest co-
firing degrees) go to the periphery. Hence, the shape of the
fingram is quite informative.

Of course, fingrams must be carefully analyzed by an expert
since rules that are apparently not very relevant (like those in
the periphery) may be essential for properly handling important
cases that only happen from time to time. For instance, uncom-
mon cases dealing with failures in a system controlling a nuclear
reactor could be extremely important.

Moreover, it is important to highlight that our proposal is not
affected by the well-known curse of dimensionality that implies
the number of fuzzy rules grows exponentially with the num-
ber of inputs. First, nodes directly represent fuzzy rules instead
of premises. Second, PFNETs have been successfully applied
to the analysis of large scientific domains with hundreds of
co-cited entities (dual to our problem instances), allowing us
to relate different thematic areas (dual to our fuzzy rules in
the FRBS), with the chance of also considering hierarchical
representations [20]. In consequence, fingrams are able to dis-
play the interactions among a few hundred rules in the form
of highly interpretable trees. Even when the number of rules is
huge, the scaled fingram can be still comfortably viewed by an
expert.

For comparison purposes, Fig. 5 shows the same FRBS rep-
resented by the visualization method proposed by Berthold
et al. [35]. As can be seen, this representation is mainly de-
scriptive, placing rules in a 2-D space through a multidimen-
sional scaling. Therefore, the distance among rules is relevant.
However, it does not provide information for rule behavior at
inference level. Moreover, the Delaunay triangulation indicates
direct neighbors for each rule. Unfortunately, it relates rules far
away in the 2-D space. Of course, that fact does not help in the
comprehension of the system behavior. For example, rules R1
and R13, which do not co-fire for any problem instance [as can

Fig. 5. Visualization of the fuzzy rule set constructed for the WINE problem
using the method proposed by Berthold et al. [35]. It shows possible overlaps
among rules, along with rule connections in terms of closeness by Delaunay
triangulation.

be seen in Fig. 4(a)], are strongly related in Fig. 5 because of
their descriptive proximity.

IV. FINGRAMS EXPERT ANALYSIS

Fingrams provide enormous potential for the representation
and comprehension of the FRBS inference process. They relate
rules jointly fired by a given input vector, making it easy to
uncover how the rules of an FRBS actually cover the input
space. Hence, fingrams can be viewed as a powerful tool for
dealing with FRBS comprehensibility analysis tasks that are
related to quadrant Q4 (semantics at rule base level) in Fig. 1
(see Section II-A), i.e., the least studied category in the existing
fuzzy system interpretability assessment literature.

The analysis of fingrams offers many different possibilities,
thanks to the high amount of information this representation
gives about an FRBS and its related fuzzy inference process.
For instance, one can directly analyze its global structure by ex-
ploring the number and location of the apparent groups of rules
(nodes), analyzing the respective location of the rules coding for
different outputs, etc. As such, we would like to highlight two
exploratory tasks that provide a good base for detecting and an-
alyzing particularities or anomalies in an FRBS: 1) identifying
the most significant rules in an FRBS from the inference view-
point and 2) detecting potential inconsistencies among rules in
the particular case of FRBCSs.

On the one hand, it should be reminded that, because of the
specific way network scaling and drawing are done, the most
salient links and nodes are likely to be placed toward the center
of the graphical representation. Thus, those fuzzy rules that
correspond to nodes located in the periphery of the fingram,
especially those which are connected with a high weight (the
value of the associated link is large) to the remaining graph nodes
and show a low level of coverage (cov), are good candidates to
be further studied. These rules usually cover the same space
than others and do not change the final output of the system,
thus not affecting the accuracy of the system. This could have
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an interesting collateral advantage in classification problems
since removing such rules is likely to increase interpretability,
while keeping almost the same accuracy. We will check that
assumption in Section V.

Moreover, rules that are fired more frequently (represented
with bigger nodes) are usually placed in the center because they
also tend to be co-fired with more rules. Those cases where
nodes covering a large number of examples are placed in the
periphery must be carefully analyzed. This can be due to a fuzzy
rule that covers a large part of the input space in isolation.

The usual centrality measures that are commonly considered
in the analysis of scientograms [20], [50] (see Section II-D)
can also be successfully applied to uncover the most significant
rules within an FRBS. As a first approach, we advocate for the
use of the so-called degree of centrality. This means that we
will point out those fuzzy rules corresponding to the nodes that
concentrate a larger number of links in a fingram as the most
salient ones.

On the other hand, the interaction among fuzzy rules at in-
ference level is very difficult to be appreciated by only reading
the linguistic description of FRBSs. It should be remarked that
this interaction depends not only on the rule description but
also on the fuzzy rule semantics (fuzzy partitions included in
the database) and on the inference mechanism. Even when a
rule base is fully consistent at linguistic level, some possible in-
consistencies may arise at inference level because of the FRBS
semantics and fuzzy inference process. Such potential conflicts
are difficult to detect mainly because they are partially hidden
since they are typically produced by new unknown situations
that were not taken into account during the learning stage (for
example, data pairs not initially included when considering a
data-driven FRBS derivation). Of course, such analysis is dif-
ferent depending on the kind of problem faced. For instance, the
meaning of overlapping rules is not the same when considering
either classification or regression problems.

In the former case, inconsistencies must be handled as con-
flicts to be solved. For instance, it may happen that several rules
are jointly fired for a new given input vector, and, as a conse-
quence, several outputs are activated with degrees higher than
zero. When two different classes are activated with very similar
degrees, the situation can be labeled as an ambiguous case. Such
a situation is not desirable, no matter if the system is (or not)
able to yield the right output class, because a slight modification
in the input data may yield a wrong output. We can conclude that
an FRBCS that produces many ambiguous cases is not reliable
and should be corrected. Fortunately, looking at fingrams, we
can easily uncover potential inconsistencies (when the co-fired
rules yield different output classes). The larger the degree of
inconsistency among fuzzy classification rules is, the higher the
weight of the “inconsistent” links [co-firing degree computed
in (3)] will become (red edges). See [55], where a detailed ex-
planation of some possible inconsistency problems, along with
a methodology to detect and correct such inconsistencies, is
presented.

When dealing with regression problems, the well-known
FRBS approximation capability is mainly based on the inter-
polative reasoning that is carried out among overlapping rules.

Typically, two rules with similar premises may yield two differ-
ent wrong outputs but their aggregation may result in the right
inferred interpolated output. Unfortunately, these kinds of situa-
tions are quite common but very difficult to identify. Of course,
from the comprehensibility point of view, it would be desirable
to have only one rule that directly yields the right inferred output.
However, this may produce a huge number of rules what is also
undesirable. Fingrams allow the expert to study and improve
the system systematically, as will be shown with an example in
Section V-C.

V. APPLICATION EXAMPLES

Section V-A is devoted to the introduction of the quality
indices to be considered. Then, two examples in Sections V-B
and V-C, display the possibilities for considering fingrams in
real-world problems. The first illustrative classification example
discusses how to deal with the co-firing among rules, along
with the inconsistencies and redundancies produced. The second
example displays a small-sized but complex real-life regression
application, where fingrams simplify the understanding of the
rules constructed.

A. Quality Indices

We will now describe the accuracy and interpretability indices
considered in this contribution.

Accuracy is computed as the percentage of misclassified in-
stances (MC) in classification problems, and as the mean square
error (MSE) in regression problems

MC =
1

d

dX

i=1

erri ; erri =

⇢
1, if Ci 6= Ĉi

0, otherwise
(4)

MSE =
1

d

dX

i=1

(yi � ŷi)
2 (5)

where d means the number of problem instances, Ci is the class
of instance i, and Ĉi is the class inferred by the FRBCS given
the instance i in MC. For MSE, yi is the real output value of
instance i, and ŷi is the inferred output by the FRBS.

Of course, as was pointed out in Section II-A, taking only
one index is not enough to evaluate interpretability. Therefore,
we have considered some of the interpretability indices that are
commonly used in the literature. Probably, the most popular
index is number of rules (NR). As an alternative, the total rule
length (TRL) represents the total number of linguistic proposi-
tions into the whole rule base. Another simple index is average
rule length (ARL), computed as TRL divided by NR. We will
also report the average number of fired rules with respect to
problem instances (AFR). Notice that a rule is counted as fired
by a given data instance only in the case it is activated with
a confidence firing degree greater or equal than a predefined
threshold (0.1 in this contribution). In the case of classification
problems, we will additionally compute the average confidence
firing degree of winner rules (AFD). It is measured as the aver-
age of the firing degree of the winner rule for each data sample
over the whole dataset.
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Moreover, the proportion of co-fired rules can also be consid-
ered to evaluate the FRBS comprehensibility. The assumption
is the following: the larger the number of simultaneously fired
rules for a given input vector, the smaller the comprehensibility
of the FRBS.

Thus, the co-firing-based comprehensibility index (COFCI)
[56] can be used to evaluate the complexity of understanding
the inference process in terms of rules co-firing information.
Equation (6) presents this index

COFCI =

8
<

:
1 �

�
CI

MaxThr
, if CI  MaxThr

0, otherwise
(6)

CI =
rX

i=1

rX

j=1

[(Pi + Pj ) · mij ] (7)

where r is the total number of rules in the fuzzy rule base, Pi

and Pj count the number of premises (antecedent conditions) in
rules Ri and Rj respectively, while mij is the measure of co-
firing [computed by (3)] for the rules Ri and Rj , and MaxThr
is a maximum value that is heuristically established to get a
normalized measure in the interval [0,1].

B. Generation of Fingrams in a Simple Classification
Problem: Analysis of Inconsistencies

As a first example, we will analyze a simple classification
problem with two input variables, which can be represented
in two dimensions, where the co-firing relations among rules
can be easily understood. For that, the IRIS dataset from the
University of California at Irvine [54] is considered.

IRIS is perhaps the best known database to be found in the
pattern recognition literature. The dataset contains three classes
of 50 instances each; therefore, it is perfectly balanced, where
each class refers to a type of iris plant. Class 1 is linearly sep-
arable from the other two; the latter are not linearly separable
from each other. Notice that only two of the four input variables
of IRIS (SEPAL LENGTH and SEPAL WIDTH) have been used
with the aim of allowing a 2-D representation that facilitates the
understanding of fingram construction.

Fig. 6 shows graphically the distribution of examples, with the
selected variables SEPAL LENGTH and SEPAL WIDTH, remarking
the flower class (C1 = �, C2 = +, and C3 = ⇥). Each input
is characterized by a uniform SFP with three linguistic terms
(LOW, AVERAGE, HIGH).

The rule base has been automatically extracted from the whole
dataset, following the HILK fuzzy modeling methodology that is
aimed to produce highly interpretable fuzzy systems [55], [57].
The rule base is generated by means of the fast prototyping
algorithm (FPA)5 [61]. It is made up of the following nine
linguistic rules:

R1 : IF Sepal Length is Low AND Sepal Width is Low THEN Class is C2

R2 : IF Sepal Length is Low AND Sepal Width is Average THEN Class is C1

5We have used the implementation of FPA provided with the free software
tool GUAJE [21]. Of course, other fuzzy modeling methods can be used (see,
e.g., [58]–[60]).

Fig. 6. Classification example. Problem instances, fuzzy partitions, and set of
fuzzy rules used.

R3 : IF Sepal Length is Low AND Sepal Width is High THEN Class is C1

R4 : IF Sepal Length is Average AND Sepal Width is Low THEN Class is C2

R5 : IF Sepal Length is Average AND Sepal Width is Average THEN Class is C2

R6 : IF Sepal Length is Average AND Sepal Width is High THEN Class is C1

R7 : IF Sepal Length is High AND Sepal Width is Low THEN Class is C3

R8 : IF Sepal Length is High AND Sepal Width is Average THEN Class is C3

R9 : IF Sepal Length is High AND Sepal Width is High THEN Class is C3

It is possible to find more accurate FRBCSs for this problem
in the fuzzy literature, but the objective of this example is to
illustrate the creation and analysis of fingrams in classification
problems.

We will detail, step by step, the different phases involved in the
construction of fingrams, as they were described in Section III.

1) Network generation: With the problem instances, fuzzy
partitions, and fuzzy rules previously presented (all of
them illustrated in Fig. 6), we have generated a 9 ⇥ 9 ma-
trix that represents the co-firing degrees. Fig. 7(a) shows
that matrix with inconsistencies marked with an asterisk
(*).

2) Network scaling: We have checked different scaling meth-
ods. First, Pathfinder is applied to the original network, ob-
taining a pruned matrix. Second, a hybrid scaling method
is used to discover inconsistencies in the FRBCS. For that,
noninconsistent links are first thresholded in the original
network, and afterward, Pathfinder is enforced.

3) Network drawing: Kamada–Kawai’s spring layout is se-
lected for plotting the previously generated and scaled
networks, considering the additional visualization capa-
bilities in Section III-B.

The first graph, i.e., the complete nonscaled fingram [see
Fig. 7(b)], shows the relations among rules displayed in a perfect
grid, thanks to the dimensions and partitions considered.

A simple comparison between Figs. 6 and 7 makes it easy to
appreciate the correspondence among the node sizes and how
populated the input space regions are. For example, rule R5

covers the central region with the largest number of instances,
while rule R9 covers the smallest amount of data samples.
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(a)

(b)

Fig. 7. Classification example. Original social network. (a) Co-firing matrix.
(b) Complete fingram.

In addition, the node layout perfectly reflects the relation
among co-fired rules, with a central fuzzy rule (R5) that highly
overlaps with the rest, thus producing noninconsistencies (green
links) or potential inconsistencies (red links).

By carefully analyzing the dataset, a high volume of instances
can be appreciated in the regions of fuzzy rules R4 and R5 (see
Fig. 6). This can also be observed in the fingram (see Fig. 7),
which assigns a high value (0.794) to the connection between
these two rules. In addition, the highest link weight (0.897) is
related to rules R3 and R6 , as most instances they cover are
located close to the border between the input space regions they
handle. Notice that a quick study of the input space can be
done, even in multidimensional problems, following the same
sketched procedure.

The use of Pathfinder algorithm yields a pruned fingram (see
Fig. 8) that keeps the most salient links of the original network,
what highlights those rules, which are fired simultaneously a
larger number of times. This fingram shows that rule R2 is quite
important due to the high interrelations with others (producing
inconsistencies with rules R1 and R5 , and noninconsistencies
with rule R3).

The fingram in Fig. 9, which is scaled using the hybrid al-
ternative with the aim of only keeping inconsistencies, empha-
sizes the main potential inconsistencies among rules, turning up

Fig. 8. Classification example. Fingram scaled with Pathfinder.

Fig. 9. Classification example. Fingram scaled with hybrid method (Thresh-
old + Pathfinder).

those regions that do not belong clearly to a single class. Rule
R5 shows up as the main cause of conflicts. It is clear that this
central rule covers most of the problem instances, and therefore,
it overlaps with most rules. Notice that the input region covered
by R5 (as seen in Fig. 6) includes a large number of instances
of different classes what produces these inconsistencies.

In addition, a linguistic simplification can be made from the
previous FRBCS, which yields a new FRBCS with less rules
but exactly the same accuracy:

R1 : IF Sepal Length is LowAND Sepal Width is Low THEN Class is C2

R23 : IF Sepal Length is Low AND Sepal Width is NOT(Low)

THEN Class is C1

R45 : IF Sepal Length is Average AND Sepal Width is NOT(High)

THEN Class is C2

R6 : IF Sepal Length is Average AND Sepal Width is High THEN Class is C1

R789 : IF Sepal Length is High THEN Class is C3

where RX Y represents the merge of original RX and RY .
Fig. 10 shows the pruned fingram, which is created using

Pathfinder, of the simplified FRBCS. As expected, it can be
seen that the information associated with the new merged rules
varies with respect to the original FRBCS (see Fig. 7) except
for rules R1 and R6 which are unchanged. Nevertheless, it is
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Fig. 10. Classification example. Fingram scaled with Pathfinder after linguis-
tic simplification.

TABLE II
CLASSIFICATION EXAMPLE: QUALITY EVALUATION OF THE DIFFERENT

FRBCSS GENERATED

remarkable how the new fingram in Fig. 10 keeps almost the
same global shape of the original FRBCS (see Fig. 8). The new
rule R23 gets the central position previously taken by rule R2 ,
distributing the remaining rules in three branches.

It can also be appreciated that rules R23 and R45 cover all the
problem instances of their output classes (C1 = 1.000 in R23 ,
and C2 = 1.000 in R45). Therefore, it is interesting to test the
behavior of the system without the rest of the rules of output
classes C1 and C2 (R6 and R1 , respectively). With that aim,
several FRBCSs are created and tested without those rules from
the simplified FRBCS.

Table II summarizes the values for the quality indices in Sec-
tion V-A before and after the linguistic simplification, but also
after the elimination of R1 and R6 . We should again remark that
we are not focused on finding out the most accurate FRBCS for
the tackled problem, but on exploring the opportunities fingrams
offer.

As previously mentioned, the accuracy (see MC in Table II)
is the same after applying the linguistic simplification, but the
interpretability indices improve with the reduction of rules. The
elimination of R6 produces more classification errors, indicating
that R6 is the winning rule for some problem instances of class
C2. Only the FRBCS produced from eliminating R1 , which is
highlighted in boldface in the table, improves both the accuracy
and the interpretability of the linguistically simplified FRBCS.

Fig. 11. Regression example. Fuzzy partitions for the electrical distribution
problem.

