
J
H
E
P
1
1
(
2
0
1
0
)
0
7
2

Published for SISSA by Springer

Received: June 11, 2010

Revised: October 25, 2010

Accepted: October 28, 2010

Published: November 17, 2010

All the timelike supersymmetric solutions of all

ungauged d = 4 supergravities

Patrick Meessen,a Tomás Ort́ınb and Silvia Vaulàb
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1 Introduction

The supersymmetric solutions of supergravity theories describing vacua, black holes or

topological defects, play a fundamental role in the progress of superstring theory and related

areas of research. It is, therefore, very important to find and study as many supersymmetric

solutions as possible, a goal to which a huge effort has been devoted in the last few years.

In his pioneering work [1], Tod showed that it was possible to systematically find

all the supersymmetric configurations and solutions of a given supergravity theory (pure

N = 2, d = 4 in the case he considered, following the lead of ref. [2]) by exploiting the

consistency and integrability conditions of the Killing spinor equations. He found that the

supersymmetric solutions of pure N = 2, d = 4 supergravity fall in two classes: timelike

and null. By all the supersymmetric configurations we mean all the field configurations
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that admit at least one Killing spinor, or equivalently one supercharge out of the 4N

possible ones. The timelike supersymmetric solutions are generalizations of the Perjès-

Israel-Wilson [3, 4] stationary solutions of the Einstein-Maxwell system which themselves

generalize the static solutions found by Papapetrou and Majumdar [5, 6]. The solutions in

the null class are examples of Brinkmann waves [7]. Tod’s feat opened up the possibility

of finding all the supersymmetric solutions of all the supergravity theories.

Tod [1, 8] used the Newman-Penrose formalism to find the supersymmetric solutions of

the 4-dimensional pureN = 2 and 4 supergravity theories, so that new techniques had to be

developed in order to tackle higher-dimensional cases. In ref. [9] Gauntlett et al. proposed

to work with the spinor bilinears that can be constructed out of the Killing spinors. These

tensors satisfy a number of algebraic and differential equations that follow from the Fierz

identities and the original Killing spinor equations that their constituents satisfy and which

capture enough (if not all the) information contained in them. The consistency and integra-

bility conditions of these new equations then determine the supersymmetric configurations

of the theory. In this way, in ref. [9] all the supersymmetric solutions of minimal super-

gravity in d = 5 dimensions were determined. These results were immediately extended to

the Abelian gauged case [10] and later on to general matter contents and couplings [11–13]

(always in the minimal N = 2 supergravity). The spinor-bilinear method was subse-

quently applied to other 4-dimensional [14]–[25], 6-dimensional [26–28], 7-dimensional [29],

11-dimensional [30–36] and, recently, to 3-dimensional [37] supergravities.

In this approach (which will be used in this article) the form of all the field configura-

tions admitting at least one Killing spinor can be determined but (unless further work is

done) no classification of the supersymmetric configurations by the number of independent

Killing spinors they admit is done. A different (but fundamentally equivalent) approach

based on spinorial geometry was developed in refs. [38–56]. It has advantages over the

spinor-bilinear approach: using it, an exhaustive classification of the configurations with

different numbers of unbroken supersymmetries can be achieved, also in higher dimensional

theories where the application of the bilinear approach becomes unwieldy, by choosing con-

venient bases for the spinors.

Yet another approach, more adequate for finding supersymmetric solutions with special

geometries or properties, exploits the fact that a Killing spinor defines a “G structure” [9,

30–36, 57]. Finally, another approach used to find the timelike supersymmetric solutions

of 4-dimensional theories, and applied in particular to black holes, exploits the symmetries

of the dimensionally-reduced theories which become a non-linear σ-model coupled to 3-

dimensional gravity [58–64]. The main difficulty of this powerful approach resides in the

reconstruction of the 4-dimensional solutions from the 3-dimensional ones.

The spinor-bilinear method that we are going to use is, we think, more adequate to

find large classes of solutions preserving (as a class) the global symmetries of the theory:

using it, it has been possible to find the general form of the (pure, ungauged) N = 4, d = 4

supergravity black holes [8, 16] written in an SO(6)-covariant form although some of them

(which are singular), characterized by particular choices of the charges, preserve 1/2 of the

supersymmetries instead of the generic 1/4 [65].
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The spinor-bilinear method, however, becomes difficult to use for N > 2. For instance,

in the timelike N = 2 case with one Killing spinor ǫI (I = 1, 2) one can construct precisely

four vector bilinears1 V I
J µ ≡ iǭIγµǫJ which can be used as a tetrad to construct the

spacetime metric. For N > 2 we have too many vector bilinears and choosing four of them

as a tetrad while preserving the U(N) invariance of the procedure seems impossible. There

are several manifestations of the same problem in the whole procedure.

Another problem, one that is common to all approaches, is the necessity of treating

different values of N separately due to the different field content and symmetries of each

theory.

In this paper we are going to use the spinor-bilinear method to determine the general

form of all the timelike supersymmetric solutions of all the N ≥ 2, d = 4 ungauged super-

gravities coupled to matter vector multiplets (when these supermultiplets are available).

As we will show, the main difficulties of the spinor-method problem can be solved at least

to the extent that the solution allows us to determine the general form of all the timelike

supersymmetric solutions. This has required a deeper study of the algebra of spinor bi-

linears than has been made in the literature hitherto and which has allowed us to find a

way to define an SU(2) subgroup without explicitly breaking the U(N) R-symmetry of the

equations. Furthermore, we are going to use the N -independent “supergravity tensor cal-

culus” introduced in ref. [66], which allows the simultaneous study of all the N ≥ 2, d = 4

ungauged supergravities just as one can work with tensors constructed over vector spaces

of undetermined number of dimensions and obtain results valid for any d.

We have found that each timelike supersymmetric solutions is closely related to a

truncation to an N = 2 theory determined by a U(2) subgroup of the U(N) R-symmetry

group.2 It has to be emphasized that this does not mean that each of them is just a

solution of an N = 2 truncation since, for instance, all the vector fields are generically

non-vanishing and some of them would be eliminated by a generic truncation to N = 2.

However most (if not all) of them may be generated by duality relations from a solution

of the associated N = 2 truncation. This process can be rather cumbersome but, in any

case, our results render it unnecessary.

The construction of any timelike supersymmetric solution proceeds along the following

steps:

1. We have to choose the U(2) subgroup which determines the associated N = 2 trun-

cation:

(a) Choose an x-dependent, rank-2, N×N complex antisymmetric matrix MIJ sat-

isfying MI[JMKL] = 0 (x stands for the 3 spatial coordinates). With it we can

construct

J I
J ≡ 2|M |−2M IKMJK , |M |2 = MPQMPQ ,

1See appendix D.
2For supersymmetric black holes, this fact was conjectured in ref. [67] and earlier in ref. [68] and recently

proven in the next to last of refs. [58–64].
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which is a Hermitean projection operator whose trace is +2: J projects onto

the above-mentioned U(2) subgroup.

J must be covariantly constant3

DJ ≡ dJ − [J ,Ω] = 0 ,

in all cases. In practice, the imposition of this requirement may be postponed

to the last stages of the construction of the supersymmetric solutions.

Parametrizing the most general matrix MIJ that satisfies these requirements

gives a parametrization of the most general timelike supersymmetric solutions.

(b) Given MIJ and hence the covariantly-constant J I
J , we have to find three Her-

mitean, traceless, x-dependent N ×N matrices (σm)IJ (m = 1, 2, 3), satisfying

the same properties as the Pauli matrices in the subspace preserved by J as

derived in appendix (D), to wit

σmσn = δmnJ + iεmnpσp ,

J σm = σmJ = σm ,

JK
JJ L

I =
1

2
JK

IJ L
J +

1

2
(σm)KI(σ

m)LJ ,

MK[I(σ
m)KJ ] = 0 ,

2|M |−2MLI(σ
m)IJM

JK = (σm)KL .

It turns out that we also have to impose the constraint

J dσmJ = 0 ,

implying that the σ-matrices are constant in the subspace preserved by the

projector J .4

The four matrices {J , σm} provide a basis for the U(2) subgroup of the associated

N = 2 truncation and can be seen as generators of its R-symmetry group.

Defining the complementary projector J̃ ≡ IN×N − J it is possible to separate the

scalars into those corresponding to the would-be vector multiplets and hypermulti-

plets of the associated N = 2 truncation. Thus, from the scalars in the generic su-

pergravity multiplet, described by the (pullback of the) Vielbein PIJKLµ ≡ P[IJKL]µ

3Naively one may think that it is always possible to choose a basis in U(N) space such that, for instance,

M12 = −M21 = +1 and the rest of the components vanish, whence J is the identity in the corresponding

2-dimensional subspace. However, the necessary change of basis involves an, a priori, arbitrary local U(N)

rotation and the theory is not really U(N) gauge-invariant even if some fields undergo field-dependent

compensating U(N) transformations when one performs a global symmetry transformation and there is a

U(N) gauge connection which is a composite field.

This problem was first observed by Tod in his study of the N = 4 theory [8] and, being unable to prove

it, he conjectured that this rotation was always possible.

We have not been able to prove this hypothesis in general either. We have proven that covariant constancy

is required, though, which implies in the pure N = 4 case studied by Tod (ΩI
J ∼ δI

J) as well as in the

pure N = 3 theory (Ω = 0) that J has to be constant.
4This is automatically satisfied for the projector itself J dJJ = 0.
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and from the scalars in the generic matter multiplet, described by Pi IJ µ ≡ Pi [IJ ]µ;

those in the vector multiplets are described by

PIJKL J I
[MJ J

N J̃K
P J̃ L

Q] and Pi IJ J I
[KJ J

L] ,

and those in the hypermultiplets are described by

PIJKL J I
[M J̃ J

N J̃ K
P J̃ L

Q] and Pi IJ J I
[KJ̃ J

L] .

The discrimination between these two kinds of scalars is, however, important: those

corresponding to the vector multiplets are sourced by the electric and magnetic

charges and enter into the attractor mechanism while those corresponding to the

hypermultiplets are not and should be frozen in supersymmetric black-hole solutions.

2. Once the choice of U(2) subgroup is made, the solutions are constructed by the

following procedure:5

(a) Using the symplectic functions of the scalars VIJ (A.5), which generalize the

canonical symplectic section V of the N = 2 theories [69–72], we define the real

symplectic vectors R and I by

R + iI ≡ |M |−2VIJM
IJ ,

which are U(N) singlets. No particular U(N) gauge-fixing is necessary to con-

struct the solutions.

(b) For the supersymmetric solutions, the components of the symplectic vector I
are real functions satisfying the Laplace equation in the 3-dimensional trans-

verse space with metric γmn, to be described later. This is the only differential

equation that needs to be solved.

(c) R can in principle be found from I by solving the generalization of the so-called

stabilization equations.

(d) The metric of the solutions has the form

ds2 = |M |2(dt + ω)2 − |M |−2γmndx
mdxn .

where
|M |−2 = 〈R | I 〉 ,

(dω)mn = 2ǫmnp〈 I | ∂pI 〉 ,
so they can be computed directly from R and I.

The 3-dimensional transverse metric γmn is determined indirectly by the would-

be hypers; in particular, when those scalars are frozen the metric is flat. The full

condition that the 3-dimensional metric has to satisfy is that its spin-connection

5This procedure is completely analogous to the procedure used to build supersymmetric solutions in

ungauged N = 2 theories coupled to vector multiplets and hypermultiplets described in ref. [18].
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must be related to (the pullback of) the connection of the scalar manifold, Ω

in (A.9), by

̟mn = iεmnpTr [σpΩ] .

Observe that only the su(2) part of Ω contributes to ̟mn.6

(e) The vector field strengths are given by

F = −1

2
d(RV̂ ) − 1

2
⋆ (V̂ ∧ dI) , V̂ =

√
2|M |2(dt + ω) .

(f) The scalars corresponding to the vector multiplets in the associated N = 2

truncation, represented by the projected Vielbeine

PIJKL J I
[MJ J

N J̃ K
P J̃ L

Q] and Pi IJ J I
[KJ J

L] ,

can in principle be found from R and I. The Killing Spinor Identities guarantee

that the equations of motion of these scalars are satisfied if the Maxwell equa-

tions and Bianchi identities are satisfied,7 which is the case when the components

of I are harmonic functions on the transverse space.

(g) The scalars corresponding to the hypers, described by the Vielbeine

PIJKL J I
[M J̃ J

N J̃ K
P J̃ L

Q] and Pi IJ J I
[KJ̃ J

L] ,

must be found independently by solving the supersymmetry constraints

PIJKLm J I
[M J̃ J

N J̃ K
P J̃ L

Q](σ
m)QR = 0 ,

Pi IJ m J I
[KJ̃ J

L](σ
m)LM = 0 .

The Killing Spinor Identities guarantee that their equations of motion are au-

tomatically solved.8

In the rest of this paper we are going to prove in full detail the above result. We

are going to start by giving the generic description of all the N ≥ 2, d = 4 supergravities

with vector multiplets (where available) in section 2. In section 3 we are going to present

the Killing spinor equations for all these theories and we are going to find the Killing

Spinor Identities that constrain the off-shell equations of motion of the bosonic fields for

supersymmetric field configurations.