C. Generation of Fingrams in a Small-Sized Regression
Problem: Analysis of Specificity and Generality

This example illustrates the use of fingrams in regression
problems. An electrical network distribution problem in north-
ern Spain [62] is analyzed. The system aims to estimate the
length of the low voltage line installed in a certain village. The
problem has two input variables (the population of the village
and its radius) and one output variable (the total length of the in-
stalled line). Real data of 495 villages are available. The training
set contains 396 elements, and the test set includes 99 elements,
randomly selected from the whole sample, taken from the KEEL
dataset repository.6 Here, we will use just the training set to cre-
ate the fingrams, thus being able to compare the accuracy results
with previous works.

First of all, the problem variables are partitioned, as shown
in Fig. 11. The partitions of the input variables (INHABITANTS

and DISTANCE) are tuned to improve the performance, while the
output variable is partitioned homogeneously covering the in-
terest range, i.e., the range where problem instances are located.
Using these fuzzy partitions, along with FPA,7 the following set
of rules is generated:

R1 : IF Distance is Very Low THEN Length is Very Low

R2 : IF Inhabitants is (Very Low OR Low OR Average) AND Distance is Low

THEN Length is Low

R3 : IF Inhabitants is Very Low AND Distance is Average Low

THEN Length is Low

6http://sci2s.ugr.es/keel/datasets.php
7FPA can be used for classification and regression problems. Other fuzzy

modeling methods can be used for regression problems (see [63]–[66]).
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Fig. 12. Regression example. Complete fingram for the electrical distribution
problem.

R4 : IF Inhabitants is (Low OR Average) AND Distance is Average Low

THEN Length is Average Low

R5 : IF Inhabitants is High AND Distance is Low THEN Length is Average Low

R6 : IF Inhabitants is (Very Low OR Low) AND Distance is Average High

THEN Length is Average

R7 : IF Inhabitants is Very High AND Distance is Average Low

THEN Length is Average

R8 : IF Inhabitants is Average AND Distance is (Average High OR High)

THEN Length is Average High

R9 : IF Inhabitants is Very High AND Distance is Average High

THEN Length is High

R10 : IF Inhabitants is Very High AND Distance is High

THEN Length is Very High

This FRBS exhibits a good accuracy (MSE = 130 046),
which is similar to the one obtained in [67] (i.e., MSE =
133 763). We reiterate that we are not focused on finding the
most accurate FRBS for the tackled problem. Our target is
showing the utility of fingrams in the context of a real-world
regression problem.

As explained in Section III-B, the output of each fuzzy rule
will be reflected in the color of the nodes. From dark to light,
the node colors represent a range from low to high values.
Therefore, the output label “VERY LOW” will be represented by
the darkest node, while “VERY HIGH” corresponds to the lightest
one close to white. Naturally, the system will have relations
among close labels and close colors, and when nodes of quite
different darkness are related, the expert should focus her/his
attention on them.

Fig. 12 shows the nonpruned fingram that is related to the
inference process on the FRBS previously presented. It can be

Fig. 13. Regression example. Fingram scaled with Pathfinder.

seen that the two dimensions allow the fingram to spread the
nodes in a grid, relating close outputs, i.e., the evolution of
darkness of the nodes is mapped smoothly. Rules R2 and R4 are
quite general, covering almost half of the problem instances. On
the contrary, rules R5 , R7 , R9 , and R10 cover a small amount
of problem instances, thus being very specific. Moreover, it is
easily appreciated that rule R10 does not cover any example8

(cov = 0), and thus, it can be eliminated with no accuracy loss.
In addition, all rules but R1 have two antecedents, as appreciated
in the single-line border of the nodes.

The fingram analysis lets us discover a special relation be-
tween rules R7 and R9 that appear isolated in a group, compos-
ing a kind of “fuzzy rule cluster” in a specific problem domain
region. They cover some examples that no other rule covers.
Moreover, they cover exactly the same examples (the related
link takes value 1.0) but having different outputs. Even more,
rule R9 has a negative goodness, �0.725; therefore, it is a can-
didate to be removed, changing, if necessary, the output of R7 .
An analysis of these rules must be achieved to avoid this kind of
behavior. Notice that only looking R7 and R9 at the linguistic
level is not enough to detect this kind of potential problem, but
our fingram-based analysis methodology allows us to quickly
identify them.

Fig. 13 shows the pruned network corresponding to the fin-
gram scaled with Pathfinder. It emphasizes a high relation among
rules R3 , R4 , and R6 . This interrelation suggests merging the
three rules into a single one. To do so, a new rule R346 is
constructed from R3 , R4 , and R6 in an expert way. The an-
tecedents of all these rules are combined, and the output is
taken from the middle term. This is done just as an example,

8As explained in Section III-A, we consider an instance is covered by a rule
when it fires the rule above a threshold (0.1 in this contribution).
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TABLE III
REGRESSION EXAMPLE: QUALITY EVALUATION OF THE GENERATED FRBSS

Fig. 14. Regression example. Fingram scaled of the best simplified FRBS.

and a more complex process, testing the alternatives, could be
done.

R 3 : IF Inhabitants is Very Low AND Distance is Average Low THEN Length is Low

R 4 : IF Inhabitants is (Low OR Average) AND Distance is Average Low THEN Length is Average Low

R 6 : IF Inhabitants is (Very Low OR Low) AND Distance is Average High THEN Length is Average

R 3 4 6 : IF Inhabitants is AND Distance is THEN Length is Average Low

(Very Low OR Low OR Average) (Average Low OR Average High)

We will develop the proposed changes in a sequential fashion
(i.e., first removing R10 , then removing R9 , and, finally, merging
R3 , R4 , and R6) and check how they affect the resulting FRBS
accuracy and interpretability (as detailed in Table III).

Analyzing these results, we can conclude that the removal
of R10 does not change the behavior of the system because, as
mentioned, it does not cover any problem instance. Thus, MSE,
AFR, and COFCI remain the same, while the interpretability
indices related to transparency (NR, TRL, and ARL) are im-
proved. However, deleting the rule R9 simplifies the FRBS,
improving both accuracy (MSE decreases) and interpretability
(all the considered interpretability indices get better values).
The new fingram that results from these two eliminations can
be observed in Fig. 14. Finally, although the fusion of R3 , R4 ,
and R6 reduces the accuracy of the FRBS, it could still be a
good option for getting a more compact and understandable
FRBS (notice that all the interpretability indices are clearly

improved). Besides, a more elaborated rule fusion mechanism
could be considered by the expert to reduce the accuracy loss.

VI. CONCLUSION AND FUTURE WORKS

This paper has introduced fingrams as a new powerful
methodology for exploratory analysis of fuzzy rule bases. A
brief overview of the possibilities that fingrams offer, for both
design and analysis of fuzzy systems, has been illustrated
through some examples. As it is a novel proposal, some of
the potential uses are just outlined, opening the door to new
alternatives and developments.

In the future, we will extensively validate and extend the
methodology. For instance, we plan to look for asymmetrical
co-firing metrics that are able to yield additional information
about consistency, generality, and/or specificity of rules.

The future of this methodology is very promising, with several
applications to design or improve fuzzy systems. The human-
centric simplification of an FRBS by means of the elimination or
modification of rules could be done after analyzing the resulting
graphs. The detection of rules that do not cover any example
is very easy by just looking fingrams at first sight. Rules that
have a low overlapping with others can be detected to proceed
as desired, building, maybe, more general rules.

A basic simplification procedure may consist of finding and
removing those nonrelevant rules that are normally located at
the periphery of the graph. Moreover, by carefully looking at
fingrams, we can first set a ranking of rules, according to their
relevance and, then, run a linguistic simplification procedure
like the one proposed in [57].

A first software package for fingrams generation and anal-
ysis is already implemented [68] as part of the GUAJE tool,
which is freely downloadable as open source software at
http://www.softcomputing.es/guaje.
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dissertation, to whom he was a co-advisor.



PANCHO et al.: FINGRAMS: VISUAL REPRESENTATIONS OF FUZZY RULE-BASED INFERENCE FOR EXPERT ANALYSIS 1149

Arnaud Quirin received the M.S. and Ph.D. degrees
in computer science from the University Louis Pas-
teur of Strasbourg, Strasbourg, France, in 2002 and
2005, respectively.

He is currently a Data Mining Researcher with
the Galician Research and Development Center in
Advanced Telecommunications, Vigo, Spain. From
2006 to 2012, he was with the European Centre for
Soft Computing, Mieres, Spain. He was a teaching
and Research Assistant with the University Louis
Pasteur of Strasbourg until September 2006. He has

published more than 30 peer-reviewed scientific publications, including three
book chapters and eight JCR-SCI-indexed journal papers. He was involved in
several national projects, private contracts, and one European project related to
the application of evolutionary algorithms to image classification. He currently
participates in several R&D programs in the fields of evolutionary algorithms,
multiobjective graph-based mining, fuzzy multiclassifier systems, and genetic
fuzzy algorithms.

Dr. Quirin is a Reviewer for six international journals.

Luis Magdalena (SM’05) received the M.S. and
Ph.D. degrees in telecommunication engineering
from the Technical University of Madrid (UPM),
Madrid, Spain, in 1988 and 1994, respectively.

Since 1995, he has been an Associate Professor
in computer science with the Department of Applied
Mathematics, UPM, where he was an Assistant Pro-
fessor in 1990. In 1998, he co-founded the company
Daedalus (a spin-off of UPM). From 2003 to 2005,
he was the Deputy Director (and promoter) of the
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Abstract

Understand the behavior of Fuzzy Rule-based Systems (FRBSs) at inference level is a complex task
that allows the designer to produce simpler and powerful systems. The fuzzy inference-grams –known
as fingrams– establish a novel and mighty tool for understanding the structure and behavior of fuzzy
systems. Fingrams represent FRBSs as social networks made of nodes representing fuzzy rules and
edges representing the degree of interaction between pairs of rules at inference level (no edge means no
significant interaction). We can analyze fingrams obtaining helpful information such as detecting potential
conflicts between rules, unused rules and redundant ones. This paper introduces a new module for fingram
generation and analysis included in the free software tool GUAJE. This tool aims to design, analyze and
evaluate fuzzy systems with good interpretability-accuracy trade-off. In addition, GUAJE includes several
intuitive and interactive tutorials to uncover the possibilities it offers. One of them generates and enhances
a fuzzy system, analyzing each improvement through the use of fingrams, and lets the user reproduce the
illustrative case study described in this paper.

Keywords: Interpretability-accuracy trade-off, fuzzy modeling, fingrams, GUAJE.

1. Introduction

Fuzzy sets and systems have become a mature re-
search field with many theoretical and applied works
starting from Zadeh’s seminal work 36. Among
the huge number of research lines developed by the
fuzzy community, system modeling with fuzzy rule-
based systems (FRBSs) –called fuzzy modeling 23–
has been a fruitful research line for years.
During a long period –from 1965 to 1990– fuzzy

modeling was mainly supported by expert knowl-
edge. Researchers concentrated on building fuzzy
models made up of a few simple linguistic vari-
ables 38 and linguistic rules 37 usually referred as

Mamdani rules 27. Accordingly, those designed
fuzzy models were easy to interpret, and inter-
pretability emerged naturally as an important advan-
tage. However, researchers realized that considering
only expert knowledge was not enough when deal-
ing with complex real-world problems. Fortunately,
it is also possible to build fuzzy models automati-
cally –following a machine learning approach– from
experimental data 24.
Thus, in a second period –from 1990 to 2000–

researchers focused on automatically creating accu-
rate fuzzy systems from experimental data, although
disregarding interpretability. Of course, fuzzy sys-
tems are not interpretable per se, and automatically
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generated rules are rarely as readable as desired.
Interpretability has recovered a main role inside

the fuzzy community since 2000 5. Researchers re-
alized that accuracy and interpretability should be
cared together, although, both issues are somehow
contradictory. High accuracy usually implies low
interpretability and vice versa. In practice, fuzzy
modeling involves careful design where both in-
terpretability and accuracy must be taken into ac-
count along the design process. The quest for the
right interpretability-accuracy trade-off has become
a great challenge in the last decade 16. Nowadays,
many researchers are actively working on it but a lot
still remains to be done.
The notion of fuzzy inference-gram (fingram),

recently introduced 4, is a powerful tool supporting
the quest for interpretability-accuracy trade-off. In
short, the behavior of a fuzzy system is analyzed –
at inference level– by looking at those pairs of co-
fired (simultaneously fired) rules by a given input
vector. Then, a social network represents the rule
base interaction where each individual entity repre-
sents a rule, and edges connecting entities show the
relations among rules.
This paper explains how the free open source

software GUAJE has been recently enhanced with
a new module in charge of fingram generation and
analysis 10. In addition, GUAJE offers several opti-
mization and simplification tools –at both fuzzy par-
tition and fuzzy rule level– devoted to improve the
accuracy and interpretability of the entire fuzzy sys-
tem. The new module for fingrams eases the quest
for interpretability-accuracy trade-off along the en-
tire modeling process. Fingrams let us visually an-
alyze and uncover the behavior and consequences
of the applied optimization and simplification tech-
niques. As a result, the designer can dynamically
change the related parameters and/or improvement
strategies with the aim of achieving the best balance
between interpretability and accuracy.
The rest of the paper is organized as follows.

Section 2 gives a global overview on existing soft-
ware for fuzzy systems. Then, Section 3 introduces
fingrams and their uses in fuzzy modeling. Section 4
presents the open source tool GUAJE, devoted to
design and analyze FRBSs, which includes a new
module for handling fingrams. Afterwards, we use a
simple but highly illustrative use case in Section 5 to
show the potentials of fingrams. Finally, some con-
clusions and future works are sketched in Section 6.

2. Fuzzy systems software overview

Along this long trip (more than forty five years), the
fuzzy community has produced many publications
regarding both theoretical and practical issues, and
as a side effect, a lot of software tools have been de-
veloped too.
There exist some powerful and widely known

commercial tools like the Fuzzy Toolboxa and the
Adaptive Neuro-Fuzzy Inference System (ANFISb)
both provided byMatlab; the software fuzzyTECHc;
or the fuzzy package provided with Wolfram
Mathematicad.
Anyway, this contribution focuses on open

source tools that have recently reached a high level
of development. They offer the richness of quickly
incorporation of new developments made by the ac-
tive research community, playing an important role
in academy and industry. Moreover, most of this
software is freely downloadable for research and ed-
ucation purposes, and facilitates the design of ad-
vanced prototypes for many novel applications.
We would like to highlight the following open

source tools for fuzzy modeling –our principal in-
terest in this contribution– because of their good per-
formance and human-friendly interfaces:

• FisProe (Fuzzy Inference System Professional).
An open source tool for creating fuzzy inference
systems 21. It includes many algorithms for gener-
ating fuzzy partitions and rules directly from ex-
perimental data. FisPro aims at simulating physi-

ahttp://www.mathworks.es/products/fuzzylogic/index.html
bhttp://www.mathworks.es/help/toolbox/fuzzy/anfisedit.html
chttp://www.fuzzytech.com
dhttp://www.wolfram.com/products/applications/fuzzylogic
ehttp://www.inra.fr/internet/Departements/MIA/M/fispro/
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cal or biological systems, making emphasis in rea-
soning purposes. It eases the integration of expert
knowledge and knowledge extracted from data.
FisPro has been successfully applied to agricul-
ture and environmental modeling problems 22.

• Xfuzzyf. A development environment aimed at
producing fuzzy inference-based systems 11,12. It
integrates a set of tools covering all design stages
from description to synthesis. Xfuzzy has been
recently enhanced with an XML-based language
called XFSML 28 that makes easier the interoper-
ability among complementary tools.

• GUAJEg. A free software tool for generating un-
derstandable and accurate FRBSs in a java envi-
ronment 6. It allows combining expert knowledge
and knowledge automatically extracted from data.
GUAJE integrates several algorithms provided by
different open source software tools. Moreover,
the user can export models generated by GUAJE
to other program formats, like FisPro, Xfuzzy, or
the Matlab Fuzzy Toolbox.

As previously hinted, establish a standard lan-
guage is an increasing important requirement. Re-
garding fuzzy control, there is a standard language
called Fuzzy Control Language (FCL) published by
the International Electrotechnical Commission (IEC
61131-7). Notice that, FCL is implemented in the
open source library named jFuzzyLogic 17. A vari-
ant of FCL based on XML which is called Fuzzy
Markup Language (FML 1) has been recently pro-
posed and it is under standardization process.
Other important and more ambitious open

source tools are KNIMEh (Konstanz Information
Miner) 14, a modular environment which is espe-
cially endowed with data manipulation and visual-
ization methods but also with fuzzy rule learning
capabilities 13; FRIDAi (Free Intelligent Data Anal-
ysis Toolbox) 15 that provides methods for statisti-
cal analysis but also with visualization capabilities;
and KEELj (Knowledge Extraction based on Evolu-
tionary Learning) 2 that probably contains the most

complete collection of algorithms for genetic fuzzy
systems. In addition, KEEL offers a user-friendly
GUI for designing experiments and an educational
data mining tool.

3. Fingrams

The term fingram stands for fuzzy inference-gram.
It was coined in 4 by inspiration on the term sci-
entogram firstly introduced by Vargas-Quesada and
Moya-Anegón 29 in the search for a new tool aimed
at visualizing the structure of science 35.
We have recently proposed a methodology for vi-

sual representation and exploratory analysis of the
fuzzy inference process in FRBSs 30. With that aim,
fingrams represent FRBSs as social networks, giv-
ing very useful information about the FRBS behav-
ior. They are made of nodes representing fuzzy rules
and weighted edges that show graphically the inter-
action between rules at inference level.
Different aspects of teamwork between rules can

be considered, producing different fingrams. As a
first approach, we use co-firing between rules, i.e.,
rules fired at the same time by a given input vector.
Therefore, rules highly related are more frequently
fired together. Given a fuzzy system containing N
rules and an experimental dataset covering most pos-
sible situations, we automatically generate an N×N
weight matrixM describing the interactions between
the N rules in terms of frequency of co-firing.

M =

⎛

⎜⎜⎝

0 m12 . . . m1N
m21 0 . . . m2N
. . . . . . . . . . . .

mN1 mN2 . . . 0

⎞

⎟⎟⎠ (1)

The co-firing measure (mi j) is defined by the next
equation:

mi j =

{ SFRi j√
FRi·FRj

, i ̸= j

0 , i= j
(2)

fhttps://forja.rediris.es/projects/xfuzzy/
ghttp://www.softcomputing.es/guaje
hhttp://www.knime.org
ihttp://www.borgelt.net/frida.html
jhttp://sci2s.ugr.es/keel/
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SFRi j counts the number of samples firing simulta-
neously rules Ri and Rj. FRi and FRj count respec-
tively the total number of samples firing rules Ri and
Rj, disregarding if they are fired together or not.
Once matrix M is obtained, then it becomes

straightforward the generation of an initial network
(undirected graph) made up of N nodes connected
through edges whose weights are directly taken from
M. However, since rules usually cover the input
space with dense overlapping among them, the re-
sultant network is usually quite dense and difficult to
understand. Accordingly, we apply a scaling mech-
anism to simplify the representation what allows the
users to focus their attention in the most transcen-
dent relations. The Pathfinder algorithm 18 is chosen
due to its mathematical properties including the con-
servation of links and the representation of the most
salient relationships present in the data. Pathfinder
considers two main parameters:

• r ∈ [1,∞). It defines the Minkowski r-metric
considered to measure the distance between two
nodes not directly connected:

D=

{

∑
i
Dr
i

} 1
r

(3)

In case r takes value 1, thenD results in the sum of
the link weights; r = 2 yields the usual Euclidean
metric; and when r → ∞ the path weight is the
same as the maximum weight associated with any
link along the path.

• Q ∈ [2,N−1]. It limits the number of links in the
paths for which the triangle inequality is ensured
in the scaled network. Hence, Pathfinder removes
every path that connect two nodes that violate the
triangle inequality, having an associated distance
greater than any other path between the same two
nodes composed of up to Q links.

After scaling the network, the resultant network
is visualized. Among the family of spring-embedder
algorithms, we select the so-called force-based algo-
rithms to automatically visualize the resultant net-
works. Kamada-Kawai 26, one of the most extended

methods, assigns coordinates to the nodes trying
to adjust, in an aesthetical pleasing way, the dis-
tances existing among them with respect to the ac-
tual interactions. The combination of rule co-firing,
Pathfinder, and Kamada-Kawai places the most im-
portant nodes (i.e., those sharing more sources with
the rest) toward the center. We call fingram to the
final graphical representation of the network.

Fingrams have already been used in classifica-
tion and regression problems 30. They adopt dif-
ferent characteristics in each case, showing specific
particularities of the problem represented. Fig. 3
shows an illustrative example related to the well-
known IRIS classification problemk. The dataset
contains 3 classes, each one referring to a type of iris
plant. Note that rules pointing out the same output
class are plotted with the same background color,
and rules related to the same class are linked with
green edges while red edges highlight potential in-
consistency problems. In addition, nodes are labeled
with informative values like coverage (cov) or good-
ness (G). In the figure, it is easy to appreciate how
rule R3 covers most data samples and it goes in con-
flict against rules R1 and R2.

The analysis of a fingram can report helpful in-
formation about the analysis and verification of the
related FRBS. We can systematically detect abnor-
mal behaviors through carefully looking at the vi-
sual representation of a FRBS. Some simple but very
useful examples of fingrams analysis are: identifica-
tion of rules that cover a small amount of problem
instances, perception of rules that exactly cover the
same problem instances, detection of a rule that cov-
ers problem instances alone, assessment of FRBS
comprehensibility, etc.

Regarding the comprehensibility analysis, we
assume a large number of co-fired rules means a
hardly comprehensible FRBS. Thus, the complex-
ity of understanding the fuzzy inference process in
terms of rules co-firing information can be evalu-
ated by the Co-firing Based Comprehensibility In-
dex (COFCI) 9:

kIRIS dataset is freely available at the KEEL machine-learning repository [http://sci2s.ugr.es/keel/].
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Class 1

Class 2

Class 3

R1: IF Sepal Length is Average AND Sepal Width is
High THEN Class is C1

R2: IF Sepal Length is High AND Sepal Width is Av-
erage THEN Class is C3

R3: IF Sepal Length is Average AND Sepal Width is
Average THEN Class is C2

R4: IF Sepal Length is Average AND Sepal Width is
THEN Class is C2

Figure 1: Intuitive example of fingram.

COFCI =

{
1−

√
CI

MaxThr , if CI !MaxThr
0, otherwise

(4)

CI =
N

∑
i=1

N

∑
j=1

[(Pi+Pj) ·mi j] (5)

N is the number of rules, Pi and Pj count the number
of antecedent conditions in rules Ri and Rj, respec-
tively. mi j is the measure of co-firing (Eq. 2) re-
garding rules Ri and Rj. MaxThr is a normalization
factor determined heuristically.
For getting a complete explanation about fin-

grams creation, interpretation and analysis, the inter-
ested reader is kindly referred to 30 where fingrams
are deeply described.

4. GUAJE

GUAJE stands for Generating Understandable and
Accurate fuzzy systems in a Java Environment 6.
Namely, GUAJE implements the fuzzy modeling
methodology named as Highly Interpretable Lin-
guistic Knowledge 7,8 that was conceived with
the aim of yielding fuzzy systems endowed with
good balance between interpretability and accuracy.
GUAJE has been carefully developed in order to be-
come user-friendly. In consequence, it makes the
design of interpretable FRBSs easy and intuitive.
Fig. 2 shows the Main and Expert Windows of

GUAJE. This free software actually consists of a
modular architecture which is made up of several
software modules in charge of the following tasks:

• Data pre-processing. It includes data visualiza-
tion and analysis, re-sampling, etc.

• Feature selection. It focuses on identifying the
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(a) Main window of GUAJE. (b) Expert window of GUAJE.

Figure 2: Screenshots of GUAJE.

most significant input variables.
• Partition design. It deals with the characteriza-
tion of each input variable as a linguistic variable
with a justifiable number of meaningful linguistic
terms. The attached membership functions can be
defined by an expert and/or they can be automat-
ically derived from data using machine learning
techniques.

• Rule base definition. The system behavior can
be described by a set of linguistic IF-THEN rules.
An expert can define the rules and/or GUAJE can
derive them from data.

• Knowledge base verification. This modeling
stage verifies the consistency of the knowledge
base previously defined. This analysis must be
done at both linguistic and inference levels.

• Knowledge base visualization. The module for
fingram generation and analysis shows graphi-
cally the system behavior in terms of rule co-firing
at inference level.

• Knowledge base improvement. It tries on get-
ting systems with better interpretability-accuracy
trade-off. Twomain options are available: linguis-
tic simplification and partition tuning.

• Knowledge base validation. It checks if the de-
signed fuzzy system matches with the expert re-
quirements and expectations.

• Knowledge base evaluation. The quality assess-

ment module reports tables including several in-
dices for evaluating both interpretability and ac-
curacy.

In the rest of this section we will provide a deeper
analysis of those modules that are the most relevant
for the remainder of this contribution.

4.1. Partition design

This module allows defining the relevant linguis-
tic variables for the problem under consideration.
GUAJE permits selecting the number of linguistic
terms –from 2 to 9– for each input variable. They
must be fully meaningful. Therefore, it is possible
to choose among several pre-defined sets of vocab-
ulary tuples (low-high, small-large, and so on) but
also set new linguistic terms customized by the user.
The characterization of each linguistic term can

be made by two different approaches. On the one
hand, an expert can define them choosing prototype
values by hand. On the other hand, GUAJE can de-
rive partitions by using several induction methods.
In both cases, GUAJE imposes the use of strong
fuzzy partitions 33 with the objective of maximizing
interpretability.
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4.2. Rule base definition

This module provides mechanisms to define the
rules which compound the FRBS. The user can cre-
ate rules by two different, but not incompatible, ap-
proaches. Firstly, he/she can define the rules by ex-
pert knowledge. As an alternative, machine learning
techniques can derive rules from data, either to con-
stitute the rule base or to complement pre-existing
expert rules. GUAJE permits the use of Fuzzy Deci-
sion Trees,Wang and Mendel, Fast Prototyping, and
Prototype Rule algorithms 7.
In addition, the user can choose among typical

methods for rule conjunction (minimum, product, or
Łukasiewicz) and disjunction (maximum or sum).

4.3. Knowledge base visualization

This module shows graphically the interaction
among rules at inference level 10.
GUAJE first generates a co-firing matrix regard-

ing the pairs of rules simultaneously fired by each
problem instance. Then, Pathfinder scales the graph
related to such matrix. Afterwards, Kamada-Kawai
algorithm determines the placement of nodes. Then,
the graph is enhanced with information related to
rules (coverage, goodness, etc.). Finally, the resul-
tant fingram is displayed to the user who can analyze
it and interact with it, making zoom in and zoom out,
removing nodes, and so on.

4.4. Knowledge base improvement

This module aims to obtain a better balance between
interpretability and accuracy.
GUAJE provides two ways to improve the

interpretability-accuracy trade-off of a given FRBS.
On the one hand, rule base simplification permits
increasing readability of the FRBS by reducing its
complexity (in terms of number of rules, premises,
variables, linguistic terms, etc.) but without jeopar-
dizing accuracy beyond a pre-defined threshold. On
the other hand, fuzzy partitions can be tuned in or-
der to increase accuracy while keeping comprehen-
sibility (because of imposing several semantic con-
straints).

4.4.1. Rule Base Simplification

The goal is the generation of a more compact FRBS,
regarding both fuzzy partitions and rules, thus im-
proving interpretability while preserving accuracy.
GUAJE offers three alternatives:

Genetic rule selection: The initial FRBS is used
for building the first individual of the popu-
lation. A binary-coded chromosome with size
N (the number of initial rules) is generated.
Depending on whether a rule is selected or
not, values 1 or 0 are respectively assigned
to the corresponding gene. At the beginning
all rules are supposed to be selected. The rest
of the population is randomly generated. In
each generation, parents are selected by bi-
nary tournament. Then, uniform crossover
and flip-flop random mutation are applied.
The best individuals automatically pass to the
next generation by elitism. The stopping cri-
teria are the maximum number of generations,
or fitness under the predefined threshold. Fit-
ness function is defined as the weighted sum
of the accuracy and interpretability indices se-
lected by the user among all those ones pro-
vided by GUAJE.

Logical view reduction: First of all, the current
rule base is transformed into several truth ta-
bles without any change of semantics. This
is possible thanks to the propositional view of
fuzzy rule-based systems handled by GUAJE.
In a second step, the truth tables previously
generated are, in turn, minimized by applying
truth-preserving operators (but without taking
care of accuracy which may go down dramat-
ically depending on how the initial rules were
defined). Then, the new set of truth tables is
transformed into propositions in the third step,
so that constituting a new rule base, different
but derived from the original one.

Linguistic simplification: It includes rule-based
reduction and partition simplification, at lin-
guistic level. In short, it is an iterative process
which first acts on the rules and then on the
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partitions at each iteration. This cycle is re-
peated until no more interpretability improve-
ment is feasible without penalizing accuracy
beyond a predefined threshold. Firstly, the
procedure looks for redundant elements (lin-
guistic terms, premises, rules, etc.) that can be
removed without altering the system accuracy.
Then, it tries to merge elements always used
together. Finally, it removes elements appar-
ently needed but not contributing too much to
the final accuracy.

4.4.2. Partition Optimization

The goal is increasing accuracy without jeopardiz-
ing interpretability. The optimization task only af-
fects the fuzzy partitions that define the system vari-
ables. The partition tuning is constrained to main-
tain strong fuzzy partitions. Two strategies are con-
sidered 3:

Genetic tuning: An all-in-one optimization proce-
dure based on a global search strategy. It is
actually a genetic tuning process that looks for
adjusting all system parameters at the same
time. The procedure starts with a population
of randomly generated solutions represented
by real-coded chromosomes. Parents are se-
lected by binary tournament at each genera-
tion. Then, BLX −α crossover and random
mutation are applied. The best individuals are
preserved by elitism. The stopping criteria are
the maximum number of generations, or fit-
ness under the predefined threshold. Fitness
function is defined by the accuracy index se-
lected by the user among all those ones pro-
vided by GUAJE.

Solis-Wets: An element by element optimization
procedure based on the classical local search
strategy proposed by Solis and Wets 34: It is a
hill climbing method with memorization of the
previous successes 19. The goal is not to find
the global optimum, but to improve accuracy
by performing a few iterations. Two alterna-
tives are available: Variable by variable, and

label by label.

4.5. Knowledge base evaluation

This module provides a complete overview about the
quality (regarding both accuracy and interpretabil-
ity) of the designed FRBSs.
For accuracy assessment there are universal in-

dices commonly accepted, as the percentage of cov-
ered samples (Coverage) or the percentage of mis-
classified samples (MC), in classification problems:

MC =
1
d

d

∑
i=1

erri; erri =
{
1, ifCi ̸= Ĉi
0, otherwise (6)

d is the number of instances. Ci represents the class
of instance i. Ĉi is the inferred class.
On the contrary, there is not any well established

and widely recognized interpretability index. Even
more, there is a need to look for two kind of com-
plementary indices, objective and subjective ones 5.
In this paper, two objective indices, the number of
rules (NR) and the total rule length (TRL), and one
subjective index, the COFCI index (Eq. 4), will be
used to evaluate the interpretability of FRBSs. No-
tice that TRL counts the total number of linguistic
propositions into the whole rule base.

5. Illustrative case study. Generation and
analysis of fingrams with GUAJE.

GUAJE has been enhanced with a new software
module for fingram generation and analysis. It is
successfully integrated with the rest of modules of
the software architecture as it was sketched in the
previous section. This section details how to han-
dle (generate, manipulate and analyze) fingrams in
GUAJE through an example. For the sake of clar-
ity the case study focuses only on a highly illus-
trative classification problem even though fingrams
can also be applied to any classification or regres-
sion problem. We have selected a very well-known
benchmark classification problem, WINEl just for il-
lustrative purposes.

lWINE dataset is freely available at the KEEL machine-learning repository [http://sci2s.ugr.es/keel/].
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Flavanoids

Very Low Low Average High

Very High

Figure 3: Linguistic terms and membership functions of variable Flavanoids.

WINE dataset contains 178 instances coming
from the results of a chemical analysis of wines
grown in the same region in Italy from three dif-
ferent cultivars. Thus, the output of the FRBS will
be one categorical variable including the 3 classes
of wines. In addition, the quantities of 13 con-
stituents (Alcohol, Malic acid, Ash, Alcalinity of
ash,Magnesium, Total phenols, Flavanoids, Nonfla-
vanoids phenols, Proanthocyanins, Color intensity,
Hue, OD280/OD315 of diluted wines, and Proline)
are taken as inputs.
The dataset is split into two samples for training

and test, trying to avoid overfitting. The training set
comprises 75% (133 instances) of the available data
picked at random. The test set is compound by the
remaining 25% (45 samples).
Then, each input variable is characterized by a

strong fuzzy partition which contains five member-
ship functions (of triangular shape). They take val-
ues in the universe of discourse determined by the
minimum and maximum available data. Fuzzy par-
titions are automatically derived from training data
with the Hierarchical Fuzzy Partitioning (HFP) al-
gorithm 20. Fig. 3 shows, just for illustrative pur-
pose, the membership functions attached to each lin-
guistic term of variable Flavanoids. As it can be
appreciated, partitions generated by HFP are always
strong fuzzy partitions but not necessarily uniform.
Notice that, interpretable fuzzy partitions must rep-
resent prototypes that are meaningful for the expert
and context-dependant, but this fact does not imply
they have to be uniform.
Moreover, we must set a meaningful linguistic

term related to each membership function because
we deal with linguistic variables. This way, we de-
fine the basic vocabulary to be used later in the def-

inition of linguistic rules. We have considered the
following linguistic terms: Very Low / Low / Aver-
age / High / Very High.
Before defining fuzzy rules, it is time to choose

carefully the involved fuzzy operators, because they
directly alter the inference mechanism. We have se-
lected minimum, maximum and max crisp as t-norm,
t-conorm and defuzzification method respectively,
the usual inference scheme considered when dealing
with classification problems.
Looking for a set of general rules that exhibit a

good interpretability-accuracy trade-off, we have in-
duced rules using Fuzzy Decision Trees (FDT) al-
gorithm 25. FDT can be seen as a fuzzy version
of the popular decision tree induction algorithm de-
fined by Quinlan 31. The GUAJE implementation of
FDT is actually based on the generation of a neuro-
fuzzy decision tree which is easily translated into
quite general incomplete rules where only a subset
of input variables is considered. The result of run-
ning FDT (with maximum tree depth equal to 3; and
using the fuzzy partitions previously generated) is a
rule base made up of 32 rules. As expected, not all
inputs are considered in all the rules. In fact, each
rule uses only a subset of the input variables (3.4 in-
puts per rule in average). Picture on the left side in
Fig. 4 shows the Expert Window of GUAJE after
generating fuzzy partitions and rules. The top part
of the picture shows the variables (13 inputs and 1
output) while a table represents the generated rule
base at the bottom. Each row corresponds to one
rule while each column represents one variable.
Table 1 summarizes the quality evaluation along

the process. It reports the values computed for the
quality indices previously introduced in Section 4.5.
NR is the number of rules. TRL reports the to-
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Table 1: FRBS quality along the design stages.