6It plays the same rôle as the su(2) connection of the hyper-Kähler manifold in ref. [18] and the condition

on the metric is identical to the one found in the N = 2 case although in that case the 2 × 2 matrices σm

are the standard, constant, Pauli matrices.
7Actually, the only independent equations of motion that need to be solved are the 0th components of

the Maxwell equations and Bianchi identities. Some of the other equations are just automatically satisfied

for supersymmetric configurations and the rest is proportional to those 0th components.
8This situation is completely analogous to what happens with the hyperscalars of N = 2 theories [18].
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2 Generic description of N ≥ 2, d = 4 supergravities

We are going to study all the N ≥ 2, d = 4 supergravities coupled to vector multiplets

simultaneously, using the fact that all the supergravity multiplets and all the vector mul-

tiplets for all N = 1, . . . , 8 can be written in the same generic form [66]; we only need to

take into account the range of values taken by the U(N) R-symmetry indices, denoted by

uppercase Latin letters I etc. taking on values 1, . . . , N , in each particular case.9

The generic supergravity multiplet in four dimensions is

{

eaµ, ψI µ, A
IJ

µ, χIJK , χ
IJKLM , PIJKLµ

}

, I, J, · · · = 1, . . . , N , (2.1)

and the generic vector multiplets (labeled by i = 1, . . . , n) are

{

Ai µ, λiI , λi
IJK, PiIJ µ

}

. (2.2)

The spinor fields ψI µ, χIJK , χ
IJKLM , λiI , λi

IJK have positive chirality with the given po-

sitions of the SU(N) indices.

The scalars of these theories are encoded into the 2n̄-dimensional (n̄ ≡ n + N(N−1)
2 )

symplectic vectors (Λ = 1, . . . n̄) VIJ and Vi whose properties are reviewed in appendix A.

They appear in the bosonic sector of the theory via the pullbacks of the Vielbeine PIJKLµ

(supergravity multiplet) and PiIJ µ (matter multiplets).10 There are three instances of

theories for which the scalar Vielbeine are constrained: first, when N = 4 the matter

scalar Vielbeine are constrained by the SU(4) complex self-duality relation11

N = 4 :: P ∗ i IJ =
1

2
εIJKL Pi KL . (2.3)

Secondly, in N = 6 the scalars in the supergravity multiplet are represented by one

Vielbein PIJ and one Vielbein PIJKL related by the SU(6) duality relation

N = 6 :: P ∗ IJ =
1

4!
εIJK1···K4 PK1···K4

, (2.4)

and lastly the N = 8 case, in which the Vielbeine is constrained by the SU(8) complex

self-duality relation

N = 8 :: P ∗ I1···I4 =
1

4!
εI1···I4J1···J4 PJ1···J4

. (2.5)

These constraints must be taken into account in the action.

9This formalism is taken from ref. [66], but adapted to the notations of ref. [16]. Furthermore, throughout

this paper we use the convention that the only fields and terms that should be considered are those whose

number of antisymmetric SU(N) indices is correct, i.e. objects with more than N antisymmetric indices are

zero and terms with Levi-Cività symbols ǫI1···IM should only be considered when M equals the N of the

supergravity theory under consideration. There are also constraints on the generic fields for specific values

of N that we are going to review.
10The Vielbeine Pij µ either vanish identically or depend on PIJKLµ and PiIJ µ, depending on the specific

value of N . Thus, they are not needed as independent variables to construct the theories.
11In order to highlight the fact that an equation holds for a specific N only, we write a numerical variation

of the token “N = 4 ::” to the left of the equation.
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The graviphotons AIJ
µ do not appear directly in the theory, rather they only appear

through the “dressed” vectors, which are defined by

AΛ
µ ≡ 1

2
fΛ

IJA
IJ

µ + fΛ
iA

i
µ . (2.6)

The action for the bosonic fields is

S =

∫

d4x
√

|g|
[

R+ 2ℑmNΛΣF
ΛµνFΣ

µν − 2ℜeNΛΣF
Λ µν ⋆ FΣ

µν

+
2

4!
α1P

∗ IJKL
µPIJKL

µ + α2P
∗ iIJ

µPiIJ
µ

]

,

(2.7)

where NΛΣ is the generalization of the N = 2 period matrix, defined in eq. (A.11), and

where the parameters α1, α2 are equal to 1 in all cases except forN = 4, 6 and 8 as one needs

to take into account the above constraints on the Vielbeine: α2 = 1/2 forN = 4, α1+α2 = 1

for N = 6 (the simplest choice being α2 = 0) and α1 = 1/2 for N = 8. The action is good

enough to compute the Einstein and Maxwell equations, but not the scalars’ equations of

motion in the cases in which the scalar Vielbeine are constrained: these constraints have

to be properly dealt with and the resulting equations of motion are given below.

The supersymmetry transformations of the bosonic fields can be written in the form

δǫe
a
µ = −iψ̄Iµγ

aǫI − iψ̄I
µγ

aǫI , (2.8)

δǫA
Λ

µ = fΛ
IJ ψ̄

I
µǫ

J + f∗ΛIJ ψ̄IµǫJ − i

2
(fΛ

iλ̄
iIγµǫI + f∗Λiλ̄iIγµǫ

I)

− i

4
(fΛ

IJ χ̄
IJKγµǫK + f∗ΛIJ χ̄IJKγµǫ

K) , (2.9)

(U−1δǫU)IJKL = 4χ̄[IJKǫL] + χ̄IJKLMǫ
M , (2.10)

(U−1δǫU)iIJ = 2λ̄i[IǫJ ] +
1

2
λ̄iIJKǫ

K , (2.11)

where U is the Usp(n̄, n̄) matrix describing the scalars, defined in eq. (A.2). Those of the

fermionic fields can be put in the form

δǫψIµ = DµǫI + TIJ
+

µνγ
νǫJ , (2.12)

δǫχIJK = −3i

2
/T [IJ

+ǫK] + i /P IJKLǫ
L , (2.13)

δǫλiI = − i

2
/T i

+ǫI + i /P iIJǫ
J , (2.14)

δǫχIJKLM = −5i /P [IJKLǫM ] +
i

2
εIJKLMN /T

−
ǫN +

i

4
εIJKLMNOP /T

NO−
ǫP , (2.15)

δǫλiIJK = −3i /P i[IJǫK] +
i

2
εIJKL /T i

−ǫL +
i

4
εIJKLMN /T

LM−
ǫN , (2.16)

where we have defined the graviphoton and matter vector field strengths

TIJ
+

µν = 2ifΛ
IJ ℑmNΛΣ FΣ+

µν , Ti
+

µν = 2ifΛ
i ℑmNΛΣ FΣ+

µν , (2.17)

and where

DµǫI ≡ ∇µǫI − ǫJΩµ
J

I , (2.18)

– 8 –
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Ω being the pullback of the connection on the scalar manifold, defined in appendix A.

We stress that, according to our conventions, the terms with ε-symbols should only be

considered when the value of N equals its rank. Furthermore, whenN = 4, 6 or 8 eqs. (2.15)

and (2.16) depend on the first three supersymmetry rules, whereas for N = 2 they are

equations for non-existing fields: therefore, eqs. (2.15) and (2.16) only need to be considered

in the cases N = 3 and 5, and then only the first term on the l.h.s. is non-vanishing.

For convenience, we denote the Bianchi identities for the vector field strengths by

BΛµ ≡ ∇ν ⋆ F
Λ νµ . (2.19)

and the bosonic equations of motion by

Ea
µ ≡ − 1

2
√

|g|
δS

δeaµ
, EIJKL ≡ − 1

2
√

|g|

(

δS

δU
U

)IJKL

= − 1

2
√

|g|
P ∗ IJKLA δS

δφA
,

EΛ
µ ≡ 1

8
√

|g|
δS

δAΛ
µ
, E iIJ ≡ − 1

2
√

|g|

(

δS

δU
U

)iIJ

= − 1

2
√

|g|
P ∗ iIJ A δS

δφA
,

(2.20)

where P ∗ IJKLA and P ∗ iIJ A are the inverse Vielbeine and φA are the physical fields of the

theory.

The explicit forms of the Einstein and Maxwell equations are

Eµν = Gµν +
1

12
α1

[

P ∗ IJKL
(µ|PIJKL |ν) −

1

2
gµνP

∗ IJKL
ρPIJKL

ρ

]

+α2P
∗ iIJ

(µ|PiIJ |ν) −
1

2
gµνP

∗ iIJ
ρPiIJ

ρ + 8ℑmNΛΣF
Λ +

µ
ρFΣ−

νρ , (2.21)

EΛ
µ = ∇ν ⋆ F̃Λ

νµ , (2.22)

where we have defined the dual vector field strength F̃Λ by

F̃Λ µν ≡ − 1

4
√

|g|
δS

δ⋆FΛ
µν

= 2ℜe(NΛΣF
Σ +) = ℜeNΛΣF

Σ
µν + ℑmNΛΣ ⋆ F

Σ
µν . (2.23)

Using eqs. (A.29) and (A.30) and taking into account the constraints satisfied by the

Vielbeine in the cases N = 4, 6 and 8, we find that the scalar equations of motion take the

following forms, slightly different for each value of N :

N = 2::

E iIJ = D
µP ∗ iIJ

µ + 2T i−
µνT

IJ −µν + P ∗ iIJ AP ∗ jk
ATj

+
µνTk

+ µν . (2.24)

N = 3::

E iIJ = D
µP ∗ iIJ

µ + 2T i−
µνT

IJ −µν . (2.25)

N = 4::

EIJKL = D
µP ∗ IJKL

µ + 6T [IJ |−
µνT

|KL]−µν + P ∗ IJKLAP ∗ ij
ATi

+
µνTj

+ µν , (2.26)

E iIJ = D
µP ∗ iIJ

µ + T i−
µνT

IJ −µν +
1

2
εIJKLTi

+
µνTKL

+µν . (2.27)
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N = 5::

EIJKL = D
µP ∗ IJKL

µ + 6T [IJ |−
µνT

|KL]−µν . (2.28)

N = 6::

EIJKL = D
µP ∗ IJKL

µ + 6T [IJ |−
µνT

|KL]−µν + εIJKLMNT+
µνTMN

+µν . (2.29)

N = 8::

EIJKL = D
µP ∗ IJKL

µ+6T [IJ |−
µνT

|KL]−µν +
1

4
εIJKLMNPQTMN

+
µνTPQ

+µν . (2.30)

3 Generic N ≥ 2, d = 4 Killing spinor equations and identities

The Killing spinor equations are

DµǫI + TIJ
+

µνγ
νǫJ = 0 , (3.1)

/P IJKLǫ
L − 3

2
/T [IJ

+ǫK] = 0 , (3.2)

/P i IJǫ
J − 1

2
/T i

+ǫI = 0 , (3.3)

N = 5 :: /P [IJKLǫM ] = 0 , (3.4)

N = 3 :: /P i [IJǫK] = 0 , (3.5)

where, as indicated by the notation, the last two KSEs should only be considered for N = 5

and N = 3, respectively.

From the bosonic supersymmetry transformation rules we immediately find using the

algorithm of refs. [73, 74]

Ea
µγaǫI − 4iEΛ

µf∗Λ IJǫJ = 0 , (3.6)

EΛ
µf∗Λ [IJγµǫ

K] − i

3!
EIJKLǫL = 0 , (3.7)

EΛ
µf∗Λ iγµǫ

I − i

2
E i IJǫJ = 0 , (3.8)

N = 5 :: E [IJKLǫM ] = 0 , (3.9)

N = 3 :: E i [IJǫK] = 0 . (3.10)

In these equations it is implicitly assumed that the Bianchi identities are satisfied, i.e.

BΛ µ = 0. It is, however, convenient not to make use of this assumption as to preserve

the manifest electric-magnetic duality of the formalism. We can, and will, introduce the

Bianchi identities into these equations by the replacement

EΛ
µfΛ −→ 〈E | V 〉 , (3.11)

where E is the symplectic vector containing the Maxwell equations and Bianchi identities.

We can start to derive consequences from these identities in terms of the spinor bilinears

defined and studied in appendix D and in this paper we will only study the case in which

the vector bilinear, V a = iǭIγaǫI , is timelike (V 2 = V aVa = 2|M |2 > 0).

– 10 –



J
H
E
P
1
1
(
2
0
1
0
)
0
7
2

3.1 Timelike case

It is convenient to work with flat indices and use a Vierbein basis in which e0 ≡
1√
2
|M |−1Vµdx

µ. Acting with iǭI and ǭKγν on the first KSI eq. (3.6) we get,

V bEb
a + 4〈 Ea | V∗ IJ 〉MIJ = 0 , (3.12)

Ec
a(gcbMKI + ΦKI cb) + 4〈 Ea | V∗ JI 〉V K

J
b = 0 , (3.13)

respectively. Multiplying the second identity with MKI we obtain

|M |2Eab + 2〈 Ea | V∗ IJ 〉MIJV
b = 0 . (3.14)

The symmetry and reality of the Einstein equation imply, firstly

E0m = Emn = 0 , (3.15)

so all components of the Einstein equations but E00 are automatically and identically

satisfied;12 secondly13

E00 = −2
√

2|M |〈 E0 | R 〉 , (3.16)

where we have defined the U(N)-neutral real symplectic vectors R and I by

|M |−2M IJVIJ ≡ V = R + iI , (3.17)

whence the remaining component of the Einstein equations is satisfied if the 0th component

of the Maxwell equations and Bianchi identities are satisfied. Thirdly and finally

〈 Em | R 〉 = 0 , (3.18)

〈 Ea | I 〉 = 0 . (3.19)

Acting with iǭL and ǭLγν on eq. (3.7), which is only to be considered for N ≥ 3, we

obtain

〈 Ea | V∗ [IJ 〉V K]
L a −

1

3!
EIJKMMML = 0 , (3.20)

〈 Ea | V∗ [IJ 〉(−δb
aM

K]L + ΦK]L b
a) −

1

3!
EIJKMV Lb

M = 0 . (3.21)

Multiplying eq. (3.20) by 2MNL|M |−2 and antisymmetrizing the four free indices we

get

〈 Ea | V∗ [IJ 〉M
KL]

|M | − 1√
2 · 3!