Quality Index Original FRBS R5, R16, R31 FRBS after rule FRBS after
R32 removal base simplification partition optimization

NR 32 28 6 6
TRL 109 101 13 13

COFCI 0.065 0.075 0.787 0.787
MC Training 0.932 0.910 0.932 0.94

Coverage Training 100 98.496 100 100
MC Test 0.867 0.867 0.911 0.911

Coverage Test 97.778 97.778 100 100

Figure 4: Generation of fingrams.

tal rule length. COFCI stands for co-firing based
comprehensibility index. MC means misclassified
cases. MC and Coverage are computed regarding
both training and test datasets. The column entitled
as Original FRBS corresponds to the current FRBS
(the one displayed in Fig. 4). The rest of columns
are related to the next design steps which will be dis-
cussed in the rest of this section.

Once theOriginal FRBS is generated, we can use
fingrams with the aim of uncovering the FRBS be-
havior at inference level through a graphical analy-
sis. First, we must set some parameters (see pictures

on the right side in Fig. 4):

• Goodness Threshold. Upper and lower thresh-
olds for estimating the goodness of coverage re-
garding each single rule. The goodness measure
informs about how well each rule classifies the
problem instances that it covers. A rule covers one
problem instance when the rule firing degree for
that instance is greater than a predefined thresh-
old (0.1 in this work).

• Pathfinder Threshold. This parameter is used for
pruning the initial graph (removing those edges
with weights smaller or equal than the threshold),
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(a) Quality view. (b) Legend view.

Figure 5: GUAJE fingrams window.

before running Pathfinder.
• Q. This is the specific parameter of Pathfinder
which limits the number of links in the paths re-
specting the triangle inequality. GUAJE suggests
assigning to Q the maximum number of rules
that can be simultaneously fired, which is esti-
mated in an inferential way regarding the available
dataset. In consequence, the network scaling will
take shorter time. Anyway, by default Q= N−1,
with the aim of assuring that all paths are properly
analyzed.
Second, we have to choose one layout algorithm

(bottom right side in Fig. 4) among those provided
by GUAJE (neato, fdp, circo, and so on). We have
chosen neato which is an implementation of the
Kamada-Kawai algorithm.
Then, the GUAJE window of Fig. 5(a) appears.

The body of the window is structured in the form of
a tabbed panel. TheQuality tab gives an overview of
the quality of the designed FRBS. It provides a list
of quality indicesm regarding both accuracy (on the
left) and interpretability (on the right). Moreover,
the user can interpret fingrams according to the in-
formation presented in the Legend tab (Fig. 5(b)).
Once selected the proper options, the pictures in

Fig. 6 are displayed. Thanks to the use of SVG
format the user can interact with the graph through
zooming, moving, and/or exploring in depth some

zones of interest in the entire network. In addition,
when the user passes the mouse over a node or an
edge, a text pops up with the linguistic description of
the related rule or link. Moreover, the user can dis-
able rules by clicking on its corresponding node, i.e.,
a rule is temporally deactivated in the rule base, and
the fingram is generated again without taking care
of that rule. In consequence, fuzzy systems design
becomes an interactive process which is effectively
guided by decisions drawn from the expert analysis
of fingrams.
The GUAJE window for fingram analysis is il-

lustrated in Fig. 6. In addition to the visualization
panel, it contains other two tabs: the Legend tab with
a specific legend of the fingram presented; and the
Measures tab (Fig. 6(c)) which gives several rule
rankings based on some of the most popular mea-
sures in the context of social network analysis, such
as Page Rank or Centrality.
The complete fingram is usually quite dense and

difficult to analyze as it can be appreciated in Fig.
6(a). Thus, the network scaling stage becomes es-
sential to provide a good and efficient fingram anal-
ysis. Therefore, GUAJE uses Pathfindern to keep
only the most significant links, yielding as result
the scaled fingram depicted in Fig. 6(b). Looking
carefully at the scaled fingram, it is easy to detect
rules that cover regions with a few examples and are

mSuch indices are thoroughly explained in the GUAJE user manual.
nGUAJE actually makes use of MST-PathFinder 32. It is a recently published variant of Pathfinder algorithm able to generate large
science maps in cubic time.
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(a) Complete fingram. (b) Scaled fingram with Pathfinder.

(c) Rule rankings.

Figure 6: Fingram analysis window.

therefore good candidates to be studied in detail. For
instance, rules R5, R16, R31 and R32 appear iso-
lated and they cover very few examples. Hence, they
are good candidates to be removed. In fact, as shown
in Table 1, after removing such rules accuracy only
slightly decreases.
In the quest for even better interpretability-

accuracy trade-off we have opted for applying first
linguistic simplification (aimed at improving inter-
pretability while preserving accuracy) and then par-
tition tuning (with the goal of increasing accuracy
without jeopardizing interpretability).
The linguistic simplification process yields a

more compact FRBS. The number of variables is re-
duced from 13 to 4, the total number of member-
ship functions goes down from 65 to 11, the num-
ber of rules drops from 28 to 6, and the total rule

length pass from 101 to 13. This is because simpli-
fied rules are much more general than the original
ones. The result of simplification can be seen in a
new fingram which is depicted in Fig. 7. At first
sight it is clear the high level of simplification ob-
tained with a drastically reduction of the number of
rules (as a side effect the COFCI index improves).
Even more, the rules cover all the examples (regard-
ing both training and test sets) because they are more
general, and they also produce better accuracy (as it
is detailed in Table 1). The rule R3 covers all exam-
ples related to class C3. In addition, it significantly
overlaps with rule R4, thus yielding potential incon-
sistencies. Rule R4 turns up as the central rule in
the fingram. It covers most data samples going in
conflict against R3 but also against R2. Even though
rules R2 and R4 cover many examples they are not
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R1: IF Alcohol is Very Low AND
Flavanoids is Very Low AND
Color Intensity is Very Low
THEN Class is C2

R2: IF Alcohol is Very Low AND
Flavanoids is Low THEN
Class is C2

R3: IF Flavanoids is Very Low
AND Color Intensity is Low
THEN Class is C3

R4: IF Alcohol is Low AND Fla-
vanoids is Low AND Proline
is (Low OR Average) THEN
Class is C1

R5: IF Alcohol is (Average OR
High) AND Flavanoids is
Low THEN Class is C1

R6: IF Flavanoids is Average
THEN Class is C1

Figure 7: Fingram of the simplified FRBS.

enough to handle properly their related classes, C2
and C1 respectively. Therefore, they have to be com-
plemented with other rules, partly redundant with
them, like R1, R5 and R6.

With respect to the optimization stage, we have
selected the Solis-Wets algorithm able to tune the
membership functions yielding marginal changes in
the overall behavior of the system (look at quality
indices reported in Table 1). For this particular case
study, the tuning process only affects to the defini-
tion of the linguistic terms Very Low and Low of
variable Alcohol. Therefore, only rules R1, R2 and
R4 suffer slightly changes. In consequence, the re-
sultant fingram remains almost the same than after
simplification.

Finally, it is worthy to remark that GUAJE comes
with several intuitive and interactive tutorials. One
of them shows the benefits and potentials of fin-
grams for aiding the design of FRBSs. It details,

step by step, first how to build an interpretable fuzzy
rule-based classifier and then how to simplify and
optimize it, looking for the best balance between ac-
curacy and interpretability supported by fingrams.
The illustrative case study presented above can be
reproduced by the interested reader with the help of
GUAJE and just following the related tutorial.

6. Conclusions and future works

This paper has explained how the software mod-
ule for fingram generation and analysis is success-
fully integrated with the rest of modules provided by
GUAJE. The new module is a powerful tool for un-
derstanding the system behavior at inference level.
It becomes really useful in the design of fuzzy sys-
tems because the designer can check graphically,
at any design stage (rule learning, simplification,
optimization, etc.), the interaction between rules
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but also how each design decision affects to the
interpretability-accuracy trade-off.
Please, notice that GUAJE is freely available

(under GPL license) as open source software at:
http://www.softcomputing.es/guaje

The number of users of GUAJE is growing up
all around the world. The users’ feedback helps us
to continue enhancing this free software tool. Thus,
new releases will be available with improvements in
the visualization of fingrams. In short-term we want
to make even more dynamic and user-friendly the
interaction with the user. Thus, he/she should be
able to alter the graph layout through making drag
and drop of some nodes or collapse/expand parts of
interest in the entire graph. Regarding mid-term fu-
ture we plan to develop a new software module that
gives fully automatic support to the design of fuzzy
systems guided by fingrams.
The co-firing measure presented in this contribu-

tion is biased by the training data. Such fact may
be avoided by considering other measures of over-
lapping between rules, that will be part of our future
work.
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2. J. Alcalá-Fdez, L. Sanchez, S. Garcia, M. J. del Jesus,
S. Ventura, J. M. Garrell, J. Otero, C. Romero, J. Bac-
ardit, V. M. Rivas, J. C. Fernandez, and F. Herrera,
“KEEL: a software tool to assess evolutionary algo-
rithms for data mining problems,” Soft Computing,
13(3), 307–318 (2009).

3. J. M. Alonso, O. Cordón, S. Guillaume, and L. Mag-
dalena, “Highly interpretable linguistic knowledge

bases optimization: Genetic Tuning versus Solis-
Wetts. Looking for a good interpretability-accuracy
trade-off,” Proc. IEEE International Conference on
Fuzzy Systems, 901–906 (2007).

4. J. M. Alonso, O. Cordón, A. Quirin, and L. Mag-
dalena, “Analyzing interpretability of fuzzy rule-
based systems by means of fuzzy inference-grams,”
Proc. World Conference on Soft Computing, San Fran-
cisco State University, 181.1–181.8 (2011).

5. J. M. Alonso and L. Magdalena, “Editorial: special is-
sue on interpretable fuzzy systems,” Information Sci-
ences, 181(20), 4331–4339 (2011).

6. J. M. Alonso and L. Magdalena, “Generating under-
standable and accurate fuzzy rule-based systems in a
Java environment,” Lecture Notes in Artificial Intel-
ligence - Proc. 9th International Workshop on Fuzzy
Logic and Applications, LNAI6857, 212–219 (2011).

7. J. M. Alonso and L. Magdalena, “HILK++: an
interpretability-guided fuzzy modeling methodology
for learning readable and comprehensible fuzzy rule-
based classifiers,” Soft Computing, 15(10), 1959–
1980 (2011).

8. J. M. Alonso, L. Magdalena, and S. Guillaume,
“HILK: a new methodology for designing highly in-
terpretable linguistic knowledge bases using the fuzzy
logic formalism,” International Journal of Intelligent
Systems, 23(7), 761–794 (2008).

9. J. M. Alonso, D. P. Pancho, O. Cordón, A. Quirin,
and L. Magdalena, “Social network analysis of co-
fired fuzzy rules”. In R. R. Yager, A. M. Abbasov,
M. Z. Reformat, and S. N. Shahbazova, editors, Soft
Computing: State of the Art Theory and Novel Ap-
plications, Studies in Fuzziness and Soft Computing,
Springer Berlin Heidelberg, 291, 113–128 (2013).

10. J. M. Alonso, D. P. Pancho, and L. Magdalena, “En-
hancing the fuzzy modeling tool GUAJE with a new
module for fingrams-based analysis of fuzzy rule
bases,” Proc. IEEE International Conference on Fuzzy
Systems, 1082–1089 (2012).

11. I. Baturone, F. J. Moreno-Velo, S. Sánchez-Solano,
A. Barriga, P. Brox, A. A. Gersnoviez, and M. Brox,
“Using Xfuzzy environment for the whole design of
fuzzy systems,” Proc. IEEE International Conference
on Fuzzy Systems, 517–522 (2007).

12. I. Baturone, F. J. Moreno-Velo, S. Sánchez-Solano,
and A. Ollero, “Automatic design of fuzzy controllers
for car-like autonomous robots,” IEEE Transactions
on Fuzzy Systems, 12(4), 447–465 (2004).

13. M. R. Berthold, “Mixed fuzzy rule formation,” Inter-
national Journal of Approximate Reasoning, 32, 67–
84 (2003).

14. M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel,
T. Kötter, T. Meinl, P. Ohl, K. Thiel, and B. Wiswedel,
“KNIME - the Konstanz information miner (ver-
sion 2.0 and beyond),” ACM SIGKDD Explorations

Co-published by Atlantis Press and Taylor & Francis 
                     Copyright: the authors 
                                    59



Interpretability-accuracy Trade-off Supported By Fingrams

Newsletter, 11, 26–31 (2009).
15. C. Borgelt and G. González-Rodrı́guez, “FrIDA - a
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1. Introduction

Interpretability is a highly appreciated capability of fuzzy systems that
permits the correct understanding of systems behavior [1]. Interpretability
of fuzzy systems represents their ability to formalize the behavior of a real
system in a human understandable way [2, 3]. It takes advantage of the use of
linguistic variables [4] and rules [5, 6] with high semantic expressivity close to
natural language. According to some authors interpretability is of subjective
nature and depends on the talent and background of the end-user [7].

Several factors influence in the assessment of interpretability [8] from low
to high levels [9]. Mainly, they can be grouped in two main issues [7]: (1)
readability (transparency) of the system description, and (2) comprehensibi-
lity of the system explanation. Notice that it only makes sense to take care
about interpretable constraints [10] when there is a need of human interaction
in any of the steps of the process (design, inference, improvement,...).

Fuzzy systems are not interpretable per-se. Although the use of linguistic
variables and rules favors interpretability, this does not guarantee it. A
careful design is demanded to simplify their understanding and ensure their
interpretability [11, 12].

Fuzzy modeling [13] –system modeling with fuzzy rule-based systems
(FRBSs)– can be done through two alternative approaches attending to the
interpretability-accuracy trade-o↵: producing linguistic or precise fuzzy mo-
deling [14]. Linguistic fuzzy modeling (LFM) prioritizes interpretability. It
yields fuzzy rules composed of linguistic variables [4] taking terms with a
real-world meaning [15, 16]. On the contrary, precise fuzzy modeling (PFM),
which has accuracy as its main objective, constructs FRBSs that lack of
semantic expressivity.

An e↵ort has been done to obtain intermediate approaches that keep a
good interpretability-accuracy trade-o↵. On the one hand, some works pro-
pose to improve accuracy of LFM [17]. On the other hand, others introduce
techniques to enhance interpretability of PFM [18].

One of the key issues in the generation of a fuzzy system with good inter-
pretability is the comprehension of the fuzzy inference process [19]. Unders-
tanding such process becomes an arduous task when dealing with PFM even
for fuzzy modeling experts. We can highlight two of the most famous FRBSs
for PFM: Mamdani FRBSs [6] and Takagi-Sugeno FRBSs [20]. The for-
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mer, Mamdani FRBSs are typically multi-input-single-output systems with
min-max inference mechanism, widely recognized as the easiest inference me-
chanism to understand. The latter, Takagi-Sugeno FRBSs produce as rule
outputs non-linear combinations of the inputs involved in each rule, hinde-
ring its comprehension. Some authors have made an e↵ort in simplifying
and enhancing Takagi-Sugeno FRBSs [21, 22]. Anyway, in both cases the
use of weighted rules, advanced defuzzification strategies, a high number of
rules, variables or antecedents per rule, can make harder the understanding
of the system behavior at inference level [1, 2, 23, 24, 25]. Moreover, when
an instance fires several rules, as usual in PFM, the inferred output is hard
to interpret.

There are not many publications tackling with visual analysis of the fuzzy
system inference process. Probably, this is due to the well-known linguistic
expressivity of LFM what gives prominence to linguistic representations. Ho-
wever, as mentioned before, not all fuzzy systems preserve such characteristic.
Thus, visual tools would stand out in the case of PFM.

Pham et al. [26] overview the requirements to graphically represent fuzzy
systems and critically review the existing methods for visualizing fuzzy data
and relationships. Di↵erent alternatives support the visualization of fuzzy
data, fuzzy partitions and fuzzy rules depending on the requirements the
end-user may demand. A few authors [27, 28, 29, 30, 31, 32] present 2D
graphical representations for FRBSs. Only [31, 32] represent rule interaction
at inference level in terms of rule overlapping. Namely they use parallel
coordinates to visualize high-dimensional fuzzy points and rules. This brief
review shows that there is a lack of methods depicting the interaction among
rules that, however, could strongly help in the comprehension of the rule base
behavior at inference level.

Fuzzy Inference-grams [33], or Fingrams in short, have arisen as a power-
ful tool for visualizing and analyzing FRBSs. Fingrams give a global view
of fuzzy systems, and allow us to understand its behavior at a high level of
abstraction. They present fuzzy systems as social networks where rules are
individuals that relate each other reflecting how they cover the input space.
Di↵erent metrics and visual artifacts have been proposed to reflect the parti-
cularities of the di↵erent kinds of fuzzy systems [33, 34]. It is worthy to note
the capability of Fingrams to graphically depict the inference mechanism of
fuzzy systems. Fingrams let us visualize how instances are covered by rules,
which are the rule outputs, and so on.

This paper proposes the use of Fingrams to understand the behavior of
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precise fuzzy systems –fuzzy systems constructed by PFM– and its particu-
larities. To do so, we have extended Fingrams to e↵ectively represent the
characteristics of precise fuzzy systems.

Here we propose a visual representation that allows us to uncover how
the inference mechanism operates for a single instance. It shows which rules
cover the instance, giving us a complementary local view of the system.

Additionally, we propose a novel graphical representation for instances
that are not covered by any rule in a given FRBS. This way we can quantify
the uncovered instances and act consequently. It should be noticed that
uncovered instances penalize the precision of FRBSs and their early detection
and correction is essential for the correct behavior of the system.

In this paper, we use the Fuzzy Unordered Rule Induction Algorithm [35],
FURIA in short, in order to illustrate the main potentials of applying Fin-
grams to understand the behavior of fuzzy systems generated by PFM.