δa
0EM [IJKJ L]

M = 0 . (3.22)

Setting K = L in eq. (3.20), using the antisymmetric part of eq. (3.13) and taking into

account eq. (3.16), we get

〈 Em | V∗ IJ 〉 = 0 , (3.23)

12As explained in ref. [75] this poses strong constraints on the sources of the solutions because having

supersymmetry unbroken everywhere implies that the KSIs should be identically (i.e. not up to δ-function

terms) satisfied everywhere.
13The imaginary part of the equation 〈 E0 | I 〉 = 0 is related to the absence of sources of NUT charge in

globally supersymmetric solutions [75].
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and

EIJKMMKM = −2
√

2|M |(δIJ
KL − |M |−2M IJMKL)〈 E0 | V∗KL 〉 . (3.24)

This implies that the projections

EMNPQ J [I
MJ J

N J̃K
P J̃ L]

Q , (3.25)

which should be understood as the equations of motion of the scalars that would corre-

spond to the vector multiplets scalars in the associated N = 2 truncations, are satisfied if

the 0th component of the Maxwell equations and Bianchi identities are. From eq. (3.22)

we can derive

EMNPQ J [I
M J̃ J

N J̃K
P J̃ L]

Q = 0 , (3.26)

whence the projections that would correspond to the hypers are automatically satisfied.

From eq. (3.8) we get

〈 Ea | V∗ i 〉 +
1

2
√

2
δa

0E iIJ MIJ

|M | = 0 , (3.27)

〈 Ea | V∗ i 〉MKI − 1

4
E i[I|JV |K]

J
a = 0 . (3.28)

The first of these equations states first of all that

〈 Em | V∗ i 〉 = 0 , (3.29)

which, combined with eqs. (3.23) implies by means of the completeness relation eq. (A.14)

that

Em = 0 . (3.30)

Therefore, the only component of the Maxwell equations and Bianchi identities that are

not automatically satisfied due to supersymmetry, are E0; secondly, for the projections

onto equations of motion of scalars in N = 2 vector multiplets

E i KLJ I
KJ J

L = −2
√

2
M IJ

|M | 〈 E
a | V∗ i 〉 . (3.31)

Contracting the second of these equations with Va|M |−2 we get

〈 Ea | V∗ i 〉M
IJ

|M | − 1

2
√

2
δa

0E iK[IJ J ]
K = 0 , (3.32)

from which we get for the projections onto equations of motion of scalars in N = 2

hypermultiplets

E i KLJ I
[KJ̃ J

L] = 0 . (3.33)

For the special cases N = 5 and 3 we can define the SU(N) duals of the scalar

equations of motion:

ẼI ≡ 1

4!
εIJKLMEJKLM , Ẽ i

I ≡ 1

2
εIJKE iJK , (3.34)
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and we can rewrite eqs. (3.9) and (3.10) in a more useful form:

ẼIJ I
J = 0 , (3.35)

Ẽ i
IJ I

J = 0 . (3.36)

Thus, in all cases the Einstein equations E0m, Emn, the Maxwell equations and Bianchi

identities Em and the scalar equations E i KLJ I
[KJ̃ J

L] and EMNPQ J [I
M J̃ J

N J̃K
P J̃ L]

Q

are automatically satisfied; the Einstein equation E00 and the scalar equations

E i KLJ I
[KJ J

L] and EMNPQ J [I
MJ J

N J̃ K
P J̃ L]

Q are satisfied if the 0th component

of the Maxwell equations and Bianchi identities E0 are satisfied. To check that all the

scalar equations of motion are, therefore, satisfied if E0 are, it is convenient to make a

detailed analysis case by case.

N = 2:: As mentioned before, eq. (3.27) relates the complete scalar equations of motion

to the 0th component of the Maxwell equations an Bianchi identities. Therefore, we

only need to solve E0 = 0.

N = 3:: The KSIs eqs. (3.32) and (3.36) can be combined into

Ẽ i
I = −2

√
2
M̃I

|M | 〈 E
0 | V∗ i 〉 , (3.37)

and we conclude that, as in the N = 2 case, the only equation that needs to be solved

is E0 = 0.

N = 4:: As mentioned before, eq. (3.22) relates the complete scalar equation EIJKL to E0

because in the N = 4 case EIJKL = εIJKLE , where E is the equation of motion of

the complex scalar parametrizing Sl(2,R)/SO(2). More explicitly, we have

E = −
√

2
M̃IJ

|M̃ |
〈 E0 | V∗ IJ 〉 . (3.38)

From eq. (3.32) and its SU(4) dual, using the N = 4 constraint E iIJ = 1
2ε

IJKLEiKL

we arrive at the N = 4-specific KSI

EiIJ = −2
√

2

{

M̃IJ

|M̃ |
〈 E0 | V∗ i 〉 +

MIJ

|M | 〈 E
0 | Vi 〉

}

, (3.39)

which guarantees that, as in the foregoing cases, the matter scalar equations of motion

are satisfied if E0 = 0 is satisfied.

N = 5:: In this case we have to consider the SU(5) dual of eqs. (3.22) and (3.35) which

can be combined into the single identity

ẼI = −
√

2
M̃IJK

|M | 〈 E0 | V∗ JK 〉 , (3.40)

which leads us to the same conclusion as in the previous cases.
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N = 6:: In this case we have to consider the KSIs (3.22) involving EIJKL

and (3.32), involving EIJ plus the constraint relating these equations of mo-

tion: EIJKL = 1
2ε

IJKLMNEMN . Expressing both KSIs in terms of EIJ only, we can

combine them into

EIJ = −2
√

2
M IJ

|M | 〈 E
0 | V∗ 〉 −

√
2
M̃ IJKL

|M | 〈 E0 | VKL 〉 , (3.41)

which brings us to the same conclusion as before.

N = 8:: The KSI (3.22) plus the constraint EIJKL = 1
4!ε

IJKLMNPQEMNPQ result in the

KSI

EIJKL = 12
√

2

{

M [IJ |

|M | 〈 E0 | V∗ |KL] 〉 +
1

12

M̃ IJKLMN

|M | 〈 E0 | VMN 〉
}

. (3.42)

In all cases the equations of motion of the scalars are automatically satisfied if the

0th component of the Maxwell equations and Bianchi identities are. This will simplify

the task of finding supersymmetric solutions enormously as there is only one independent

symplectic vector of equations E0. On the other hand, to check consistency, we have to

check that all the supersymmetric configurations satisfy the above KSIs.

4 N ≥ 2, d = 4 Killing spinor equations for the bilinears

The supersymmetry rules in section (3) induce differential relations between the spinor-

bilinears, defined in section (D), and the various supergravity fields. As such, these relations

contain the local information of the supersymmetric configurations and the solutions and

are therefore the starting point in the deductive reconstruction process of the supergravity

fields from the KSEs. We start this process by enumerating said differential relations.

From eq. (3.1) we get

DµMIJ − 2iTK[I|
+

µνV
K

|J ]
ν = 0 , (4.1)

DµV
I
J ν + i

{[

M IKTJK
+

µν − h.c.
]

−
[

ΦIK
(µ|

ρTKJ
+
|ν)ρ − h.c.

]}

= 0 . (4.2)

From eq. (3.2) we get

MKLPKLIJµ + 6iT[IJ |
+

µνV
K

|K]
ν = 0 , (4.3)

PIJKL · V L
M − 3i

2
T[IJ

+ · ΦK]M = 0 . (4.4)

From eq. (3.3) we get

M IJPiIJµ + 2iTi
+

µνV
ν = 0 , (4.5)

PiIJ · V J
K − i

2
Ti

+ · ΦIK = 0 . (4.6)

From eq. (3.4), which is only to be considered for N = 5, we obtain

N = 5 :: P[IJKL · V N
M ] = 0 , (4.7)

N = 5 :: P[IJKL|µM|M ]N = 0 . (4.8)
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The last equation can be written as

N = 5 :: P̃ I
µ JI

J = 0 , (4.9)

where we have used the dual Vielbein P̃ I
µ = 1

4!ε
IJKLMPJKLM µ.

As was said before, in the case of N = 3 we must also take into account eq. (3.5),

which leads to

N = 3 :: Pi[IJ · V L
K] = 0 , (4.10)

N = 3 :: Pi[IJ |µM|K]L = 0 . (4.11)

As in the N = 5 case, we can use the dual Vielbein P̃ iI
µ = 1

2ε
IJKPiJK µ to rewrite the last

equations as

N = 3 :: P̃ iI
µ JI

J = 0 . (4.12)

4.1 First consequences

Having enumerated the differential relations, we start the analysis by expanding eq. (4.3),

as to obtain

MKLPKLIJµ + 2iTIJ
+

µνV
ν + 4iTK[I|

+
µνV

K
|J ]

ν = 0 . (4.13)

Substituting eq. (4.1) in the last term, we get

CIJ
+

µ ≡ V νTIJ
+

νµ = − i

2
MKLPKLIJµ − iDµMIJ , (4.14)

from which we can find TIJ
+ by means of the following relation that holds in the timelike

case

TIJ
+ = V −2[V̂ ∧ CIJ

+ + i ⋆ (V̂ ∧CIJ
+)] . (4.15)

Likewise from eq. (4.5) we deduce

Ci
+

µ ≡ V νTi
+

νµ = − i

2
M IJPiIJµ −→ Ti

+ = V −2[V̂ ∧ Ci
+ + i ⋆ (V̂ ∧ Ci

+)] . (4.16)

Eqs. (4.14), (4.16) and (A.20) can then be used to find the complete field strengths, i.e.

CΛ+
µ ≡ V νFΛ+

νµ =
i

2
f∗ΛIJCIJ

+
µ + if∗ΛiCi

+
µ

=
1

4
M IJf∗ΛKLPIJKLµ +

1

2
M IJf∗ΛiPiIJµ +

1

2
f∗ΛIJ

DµMIJ

=
1

2
M IJ

Dµf
Λ

IJ +
1

2
f∗ΛIJ

DµMIJ , (4.17)

and

FΛ+ = V −2[V̂ ∧ CΛ+ + i ⋆ (V̂ ∧CΛ+)] . (4.18)

The trace over I over J in eq. (4.2) gives

∇µVν + i
[

M IJTIJ
+

µν − c.c.
]

= 0 , (4.19)
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which implies that V µ is always a Killing vector

∇(µVν) = 0 , (4.20)

and that, had we been dealing with the null case (MIJ = 0), it would have been covariantly

constant.

Considering the equations involving the Vielbeine for each value of N , we can derive

the general result

V µPIJKLµ = V µPiIJµ = 0 . (4.21)

The first of these equations together with the expression for TIJ
+

µνV
ν , eq. (4.15),

implies

V µ
DµMIJ = 0 . (4.22)

4.2 Timelike case

We define the time coordinate t by

V µ∂µ ≡
√

2∂t , (4.23)

which implies that all the fields are (covariantly) time-independent. Taking into account

that V 2 = 2|M |2 and the above choice of coordinate, V̂ must take the form

V̂ ≡ Vµdx
µ =

√
2|M |2(dt + ω) (4.24)

where ω = ωmdx
m is a time-independent 1-form to be determined. We can use the 1-form

V̂ to construct the 0th component of a Vielbein basis {ea}

e0 ≡ 1√
2
|M |−1V̂ . (4.25)

The other three 1-forms of the basis {e1, e2, e3} will be chosen arbitrarily.14 In general

none of the remaining vector bilinears is an exact 1-form: with the available information

we can only say that the 4-dimensional metric takes the form

ds2 = |M |2(dt+ ω)2 − |M |−2γmndx
mdxn , (4.26)

where the 3-dimensional metric γmn also has to be determined. The 1-forms V̂ m defined

in eq. (D.26) can be taken as Dreibeine for the metric γmn. We are going to derive from

eq. (4.2), which contains a great deal of information, equations for V̂ , V̂ m and the matrices

(σm)IJ , defined in eq. (D.27), that will determine ω and γmn.