FURIA is one of the most outstanding fuzzy rule-based classification met-
hods attending to accuracy. However, although FURIA produces compact
rule bases, its interpretability is arguable [36], being penalized by the ab-
sence of linguistic readability. Though FURIA usually generates low number
of rules (and antecedents per rule), they lack of linguistic readability be-
cause there is no global semantics. Rule antecedents are rule dependent and
do not have linguistic terms associated. In addition FURIA’s inference me-
chanism occlude interpretability. It is based on a winner class mechanism
with weighted rules in combination with the so-called rule stretching method
which is in charge of handling uncovered instances. In consequence, FURIA
includes a close-to-black-box inference mechanism, very hard to predict and
understand.

The rest of the manuscript is organized as follows. Section 2 presents
some preliminaries including a brief summary of PFM and Fingrams. Sec-
tion 3 introduces the extension of Fingrams to assist the analysis of PFM.
Section 4 focuses on the use of Fingrams for the visual analysis of precise
fuzzy systems generated by FURIA. It contains a short overview of FURIA,
the adaptations of Fingrams made to deal with FURIA, the analysis of some
experimental results and a complete case of use where all the potentials of
Fingrams are sketched. Finally, some conclusions and future work are poin-
ted out in Section 5.
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2. Preliminaries

2.1. Precise Fuzzy Modeling

PFM has as main objective to obtain precise fuzzy systems. There are
several alternatives of PFM [37, 38, 35], but all of them induce rules from
data instances and take advantage of sophisticated inference mechanisms to
achieve high accuracy.

Namely, precise FRBSs can be constructed to deal with several di↵erent
kinds of problems: classification, clustering, control, etc. In this paper, we
deal only with multi-input-single-output Mamdani type classification FRBSs,
establishing the basis to be generalized to other kind of fuzzy systems.

Given a classification problem with p classes:

C = {c
l

| l = 1, 2, ..., p} (1)

and a dataset (D) which contains (m) instances each with (n) attributes and
an output class. Thus, an instance (I

k

) is represented as a n-dimensional
attribute vector (xk) plus its output class (yk):

I
k

= {(xk, yk) | xk = {x1
k

, ..., xn

k

}, xh

k

2 R, h = 1, 2, ..., n y
k

2 C} (2)

We denote Dc

l the set of instances with output class c
l

.

Dc

l = {I
k

| y
k

= c
l

, k = 1, 2, ...,m} (3)

A precise FRBS is made up of a set of r rules trying to fit D. The usual
rule format is as follows:

R
i

: IF X1 is Ai

1 & ... & X
n

is Ai

n

THEN Y is Bi with wi (4)

where Ai

h

is the rule antecedent for variable X
h

(h 2 [1, n]), Bi denotes the
output class, and wi is the weight associated to rule R

i

.
We define Rc

l as the set of rules that have as output class c
l

:

Rc

l = {R
i

| Bi = c
l

, i = 1, 2, ..., r} (5)

and µ
R

i

(I
k

) as the firing degree up to a single instance (I
k

) fires the rule R
i

:

µ
R

i

(I
k

) = µ
A

i

1
(x1

k

) ⌦ ... ⌦ µ
A

i

n

(xn

k

) (6)

where ⌦ is a t-norm.
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We distinguish between covered and uncovered instances. We define the
set of covered instances (cv) as those firing at least one of the set of rules,
and the set of uncovered instances (ucv) as those ones that do not fire any
of the set of rules.

cv = {I
k

|
X

i=1,...,r

(µ
R

i

(I
k

)) > 0, k = 1, 2, ...,m} (7a)

ucv = {I
k

|
X

i=1,...,r

(µ
R

i

(I
k

)) = 0, k = 1, 2, ...,m} (7b)

Then, we define the firing degree of a rule (FD
R

i

) as the accumulated
firing degree for all the instances of D that fire that rule.

FD
R

i

=
X

k=1,...,m

(µ
R

i

(I
k

)) (8)

We define D
i

as the whole set of instances covered by rule R
i

:

D
i

= {I
k

| µ
R

i

(I
k

) > 0, k = 1, 2, ...,m} = D+
i

[ D�
i

(9)

where D+
i

and D�
i

denote respectively the set of positive and negative ins-
tances for rule R

i

. We call positive instances to those covered by the rule in
a consistent manner, i.e. the output class is the same for the rule and the
data instance, being the remaining covered instances negative instances.

D+
i

= {I
k

| µ
R

i

(I
k

) > 0 & y
k

= Bi, k = 1, 2, ...,m} (10a)

D�
i

= {I
k

| µ
R

i

(I
k

) > 0 & y
k

6= Bi, k = 1, 2, ...,m} (10b)

The coverage (cov
i

) of a rule R
i

is defined as:

cov
i

=
|D

i

|
|D| (11)

with |.| the cardinality of sets.
We define class coverage of a rule (cc

i

) as the proportion of covered instan-
ces consistent with the rule output class with respect to the total instances
of the dataset consistent with the rule output class.

cc
i

=
|D+

i

|
|DB

i |
(12)
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Finally, let’s present the inference mechanism for this kind of systems.
The level of class activation (S

c

l

) is computed as:

S
c

l

(I
k

) = max
R

i

2Rc

l

�
µ
R

i

(I
k

) · wi

�
(13)

and the predicted output class (y0
k

) for the given instance as:

output(I
k

) = y0
k

) S
y

0
k

(I
k

) = max
l=1...p

S
c

l

(I
k

) (14)

2.2. Fuzzy Inference-grams

Fuzzy Inference-grams, or Fingrams in short, have been recently intro-
duced as a methodology for visual representation and exploratory analysis
of FRBSs [33]. Fingrams are graphs representing fuzzy systems as social
networks that overview at a glance the complete inference process. Rules
are represented by nodes that are related if they cover instances in common.
Node size is proportional to the number of instances covered by the selected
rule. Relations reflect how pairs of rules cover a common input space; thus
the larger number of instances commonly covered, the stronger relations.

To construct Fingrams from a FRBS we need a set of instances, the set
of rules, and the inference mechanism used. The building process can be
summarized by the following three phases:

1. Fingram generation: Construction of the complete graph according
to a co-firing metric. The metric reflects how the rules of a FRBS
cover the instances of the dataset. The simplest metric (as shown
in Eq. 15) relates two rules (R

i

and R
j

) according to the number of
instances covered in common by them (|D

i

\ D
j

|) with respect to the
total number of instances they individually cover (|D

i

| and |D
j

|) where
D

i

and D
j

are defined by Eq. 9.

m
ij

=

( |D
i

\D
j

|p
|D

i

||D
j

|
, if i 6= j

0 , if i = j
(15)

with m
ij

2 [0, 1].
2. Fingram scaling: The graph generated in the previous phase usually

appears highly dense and complex to analyze. Therefore, a suitable
filtering of elements should produce a clearer graph where its back-
bone emerges. With that purpose, we take advantage of scaling algo-
rithms that maintain all the nodes but only the most relevant links of
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the previous graph. Scaling algorithms look at proximity information
and yield new structures uncovering the underlying organization of the
graph. These algorithms consider similarities, correlations or distances
in order to prune a given graph according to the proximity between
pairs of nodes.
We use Pathfinder algorithm [39] to scale Fingrams. It preserves the
most important relations, producing no new unconnected nodes and
showing up the underlying structure of the rule base.

3. Fingram drawing: A pleasant graphical representation is quite im-
portant to easily identify and understand the behavior of the FRBS
under study. Force-based or force-directed algorithms are widely used
for drawing graphs in the area of information science [40]. They locate
the elements of a graph in a 2D or 3D space so that all the links are
approximately of equal length and produce as few crosses as possible.
Kamada-Kawai algorithm [41], one of the most relevant force-based al-
gorithms, layouts Fingram elements in 2D following aesthetical criteria.

Fingrams can already deal with fuzzy association rules [34], fuzzy rule-
based classifiers and regressors [33]. The di↵erent adaptations involve specific
metrics and show relevant information according to their characteristics.

A specific software, Fingrams Generator [42], permits the creation of Fin-
grams no matter how the depicted FRBS was generated either by an expert
or by another tool1. Also, a few software tools already allow the generation
of FRBSs along with the creation and analysis of the related Fingrams, such
as the data mining suites KEEL [43] and KNIME [44], or the fuzzy modeling
tool GUAJE [45]. A complete survey on fuzzy systems software can be found
at [46].

3. Extending Fuzzy Inference-grams to deal with Precise Fuzzy
Systems

PFM creates accurate systems at the cost of being di�cult to interpret.
The data-driven process they follow and their inference mechanism occlude
interpretability. This section presents the use of Fingrams for visual represen-
tation and exploratory analysis of the fuzzy inference mechanism in precise

1All the graphical representations shown in this paper are obtained by the use of Fin-
grams Generator available at: http://www.sourceforge.net/projects/fingrams/
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fuzzy systems. To accomplish this challenging task, we enhance Fingrams
with several adaptations and improvements. First, we propose a new co-firing
metric that deals with rule firing degrees and weights of rules in accordance
with the usual rule format (as shown in Eq. 4). Second, we introduce a grap-
hical resource that displays the uncovered instances. And third, we define a
new kind of Fingrams to visualize local inference for a given data instance.

Along the section we draw on an illustrative example to show the im-
provements introduced. We use the synthetic dataset prnn-synth [47] (used
in [35] as benchmark) that has 250 instances (with 2 attributes) belonging
to two classes. Here, we take advantage of its dimensionality to illustrate
the generation of Fingrams. Fig. 1(a) shows a 2D plot with the instances
in the dataset along with the input space covered by the FRBS created by
FURIA. Fig. 1(b) provides the textual description of the FRBS. Notice that
rules follow the format described by Eq. 4 and antecedents are defined by
trapezoidal fuzzy sets.

3.1. PFM co-firing metric

A co-firing metric defines how nodes are related in accordance with how
rules cover the input space. As seen in section 2.2, specific metrics cope with
di↵erent types of fuzzy systems. The inference mechanism determines the
used metric.

Here, we introduce a new metric that fits with the PFM inference mecha-
nisms. This metric (Eq. 16) includes the firing degree up to which the data
instances activate the rules as well as the rule weights:

m
ij

=

8
><

>:

P

I

k

2{D
i

\D

j

}

⇣
min(µ

R

i

(I
k

)·wi

,µ

R

j

(I
k

)·wj

⌘

p
(FD

R

i

·wi)·(FD

R

j

·wj)
, if i 6= j

0 , if i = j

(16)

{D
i

\ D
j

} represents the set of instances firing both rules R
i

and R
j

at
the same time. µ

R

i

(I
k

) is the firing degree of R
i

given the data instance I
k

(Eq. 6). FD
R

i

reflects the firing degree of R
i

(as presented in Eq. 8), and wi

states the weight assigned to R
i

.
A square matrix M (r⇥ r being r the number of rules in the FRBS) con-

tains all interactions among rules. Each position in that matrix is computed
using the co-firing metric.

Edges in the visual representation indicate interaction between rules. The
thickness of the edge connecting rules R

i

and R
j

is proportional to m
ij

. Its
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(a) Input space.

R1: IF ys in [�1, �1, 0.496562, 0.497859] THEN yc is C0 with w1=0.844
R2: IF xs in [�1, �1, -0.629315, -0.598234] THEN yc is C0 with w2=0.979
R3: IF ys in [0.496562, 0.5053, 1, 1] & xs in [-0.497046, -0.492549, 1, 1] THEN yc is C1 with w3=0.909

(b) Rules of the system.

Figure 1: FURIA system.

color depends on the class of the related rule. On the one hand, redundancies,
i.e. links relating rules with the same output class, are represented in green.
On the other hand, inconsistencies, i.e. relations between pairs of rules with
di↵erent output class, are printed in red.

This new metric shows the behavior of the system at inference level more
faithfully than the original one (presented in Eq. 15) but it is also more
restrictive than the original. It is constrained by the firing degree of the data
instances and the rule weights. As result, it yields weaker links among rules.

Nodes in Fingrams of PFM include the following information: rule iden-
tifier (R

i

), coverage (cov), weight (w) and class coverage per rule (cc as
presented in Eq. 12). Node color reflects the rule output class and the num-
ber of node borders indicates the number of antecedents in the rule depicted
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(a) Fingram for the illustrative FRBS
constructed with the original metric
(Eq. 15).

(b) Fingram for the illustrative FRBS
constructed with the new metric
(Eq. 16).

Figure 2: FURIA-Fingrams of the illustrative example.

by the node. Each node size is proportional to the sum of firing degrees up
to which the rule R

i

covers all the instances (FD
R

i

)2.
Fig. 2 presents the Fingrams built from the illustrative dataset and rules

previously introduced (Fig. 1). Fig. 2(a) shows the Fingram built with the
original metric (Eq. 15) whereas Fig. 2(b) presents the Fingram with the
new metric (Eq. 16). Both pictures are in accordance with Fig. 1 which
shows how the 3 rules cover the input space. Rules R1 and R2 cover some
instances in common (lower left dark rectangle), so for, a link exists among
the corresponding nodes in Fig. 2(a) and Fig. 2(b). On the contrary, rule R3

does not cover instances in common with any of the remaining rules, thus it
appears disconnected in the Fingram.

It is worthy to note that there are a few di↵erences depending on the
considered metric. Nodes of rule R2 have slightly di↵erent sizes in both
representations. Node size is a bit smaller when using the new metric due to
the fact that a few instances are just partially covered by R2. Furthermore,
the thickness of the edge between rules R1 and R2 changes with each metric,
m1 2 = 0.533 with the original metric, whilem1 2 = 0.483 with the new metric.

2Note that node size is metric dependent. For the original metric nodes are proportional
to the number of instances covered by the corresponding rule.
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3.2. Representation of uncovered instances

The representation of Fingrams given in this proposal introduces a new
visual artifact that shows the number of instances not covered by the set
of rules (as presented in Eq. 7(b)). Instances not covered by any rule are
represented by a rectangular node labeled as “UNCOVERED INSTANCES”.
Its height is proportional to the number of instances not covered by any rule.
It is filled using vertical colored strips that give the proportion of uncovered
instances related to each class.

The information provided by this special node helps in the comprehension
of the system and its behavior with respect to the given dataset. We can
compare its size with the size of the rest of nodes, giving us an idea of how
important the set of uncovered instances is. Even more, we can identify
visually whether instances of some classes are ignored by the system.

Figure 3: Node of uncovered instances (zoomed from Fig. 2).

We are analyzing the uncovered instances in the illustrative example.
The white area in Fig. 1 shows that 9 out of 250 (3.6%) instances –4 of class
C0 and 5 of class C1– are not covered. Fig. 3 (zoomed from Fig. 2) allows
us to observe that situation. This node presents the output classes of the
uncovered instances reflected in vertical colored strips.

3.3. Local view of the FRBSs inference mechanism

In previous proposals, Fingrams showed the inference mechanism of FRBSs
from a global view point, i.e. observing how all the rules covered the complete
given dataset. However, this fails in assisting the analysis of the inference
mechanism at local level, i.e. for a single data instance.

Here, we propose a new Fingram view aimed at illustrating a partial view
of the system when focusing on those rules that participate in the inference
process regarding a single instance. Thus, we focus on those rules that spe-
cifically cover the related part of the input space. This allows us to better
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understand the behavior of the system in a specific situation. This instance-
based Fingram filters the rules that are not fired by the selected instance.
Notice that this task is not easy to carry out manually when dealing with
complex sets of rules. Therefore, it provides a powerful filtering mechanism
conducted by data.

This new representation is valid for any of the existing types of Fingrams
and very valuable when studying instances that require a detailed analysis.
The process to build these new instance-based Fingrams includes four steps.
It is as follows:

1. Generation of the network using the rule co-firing metric m taking as
inputs the set of fuzzy rules, the fuzzy inference mechanism, and the
set of instances.

2. Filtering of the network by only considering those rules that take part
in the inference for the given instance I

k

.

3. Scaling of the network through the use of the network scaling method.

4. Graphical representation of the resulting scaled network according to
the network drawing method.

The firing degree up to the instance fires each rule (as seen in Eq. 6) is
reflected by a radius dark zone in the corresponding node. The angle of dark
color is proportional to the firing degree of the rule for the given instance,
with a full dark colored node only in case that the firing degree is 1.

As complementary information to the Fingram, we propose to construct a
histogram with the information of S

c

l

for each class (as presented in Eq. 13).
This way, we can compare the level of activation of each class for the given
single instance.

We are overviewing this new graphical representation with the illustrative
example. We select the instance highlighted in red in Fig. 1(a) (instance
I80 = {�0.61, 0.25,C0}) to analyze the inference mechanism locally. We
follow the building process previously presented, obtaining the Fingram of
Fig. 4(a). The histogram of class activation is shown in Fig. 4(b).

We can see that the node related toR1 is fully dark colored (µ
R1(I80) = 1).

On the contrary, R2 is partially fired (µ
R2(I80) = 0.599), therefore the related

node is colored with a radius dark area. Both rules have the same output class
(class C0), what is reflected by the same node color. In addition, Fig. 4(b)
shows the levels of activation per class, where the winner class gives the
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(a) Instance-based Fingram. (b) Levels of firing per class.

Figure 4: Analysis of inference for instance I80 = {�0.61, 0.25, C0}.

inferred output3. Class C0 is correctly inferred, and there is no rule with
class C1 activated in this specific case.