Using the decompositions (D.28), (D.21) and the expression for the graviphotons field

strengths, eq. (4.15), in eq. (4.2) we get

dV̂ + |M |−2
{

V̂ ∧ d|M |2 + i ⋆
[

V̂ ∧ (M IJ
DMIJ −MIJDM IJ)

]}

= 0 , (4.27)

14It is worth stressing the differences with the procedure followed in the N = 2 case in ref. [18]: in the

N = 2 case one can use the well-known constant Pauli matrices and construct {e1, e2, e3} decomposing the

vector bilinear V I
J µ with respect to {σ1, σ2, σ3}. In the general case there are a priori no constant N ×N

Pauli matrices available and we are forced to choose {e1, e2, e3} first, and then use them to construct the

N × N Pauli matrices, which generically will be non-constant: see appendix D for more detail.
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dV̂ m +
1

2
Tr (σm

Dσn) ∧ V̂ n = 0 , (4.28)

Dmσ
n + Dnσ

m = 0 , (4.29)

εmnp

[

Dnσ
p +

1

2
Tr (σp

Dnσ
q)σq

]

− i (DmJJ − JDmJ ) = 0 , (4.30)

DmJ I
J + 2i|M |−2εmnp

[

DnMJK(σp)KLM
LI − h.c.

]

= 0 . (4.31)

Observe that, even though the σ-matrices bear indices m,n and p, these indices are not

tangent space indices and the covariant derivatives acting on them is the U(N) connection

Ω only.

If we act with J I
L on eq. (4.1) and use the expression for the graviphoton field strengths

eq. (4.15) and the trace of eq. (4.29), we get JDJ = 0, which together with its Hermitean

conjugate imply the very important condition

DJ = 0 . (4.32)

This equation does not imply that it is possible to choose a gauge in which dJ = 0

because the theories we are considering are only invariant under global U(N) transfor-

mations and not under arbitrary gauge transformations (the connection Ω is a composite

field). Nevertheless, observe that J is constant in the U(2) directions of the Killing spinors:

J dJJ = 0 , (4.33)

as follows from its idempotency J 2 = J . On the other hand, this condition will allow

us to relate consistently each supersymmetric configuration to a truncation to an N = 2

theory with vector supermultiplets and hypermultiplets: J projects the U(N) space onto

an U(2) subspace, which defines the associated N = 2 truncation. Using J we are going

to be able to project the scalar Vielbeine PIJKL and Pi IJ onto scalar Vielbeine belonging

to the vector supermultiplets or the hypermultiplets of the truncation.

The integrability condition of DJ = 0 is

[R(Ω),J ] = 0 , (4.34)

which restricts the holonomy of the pullback of the connection of the scalar manifold

to the group generated by the U(N) subalgebra that commutes with J ; this group is

U(2) ⊗ U(N − 2), the first factor being generated by {J , σ1, σ2, σ3}.
Since R(Ω) can be expressed in terms of the scalar Vielbeine using eq. (A.33), the

above condition is a condition on the Vielbeine. Below, we are going to derive several

conditions for the Vielbeine that will ensure that the above condition is satisfied.

Another important consequence of the condition DJ = 0 is

DM IJ = |M |−2M IJMKLDMKL , (4.35)

which leads to relations such as

DM [IJ
DMK]L = 0 , (4.36)

and solves eq. (4.31).
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Let us continue by analyzing eq. (4.27): taking the exterior derivative of V̂ in eq. (4.24)

and comparing it with eq. (4.27) we find that

dω =
i√

2|M |4
⋆
[

(M IJ
DMIJ −MIJDM IJ) ∧ V̂

]

, (4.37)

which can be rewritten as an equation in the background of the 3-dimensional spatial

metric:

(dω)mn = − i

|M |4 εmnp(M
IJ

DpMIJ −MIJDpM
IJ) . (4.38)

Using the symplectic vectors R and I defined in eq. (3.17) and the constraint

M [IJMK]L = 0, eq. (D.8), we find that

M IJ
DmMIJ −MIJDmM

IJ = 2i|M |4〈 I | ∂mI〉 , (4.39)

and then we can rewrite the equation for ω in terms of I

(dω)mn = 2ǫmnp〈 I | ∂pI 〉 , (4.40)

and |M | in terms of R and I
|M |−2 = 〈R | I 〉 , (4.41)

which are identical to the ones obtained in refs. [17, 75] for N = 2 theories coupled to

vector multiplets and with the same integrability condition, namely

〈 I | ∇2
(3)I 〉 = 0 . (4.42)

Let us now move on to eq. (4.28): it can be interpreted as Cartan’s first structure

equation for a torsionless connection ̟mn = −̟nm on the 3-dimensional space

dV̂ m −̟mn ∧ V̂ n = 0 , (4.43)

where the connection can be read off and is

̟mn = −1

2
Tr [σm

Dσn] = iεmnpTr [σpΩ] − 1

2
Tr [σmdσn] . (4.44)

This equation relates the spin connection of the 3-dimensional transverse space to the

pullback of the connection of the scalar manifold. This spin connection is constrained by

eq. (4.29): multiplying by σp and taking the trace, we find that

̟(mn)p = 0 , ⇒ ̟mnp = ̟[mnp] , (4.45)

which is a gauge condition associated to our choices.

Defining a new covariant derivative D̂ = D + ̟, where ̟mn acts on the upper m,n

indices of the σ matrices15 we can rewrite now eqs. (4.29) and (4.30) in the combined form

D̂mσ
n = 0 . (4.46)

15Explicitly, D̂mσn ≡ Dmσn−̟m
npσp. We do not distinguish between upper and lower flat 3-dimensional

indices.
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The integrability condition of this equation relates the curvature 2-form of ̟mn to an su(2)

projection the curvature of the pullback of the connection of the scalar manifold Ω:

Rmn(̟) = iεmnp Tr [σpR(Ω)] . (4.47)

If we compute the curvature Rmn(̟) using eq. (4.44) we find on the r.h.s. the extra term

iεmnp Tr [J dσpJ ∧ Ω] , (4.48)

which must vanish for consistency. We are going to impose the condition

J dσpJ = 0 , (4.49)

which says that the σm matrices are constant in the U(2) directions of the Killing spinors,

just as J . We have not found a better proof of this condition, but we shall see that it is

the simplest condition that solves the KSEs.

Using eq. (A.33) we can rewrite eq. (4.47) in a form that can be compared directly

with the SU(2) curvature and quaternionic structures of the quaternionic-Kähler manifold

in which the scalars of N = 2 hypermultiplets live. Then eq. (4.47) relates the curvature of

the spatial 3-dimensional metric γ with the SU(2) curvature of the hyperscalars, completely

analogous to what happens in the N = 2 case with hypermultiplets [18]. To find the pro-

jections of the scalar Vielbeine that correspond to the hyperscalars in the associated N = 2

truncation defined by J , we first use eqs. (4.47) and (A.33) to write the Ricci tensor of γ as

R(γ)mn = − i

N − 2
εnpq(σq)IJ [P ∗ JKLM

[m|PIKLM |p] + 2P ∗ i JK
[m|Pi IK |p]] . (4.50)

Further identities are needed: using the decompositions (D.28), (D.21) and the time-

independence of the scalars eq. (4.21) in eqs. (4.4) and (4.6), together with the expressions

for the supergravity and matter vector field strengths eqs. (4.14)–(4.16), we get the following

constraints on the scalar Vielbeine:

[

PIJKLm − 3|M |−2MPQPPQ[IJ |mM|K]L

]

(σm)LM = 0 , (4.51)

Pi MN m

(

δMN
IJ − J M

[IJN
J ]

)

(σm)J K = 0 , (4.52)

which can be rewritten in the form16

PIJKLm J I
[M J̃ J

N J̃K
P J̃ L

Q](σ
m)QR = 0 , (4.53)

Pi IJ m J I
[KJ̃ J

L](σ
m)LM = 0 . (4.54)

Using them in the above equation, the Ricci tensor of γ takes the form17

R(γ)mn = − 1

N − 2
[PIJKL (m|J I

M J̃ J
N J̃K

P J̃ L
QP

∗MNPQ
|n)

+ 2Pi IJ (m|J I
M J̃ J

NP
∗ i MN

|n)] .

(4.55)

16These equations should be compared with the conditions that supersymmetry imposes on the pullbacks

of the quaternionic Vielbeine in N = 2 theories [18].
17For N = 2 the r.h.s. vanishes identically, as the formalism used only takes into account vector multiplets.

– 19 –



J
H
E
P
1
1
(
2
0
1
0
)
0
7
2

The hyperscalar Vielbeine in the associated N = 2 truncation are clearly identified

in this expression. The conditions for a flat 3-dimensional metric, or said differently the

no-hypers conditions, are therefore

PIJKL J I
[M J̃ J

N J̃K
P J̃ L

Q] = 0 , (4.56)

Pi IJ J I
[M J̃ J

N ] = 0 . (4.57)

5 Solving the KSEs

We have thus far obtained the following necessary conditions for a field configuration to

admit at least one Killing spinor and to lie in the timelike class of solutions:

1. All the fields are time-independent and related to a complex, antisymmetric matrix

M IJ satisfying M [IJMK]L = 0, from which we must construct the covariantly con-

stant projection J I
J , and to generalized Pauli matrices (σm)I J which must satisfy

eqs. (D.30)–(D.37) and (4.49).

2. The scalars have to satisfy eqs. (4.53) and (4.54); in the special cases of N = 3 and

5 they further need to satisfy eqs. (4.9) and (4.12).

3. The vector field strengths are given in terms of the scalars and the matrix M IJ by

eqs. (4.14)–(4.16).18

4. The spacetime metric is of conforma-stationary form, eq. (4.26), where

(a) The 1-form ω is related to the matrixM IJ , the scalar fields (through the pullback

of the scalar connection) and the 3-dimensional transverse metric γmn through

eq. (4.40).

(b) The 3-dimensional metric is related to the scalars and the generalized Pauli

matrices by eq. (4.44) which relates its spin connection to an SU(2) projection

of the pullback of the connection of the scalar manifold.

We are going to see that these necessary conditions are also sufficient: let us start by

plugging our result for Ti eq. (4.16) into eq. (3.3), leading to

PiKLmγ
m

[

δI
KǫL − i√

2
|M |−1MKLγ0ǫI

]

= 0 . (5.1)

Decomposing now

PiKLm = PiMN mJM
[KJ N

L] + PiMN m(δMN
KL − JM

[KJ N
L]) , (5.2)

we get

PiMN m|M |−1MMNγm

[

|M |−1MILǫ
L− i√

2
γ0ǫI

]

+PiMN m(δMN
KL−JM

[KJN
L])γ

mǫL =0 .

(5.3)

Each of the two terms has to vanish separately because they depend on independent com-

ponents of PiIJ m. The first term can vanish in two different ways:

18Simpler expressions for the vector field strengths will be given in the next section.
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1. PiMN mM
MN = 0 (vanishing matter vector field strengths Ti (4.16)). In this case,

the generic way to make the second term to vanish is to impose19

Πm± I
Jǫ

J ≡ 1

2
[δI

J ± γ0(m)(σ(m))IJ ]ǫJ = 0 , (5.4)

for each value of m for which PiIJ m 6= 0 and then use eq. (4.54). The consistency of

this condition for a given m requires20

(δI
J − J I

J)ǫJ = 0 , (5.5)

which reduces the number of unbroken supersymmetries to just two (i.e. eight real

independent supercharges), out of which only one half (i.e. 1/N) survives the pro-

jection eq. (5.4) for one given value of m. If we have to impose another projector

of the same kind, the number of unbroken supersymmetries is lowered by another

factor of 1/2. In the generic case we will have to impose all three projectors and the

supersymmetry preserved is just one (i.e. 1/(4N) of the total).

If eq. (5.5) is satisfied and PiMN m(δMN
KL−JM

[KJ N
L])J L

J = 0 (which is identical

to the “no-hypers” condition eq. (4.57), we do not need to impose eq. (5.4), which is

associated to the hypermultiplets in the associated N = 2 truncation. It is clear that

the projected scalar Vielbeine PiMN mJM
[KJ N

L] correspond to the complex scalar

of the vector multiplets of the N = 2 truncation.

2. If PiMN mM
MN 6= 0 then we have to impose

ǫI + i
√

2|M |−1MIJγ
0ǫJ = 0 , (5.6)

which is consistent only if eq. (5.5) is satisfied, which means that, generically, 1/(2N)

of the total amount of available supercharges are preserved by this condition.

The second term vanishes when we impose again the generic condition eq. (5.4),

which is compatible with eq. (5.6), and use eq. (4.54). Again, if eq. (4.57) is satisfied,

the condition eq. (5.4) is unnecessary.

In the case ofN = 3 supergravity we have to consider the KSE eq. (3.5), which is readily

seen to be solved by the condition eq. (4.9). Observe that this condition automatically

implies the “no-hypers” condition, in agreement with the absence of hypermultiplets in the

truncations from N = 3 to N = 2. Therefore, in N = 3 supergravity the only projector

that ever needs to be imposed on the Killing spinors is eq. (5.6).

Let us then consider the KSE eq. (3.2). Substituting our result for TIJ , eqs. (4.14)

and (4.15), we can immediately write it as
[

PIJKM m − 3
(

|M |−2MMNPMN [IJ |mM|K]L + 2|M |−2
DmM[IJMK]L

)]

γmǫL+

+3
(

|M |−2MMNPMN [IJ |m + 2|M |−2
DmM[IJ |

)

γm

(

|M |−1M|K]Lǫ
L − i√

2
γ0ǫ|K]

)

= 0 .