4. Analyzing FURIA Inference Mechanism by Fingrams

FURIA is a PFM algorithm that appears as one of the outstanding fuzzy
classification algorithms when attending to accuracy [35]. It has demonstra-
ted to be a robust method, performing properly in a bunch of scenarios, e.g.,
the prediction of missing attribute values on real cardiovascular data was
improved by the use of FURIA in [48]; FURIA turned out as a competitive
alternative for recommender systems in [49]; fuzzy rule-based ensembles were
constructed including FURIA in order to derive good performance for high
dimensional problems [50, 51]; etc.

FURIA creates very compact FRBSs that achieve high performance thanks
to a specific inference mechanism. The comprehension of such inference me-
chanism is not straightforward [36]. However, it is a key issue to properly
interpret the behavior of the FRBSs built from data.

3We should notice that the firing degree per class in FURIA is constructed by the
addition of firing degrees of individual rules (as it will be seen in Eq. 20), instead of the
usual maximum of firing (as shown in Eq. 13). That is the reason why the histograms
may include values of Scl greater than one.
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This section presents the use of Fingrams for visual representation and
exploratory analysis of the fuzzy inference mechanism in FURIA. To accom-
plish this challenging task, here we take advantage of the enhanced Fingrams
presented in section 3. First, we present FURIA emphasizing in its induction
of rules and inference mechanism. Second, we introduce some Fingram adap-
tations to deal with FURIA particularities. Then, we study the di�culties
FURIA presents over benchmark datasets and how Fingrams can illuminate
their comprehension. Finally, we analyze a complete case study of FURIA
with Fingrams.

4.1. Fuzzy Unordered Rule Induction Algorithm

Fuzzy Unordered Rule Induction Algorithm, or FURIA in short, is a fuzzy
rule-based classification method based on RIPPER algorithm [52]. It presents
some modifications and extensions that outperforms the original [35, 53].

Now on, we are going to present the characteristics of FURIA emphasizing
the procedure for rule induction as well as the inference mechanism.

4.1.1. Induction of rules
FURIA learning method follows RIPPER building strategy [52]. Nevert-

heless, di↵erently from RIPPER, FURIA manages fuzzy rules. Thus, it does
not construct a default rule, considers the order of rules irrelevant, and does
not prune them.

FURIA fuzzifies the rule antecedents provided by RIPPER converting
them to trapezoidal fuzzy sets with characteristic values Ai

h

= {a1
h

, a2
h

, a3
h

, a4
h

}
(being the h antecedent of rule R

i

). The original crisp intervals set the cores;
and the supports are extended trying to maximize the purity of the rules,
i.e. how well a rule covers the instances attending to the concordance of the
outputs. We set p

i

and n
i

as the accumulative firing degrees of positive and
negative covered instances for rule R

i

respectively:
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Thereby, we define the purity of rule R
i

(pur
i

) as follows:

pur
i

=
p
i
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+ n
i

(18)
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Rules in FURIA does not necessarily include an antecedent for all the
input attributes and can also have more than one antecedent for the same
attribute. We denote z

i

the number of antecedents that are included in rule
R

i

. We can observe an example of rule induced by FURIA in Eq. 19.

Ri: IF att2 in [0.67, 0.7, 1, 1] & att1 in [�1, �1, 0.5, 0.51] & att2 in [�1, �1, 0.74, 0.75]
THEN class is C0 with CF=0.899

(19)

The order in which antecedents are learnt is important. It reflects the
relevance of antecedents from the least to the most important one. After-
wards, the rule stretching mechanism exploits this ordering, as we will show
bellow.

4.1.2. Inference mechanism
Given a set of rules, the inference mechanism operates as follows:

• If the instance I
k

is covered by the set of induced rules, we define the
level of activation for FURIA as:
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where the rule weight wi is the certainty factor of rule R
i

:
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Then, we compute the output class as presented in Eq. 14, paying
attention to the maximum of class activation levels.

Note that S
c

l

in FURIA (Eq. 20) is slightly di↵erent from the presented
S
c

l

in Eq. 13. FURIA considers the sum of levels of activation whe-
reas, in general, PFM takes into account only the maximum level of
activation.

• If I
k

is not covered, FURIA dynamically creates a new set of rules (now
on SR

k

) from the initial ones by the so-called rule stretching mecha-
nism. It iteratively tours every induced rule removing antecedents in
order one by one (taking advantage of the ordering of antecedents set in
the induction of rules) from the least to the most important, until the
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instance is covered. If all antecedents are removed from an individual
rule, then this rule is discarded. When the stretched rule covers the
instance I

k

then the stretching mechanism stops for this rule, adds that
stretched rule to SR

k

and goes on with the next rule until all initial
rules are checked for the given instance. Therefore, the new rule set
SR

k

includes at most the same number of initially induced rules (r).

– If SR
k

is empty, i.e. all the rules are discarded: The class with the
highest frequency in the dataset D is taken as output for instance
I
k

.

– Otherwise: FURIA produces as output the winner class with the
final set of rules (SR

k

) for the instance I
k

:

output0(I
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and

CF 0
R

i.q

= CF
R

i

· q + 1

z
i

+ 2
(25)

being CF
R

i

the certain factor of the induced rule R
i

, and q and
z
i

the number of antecedents in the stretched rule R
i.q

and in the
induced rule R

i

respectively.

It must be noticed that initial rules can produce as many stret-
ching rules as the number of antecedents minus 1 (q = 1, ..., z

i

�1).

In case of a tie, no matter if the instance is handled by the set of induced
rules or by the stretching mechanism, a decision in favor of the most frequent
class is made.

The interested reader can find a deeper explanation of FURIA in [35, 53].
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4.2. Fingram adaptations to deal with FURIA

4.2.1. Global view of the FURIA inference mechanism
As previously seen in section 4.1.2, the inference mechanism of FURIA

has two modes of working depending on whether or not each data instance
is covered by the set of induced rules. So for, we construct two di↵erent
Fingrams, named as FURIA-Fingrams, with the aim of illustrating both
situations:

Fingram from induced rules: We concentrate on the set of rules induced
by FURIA for the given dataset and how such rules are co-fired accor-
ding to the instances they cover. This Fingram is based on the co-firing
metric presented in subsection 3.1. It may include a node labeled as
“INSTANCES STRETCHING” that is built by following the procedure
presented in subsection 3.2 to represent instances not covered by the
induced rules.

Fingram from stretched rules: We focus on the set of rules derived from
the rule stretching mechanism in charge of handling those instances
not covered by the induced rules, i.e. those instances that are included
in the “INSTANCES STRETCHING” node in the previous Fingram.
This Fingram uses the same metric presented in 3.1 but considering
the new set of rules and only the instances not covered by the set of
induced rules. The firing degrees of the stretched rules are computed
as follows:

FD
R

i.q

=
X

I

k

2ucv

⇣
µ0
R

i.q

(I
k

)
⌘

(26)

where µ0
R

i.q

(I
k

) is computed by Eq. 24, and ucv is the set of uncovered
instances as presented in Eq. 7(b).

The new rule identifiers preserve the names of the initial rules and add
the number of antecedents kept. For example, if we have a rule R5

with 3 antecedents, we may have R5.2 and R5.1 for rules with 2 and 1
antecedents respectively, derived by the rule stretching mechanism.

Notice that the stretching mechanism stops for a rule when each data
instance is covered or there are no more antecedents to remove. So for,
rules coming from the same initial rule cannot be related because they
never handled any instance in common, e.g. R5.2 and R5.1 can not be
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(a) Fingram from induced rules. (b) Fingram from stretched rules.

Figure 5: Interpretation of FURIA-Fingrams.

related because they do not jointly appear in any set of stretched rules
(SR

k

) for an instance I
k

(as presented in subsection 4.1).

In the special case that all the initial rules yield to the empty rule
for a given instance, then it remains uncovered after the rule stretching
mechanism. Therefore, this Fingram would include a special node labe-
led as “UNCOVERED INSTANCES” which represents those instances
that are not covered yet at the end of the stretching mechanism.

4.2.2. Local view of the FURIA inference mechanism
As previously seen in section 3.3, we have introduced a new local view

of precise fuzzy systems. Here we slightly adapt the representation to the
particularities of FURIA.

As shown in Eq. 20, the level of activation per class, when dealing with
the set of induced rules, is the addition of activation levels of the individual
rules for the given instance. This di↵ers with respect to the usual behavior
of PFM as presented in Eq. 13. Nevertheless, note that the activation per
class in the stretching mechanism performs as usual (Eq. 23). Obviously, this
kind of tricks make harder the comprehension of FURIA.

4.2.3. Visual adaptations to deal with FURIA-Fingrams
Fig. 5 shows an example that illustrates the interpretation of FURIA-

Fingrams. Each node displays the information of the corresponding rule:
coverage (cov) –as defined in Eq. 11–, purity (pur) –Eq. 18–, certain factor
(CF ) –Eq. 21– , and proportion of instances of the rule class that are covered
by it (cc) –Eq. 12–. Node color indicates output class, and the number of
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borders indicates the number of rule antecedents. Edges represent the rela-
tion among rules as presented in section 3.1. An additional node represents
the number of uncovered instances of the dataset.

Fig. 5(a) shows a Fingram constructed from the set of induced rules.
R

i

and R
j

have di↵erent output class (Bi 6= Bj), and they are plotted in
di↵erent colors. R

i

has 3 antecedents and R
j

has 5, as deduced from the
number of node borders. Both rules cover some instances in common (m

ij

=
0.85). Additionally, part of the instances of the dataset are not covered by
the set of induced rules and they are included in the node “INSTANCES
STRETCHING”. Most of them are related to class C0 as deduced from its
distribution of colors.

Fig. 5(b) shows a Fingram built from the rules created by the stretching
mechanism. R

i.1 and R
i.2 are constructed from the initial rule R

i

and R
j.4

from R
j

. Note that these rules have the same output class (node color) as
the ones from which they are derived. Node identifiers indicate the number
of antecedents kept, piece of information that is also displayed in the num-
ber of borders the nodes have. We observe that even using the stretching
mechanism, some instances (all with output class C0) are not covered.

4.3. Analysis of FURIA over benchmark datasets

This subsection has the aim to discuss the characteristics of FRBSs cons-
tructed with FURIA by means of Fingrams.

First of all, we repeated the experimentation made in [35] over 45 ben-
chmark datasets. The focus is to identify how FURIA performs along with
details about how the generated fuzzy rules cover the input space.

Table 1 summarizes the main characteristics –number of instances (#INS ),
attributes (#ATT ), classes (#CL) and instances per class (#INS/CL)– of
the datasets under study. They cover a wide range of scenarios; from small
datasets with tens of instances, to medium-size and even large datasets in-
cluding thousands of instances; with synthetic and real-world data sets; from
low dimensional (from 2 attributes) to high dimensional data sets (up to 216
attributes); from 2-class to 16-class problems; and balanced but also highly
unbalanced data sets.
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Id Dataset #INS #ATT #CL #INS/CL

1 acd-autorship 841 70 4 317/296/173/55
2 acd-bankruptcy 50 6 2 25/25
3 acd-cyyoung8092 97 10 2 73/24
4 acd-cyyoung9302 92 10 2 73/19
5 acd-esr 32 2 2 26/6
6 acd-hallo↵ame 1340 18 3 1215/68/57
7 acd-lawsuit 264 4 2 245/19
8 acd-votesurvey 48 4 4 18/15/10/5
9 biomed 209 10 2 134/75
10 cars 406 9 3 254/79/73
11 collins 500 23 15 80/75/48/44/36/30/29/29/29/27/24/17/17/9/6
12 ecoli 336 7 8 143/77/52/35/20/5/2/2
13 eucalyptus 736 28 5 214/180/130/107/105
14 glass 214 9 7 79/70/29/17/13/9/0
15 haberman 306 3 2 225/81
16 heart-statlog 270 13 2 150/120
17 ionosphere 351 34 2 225/126
18 iris 150 4 3 50/50/50
19 liver-disorders 345 6 2 200/145
20 metStatCoordinates 4748 3 16 1043/504/475/387/384/355/353/299/276/219/188

/176/42/22/14/11
21 metStatRainfall 4748 12 16 1043/504/475/387/384/355/353/299/276/219/188

/176/42/22/14/11
22 metStatRST 336 3 12 69/64/43/29/28/25/18/16/12/11/13/8
23 metStatSunshine 422 12 14 85/78/52/34/34/32/24/17/16/15/13/12/5/5
24 metStatTemp 673 12 15 142/136/72/63/55/40/39/28/18/18/17/15/14/10 /6
25 mfeat-factors 2000 216 10 200/200/200/200/200/200/200/200/200/200
26 mfeat-fourier 2000 76 10 200/200/200/200/200/200/200/200/200/200
27 mfeat-karhunen 2000 64 10 200/200/200/200/200/200/200/200/200/200
28 mfeat-morphological 2000 6 10 200/200/200/200/200/200/200/200/200/200
29 mfeat-zernike 2000 47 10 200/200/200/200/200/200/200/200/200/200
30 optdigits 5620 64 10 572/571/568/566/562/558/558/557/554/554
31 page-blocks 5473 10 5 4913/329/115/88/28
32 pasture-production 36 22 3 12/12/12
33 pendigits 10992 16 10 1144/1144/1143/1143/1142/1056/1055/1055/1055

/1055
34 pima-diabetes 768 8 2 500/268
35 prnn-synth 250 2 2 125/125
36 schizo 340 25 2 177/163
37 segment 2310 19 7 330/330/330/330/330/330/330
38 sonar 208 60 2 111/97
39 squash-unstored 52 31 3 24/24/4
40 synthetic-control 600 61 6 100/100/100/100/100/100
41 vehicle 846 18 4 218/217/212/199
42 vowel 990 12 11 90/90/90/90/90/90/90/90/90/90/90
43 waveform 5000 40 3 1692/1655/1653
44 wine 178 13 3 71/59/48
45 wisconsin-breast-cancer 699 10 2 458/241

Table 1: Benchmark data sets under study. #INS is the number of instances, #ATT
is the number of attributes, #CL is the number of classes and #INS/CL stands for the
number of instances per class.
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Table 2 shows the results of performing 3-fold cross validation 100 times
by randomly splitting the datasets into 3 folds4. It presents the accuracy
(ACC ) and number of rules (#R) produced by FURIA for all the 45 da-
tasets described in Table 1. Additionally, we reckon the percentage of ins-
tances not covered by the set of induced rules (%INST2STR), the number
of rules created dynamically by the stretching mechanism (#STR-R), and
the percentage of instances not covered even by the stretching mechanism
(%UNC-INS ). Finally, we include the percentage of classes with at least 1
rule in the set of induced rules (%CL-1R) –meaning that the system can
infer that classes–, the number of induced rules per class (#R/CL), and the
number of antecedents per induced rule (#ANT/R). For each dataset, we
report the average (Avg.) and the standard deviation (Std.) of all indicators
we have just introduced above.

We can learn valuable knowledge about fuzzy systems constructed by
FURIA from Tables 1 and 2. FURIA produces accurate results for most of
the benchmark datasets, overcoming other methods as presented in [35]. The
most notable exceptions are datasets 8, 22, 23 and 24 where FURIA does
not classified properly.

FURIA produces compact rule sets with low number of rules (25.31 in
average), low number of rules per class (4.22 in average) and low number of
antecedents per class (2.71 in average). However, this does not guarantee
interpretability, and those systems are hard to interpret due to its inference
mechanism.

Most of the systems FURIA create covered all the classes (95.69 of classes
covered in average). For large balanced datasets FURIA induces rule sets
that infer all the classes. However, this does not happen for unbalanced
datasets, such as datasets 8, 22 and 23. We can observe results with a
limited accuracy for unbalanced datasets.