(5.7)

Again, we can distinguish two different cases:

19Compare this equation with eq. (4.35) of ref. [18].
20These projectors satisfy (Πm±)2 = Πm± − 1

4
(1 − J ) and [Πm±, Πn±] = 0.
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1. MMNPMNIJ m + 2DmMIJ = 0, which implies the vanishing of the vector field

strengths (4.14) in the graviton supermultiplet. In this case, the equation can generi-

cally be solved by imposing the projector eq. (5.4) on the Killing spinors and using the

constraint eq. (4.53). If PIJKM mJM
L = 0, equivalent in this case to the “no-hypers”

condition eq. (4.56), then the condition eq. (5.5) suffices.

2. MMNPMNIJ m+2DmMIJ 6= 0: in this case we need to impose the projectors eq. (5.6)

and, to cancel the first term we have to impose eq. (5.4) unless PIJKLm satisfies21

PIJKM mJM
L − 3|M |−2MMNPMN [IJ |mMK]L = 0 , (5.8)

which implies the “no-hypers” condition eq. (4.56).

For N = 5 we also have to consider the KSE eq. (3.4): this equation is immediately

solved by the condition eq. (4.8), or equivalently (4.9), which is a particular instance of

eq. (5.8) implying once again the “no-hypers” condition (4.56). Therefore, in the N = 5

case we only need to impose the projection eq. (5.6).

Using the supersymmetry conditions that we have used to solve the previous KSEs

plus DJ = 0, it is easy to see that the 0th component of the KSE eq. (3.1) is satisfied,

while the mth component reduces to the equation in 3-dimensional transverse space

DmǫI − |M |−2
DmMIKM

JKǫJ = 0 , (5.9)

where

DmǫI =

(

∂m +
1

4
̟mnpγ

np

)

ǫI − ΩJ
IǫJ = ∂mǫI +

[

± i

4
̟mnpε

npq(σq)J I − ΩJ
I

]

ǫJ , (5.10)

upon use of the condition eq. (5.4).22

From eqs. (4.44) and (4.49) we obtain

± i

4
̟mnpε

npqσq = ∓JΩJ ± 1

2
Tr [JΩ] , (5.11)

and from DJ = 0 we get

JΩJ̃ = J dJ =
1

4
(J dJ + σmdσm) . (5.12)

The second term in eq. (5.9) can be put in the form

|M |−2
DMIKM

JKǫJ =
1

2

[

DJ J
I + |M |−2

DMMNM
MNJ J

I

]

ǫJ

=
1

2

[

2iξ +
1

2
|M |−2∂|M |2 − Tr(JΩ)

]

ǫJ ,
(5.13)

where

ξ ≡ i

4
|M |−2(dMMNMMN − dMMNM

MN ) . (5.14)

21Here we have used eq. (4.36) to simplify the expression.
22Acting on this equation with the projector J̃ I

L we find the integrability condition DJ = 0.
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Putting all this information together and choosing the upper sign so the terms

Tr(JΩm) cancel, we can rewrite the reduced KSE using 3-dimensional differential forms as

dǫ̂− ǫ̂

[

iξ +
1

4
(J dJ + σmdσm)

]

= 0 , (5.15)

where we have defined the U(N) row vector ǫ̂I ≡ |M |−1/2ǫI . The integrability condition of

this equation

J
[

idξ +
1

4
(dJ ∧ dJ + dσm ∧ dσm)

]

= 0 , (5.16)

is identically satisfied.23

This shows that the necessary conditions for supersymmetry enumerated at the begin-

ning of this section are also sufficient. Furthermore, we have shown that the Killing spinors

generically satisfy the condition eq. (5.5), which preserves 2/N supersymmetries; if the su-

pergravity or matter vector field strengths are non-vanishing, then they also satisfy the con-

dition eq. (5.6), which breaks a further 1/2 of the supersymmetries and, if one of the scalar

Vielbein projections PIJKLmJ I
M J̃ J

N J̃K
P J̃ L

Q or Pi IJ mJ I
M J̃ J

N does not vanish, then

the Killing spinor must satisfy one condition eq. (5.4) (with the upper sign only) for each

value of m, each of which breaks the supersymmetry a further factor of 1/2 up to a maxi-

mum 1/(4N), which is the fraction of supersymmetry preserved by a generic configuration.

6 Equations of motion

The supersymmetric configurations found in the previous section do not necessarily satisfy

all the equations of motion. In order to find supersymmetric solutions, we have seen in

section 3 that it is enough to require that the supersymmetric configurations satisfy the

0th components of the Maxwell equations and Bianchi identities because the rest of the

equations of motion are then, according to the KSIs, automatically satisfied. In this section

we are going to find the 0th component of the Maxwell equations and Bianchi identities

and we will check that the KSIs are satisfied for the supersymmetric configurations that

we have obtained. This will serve as a powerful cross-check of our results.

Let us start with the Maxwell equations and Bianchi identities: it is convenient to

construct a symplectic vector of 2-forms F containing the field strengths FΛ and their

symplectic duals F̃Λ, by FT ≡
(

FΛ, F̃Λ

)

. The Bianchi identities and Maxwell equations

can be written in the form dF = 0.

The field strengths FΛ can be easily deduced from the equations obtained in sec-

tion (4.1) and read

FΛ = FΛ+ + FΛ− ≡ V −2[V̂ ∧ EΛ − ⋆(V̂ ∧BΛ)] , (6.1)

where
EΛ =CΛ+ + CΛ+ = d(|M |2RΛ) ,

BΛ = − i(CΛ+ − CΛ+) = − i

2

{

M IJ
DfΛ

IJ + f∗Λ
IJDM IJ − c.c.

}

,
(6.2)

23Here and in eq. (5.11) we have used J dσmJ = 0.
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Using the same results one can deduce

F̃Λ = N ∗
ΛΣF

Σ+ + NΛΣF
Λ− ≡ V −2[V̂ ∧EΛ − ⋆(V̂ ∧BΛ)] , (6.3)

where

EΛ = N ∗
ΛΣC

Σ+ + NΛΣC
Λ− = d(|M |2RΛ) ,

BΛ = −i(N ∗
ΛΣC

Σ+ −NΛΣC
Λ−) = − i

2

{

M IJ
DhΛ IJ + h∗Λ IJDM IJ − c.c.

}

.
(6.4)

Combining the two expressions one can see that the symplectic vector F is given by

F = V −2

{

V̂ ∧ d(|M |2R) +
i

2

[

V̂ ∧
(

M IJ
DVIJ + V∗ IJ

DMIJ − c.c.
)

]

}

. (6.5)

Using the equation for ω (4.37) and DJ = 0, it can be rewritten in the form

F = −1

2
d(RV̂ ) − 1

2
⋆ (V̂ ∧ dI) , (6.6)

The combined Maxwell equations and Bianchi identities (i.e. dF = 0) then imply the

equations

d ⋆ (V̂ ∧ dI) = 0 , (6.7)

which, can be rewritten in the form

Ea =
1√
2
|M |δa

0∇2
(3)I = 0 , (6.8)

in full agreement with the fact, derived from the KSIs, that the Maxwell and Bianchi

equations only have nontrivial 0th component.

To calculate E00 we need to use eq. (4.41) to express the second derivatives of |M | in

terms of symplectic sections. Then

−∇2〈R | I 〉 = 2〈∇2I | R 〉 + 2〈∇mI | ∇mR〉 . (6.9)

Using in the second term eq. (A.24) we find that

E00 =G00 +
1

24
α1P

∗ IJKL
mPIJKLm +

1

2
α2P

∗ iIJ
mPiIJ m − 8ℑmNΛΣF

Λ +
0mF

Σ−
0m

= − 2|M |4〈∇2
(3)I | R 〉 +

1

2
|M |2

[

R(γ) + 6|M |−2ΠIJ
KLDmMIJDmM

KL

+
1

12
α1

(

δIJ
KL − 6α−1

1 |M |−2M IJMKL

)

PIJMN mP
∗KLMN

m

+ α2

(

δIJ
KL − α−1

2 |M |−2M IJMKL

)

PiIJ mP
∗ iKL

m

]

.

(6.10)

It is straightforward to show that E0m = 0 identically, and, for simplicity, we compute

|M |−2

[

Emn +
1

2
δmnEµ

µ

]

=−
√

2

|M |3 〈 E
0 | R 〉 +R(γ)mn − 2|M |−2ΠIJ

KLD(m|MIJD|n)M
KL

+
1

12
α1

(

δIJ
KL − 6α−1

1 |M |−2M IJMKL

)

PIJMN (mP
∗ KLMN

n)

+ α2

(

δIJ
KL − α−1

2 |M |−2M IJMKL

)

PiIJ (mP
∗ iKL

n) .
(6.11)
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Finally, from eqs. (4.14) and (4.16) we find that the scalar equations of motion are

given by:

N = 2::

−|M |−2E iIJ =DmP
∗ iIJ

m − 2|M |−2
DmM

IJMKLP
∗ iKL

m

− 1

2
|M |−2P ∗ iIJ AP ∗ jk

AM
KLMMNPjKLmPkMN m .

(6.12)

N = 3::

− |M |−2E iIJ = DmP
∗ iIJ

m − 2|M |−2
DmM

IJMKLP
∗ iKL

m , (6.13)

or, in terms of the dual variables

− |M |−2Ẽ i
I = DmP̃

i
I m − 2|M̃ |−2

DmM̃IM̃
J P̃ i

J m . (6.14)

N = 4::

−|M |−2EIJKL =DmP
∗ IJKL

m − 12|M |−2MMNP
∗MN [IJ |

mDmM
|KL]

− 1

2
|M |−2P ∗ IJKLAP ∗ ij

AM
MNMPQPi MN mPi PQ m ,

(6.15)

or

− |M |−2E = DmPm − 2|M |−2MIJDmM
IJPm − 1

2
|M |−2MMNMPQPiMN mPjPQm ,

(6.16)

and

−|M |−2E iIJ =DmP
∗ iIJ

m − 2|M |−2

[

DmM
IJ +

1

2
MMNP

∗MNIJ
m

]

MKLP
∗ iKL

m

− |M |−2εIJKL

[

DmMKL +
1

2
MMNPMNKL m

]

MPQPiPQ m .

(6.17)

N = 5::

− |M |−2EIJKL = DmP
∗ IJKL

m − 12|M |−2MMNP
∗MN [IJ |

mDmM
|KL] , (6.18)

or

− |M |−2ẼI = DmP̃I m − 2|M |−2
DmM̃IJKM̃

JKLPL m . (6.19)

N = 6::

−|M |−2EIJKL =DmP
∗ IJKL

m − 12|M |−2

[

MMNP
∗MN [IJ |

mDmM
|KL]

+
1

4
MMNP

∗MN [IJ |
mMOPP

∗OP |KL]
m

]

− |M |−2εIJKLMN

[

DmMMN +
1

2
MPQPPQMN m

]

MRSPRS m ,

(6.20)
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or

−|M |−2EIJ =DmPIJ m − |M |−2

[

DmM̃IJKL +
1

2
MIJPKLm

]

M̃KLMNPMN m

− 2|M |−2

[

DmMIJ +
1

2
M̃IJKLP

∗KL
m

]

MRSPRS m ,

(6.21)

and finally

N = 8::

− |M |−2EIJKL = DmP
∗ IJKL

m

− 12|M |−2

[

MMNP
∗MN [IJ|

mDmM
|KL] +

1

4
MMNP

∗MN [IJ|
mMOPP

∗OP |KL]
m

]

− 1

2
|M |−2εIJKLMNPQ

[

MRSPRS[MN | mDmM|PQ]+
1

4
MRSPRS[MN | mM

TUPTU|PQ] m

]

.

(6.22)

6.1 Checking the KSIs

Let us start by checking the KSI eq. (3.19). Substituting the above expression, we get

〈∇2
(3)I | I〉 = 0 . (6.23)

The r.h.s. vanishes identically due to the integrability condition of the equation that defines

the 1-form ω, eq. (4.42), whose existence is a necessary condition of supersymmetry.

To check the KSI eq. (3.16) we need to compute 〈 E0 | R 〉:

〈 E0 | R 〉 =
1√
2
|M |3〈∇2

(3)I | R 〉 . (6.24)

Comparing this with the expression for E00 given in eq. (6.10) we find that supersymmetry,

requires the following relation between the curvature of the 3-dimensional space and the

scalars

R(γ) = − 1

12
α1

(

δIJ
KL − 6α−1

1 J I
KJ I

L

)

PIJMN mP
∗KLMN

m

− α2

(

δIJ
KL − α−1

2 J I
KJ I

L

)

PiIJ mP
∗ iKL

m ,
(6.25)

a result we will comment upon shortly.

As for the KSI (3.15) we point out that, as we mentioned in the previous section, E0m

vanishes identically; from eq. (6.11) we see that Emn vanishes if eq. (6.25) is satisfied and

furthermore that

R(γ)mn = − 1

12
α1

(

δIJ
KL − 6α−1

1 J I
KJ I

L

)

PIJMN (mP
∗ KLMN

n)

− α2

(

δIJ
KL − α−1

2 J I
KJ I

L

)

PiIJ (mP
∗ iKL

n) .
(6.26)

This is the only equation we really need to impose on the 3-dimensional metric as eq. (6.25)

is nothing but its trace. One can show (case by case, for each N) that this expression is com-

pletely equivalent to eqs. (4.55), which are satisfied by the supersymmetric configurations.
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We can then check those KSIs that relate the equations of motion of the scalars to

the 0th component of the Maxwell and Bianchi equations. It is convenient to first compute

them for the result for a generic value of N , and then consider a specific value. For generic

N one obtains

〈 E0 | V∗ i 〉 =
1

2
√

2
|M |

{

DmP
∗ iIJ

mMIJ − 2|M |−2P ∗ iIJ
mMIJMKLDmM

KL

−M IJ

[

PjIJ mP
∗ ij

m +
1

2
PIJKLmP

∗ iKL
m

]}

.

(6.27)

and

〈 E0 | V∗ IJ 〉 =
1

2
√

2
|M |

{

DmP
∗ IJKL

mMKL − 2|M |−2
DmP

∗ IJKL
mMKLMMNDmM

MN

− 1

2
MMN

[

P ∗ IJKL
mPKLMN m + 2P ∗ i IJ

mPi MN m

]

}

.

(6.28)

N = 2:: it is enough to check the KSI eq. (3.27) using the form of the equation of motion de-

rived before eq. (6.12) being careful with the P 2 and P 4 terms. A detailed calculation

shows that they cancel each other, in agreement with the results of ref. [17].

N = 3:: For the case N = 3 we have to check the KSI eq. (3.37) using the form of the equation

of motion derived before eq. (6.13). Again, it is readily found to be satisfied by using

the condition eq. (4.12) and the covariant constancy of J .

N = 4:: For the case N = 4 we have to check the KSIs eqs. (3.38) and (3.39) using eqs. (6.16)

and eq. (6.17) respectively. The first KSI is easily seen to be satisfied. The second

KSI is satisfied up to a term of the form

Dm(Pi MN mJ M
[IJ̃ N

J ]) , (6.29)

which vanishes automatically after use of the constraint eqs. (4.54) and (4.46). This

term can be seen as the equation of motion for the hypers of the associated N = 2

truncation and, as it happens in the N = 2 theory, it is automatically satisfied for

the supersymmetric configurations independently of whether the Maxwell equations

and Bianchi identities are satisfied or not.

N = 5:: For the case N = 5 we have to check the KSI eq. (3.40) using eq. (6.19). In this case

the crucial property that makes it to be satisfied is eq. (4.9).

N = 6:: In the N = 6 case we find the the KSI eq. (3.41) is satisfied eq. (6.21) up to a term

of the form eq. (6.29), which is also seen to vanish identically.

N = 8:: Finally, in the N = 8 case we find the the KSI eq. (3.42) is satisfied eq. (6.22) up to

a term of the form

Dm(PIJKLm J I
[M J̃ J

N J̃ K
P J̃ L

Q]) , (6.30)

which vanishes upon use of eqs. (4.53) and (4.46).

In conclusion we see that the KSIs are always satisfied.
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7 Conclusions

The results presented in this paper are a first step towards a full characterization of all the

four-dimensional supersymmetric solutions preserving at least one supercharge. It is clear

that further work is needed in order to make the general solutions presented here more

explicit for each N : first of all, convenient parametrizations of the matrices M IJ satisfying

all the required properties (in particular all the supersymmetry constraints involving the

projector J ) and general ways to construct the generalized Pauli matrices σm have to be

found, the stabilization equations have to be solved (this is in general hard, and might

prove impossible); furthermore, the scalar fields need to be resolved; the would-be vector-

scalars should be resolved in terms of the harmonic functions and the would-be hyperscalars

should be found the hard way by solving the relevant equations (4.53), (4.54) and their

consistent interplay with the connection on the 3-dimensional base space, eq. (4.44). Only

then will we have explicit expressions for the supersymmetric solutions. The problem is

similar to, but definitely more involved than, finding supersymmetric solutions in d = 4

N = 2 supergravities coupled to vector and hypermultiplets [18]. A further issue that needs

to be investigated and which does not arise in the N = 2 d = 4 case is the classification of

supersymmetric solutions preserving more than the minimal amount of supersymmetry.

The supersymmetric black hole solutions of the 4-dimensional supergravities are a very

interesting subclass of the supersymmetric solutions identified here. They are “hyper-less”

(i.e. they have a flat 3-dimensional base space) solutions and, therefore, simpler to con-

struct. The black-hole solutions of N = 8 are particularly interesting due to the possible

ultraviolet-finiteness of the theory, e.g. [88]. There are many partial results in the litera-

ture [76–79] including very large families of solutions obtained via N = 2 truncations of

the theory [67] but the derivation of a manifestly E7(7)-invariant family of solutions on

which the conjectures concerning the E7(7)-invariant entropy formula [80] could be explic-

itly checked is highly desirable. Our results provide a starting point for this derivation [81].

The attractor mechanism [82–85] (see also the more recent reference [86]) has been one

of the main tools for the study of supersymmetric black-hole solutions. Our results establish

a clear distinction between the scalars which are driven by the electric and magnetic charges

of the vector fields (which would belong to the would-be vector multiplets of the associated

N = 2 truncation) and, therefore, subject to the attractor mechanism, and those that

are not (which would belong to the would-be hypermultiplets of the associated N = 2

truncation). A simple derivation of the attractor flow equations for the first kind of scalars

based on the general form of the solutions found here can be readily given [87].

Another interesting class of timelike supersymmetric solutions which deserves to

be studied in more detail is the class of domain walls associated to the supersymmetry

projectors Πm± I
J and, therefore, to the would-be hyperscalars of the associated N = 2

truncation.

Finally, to complete the program of characterizing all supersymmetric solutions, the

supersymmetric solutions in the null class need to be identified. In the null class the U(N)

R-symmetry group is broken to U(1) × U(N − 1) and there is an ”N = 1 truncation”

associated to the U(1) subgroup [89]. The solutions will then be analogous to the super-

– 28 –



J
H
E
P
1
1
(
2
0
1
0
)
0
7
2

N 3 4 5 6 8

n n n 0 1 0

n̄ n+ 3 n+ 6 10 16 28

Table 1. This table details, for a given N , the number of vector supermultiplets, n, and the integer

n̄ needed for an embedding into the symplectic formulation.

symmetric solutions of the ungauged N = 1 theories with no superpotential, classified in

refs. [20] and [21], and include waves, strings and domain walls.
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A Generic scalar manifolds

All the scalar manifolds can be described by a Usp(n̄, n̄) matrix U which is constructed in

terms of the matrices24

f ≡ (fΛ
IJ , f

Λ
i) , h ≡ (hΛ IJ , hΛ i) , (A.1)

where I, J = 1, . . . N are the graviton-supermultiplet, or equivalently U(N), indices and

i(= 1, . . . n) are indices labeling the vector multiplets, and the embedding then imposes

that n̄ = n+N(N − 1)/2; this information is detailed in table 1.25

Using the above matrices one can then embed the generic scalar manifolds as

U ≡ 1√
2

(

f + ih f∗ + ih∗

f − ih f∗ − ih∗

)

. (A.2)

The condition that U ∈ Usp(n̄, n̄)

U−1 =

(

1 0

0 −1

)

U †
(

1 0

0 −1

)

=

(

0 1

−1 0

)

UT

(

0 −1

1 0

)

=
1√
2

(

f † − ih† −(f † + ih†)

−(f − ih) f + ih

)

,

(A.3)

24When we multiply these matrices we must include a factor 1/2 for each contraction of pairs of anti-

symmetric indices IJ .
25Observe that N = 6 has n = 1, even though there are no vector supermultiplets in this case. This will

be explained in appendix (B).
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leads to the following conditions for f and h:

i(f †h− h†f) = 1 , fTh− hT f = 0 . (A.4)

In terms of the symplectic vectors

VIJ =

(

fΛ
IJ

hΛIJ

)

, Vi =

(

fΛ
i

hΛ i

)

, (A.5)

these constraints take the form26

〈VIJ | V∗KL〉 = −2iδKL
IJ ,

〈Vi | V∗ j〉 = −iδij ,
(A.7)

with the rest of the symplectic products vanishing.

The left-invariant Maurer-Cartan 1-form can be split into the Vielbeine P and the

connection Ω as follows:

Γ ≡ U−1dU =

(

Ω P ∗

P Ω∗

)

. (A.8)

Thus, the different components of the connection are

Ω =

(

ΩKL
IJ Ωj

IJ

ΩKL
i Ωj

i

)

=

(

i〈dVIJ | V∗KL〉 i〈dVIJ | V∗ j〉
i〈dVi | V∗KL〉 i〈dVi | V∗ j〉

)

, (A.9)

and those of the Vielbeine are

P =

(

PKLIJ PjIJ

PKLi Pij

)

=

(

−i〈dVIJ | VKL〉 −i〈dVIJ | Vj〉
−i〈dVi | VKL〉 −i〈dVi | Vj〉

)

. (A.10)

The period matrix NΛΣ is defined by

N = hf−1 = N T , (A.11)

which implies properties which should be familiar from the N = 2 case: for instance

DhΛ = N ∗
ΛΣDfΛ , hΛ = NΛΣf

Σ , (A.12)

and

− 1

2
(ℑmN )−1|ΛΣ =

1

2
fΛ

IJf
∗ΣIJ + fΛ

if
∗Σ i , (A.13)

which can be derived from the definition of N and eq. (A.4).

We also quote the completeness relation

1

2
| VIJ〉〈V∗ IJ | −1

2
| V∗ IJ〉〈VIJ | + | Vi〉〈V∗ i | − | V∗ i〉〈Vi | = i . (A.14)

26We use the convention

〈A | B〉 ≡ BΛAΛ − BΛA
Λ . (A.6)
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Defining the HAut ×HMatter covariant derivative according to

DV = dV − VΩ , (A.15)

and using eq. (A.12) we obtain from (A.9)

ΩKL
i = Ωj

IJ = 0 , (A.16)

and from (A.10)

PIJKL = −2fΛ
IJℑmNΛΣ DfΣ

KL , (A.17)

PiIJ = −2fΛ
iℑmNΛΣ DfΣ

IJ , (A.18)

Pij = −2fΛ
iℑmNΛΣ DfΣ

j . (A.19)

The above equation can be inverted to give

DfΛ
IJ = f∗ΛiPiIJ +

1

2
f∗ΛKLPIJKL , (A.20)

DfΛ
i = f∗ΛjPij +

1

2
f∗ΛIJPiIJ , (A.21)

using eq. (A.13).

The definition of the covariant derivative leads to the identities

〈DV | V∗ 〉 = 0 , 〈DV | V 〉 = 〈 dV | V 〉 = iP . (A.22)

The inverse Vielbeine P ∗ IJKL, P ∗ iIJ , P ∗ ij, satisfy (here A labels the physical fields)

P ∗ IJKLAPMNOP A = 4!δIJKL
MNOP , P ∗ iIJ APjKLA = 2δi

jδ
IJ

KL . (A.23)

Their crossed products vanish but their products with Pij A do not.

We find

〈DAVIJ | DBV∗ KL 〉 =
i

2
PIJMNAP

∗ KLMN
B + iPiIJ AP

∗ iKL
B , (A.24)

〈DAVIJ | DBV∗ i 〉 =
i

2
PIJKLAP

∗ iKL
B + iPjIJAP

∗ ij
B , (A.25)

〈DAVi | DBV∗ j 〉 =
i

2
PiIJAP

∗ iIJ
B + iPikAP

∗ jk
B , (A.26)

while 〈DAVIJ | DBVKL 〉 = 〈DAVIJ | DBVi 〉 = 〈DAVi | DBVj 〉 = 0.

Using the definition of the period matrix eq. (A.11), equation (A.12) and the first of

eqs. (A.4) we get

dN = 4iℑmN Dff †ℑmN . (A.27)

This expression can be expanded in terms of the Vielbeine, using eqs. (A.20) and (A.21)

dNΛΣ
= iℑmNΓ(ΛℑmNΣ)Ω

[

PIJKLf
∗ΓIJf∗ΩKL + 4PiIJf

∗Γif∗ΩIJ + 4Pijf
∗Γif∗Ωj

]

.

(A.28)
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N = 3

eaµ ψIµ AIJ
µ χIJK Ai

µ λiI λiIJK PiIJµ

♯ 1 3 3 1 n 3n n (3 + 3)n

Table 2. The field content of the N = 3 supergravity multiplet, first 4 entries, and the n vector

supermultiplets.

and, using eqs. (A.23) and taking into account that their contraction with Pij does not

necessarily vanish, implies

P ∗ IJKLA ∂

∂φA
NΛΣ = 4!iℑmNΩ(ΛℑmNΣ)∆f

∗Ω[IJ |f∗∆|KL] , (A.29)

P ∗ iIJ A ∂

∂φA
NΛΣ = 8iℑmNΩ(ΛℑmNΣ)∆f

∗Ωif∗∆IJ . (A.30)

P ∗ IJKLA ∂

∂φA
N ∗

ΛΣ = −4iℑmNΩ(ΛℑmNΣ)∆P
∗ IJKLAP ∗ ij

Af
Ω

if
∆

j , (A.31)

P ∗ iIJ A ∂

∂φA
N ∗

ΛΣ = −4iℑmNΩ(ΛℑmNΣ)∆P
∗ iIJ AP ∗ jk

Af
Ω

if
∆

j . (A.32)

Using the Maurer-Cartan equations dΓ+Γ∧Γ = 0 and direct calculations we find that

the curvatures of ΩKL
IJ and Ωj

i are

RKL
IJ = dΩKL

IJ +
1

2
ΩKL

MN ∧ ΩMN
IJ

= −1

2
P ∗KLMN ∧ PMNIJ − P ∗iKL ∧ PiIJ (A.33)

= −i〈DVIJ | DV∗KL 〉 , (A.34)

Rj
i = dΩj

i + Ωj
k ∧ Ωk

i = −1

2
P ∗ jIJ ∧ PiIJ − P ∗ik ∧ Pik (A.35)

= −i〈DVi | DV∗ j 〉 . (A.36)

The vanishing of the curvature of Ωi
IJ leads to

1

2
PIJKL ∧ P ∗ iKL + PjIJ ∧ P ∗ ij = −i〈DVIJ | DV∗ i 〉 = 0 . (A.37)

B Generic N ≥ 2, d = 4 multiplets

In this section we will spill out the field content of the relevant graviton- and vector-

supermultiplet27 by specifying said field content in tables 2–6 and discussing briefly the

possible constraints that apply for each individual case.