We observe that in case of datasets with low number of instances trig-
gering the stretching mechanism, FURIA creates low number of stretching
rules (as the ones created for datasets 7, 11 or 31) and produces very good
results. On the contrary, those systems that highly depend on the stretching
mechanism perform badly. As example, datasets 8 and 22 fail to produce

4The authors in [35] split the data set into 2/3 for training and 1/3 for testing, repeating
the procedure 100 times, that is slightly di↵erent to our experimentation but tend to
stabilize and produce very similar results.
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Id ACC #R %INS2STR #STR-R %UNC-INS %CL-1R #R/CL #ANT/R
Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

1 95.51 0.66 16.19 1.24 4.56 1.50 13.61 3.26 0.21 0.33 100.00 0.00 4.05 0.31 2.68 0.14
2 82.54 3.45 3.30 0.70 2.24 4.74 0.23 0.50 0.76 3.36 100.00 0.00 1.65 0.35 1.63 0.31
3 79.88 2.91 4.55 1.43 5.14 6.69 1.03 1.34 0.92 2.97 99.83 2.88 2.28 0.71 1.57 0.38
4 82.87 2.78 4.31 1.31 4.62 5.69 0.64 0.99 1.87 3.70 100.00 0.00 2.16 0.65 1.53 0.35
5 81.06 3.12 1.96 0.56 2.78 8.02 0.03 0.17 2.28 6.96 91.17 19.07 1.08 0.24 1.23 0.31
6 92.92 0.38 15.10 3.08 3.50 1.38 17.60 5.03 0.00 0.03 99.00 5.69 5.1 1.09 2.94 0.28
7 97.88 0.61 3.40 0.73 0.27 0.73 0.19 0.48 0.00 0.07 100.00 0.00 1.7 0.36 1.46 0.19
8 35.73 3.99 2.35 1.38 66.27 23.42 1.15 1.22 48.92 32.36 44.75 20.40 1.25 0.59 1.62 0.63
9 87.88 1.91 8.39 1.41 5.53 3.30 3.83 2.06 0.14 0.65 100.00 0.00 4.19 0.71 2.12 0.26
10 79.28 1.44 14.04 2.61 11.06 4.18 13.30 3.30 0.00 0.00 100.00 0.00 4.68 0.87 2.61 0.23
11 96.60 0.79 16.03 0.72 0.78 1.22 0.65 1.46 0.41 0.77 100.00 0.00 1.07 0.05 1.98 0.06
12 83.04 1.34 12.80 2.17 6.09 3.47 7.74 3.75 0.45 0.79 79.08 6.04 2.03 0.32 2.61 0.20
13 60.85 1.36 14.86 2.76 29.36 6.82 21.25 7.44 0.17 1.73 98.47 5.57 3.03 0.56 2.89 0.34
14 68.43 2.83 11.76 2.29 16.10 6.06 10.59 3.23 0.81 1.51 92.11 8.32 2.13 0.39 2.66 0.24
15 72.97 1.16 3.55 1.13 11.55 9.53 0.73 0.98 7.84 9.57 88.50 21.04 2.07 0.63 1.38 0.29
16 79.86 1.86 7.88 2.39 10.34 5.91 7.49 3.93 0.02 0.23 100.00 0.00 3.94 1.2 2.62 0.44
17 89.42 1.14 9.19 1.84 4.83 2.85 5.93 3.08 0.04 0.31 100.00 0.00 4.59 0.92 2.30 0.34
18 94.11 1.26 4.32 0.74 1.04 1.97 0.54 0.97 0.13 0.87 100.00 0.00 1.44 0.25 1.80 0.28
19 66.92 2.06 8.65 3.32 18.82 9.05 9.59 5.61 0.63 2.21 100.00 0.00 4.33 1.66 2.50 0.43
20 93.00 0.27 71.16 4.42 1.70 0.48 63.16 11.83 0.00 0.01 99.96 0.51 4.45 0.28 3.71 0.08
21 64.53 0.51 123.24 7.09 23.14 1.74 342.90 22.05 0.00 0.00 96.77 3.70 7.97 0.54 4.61 0.10
22 33.51 2.38 10.16 2.23 50.68 10.49 13.77 3.72 6.15 8.55 65.39 11.25 1.3 0.21 2.75 0.24
23 48.74 1.59 24.74 3.87 28.03 5.39 32.54 6.18 0.65 1.37 75.79 8.01 2.34 0.33 2.82 0.18
24 50.59 1.59 31.75 4.67 33.22 5.75 45.29 8.47 0.38 1.30 86.22 7.39 2.46 0.34 2.94 0.16
25 92.28 0.48 45.25 2.50 6.21 1.01 56.21 5.57 0.02 0.05 100.00 0.00 4.52 0.25 2.98 0.09
26 76.76 0.76 53.41 4.02 13.44 1.73 115.58 10.13 0.00 0.00 100.00 0.00 5.34 0.4 3.83 0.14
27 86.50 0.57 59.27 3.54 9.02 1.27 100.07 7.53 0.00 0.01 100.00 0.00 5.93 0.35 3.27 0.10
28 71.83 0.81 25.22 2.83 11.57 4.89 28.50 6.11 0.09 0.33 98.67 3.59 2.56 0.28 2.77 0.16
29 72.10 10.33 44.19 4.83 17.22 3.42 97.10 13.81 0.00 0.01 97.27 11.85 4.46 0.62 3.74 0.45
30 94.83 0.28 97.39 3.82 4.11 0.56 248.15 14.18 0.00 0.00 100.00 0.00 9.74 0.38 5.00 0.09
31 97.03 0.17 23.65 2.98 0.91 0.43 27.59 7.85 0.00 0.01 100.00 0.00 4.73 0.6 3.42 0.24
32 74.11 4.95 3.18 0.63 21.72 12.98 0.49 0.62 16.00 13.39 95.89 10.96 1.1 0.17 1.35 0.26
33 97.73 0.13 112.90 3.99 1.25 0.24 212.54 20.04 0.00 0.00 100.00 0.00 11.29 0.4 4.87 0.08
34 74.94 1.09 7.30 2.77 10.21 5.85 7.18 5.50 0.19 0.91 100.00 0.00 3.65 1.38 2.28 0.53
35 83.75 1.56 4.47 1.64 3.73 4.97 0.99 1.26 0.66 2.62 100.00 0.00 2.23 0.82 1.44 0.34
36 80.42 3.03 15.22 2.78 14.85 7.04 11.83 4.01 0.35 1.58 100.00 0.00 7.61 1.39 2.34 0.18
37 96.58 0.35 27.10 2.25 2.00 0.64 29.28 5.56 0.00 0.00 100.00 0.00 3.87 0.32 3.41 0.16
38 76.55 2.78 8.44 1.14 10.90 4.24 6.55 2.01 0.20 0.62 100.00 0.00 4.22 0.57 2.41 0.22
39 77.00 4.28 4.13 0.78 6.49 9.23 0.45 0.65 2.35 6.38 97.00 9.54 1.43 0.28 1.46 0.23
40 89.53 1.40 16.75 1.36 7.66 2.48 15.84 3.25 0.17 0.33 100.00 0.00 2.79 0.23 2.77 0.17
41 70.20 1.22 20.71 2.98 20.57 5.10 32.82 6.28 0.04 0.22 100.00 0.00 5.18 0.75 3.28 0.20
42 75.83 1.69 53.12 3.38 12.23 2.27 86.89 8.53 0.00 0.00 100.00 0.00 4.83 0.31 3.63 0.13
43 82.13 0.40 76.07 4.81 10.77 1.17 265.52 13.99 0.00 0.00 100.00 0.00 25.36 1.6 6.18 0.14
44 93.58 1.56 5.84 0.88 4.52 3.17 1.38 1.22 2.12 2.58 100.00 0.00 1.95 0.29 1.92 0.17
45 95.50 0.55 11.77 2.01 1.98 1.19 7.71 3.51 0.00 0.02 100.00 0.00 5.88 1 2.86 0.27

Avg. 79.50 1.77 25.31 2.44 11.84 4.54 43.70 5.39 2.11 2.42 95.69 3.46 4.22 0.58 2.71 0.24
Std. 15.54 1.76 29.93 1.44 13.14 4.22 77.64 5.08 7.64 5.40 10.60 5.81 3.94 0.39 1.07 0.13

Table 2: Reported results repeating 100 times 3-fold cross validation for each dataset. ACC
is the accuracy, #R is the number of rules, %INST2STR is the percentage of instances not
covered by the set of induced rules, #STR-R is the number of rules created dynamically
by the stretching mechanism, %UNC-INS is the percentage of instances not covered even
by the stretching mechanism, %CL-1R is the percentage of classes with at least 1 rule in
the set of induced rules, #R/CL is the number of induced rules per class, and #ANT/R
is the number of antecedents per induced rule.
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good results due to its highly dependency on the stretching mechanism. The
stretching mechanism in dataset 8 fails to cover the instances and the ma-
jority class is inferred for 48.92% of the instances. In the other case, the
system constructed for dataset 22 handles 44% of the instances in the stret-
ching mechanism but with poor results.

Finally, we carried out an experiment that allowed us to understand the
way how the rules built by FURIA cover the input space and how the stret-
ching method works. To do so, we induced rules from the complete set of
instances available for each dataset, and then we built and analyzed the
associated FURIA-Fingrams.

Table 3 reports the number of rules induced by FURIA (#R), the per-
centage of instances triggering the stretching mechanism (%INST2STR), the
number of rules created by the stretching mechanism (#STR-R), the per-
centage of uncovered instances (%UNC-INS ), the density of the Fingram
representing the induced rules (DENS-IND-R), the density of the Fingram
depicting the stretched rules (DENS-STR-R), and the percentage of incon-
sistencies (%INC ), i.e. relations between rules with di↵erent output class,
for the two Fingrams, the one considering induced rules (%INC-IND-R) and
the one regarding stretched rules (%INC-STR-R). We should point out that
we compute the density of Fingrams as:

DENS = AE/PC ⇤ 100 (27)

where AC is the number of actual edges (without scaling) in the graph and
PC counts all the potential connections, i.e. PC = r⇤(r�1)

2 with r the total
number of rules5.

Comparing figures in tables 2 and 3 we observe that the number of induced
rules grow according to the number of instances in the training dataset.
Results in table 2 were computed considering 2/3 of all the instances for
training whereas table 3 takes the whole dataset for training. The percentage
of instances not covered by the set of induced rules decreases considerably
when inducing rules with the complete dataset, as expected. Even more, the
percentage of uncovered instances after stretching drops drastically for all
but dataset 15. There, FURIA fails to induce a good set of rules and the low
dimensions do not allow the stretching mechanism to perform properly.

5Nodes that graphically represent uncovered instances are not considered in this cal-
culus.
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Id #R %INS2STR #STR-R %UNC-INS DENS-IND-R DENS-STR-R %INC-IND-R %INC-STR-R

1 20 0.36 8 0.00 25.26 28.57 6.25 75.00
2 4 0.00 - 0.00 16.67 - 0.00 -
3 5 0.00 - 0.00 60.00 - 33.33 -
4 6 3.26 1 0.00 73.33 100.00 36.36 -
5 2 0.00 - 0.00 0.00 - 0.00 -
6 24 2.69 46 0.00 32.25 25.12 11.24 65.77
7 4 0.00 - 0.00 66.67 - 25.00 -
8 4 60.42 5 10.42 0.00 0.00 0.00 -
9 12 0.00 - 0.00 54.55 - 22.22 -
10 26 3.94 22 0.00 8.00 34.63 15.38 77.50
11 16 0.00 - 0.00 0.83 - 0.00 -
12 20 3.87 18 0.60 11.05 31.37 23.81 83.33
13 20 20.52 38 0.00 24.21 25.18 43.48 83.05
14 17 6.07 26 0.00 13.97 32.31 47.37 88.57
15 3 19.93 0 19.93 100.00 - 0.00 -
16 7 11.11 9 0.00 61.90 50.00 30.77 72.22
17 11 2.85 8 0.00 67.27 46.43 18.92 69.23
18 5 0.00 - 0.00 20.00 - 0.00 -
19 16 11.88 17 0.00 41.67 25.74 20.00 54.29
20 89 1.31 118 0.00 6.36 10.04 23.69 83.55
21 157 22.24 532 0.00 4.47 17.43 33.03 93.22
22 12 50.89 23 0.00 4.55 28.85 33.33 97.26
23 32 23.70 58 0.00 7.26 23.77 52.78 92.62
24 40 30.46 71 0.00 0.00 22.09 0.00 93.99
25 55 0.85 57 0.00 6.94 15.10 1.94 94.19
26 66 8.40 157 0.00 8.81 23.31 23.28 91.49
27 80 1.25 114 0.00 6.68 14.05 6.64 94.03
28 28 7.55 35 0.00 10.85 30.08 39.02 89.94
29 50 19.25 133 0.00 10.61 21.95 13.85 90.56
30 122 0.55 230 0.00 7.97 13.24 0.00 90.62
31 31 1.13 58 0.00 21.94 26.98 16.67 74.66
32 4 13.89 2 5.56 16.67 0.00 100.00 -
33 136 0.33 250 0.00 6.54 12.79 1.17 90.18
34 5 11.07 2 0.00 70.00 0.00 42.86 -
35 3 3.60 1 0.00 33.33 100.00 0.00 -
36 16 10.88 16 0.00 9.17 35.83 9.09 67.44
37 34 0.56 44 0.00 13.90 23.15 6.41 76.71
38 12 2.40 5 0.00 46.97 50.00 6.45 80.00
39 4 0.00 - 0.00 33.33 - 50.00 -
40 20 1.17 15 0.00 14.74 21.90 7.14 86.96
41 25 26.83 55 0.00 12.67 24.31 2.63 80.33
42 67 3.33 114 0.00 3.62 21.16 11.25 92.44
43 91 10.24 408 0.00 31.33 7.97 4.60 61.27
44 7 0.56 1 0.00 33.33 100.00 0.00 -
45 15 2.15 21 0.00 48.57 29.05 1.96 62.30

Avg. 31.62 8.92 73.46 0.81 25.52 29.79 18.26 81.76
Std. 37.28 13.16 114.96 3.40 24.48 24.58 20.33 11.65

Table 3: Results for all the datasets with all the available data. #R is the number of rules
induced by FURIA, %INST2STR is the percentage of instances triggering the stretching
mechanism, #STR-R is the number of rules created by the stretching mechanism, %UNC-
INS is the percentage of uncovered instances, DENS-IND-R is the density of the Fingram
representing the induced rules, DENS-STR-R is the density of the Fingram depicting the
stretched rules, %INC-IND-R is the percentage of inconsistencies in the Fingram from
induced rules, and %INC-STR-R is the percentage of inconsistencies in the Fingram from
stretched rules.

25



The structure of Fingrams built from the set of induced rules gives us
very useful information. They usually present a sparse structure that reflects
the scarce interaction among rules (DENS-IND-R is about 25% in table 3).
Notice that this is not the typical structure we observe with other kinds of
FRBSs [33] where the input space tends to be densely covered, producing
high interaction among rules. Fingrams representing the set of induced rules
usually have a large number of redundancies, i.e. two rules with the same
output class cover several instances in common, due to the building strategy
followed by FURIA. Moreover, the few inconsistencies they present (18.26%
in average) show that rules with di↵erent output class rarely cover instances
in common.

On the contrary, Fingrams depicting stretched rules are slightly more
dense (DENS-STR-R is close to 30% in table 3). The rules produced by the
stretching mechanism generalize the induced rules by removing antecedents
with the aim of covering more of the input space and, so for, they tend to
cover many instances in common. Even more, they usually produce many
inconsistencies (81.76% in average) due to the way the stretching of rules
works.

4.4. Illustrative example of FURIA-Fingrams for a real world dataset

In this section we outline the potentials of Fingrams for the analysis
of FURIA over a real world dataset. We have selected the dataset ecoli
(dataset 12 in Table 1) from UCI [54, 55]. We select it because of its size
(336 instances), number of classes (8 unbalanced classes) and the FRBS size
and properties created by FURIA (as seen in Table 3), which are close to the
average.

Ecoli dataset includes 336 E.coli proteins of 8 di↵erent classes with 7
attributes calculated from the amino acid sequences. The attributes are Mc-
Geoch’s method for signal sequence recognition –mcg–, Von Heijne’s method
for signal sequence recognition –gvh–, Von Heijne’s Signal Peptidase II con-
sensus sequence score –lip–, presence of charge on N-terminus of predicted
lipoproteins –chg–, score of discriminant analysis of the amino acid con-
tent of outer membrane and periplasmic proteins –aac–, score of the ALOM
membrane spanning region prediction program –alm1–, and score of ALOM
program after excluding putative cleavable signal regions from the sequence
–alm2–. The distribution of instances per class is as follows: cytoplasm pro-
teins –cp– (143 instances), inner membrane without signal sequence –im–
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(77), perisplasmic proteins –pp– (52), inner membrane proteins with an un-
cleavable signal sequence –imU – (35), other outer membrane proteins –om–
(20), outer membrane lipoproteins –omL– (5), inner membrane lipoprotein –
imL– (2) and inner membrane proteins with cleavable signal sequence –imS–
(2).

FURIA produces an accurate fuzzy system for ecoli dataset that outper-
forms several alternative methods as shown in [35]. It induces the following
20 fuzzy rules from the complete dataset. This is a compact rule set but hard
to interpret.

R1: IF alm1 in [�1,�1, 0.38, 0.39] & gvh in [�1,�1, 0.55, 0.57] THEN class is cp with CF=0.973
R2: IF mcg in [�1,�1, 0.44, 0.52] & alm1 in [�1,�1, 0.55, 0.58] THEN class is cp with CF=0.951
R3: IF alm1 in [�1,�1, 0.47, 0.49] & mcg in [�1,�1, 0.59, 0.63] & gvh in [�1,�1, 0.57, 0.59] THEN class is cp with

CF=0.955
R4: IF alm1 in [0.75, 0.76,1,1] & mcg in [�1,�1, 0.61, 0.62] THEN class is im with CF=0.956
R5: IF alm1 in [0.55, 0.61,1,1] & mcg in [�1,�1, 0.45, 0.47] THEN class is im with CF=0.951
R6: IF alm2 in [0.59, 0.63,1,1] & mcg in [�1,�1, 0.74, 0.79] & alm2 in [�1,�1, 0.73, 0.74] & gvh in [0.45, 0.46,1,1]

THEN class is im with CF=0.904
R7: IF alm1 in [0.82, 0.85,1,1] & mcg in [�1,�1, 0.74, 0.86] & gvh in [�1,�1, 0.52, 0.53] THEN class is im with

CF=0.902
R8: IF alm1 in [0.55, 0.62,1,1] & alm1 in [�1,�1, 0.72, 0.74] & mcg in [�1,�1, 0.61, 0.63] & gvh in

[�1,�1, 0.55, 0.6] THEN class is im with CF=0.916
R9: IF alm2 in [0.35, 0.74,1,1] & alm1 in [�1,�1, 0.72, 0.73] & mcg in [0.81, 0.83,1,1] THEN class is im with

CF=0.692
R10: IF alm2 in [0.7, 0.74,1,1] & aac in [0.7, 0.71,1,1] THEN class is im with CF=0.615
R11: IF gvh in [0.58, 0.59,1,1] & aac in [�1,�1, 0.47, 0.57] & alm1 in [�1,�1, 0.65, 0.67] & alm1 in [0.35, 0.36,1,1]

THEN class is pp with CF=0.954
R12: IF gvh in [0.53, 0.56,1,1] & mcg in [0.61, 0.63,1,1] & aac in [�1,�1, 0.63, 0.65] & alm1 in [�1,�1, 0.52, 0.53]

& aac in [0.45, 0.46,1,1] THEN class is pp with CF=0.911
R13: IF mcg in [0.67, 0.7,1,1] & aac in [�1,�1, 0.5, 0.51] & mcg in [�1,�1, 0.74, 0.75] THEN class is pp with

CF=0.899
R14: IF alm2 in [0.39, 0.62,1,1] & mcg in [0.74, 0.75,1,1] THEN class is imU with CF=0.800
R15: IF alm2 in [0.46, 0.66,1,1] & mcg in [0.58, 0.62,1,1] & gvh in [�1,�1, 0.45, 0.46] & mcg in [�1,�1, 0.67, 0.69]

THEN class is imU with CF=0.713
R16: IF alm2 in [0.73, 0.74,1,1] & alm1 in [�1,�1, 0.75, 0.76] & mcg in [0.45, 0.47,1,1] THEN class is imU with

CF=0.581
R17: IF aac in [0.66, 0.68,1,1] & alm2 in [�1,�1, 0.38, 0.66] & mcg in [0.31, 0.52,1,1] THEN class is om with

CF=0.891
R18: IF gvh in [0.67, 0.68,1,1] & mcg in [�1,�1, 0.61, 0.62] THEN class is om with CF=0.687
R19: IF lip in [0.48, 1,1,1] & alm2 in [�1,�1, 0.36, 0.52] & chg in [�1,�1, 0.5, 1] THEN class is omL with CF=0.719
R20: IF lip in [0.48, 1,1,1] & aac in [�1,�1, 0.51, 0.52] & mcg in [�1,�1, 0.75, 0.77] THEN class is imL with

CF=0.503

The rule set uses the complete set of attributes and covers 7 out of the 8
classes in the dataset (there is no rule for the minority class imS ). Notice that
rules R6, R8, R11, R12, R13, and R15 repeat attributes in their antecedents
(attributes alm2, alm1, alm1, aac, mcg and mcg respectively). This fact does
not a↵ect the inference by the set of induced rules but is transcendental in
the stretching mechanism.

Fig. 6 presents the Fingrams6 depicting the induced rule set built with
the new PFM co-firing metric (Eq. 16) and the legend of class colors (ad-
ditional details are reported in Table A.4 in Appendix A). In the top left

6Contrary to the previous Fingrams, those in Figs. 6 and 7 only include the rule iden-
tifiers in the nodes for the sake of clarity. Appendix A includes additional information
about them.
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Figure 6: Fingram of the set of induced rules for Ecoli.
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square we have included the same Fingram built with the original co-firing
metric (as presented in Eq. 15) just for comparison purpose. In this case,
both Fingrams present quite similar structure but weaker edges appear when
using the PFM metric. Thus, we can analyze the system by studying any of
them interchangeably. Therefore, we continue the analysis by regarding the
Fingram built with the PFM metric.

The Fingram includes one node for each rule. These nodes take 7 di↵erent
colors showing the 7 di↵erent classes the rules have as output. An additional
multi-color node presents the instances not covered by any of the induced
rules, i.e. the instances to be handled by the stretching mechanism.

Studying the structure of the Fingram in detail we can see that almost
all the edges have low values meaning that rules cover few instances in com-
mon. Only rules of class cp cover several instances in common, showing high
relations among them. This is because rules induced by FURIA typically
cover instances scattered and as result most of the instances are just covered
by a single rule. Moreover, it is easy to appreciate clusters of nodes of the
same color because rules with di↵erent output classes are rarely related. This
is also reflected by the majority of green links in the representation. This
particularity indicates that rules of the same class jointly cover parts of the
input space.

Focusing our attention in subsets of rules we observe that rules of class
cp (rules R1, R2 and R3), colored in gray, cover a large amount of instances
(coverage larger than 0.3 as seen in Table A.4) with a good ratio of correctly
classified instances (purity larger than 0.48). Even more, they cover several
instances in common, as previously mentioned. Notice that cp is the majority
class in the dataset. On the contrary, rules R19 and R20 cover just a few
instances, and not in accordance with their corresponding class, as we can
uncover by their purity equal to 0. It is worthy to note that both rules
are in charge of handling two of the minority classes (omL and imL). In an
intermediate situation we find rules with output classes im and imU (yellow
and blue nodes) that only cover a few instances in common and have a diverse
range of purity values. This situation occurs when instances of two classes
are spread along the same part of the input space and turn di�cult the
classification task.

As previously mentioned, a non negligible part of the instances are fired
by none of the 20 induced rules. This information is given by the node
labeled as “INSTANCES STRETCHING” (zoomed in the top right square
to appreciate its details) which shows that 13 instances (3.9% of the total)
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were not covered, and their corresponding class distribution is depicted in
color sector areas (5 of class cp, 5 of im, 2 of pp, and 1 of imU ). These
instances trigger the stretching mechanism.

Fig. 7 presents Fingram representing the set of stretched rules. 18 rules
were dynamically generated by the rule stretching mechanism (additional
details are reported in Table A.5 in Appendix A). The new proposed PFM
co-firing metric yields the principal Fingram in the figure whereas Fingram
in the bottom left square was constructed with the original metric (Eq. 15).
We observe that, in this case, the new metric is able to avoid subsets of highly
connected nodes and it allows an easier analysis.

The set of stretched rules covers 5 classes (classes cp, im, pp, imU, and
om) out of the 8 classes in the dataset. FURIA builds a high number of
rules (18 rules) to deal with a few instances (13 instances). These rules are
quite specific and they cover very few instances (rules R1.1, R3.1 or R7.2 just
one instance each) while each single instance is usually covered by several
fuzzy rules. This particularity of the stretching mechanism occludes the
interpretability of FURIA.

The structure of the Fingram of stretched rules is more complex than the
previous. All the nodes are connected and the edges present higher values
meaning that the rules densely cover the input space. Most of those edges
correspond to inconsistencies, i.e. they relate rules with di↵erent output
class.

The special node that is labeled as “UNCOVERED INSTANCES” shows
that there are some instances which remain uncovered even after running the
rule stretching mechanism. In such case, the inference mechanism produces
as output the most frequent class, cp.

Finally, we study in detail the inference mechanism for a couple of instan-
ces. This way we show the benefits of considering instance-based Fingrams
to locally view the FRBS inference mechanism. We graphically observe the
rules that participate in the inference process, understanding the behavior of
the system in a specific situation.

Fig. 8(a) presents the instance-based FURIA-Fingram for an instance
covered by induced rules (instance I321 = {0.68, 0.67, 0.48, 0.5, 0.49, 0.4,
0.34, pp}). This instance only fires rules R11, R12 and R13 with level of
firing 0.80, 1.00 and 0.33 respectively as shown by the colored sectors in the
picture. The three rules have the same output class pp, therefore the three
related nodes have the same green color in the representation. The level of
S
c

l

(Eq. 20) for the given instance is presented in the bar chart of Fig. 8(b).
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Figure 7: Fingram of the set of stretched rules.
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(a) Instance-based FURIA-
Fingram.

(b) Levels of SCl .

Figure 8: Analysis of inference for I321 = {0.68, 0.67, 0.48, 0.5, 0.49, 0.4, 0.34, pp}.

We clearly see that the system correctly infers class pp.
To conclude our analysis we will study a more complex case of inference.

We selected an instance that is not covered by the set of induced rules (ins-
tance I211 = {0.69, 0.39, 0.48, 0.5, 0.57, 0.76, 0.79, im}). In consequence, the
stretching mechanism is run as part of the inference process. I211 is handled
by the stretched rules R4.1, R6.2, R13.1, R14.1 and R15.3, as seen in Fig. 9(a).
In this case, all but rules R13.1 are fired to level 1 (µ

R13.1(I211) = 0.67). The
stretching mechanism correctly inferred class im because it is the winner
class for S 0

c

l

(Eq. 23) as can be seen in Fig. 9(b). Anyway, we observe that
S 0
im

⇡ S 0
imU

what is not desirable because it may produce ambiguity since a
small variation in the input may incorrectly infer imU as output class.

5. Conclusions and Future Work

This paper has introduced the use of Fingrams for dealing with precise
fuzzy systems. A complete study of PFM has been performed to adapt and
produce the best visual representations, looking for enhancing the interpre-
tability of such systems.

We adapt Fingrams to cope with precise fuzzy systems, obtaining a global
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(a) Instance-based FURIA-
Fingram.

(b) Levels of S0
Cl

.

Figure 9: Analysis of inference for I211 = {0.69, 0.39, 0.48, 0.5, 0.57, 0.76, 0.79, im}.

view of the system. We take advantage of a previously published methodo-
logy and we develop new resources that fit PFM particularities:

• We have proposed a co-firing metric that reflects the particularities of
PFM inference mechanisms.

• We have introduced a new visual artifact that represents instances not
covered by a given FRBS. The detection and analysis of uncovered ins-
tances is key in fuzzy modeling because such instances directly penalize
precision.

• We have developed a new visualization that gives us a local view of
fuzzy systems, so called instance-based Fingrams. We focus our atten-
tion in the rules involved in the inference process of a single instance.
This allows us to easily understand the behavior of fuzzy systems in
specific situations. In consequence, we can analyze the system in detail,
and even improve it with expert knowledge, carefully checking rule by
rule and instance by instance.

We validated our proposal building Fingrams over FURIA, an outstan-
ding PFM algorithm which is recognized because of its ability to construct
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accurate fuzzy classifiers but hardly to interpret. We studied over a bunch
of benchmark datasets the di�culties FURIA inference mechanism presents
and the opportunities Fingams o↵ers to illuminate its inference mechanism.

To do so, we introduced adaptations to deal with FURIA particularities
yielding the so-called FURIA-Fingrams. A twofold visualization allows us to
comfortably visualize and analyze fuzzy systems learnt by FURIA.

Finally, we worked over a real world dataset where the potentials of the
proposal are sketched and detailed. Fingrams have demonstrated very good
behavior to show FURIA inference mechanism. Even more, their use in a high
illustrative case of use makes possible an enriching discussion and analysis
of FURIA advantages and drawbacks. The introduction of instance-based
Fingrams allows the analysis of the FRBS behavior for key instances.

The future of Fingrams is very promising due to its benefits and possibi-
lities. Its adaptation to other type of FRBSs, such as Takagi-Sugeno FRBSs,
and its generalization to non-fuzzy rule based systems may spread its popu-
larity. In addition, we will propose a generalized local view of the system,
extending instance-based Fingrams, filtering the rules that are not fired by
a set of instances, instead of a single instance.
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Appendix A. Information of the set of rules in subsection 4.4

This appendix includes information about the sets of induced and stret-
ched rules FURIA builds up for the dataset ecoli as presented in subsec-
tion 4.4 of this manuscript.

Table A.4 summarizes the information of the set of rules induced by
FURIA –rule identifiers R

i

, rule output class Bi (as presented in Eq. 4),
coverage of rules cov

i

(Eq. 11), purity of rules pur
i

(Eq. 18), certain factor
CF

R

i

(Eq. 21), and coverage of rule output class cc
i

(Eq. 12).–

Ri Bi covi puri CFRi cci

R1 cp 0.339 0.535 0.973 0.427
R2 cp 0.393 0.485 0.951 0.469
R3 cp 0.405 0.502 0.955 0.476
R4 im 0.098 0.030 0.956 0.013
R5 im 0.092 0.136 0.951 0.052
R6 im 0.042 0.071 0.904 0.013
R7 im 0.045 0.000 0.902 0.013
R8 im 0.051 0.113 0.916 0.026
R9 im 0.012 0.000 0.692 0.013
R10 im 0.009 0.000 0.615 0.013
R11 pp 0.113 0.029 0.954 0.019
R12 pp 0.057 0.000 0.911 0.019
R13 pp 0.057 0.000 0.899 0.019
R14 imU 0.065 0.182 0.800 0.114
R15 imU 0.015 0.941 0.713 0.114
R16 imU 0.057 0.053 0.581 0.029
R17 om 0.051 0.000 0.891 0.050
R18 om 0.015 0.000 0.687 0.050
R19 omL 0.018 0.000 0.719 0.200
R20 imL 0.009 0.000 0.503 0.500

Instances Stretching cp/im/pp/imU 0.039

Table A.4: Information of induced rules of the case of use in subsection 4.4. Ri is the rule
identifier, Bi is the rule output class, covi is the coverage, puri is the purity, CFRi is the
certain factor, and cci is the coverage of the rule output class.

Table A.5 shows the information of stretched rules that produce the Fin-
gram of Fig. 7 –rule identifiers R

i

.q where R
i

is the original rule from the
rule derives and q the number of antecedents kept, Antecedents shows the
rule antecedents of each rule, rule output class Bi (as presented in Eq. 4),
coverage of rules cov

i.q

(Eq. 11), purity of rules pur
i.q

(Eq. 18), certain factor
CF 0

R

i.q

(Eq. 25), and coverage of rule output class cc
i.q

(Eq. 12).–
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Ri.q Antecedents Bi covi.q puri.q CF 0
Ri.q

cci.q

R1.1 alm1 in [�1, �1, 0.38, 0.39] cp 0.006 0.000 0.486 0.007
R3.1 alm1 in [�1, �1, 0.47, 0.49] cp 0.006 0.000 0.382 0.007
R4.1 alm1 in [0.75, 0.76, 1, 1] im 0.018 0.167 0.478 0.013
R5.1 alm1 in [0.55, 0.61, 1, 1] im 0.006 1.000 0.475 0.013
R6.2 alm2 in [0.59, 0.63, 1, 1] im 0.018 0.167 0.452 0.013

& mcg in [�1, �1, 0.74, 0.79]
R7.2 alm1 in [0.82, 0.85, 1, 1] im 0.006 1.000 0.541 0.013

& mcg in [�1, �1, 0.74, 0.86]
R9.2 alm2 in [0.35, 0.74, 1, 1] im 0.006 0.000 0.415 0.013

& alm1 in [�1, �1, 0.72, 0.73]
R11.3 gvh in [0.58, 0.59, 1, 1] pp 0.006 1.000 0.636 0.019

& aac in [�1, �1, 0.47, 0.57]
& alm1 in [�1, �1, 0.65, 0.67]

R11.1 gvh in [0.58, 0.59, 1, 1] pp 0.009 0.000 0.318 0.019
R12.4 gvh in [0.53, 0.56, 1, 1] pp 0.006 1.000 0.651 0.019

& mcg in [0.61, 0.63, 1, 1]
& aac in [�1, �1, 0.63, 0.65]
& alm1 in [�1, �1, 0.52, 0.53]

R12.3 gvh in [0.53, 0.56, 1, 1] pp 0.009 0.000 0.520 0.019
& mcg in [0.61, 0.63, 1, 1]
& aac in [�1, �1, 0.63, 0.65]

R12.2 gvh in [0.53, 0.56, 1, 1] pp 0.009 0.000 0.390 0.019
& mcg in [0.61, 0.63, 1, 1]

R13.1 mcg in [0.67, 0.7, 1, 1] pp 0.012 0.273 0.360 0.019
R14.1 alm2 in [0.39, 0.62, 1, 1] imU 0.021 0.000 0.400 0.029
R15.3 alm2 in [0.46, 0.66, 1, 1] imU 0.009 0.000 0.475 0.029

& mcg in [0.58, 0.62, 1, 1]
& gvh in [�1, �1, 0.45, 0.46]

R15.2 alm2 in [0.46, 0.66, 1, 1] imU 0.015 0.000 0.356 0.029
& mcg in [0.58, 0.62, 1, 1]

R17.1 aac in [0.66, 0.68, 1, 1] om 0.006 0.000 0.356 0.050
R18.1 gvh in [0.67, 0.68, 1, 1] om 0.012 0.000 0.343 0.050
Uncovered instances im 0.006

Table A.5: Information of stretched rules of the case of use in subsection 4.4. Ri.q is the
rule identifier, Antecedents shows rule antecedents, Bi is the rule output class, covi.q is
the coverage, puri.q is the purity, CF 0

Ri.q
is the certain factor, and cci.q is the coverage of

the rule output class.
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A.2 Aditional publications

Here we join up other publications published during the thesis period and related with the

topic of the thesis. Those are included in books and conference proceedings and ordered

chronologically. We present the citation information and the number of citations of each

publication2.

A.2.1 Book chapters

[12] Alonso, J. M., Pancho, D. P., Cordón, O., Quirin, A., and Magdalena,

L. Social network analysis of co-fired fuzzy rules. In Soft Computing: State of the Art

Theory and Novel Applications, R. R. Yager, A. M. Abbasov, M. Reformat, and S. N.

Shahbazova, Eds. Springer, 2013, pp. 113–128

Citations Google Scholar: 6

Citations Web of Science: -

A.2.2 Conference proceedings

[13] Alonso, J. M., Pancho, D. P., and Magdalena, L. Enhancing the fuzzy mod-

eling tool GUAJE with a new module for Fingrams-based analysis of fuzzy rule bases.

In IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (2012), pp. 1082–1089

Citations Google Scholar: 4

Citations Web of Science: 0

[11] Alonso, J. M., Pancho, D. P., Cordón, O., Quirin, A., and Magdalena,

L. Fingrams: Una nueva herramienta para análisis visual de sistemas fuzzy. In XVI Con-

greso Español sobre Tecnoloǵıas y Lógica Fuzzy (ESTYLF) (2012), pp. 585–590

Citations Google Scholar: 0

Citations Web of Science: -

[62] Pancho, D. P., Alonso, J. M., and Alcalá-Fdez, J. A new Fingram-based

software tool for visual representation and analysis of fuzzy association rules. In IEEE

International Conference on Fuzzy Systems (FUZZ-IEEE) (2013), pp. 1–7

Citations Google Scholar: 5

Citations Web of Science: 0

2We include information of Google Scholar and Web of Science retrieved on August the 13th 2015.
We indicate with a � when we do not obtain any information from the mentioned web services.
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Citations Google Scholar: 8

Citations Web of Science: 1
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