In order to recover the N = 4 field content we have to impose

N = 4 :: Pi IJ =
1

2
εIJKLP

∗ i KL , (B.1)

N = 4 :: λi I =
1

3!
εIJKLλ

i JKL . (B.2)
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N = 4

eaµ ψIµ AIJ
µ χIJK PIJKLµ Ai

µ λiI λiIJK PiIJµ

♯ 1 4 6 4 1+1 n 4n 4n (6 + 6)n

Table 3. The field content of the N = 4 supergravity multiplet, first 5 entries, and the n vector

supermultiplets.

N = 5

eaµ ψIµ AIJ
µ χIJK χIJKLM PIJKLµ

♯ 1 5 10 10 1 5 + 5

Table 4. The field content of the N = 5 supergravity multiplet.

N = 6

eaµ ψIµ AIJ
µ χIJK χIJKLM PIJKLµ A λI λIJK PIJ

♯ 1 6 15 20 6 15 + 15 1 6 20 15 + 15

Table 5. The field content of the N = 6 supergravity multiplet, first 5 entries, and the auxiliar

vector supermultiplet.

The situation for the N = 6 case is a little bit more involved. In spite of the fact

that for N = 6 there are no vector multiplets, the graviton multiplet is obtained from

the “general case” eq. (2.1) coupling an extra “vector multiplet”. This is because the

decomposition of SO∗(12) with respect to SU(6) produces a singlet (this is the ”practical

reason” why eq. (2.1) is not enough). The presence of the singlet comes together with the

fact that SO∗(12)/U(6) has a Special Geometry structure.

In order to recover the N = 6 field content we have to impose

N = 6 :: λI =
1

5!
εIJKLMNχ

JKLMN , (B.3)

N = 6 :: χIJK =
1

3!
εIJKLMNλ

LMN , (B.4)

N = 6 :: PIJKL =
1

2
εIJKLMNP

∗MN . (B.5)

In order to recover the N = 8 field content we have to impose

N = 8 :: PIJKL =
1

4!
εIJKLMNOPP

∗MNOP , (B.6)

N = 8 :: χIJK =
1

5!
εIJKLMNOPχ

LMNOP . (B.7)

27The information in this appendix taken from ref. [66], but adapted to the notations of ref. [16].
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N = 8

eaµ ψIµ AIJ
µ χIJK χIJKLM PIJKLµ

♯ 1 8 28 56 56 70 + 70

Table 6. The field content of the N = 8 supergravity multiplet.

C Gamma matrices and spinors

We work with a purely imaginary representation

γa ∗ = −γa , (C.1)

and our convention for their anti-commutator is

{γa, γb} = +2ηab . (C.2)

Thus,

γ0γaγ0 = γa † = (γa)−1 = γa . (C.3)

The chirality matrix is defined by

γ5 ≡ −iγ0γ1γ2γ3 =
i

4!
ǫabcdγ

aγbγcγd , (C.4)

and satisfies

γ5
† = −γ5

∗ = γ5 , (γ5)
2 = 1 . (C.5)

With this chirality matrix, we have the identity

γa1···an =
(−1)[n/2]i

(4 − n)!
ǫa1···anb1···b4−nγb1···b4−n

γ5 . (C.6)

Our convention for Dirac conjugation is

ψ̄ = iψ†γ0 . (C.7)

Using the identity eq. (C.6) the general d = 4 Fierz identity for commuting spinors

takes the form

(λ̄Mχ)(ψ̄Nϕ) =
1

4
(λ̄MNϕ)(ψ̄χ) +

1

4
(λ̄MγaNϕ)(ψ̄γaχ) − 1

8
(λ̄MγabNϕ)(ψ̄γabχ)

− 1

4
(λ̄Mγaγ5Nϕ)(ψ̄γaγ5χ) +

1

4
(λ̄Mγ5Nϕ)(ψ̄γ5χ) .

(C.8)

We use 4-component chiral spinors whose chirality is related to the position of the

SU(4)-index:

γ5χI = +χI , γ5ψµ I = −ψµ I , γ5ǫI = −ǫI . (C.9)

Both chirality and position of the SU(4)-index are reversed under complex conjugation, e.g.

γ5χ
∗
I ≡ γ5χ

I = −χI , γ5ψ
∗
µ I ≡ γ5ψµ

I = +ψµ
I , γ5ǫ

∗
I ≡ γ5ǫ

I = +ǫI . (C.10)

We take this fact into account when Dirac-conjugating chiral spinors:

χ̄I ≡ i(χI)
†γ0 , χ̄Iγ5 = −χ̄I , etc. (C.11)
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D Fierz identities for bilinears

Here we are going to work with an arbitrary numberN of chiral spinors. Whenever there are

special results for particular values of N , we will explicitly say so. We should bear in mind

that the maximal number of independent chiral spinors is 2 and N(> 2) spinors cannot be

linearly independent at a given point. This trivial fact has important consequences.

Given N chiral commuting spinors ǫI and their complex conjugates ǫI we can con-

structed the following bilinears that are not obviously related via eq. (C.6):

1. A complex matrix of scalars

MIJ ≡ ǭIǫJ , M IJ ≡ ǭIǫJ = (MIJ )∗ , (D.1)

which is antisymmetric MIJ = −MJI .

2. A complex matrix of vectors

V I
J a ≡ iǭIγaǫJ , VI

J
a ≡ iǭIγaǫ

J = (V I
J a)

∗ , (D.2)

which is Hermitean:

(V I
J a)

∗ = VI
J

a = V J
I a = (V I

J a)
T . (D.3)

3. A complex matrix of 2-forms

ΦIJ ab ≡ ǭIγabǫJ , ΦIJ
ab ≡ ǭIγabǫ

J = (ΦIJ ab)
∗ , (D.4)

which is symmetric in the SU(N) indices ΦIJ ab = ΦJI ab and furthermore is imaginary

anti-selfdual, i.e.
⋆ΦIJ ab = −iΦIJ ab ⇒ ΦIJ ab = ΦIJ

+
ab . (D.5)

As we are going to see, this matrix of 2-forms can be expressed entirely in terms of

the scalar and vector bilinears.

It is straightforward to derive identities for the products of these bilinears using the

Fierz identity eq. (C.8). First, the products of scalars:

MIJMKL =
1

2
MILMKJ − 1

8
ΦIL · ΦKJ , (D.6)

MIJM
KL = −1

2
V L

I · V K
J . (D.7)

From eq. (D.6) immediately follows

MI[JMKL] = 0 , (D.8)

which is a Plücker identity and implies that rank(MIJ) ≤ 2.

We can define the SU(N)-dual of MIJ

M̃ I1···IN−2 ≡ 1

2
εI1···IN−2KLMKL , ε1···N = ε1···N = +1 , (D.9)
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in terms of which we can express eq. (D.8) as

M̃IJ1···JN−3
M IK = 0 . (D.10)

From eq. (D.7) and the antisymmetry of M immediately follows

V I
L · V K

J = −V I
J · V K

L = −V K
L · V I

J , (D.11)

which implies that all the vector bilinears V I
J a are null:

V I
J · V I

J = 0 (no sum!) , (D.12)

On the other hand, from eqs. (D.11) and (D.7) it follows that the real, SU(N)-invariant

combination of vectors Va ≡ V I
I a is always non-spacelike:

V 2 = −V I
J · V J

I = 2M IJMIJ ≥ 0 . (D.13)

The products of M with the other bilinears28 give

MIJV
K

La =
1

2
MILV

K
J a +

1

2
ΦIL baV

K
J

b , (D.14)

MIJΦKL
ab = V L

I [a|V
K

J |b] −
i

2
ǫab

cdV L
I cV

K
J d . (D.15)

Now, let us consider the product of two arbitrary vectors:29

V I
J aV

K
L b =

i

2
ǫab

cdV I
L cV

K
J d + V I

L (a|V
K

J |b) −
1

2
gabV

I
L · V K

J . (D.16)

For V 2 this identity allows us to write the metric in the form

gab = 2V −2[VaVb − V I
J aV

J
I b] . (D.17)

Following Tod [8], for V 2 6= 0 we introduce

J I
J ≡ 2M IKMJK

|M |2 =
2V · V I

J

V 2
, |M |2 ≡MLMMLM =

1

2
V 2 . (D.18)

Using eq. (D.6) we can show that it is a Hermitean projector whose trace equals 2:

J I
JJ J

K = J I
K , J I

I = +2 . (D.19)

Further, using the general Fierz identity we find

J I
Jǫ

J = ǫI , ǫIJ I
J = ǫJ , (D.20)

which should be understood for N > 2 of the fact that the ǫI are not linearly independent.30

As a consequence of the above identity, the contraction of J with any of the bilinears is

the identity. Using this result and eq. (D.15), we find

ΦKL
ab =

2M IKMIJ

|M |2 ΦJL
ab =

2M IK

|M |2 V L
I [aVb] − i

M IK

|M |2 ǫab
cdV L

I cVd . (D.21)

28We omit the product MIJΦKL ab which will not be used.
29The product V I

J aVL
K

b gives a different identity that will not be used.
30For N = 2 we automatically have J I

J = δI
J .
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Other useful identities are

MIJM
KL

|M |2 = JK
[IJ L

J ] , (D.22)

and

J I
J = δI

J − J̃ I
J , (D.23)

where

J̃ I
J ≡ (N − 2)M̃ IK1···KN−3M̃JK1···KN−3

|M̃ |2
, |M̃ |2 ≡ M̃ I1···IN−2M̃I1···IN−2

=
(N − 2)!

2
|M |2 ,
(D.24)

is the complementary projector.

We can always use the 1-form V̂ ≡ Vµdx
µ to construct the 0th component of a Vielbein

basis {ea}
e0 ≡ 1√

2
|M |−1V̂ . (D.25)

Let us define the three 1-forms

V̂ m ≡ |M |em , m = 1, 2, 3 , V m µV n
µ = −|M |2δmn , (D.26)

and the spacetime-dependent Hermitean matrices

(σm)I J ≡ −
√

2V m µV I
J µ , (D.27)

so we can decompose the 1-forms V̂ I
J = V I

J µdx
µ as

V̂ I
J =

1

2
J I

J V̂ +
1√
2
(σm)I J V̂

m , (D.28)

and

V̂ I
J a =

1√
2
|M |

[

δa
0J I

J + δa
m(σm)IJ

]

. (D.29)

While this decomposition is unique, the matrices σm are defined only up to local SO(3)

rotations of the V̂ m.

The properties satisfied by the 1-forms V̂ I
J can be used to prove the following

properties for the σx matrices:

σmσn = δmnJ + iεmnpσp , (D.30)

J σm = σmJ = σm , (D.31)

(σm)I I = 0 , (D.32)

JK
JJ L

I =
1

2
JK

IJ L
J +

1

2
(σm)KI(σ

m)LJ , (D.33)

MK[I(σ
m)KJ ] = 0 , (D.34)

2|M |−2MLI(σ
m)IJM

JK = (σm)KL , (D.35)

|M |−2M IJMKL = −1

3
(σm)[I [K(σm)J ]

L] , (D.36)

(σ[m|)I J(σ|n])KL = − i

2
εmnp[J I

L(σp)KJ − (σp)ILJ K
J ] . (D.37)
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That is: they, together with J , generate a u(2) subalgebra of u(N) in the eigenspace of

J of eigenvalue +1 and provide a basis in the space of Hermitean matrices satisfying

JAJ = A: the last of the above properties is a completeness relation in that subspace

since it implies that

AL
J = J L

IA
I
KJK

J =
1

2
Tr (AJ )J L

J +
1√
2
Tr

[

1√
2
Aσm

]

(σm)LJ . (D.38)

Then, if A is an N × N Hermitean matrix such that Tr (AJ ) = Tr (Aσx) = 0 , ∀x=1,2,3,

it satisfies JAJ = 0 and it can be written in the form

A = (1 − J )AJ + JA(1 − J ) + (1 − J )A(1 − J ) . (D.39)

It is not clear when a combination of global U(N) and local SO(3) transformations

is enough to render the matrices σx constant; however, whenever it is possible, then the

projector J will also be constant. Needless to say, in the N = 2 case it is always possible.

E Connection and curvature of the conforma-stationary metric

A conforma-stationary metric has the general form

ds2 = |M |2(dt + ω)2 − |M |−2γmndx
mdxn , m, n = 1, 2, 3 , (E.1)

where all components of the metric are independent of the time coordinate t. Choosing

the Vielbein basis

(eaµ) =









|M | |M |ωm

0 |M |−1vm
n









, (eµa) =









|M |−1 −|M |ωm

0 |M |vm
n









, (E.2)

where

γmn = vm
pvn

qδpq , vm
pvp

nvn , ωm = vm
nωn , (E.3)

we find that the spin connection components are

ω00m = −∂m|M | , ω0mn =
1

2
|M |3fmn ,

ωm0n = ω0mn , ωmnp = −|M |̟mnp − 2δm[n∂p]|M | ,
(E.4)

where ̟m
np is the 3-dimensional spin connection and

∂m ≡ vm
n∂n , fmn = vm

pvn
qfpq , fmn ≡ 2∂[mωn] . (E.5)

The components of the Riemann tensor are

R0m0n =
1

2
∇m∂n|M |2 + ∂m|M |∂n|M | − δmn(∂|M |)2 +

1

4
∇m|M |6fmpfnp ,

R0mnp = − 1

2
∇m(|M |4fnp) +

1

2
fm[n∂p]|M |4 − 1

4
δm[nfp]l∂q|M |4 ,

Rmnpq = − |M |2Rmnpq +
1

2
|M |6(fmnfpq − fp[mfn]q)

− 2δmn,pq(∂|M |)2 + 4|M |δ[m[p∇n]∂
q]|M | ,

(E.6)
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where all the objects in the right-hand sides of the equations are referred to the 3-

dimensional spatial metric γ and the 3-dimensional spin connection ̟. The components

of the Ricci tensor are

R00 = − |M |2∇2 log |M | − 1

4
|M |6f2 ,

R0m =
1

2
∇n(|M |4fnm) ,

Rmn =|M |2
{

Rmn + 2∂m log |M |∂n log |M | − δmn∇2 log |M | − 1

2
|M |4fmpfnp

}

,

(E.7)

and the Ricci scalar is

R = −|M |2
{

R− 1

4
|M |4f2 − 2∇2 log |M | + 2(∂ log |M |)2

}

, (E.8)
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[12] J. Belloŕın and T. Ort́ın, Characterization of all the supersymmetric solutions of gauged

N = 1, D = 5 supergravity, JHEP 08 (2007) 096 [arXiv:0705.2567] [SPIRES].
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[16] J. Belloŕın and T. Ort́ın, All the supersymmetric configurations of N = 4, D = 4

supergravity, Nucl. Phys. B 726 (2005) 171 [hep-th/0506056] [SPIRES].

[17] P. Meessen and T. Ort́ın, The supersymmetric configurations of N = 2, D = 4 supergravity

coupled to vector supermultiplets, Nucl. Phys. B 749 (2006) 291 [hep-th/0603099]

[SPIRES].
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[36] K. Behrndt, M. Cvetič and T. Liu, Classification of supersymmetric flux vacua in M-theory,

Nucl. Phys. B 749 (2006) 25 [hep-th/0512032] [SPIRES].

[37] N.S. Deger, H. Samtleben and O. Sarioglu, On the supersymmetric solutions of D = 3

half-maximal supergravities, Nucl. Phys. B 840 (2010) 29 [arXiv:1003.3119] [SPIRES].

[38] J. Gillard, U. Gran and G. Papadopoulos, The spinorial geometry of supersymmetric

backgrounds, Class. Quant. Grav. 22 (2005) 1033 [hep-th/0410155] [SPIRES].

[39] U. Gran, J. Gutowski and G. Papadopoulos, The spinorial geometry of supersymmetric IIB

backgrounds, Class. Quant. Grav. 22 (2005) 2453 [hep-th/0501177] [SPIRES].

[40] U. Gran, G. Papadopoulos and D. Roest, Systematics of M-theory spinorial geometry,

Class. Quant. Grav. 22 (2005) 2701 [hep-th/0503046] [SPIRES].

[41] U. Gran, J. Gutowski and G. Papadopoulos, The G2 spinorial geometry of supersymmetric

IIB backgrounds, Class. Quant. Grav. 23 (2006) 143 [hep-th/0505074] [SPIRES].

[42] U. Gran, J. Gutowski, G. Papadopoulos and D. Roest, Systematics of IIB spinorial

geometry, Class. Quant. Grav. 23 (2006) 1617 [hep-th/0507087] [SPIRES].

[43] U. Gran, P. Lohrmann and G. Papadopoulos, The spinorial geometry of supersymmetric

heterotic string backgrounds, JHEP 02 (2006) 063 [hep-th/0510176] [SPIRES].

[44] U. Gran, P. Lohrmann and G. Papadopoulos, Geometry of type-II common sector N = 2

backgrounds, JHEP 06 (2006) 049 [hep-th/0602250] [SPIRES].

[45] U. Gran, J. Gutowski, G. Papadopoulos and D. Roest, Maximally supersymmetric

G-backgrounds of IIB supergravity, Nucl. Phys. B 753 (2006) 118 [hep-th/0604079]

[SPIRES].

[46] U. Gran, J. Gutowski, G. Papadopoulos and D. Roest, N = 31 is not IIB,

JHEP 02 (2007) 044 [hep-th/0606049] [SPIRES].

[47] U. Gran, J. Gutowski, G. Papadopoulos and D. Roest, N = 31, D = 11,

JHEP 02 (2007) 043 [hep-th/0610331] [SPIRES].

[48] U. Gran, J. Gutowski, G. Papadopoulos and D. Roest, Aspects of spinorial geometry,

Mod. Phys. Lett. A 22 (2007) 1 [hep-th/0612148] [SPIRES].

[49] U. Gran, G. Papadopoulos, D. Roest and P. Sloane, Geometry of all supersymmetric type-I

backgrounds, JHEP 08 (2007) 074 [hep-th/0703143] [SPIRES].

[50] S.L. Cacciatori, M.M. Caldarelli, D. Klemm, D.S. Mansi and D. Roest, Geometry of

four-dimensional Killing spinors, JHEP 07 (2007) 046 [arXiv:0704.0247] [SPIRES].

– 41 –

http://dx.doi.org/10.1088/1126-6708/2003/12/049
http://arxiv.org/abs/hep-th/0311112
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0311112
http://dx.doi.org/10.1103/PhysRevD.73.045011
http://arxiv.org/abs/hep-th/0411079
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0411079
http://dx.doi.org/10.1103/PhysRevLett.94.161601
http://arxiv.org/abs/hep-th/0412116
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0412116
http://dx.doi.org/10.1103/PhysRevD.72.086007
http://arxiv.org/abs/hep-th/0504028
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0504028
http://dx.doi.org/10.1103/PhysRevD.73.045012
http://arxiv.org/abs/hep-th/0505230
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0505230
http://dx.doi.org/10.1016/j.nuclphysb.2006.04.018
http://arxiv.org/abs/hep-th/0512032
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0512032
http://dx.doi.org/10.1016/j.nuclphysb.2010.06.020
http://arxiv.org/abs/1003.3119
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1003.3119
http://dx.doi.org/10.1088/0264-9381/22/6/009
http://arxiv.org/abs/hep-th/0410155
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0410155
http://dx.doi.org/10.1088/0264-9381/22/12/010
http://arxiv.org/abs/hep-th/0501177
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0501177
http://dx.doi.org/10.1088/0264-9381/22/13/013
http://arxiv.org/abs/hep-th/0503046
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0503046
http://dx.doi.org/10.1088/0264-9381/23/1/009
http://arxiv.org/abs/hep-th/0505074
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0505074
http://dx.doi.org/10.1088/0264-9381/23/5/012
http://arxiv.org/abs/hep-th/0507087
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0507087
http://dx.doi.org/10.1088/1126-6708/2006/02/063
http://arxiv.org/abs/hep-th/0510176
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0510176
http://dx.doi.org/10.1088/1126-6708/2006/06/049
http://arxiv.org/abs/hep-th/0602250
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0602250
http://dx.doi.org/10.1016/j.nuclphysb.2006.07.007
http://arxiv.org/abs/hep-th/0604079
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0604079
http://dx.doi.org/10.1088/1126-6708/2007/02/044
http://arxiv.org/abs/hep-th/0606049
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0606049
http://dx.doi.org/10.1088/1126-6708/2007/02/043
http://arxiv.org/abs/hep-th/0610331
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0610331
http://dx.doi.org/10.1142/S0217732307022517
http://arxiv.org/abs/hep-th/0612148
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0612148
http://dx.doi.org/10.1088/1126-6708/2007/08/074
http://arxiv.org/abs/hep-th/0703143
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0703143
http://dx.doi.org/10.1088/1126-6708/2007/07/046
http://arxiv.org/abs/0704.0247
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0704.0247


J
H
E
P
1
1
(
2
0
1
0
)
0
7
2

[51] U. Gran, G. Papadopoulos and D. Roest, Supersymmetric heterotic string backgrounds,

Phys. Lett. B 656 (2007) 119 [arXiv:0706.4407] [SPIRES].

[52] U. Gran, J. Gutowski, G. Papadopoulos and D. Roest, IIB solutions with N > 28 Killing

spinors are maximally supersymmetric, JHEP 12 (2007) 070 [arXiv:0710.1829] [SPIRES].

[53] U. Gran, J. Gutowski and G. Papadopoulos, Invariant Killing spinors in 11D and type-II

supergravities, Class. Quant. Grav. 26 (2009) 155004 [arXiv:0802.2040] [SPIRES].

[54] G. Papadopoulos, New half supersymmetric solutions of the heterotic string,

Class. Quant. Grav. 26 (2009) 135001 [arXiv:0809.1156] [SPIRES].

[55] U. Gran, J. Gutowski and G. Papadopoulos, Classification of IIB backgrounds with 28

supersymmetries, JHEP 01 (2010) 044 [arXiv:0902.3642] [SPIRES].

[56] U. Gran, J. Gutowski and G. Papadopoulos, M-theory backgrounds with 30 Killing spinors

are maximally supersymmetric, JHEP 03 (2010) 112 [arXiv:1001.1103] [SPIRES].

[57] J.P. Gauntlett, D. Martelli, S. Pakis and D. Waldram, G-structures and wrapped

NS5-branes, Commun. Math. Phys. 247 (2004) 421 [hep-th/0205050] [SPIRES].

[58] G. Bossard, H. Nicolai and K.S. Stelle, Universal BPS structure of stationary supergravity

solutions, JHEP 07 (2009) 003 [arXiv:0902.4438] [SPIRES].

[59] G. Bossard and H. Nicolai, Multi-black holes from nilpotent Lie algebra orbits,

Gen. Rel. Grav. 42 (2010) 509 [arXiv:0906.1987] [SPIRES].

[60] G. Bossard, The extremal black holes of N = 4 supergravity from so(8, 2 + n) nilpotent orbits,

Gen. Rel. Grav. 42 (2010) 539 [arXiv:0906.1988] [SPIRES].

[61] G. Bossard, Y. Michel and B. Pioline, Extremal black holes, nilpotent orbits and the true fake

superpotential, JHEP 01 (2010) 038 [arXiv:0908.1742] [SPIRES].

[62] G. Bossard, Extremal black holes and nilpotent orbits, arXiv:0910.0689 [SPIRES].

[63] G. Bossard, 1/8 BPS black hole composites, arXiv:1001.3157 [SPIRES].

[64] T. Mohaupt and K. Waite, Extremal black holes, attractor equations and harmonic functions,

Fortsch. Phys. 58 (2010) 783 [arXiv:1002.0550] [SPIRES].

[65] E. Bergshoeff, R. Kallosh and T. Ort́ın, Stationary axion/dilaton solutions and

supersymmetry, Nucl. Phys. B 478 (1996) 156 [hep-th/9605059] [SPIRES].

[66] L. Andrianopoli, R. D’Auria and S. Ferrara, U-duality and central charges in various

dimensions revisited, Int. J. Mod. Phys. A 13 (1998) 431 [hep-th/9612105] [SPIRES].

[67] S. Ferrara, E.G. Gimon and R. Kallosh, Magic supergravities, N = 8 and black hole

composites, Phys. Rev. D 74 (2006) 125018 [hep-th/0606211] [SPIRES].

[68] L. Andrianopoli, R. D’Auria, S. Ferrara, P. Fre and M. Trigiante, E(7)(7) duality, BPS

black-hole evolution and fixed scalars, Nucl. Phys. B 509 (1998) 463 [hep-th/9707087]

[SPIRES].

[69] B. de Wit and A. Van Proeyen, Potentials and symmetries of general gauged N = 2

supergravity: Yang-Mills models, Nucl. Phys. B 245 (1984) 89 [SPIRES].

[70] B. de Wit, P.G. Lauwers and A. Van Proeyen, Lagrangians of N = 2 supergravity-matter

systems, Nucl. Phys. B 255 (1985) 569 [SPIRES].

[71] A. Van Proeyen, N = 2 supergravity in d = 4, 5, 6 and its matter couplings,

http://itf.fys.kuleuven.ac.be/∼toine/LectParis.pdf, lectures given at the Institute Henri
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