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Abstract
Probabilistic Classifiers Chains (PCC) offers in-
teresting properties to solve multi-label classifica-
tion tasks due to its ability to estimate the joint
probability of the labels. However, PCC presents
the major drawback of having a high computa-
tional cost in the inference process required to
predict new samples. Lately, several approaches
have been proposed to overcome this issue, includ-
ing beam search and an ε-Approximate algorithm
based on uniform-cost search. Surprisingly, the ob-
vious possibility of using heuristic search has not
been considered yet. This paper studies this alter-
native and proposes an admisible heuristic that, ap-
plied in combination with A* algorithm, guaran-
tees, not only optimal predictions in terms of sub-
set 0/1 loss, but also that it always explores less
nodes than ε-Approximate algorithm. In the exper-
iments reported, the number of nodes explored by
our method is less than two times the number of la-
bels for all datasets analyzed. But, the difference in
explored nodes must be large enough to compen-
sate the overhead of the heuristic in order to im-
prove prediction time. Thus, our proposal may be a
good choice for complex multi-label problems.

1 Introduction
Multi-label classification (MLC) is a machine learning prob-
lem in which models are sought that assign a subset of (class)
labels to each instance. Multi-label classification problems
are ubiquitous and naturally occur in many applications, for
instance, in assigning tags to content.

Maybe the most interesting problem in multi-label learn-
ing is that the labels shows statistical dependencies between
them. These relationships constitute a key source of informa-
tion, thus, it is hardly surprising that research on MLC has
very much focused on this topic. In this regard, two kinds of
label dependence have been formally distinguished, namely,
conditional dependence and marginal (unconditional) depen-
dence [Dembczyński et al., 2012a]. Several methods are able
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to detect interdependencies among labels, see [Godbole and
Sarawagi, 2004; Tsoumakas and Vlahavas, 2007; Read et al.,
2008; Cheng and Hüllermeier, 2009; Montañés et al., 2011;
Read et al., 2011; Montañés et al., 2014].

Regarding conditional label dependence, Probabilistic
Classifier Chains (PCC) has aroused great interest since it es-
timates the conditional joint distribution of the labels. How-
ever, the original PCC algorithm [Dembczyński et al., 2010]
suffers from high computational cost because it uses exhaus-
tive search as the inference strategy to select optimal predic-
tions given a loss function. Then, several efforts of overcom-
ing this drawback have being proposed. Monte Carlo sam-
pling [Dembczynski et al., 2012b; Read et al., 2014] is a sim-
ple alternative to control the computational cost of the infer-
ence process. ε-Approximate [Dembczynski et al., 2012b] is
a more sophisticated algorithm based on uniform-cost search.
This method can output optimal predictions in terms of sub-
set 0/1 loss reducing significantly the computational cost. Fi-
nally, a more recently approach based on beam search [Kumar
et al., 2012; 2013] also presents good behavior both in terms
of performance and computational cost.

An alternative to these (uninformed) approaches is to ap-
ply other search algorithms. Among them, heuristic search
is at least worthy of consideration. However, to the best of
our knowledge this possibility has never been studied before.
The main contribution of this paper is to fill this gap in the
literature, proposing a new approach for inference in linear
PCC models based on the combination of A* algorithm [Hart
et al., 1968] and an admisible heuristic. Our proposal guaran-
tees, not only optimal predictions in terms of subset 0/1 loss,
but also that it explores less nodes than all previous methods
that also provide optimal predictions.

The paper is organized as follows. Section 2 formally de-
scribes MLC and PCC. Recent approaches for inference in
PCC are discussed in Section 3. Section 4 details the new
method based on A*. Finally, our experiments are discussed
in Section 5 and some conclusions are exposed in Section 6.

2 Multi-label classification and PCC
Let be L = {`1, `2, . . . , `m} a finite and non-empty set of m
labels and S = {(x1,y1), . . . , (xn,yn)} a training set in-
dependently and randomly drawn according to an unknown
probability distribution P(X,Y) on X × Y , where X and Y
are the input and the output space, respectively. The former



is the instance space, whereas the latter is given by the power
set P(L) of L. To ease notation, we define yi as a binary vec-
tor yi = (yi,1, yi,2, . . . , yi,m) in which yi,j = 1 indicates the
presence (relevance) and yi,j = 0 the absence (irrelevance)
of `j in the labeling of xi. Hence, yi is the realization of a
corresponding random vector Y = (Y1,Y2, . . . ,Ym). Us-
ing this convention, the output space can also be defined as
Y = {0, 1}m. The goal in MLC is to induce from S a classi-
fier f : X −→ Y that minimizes the risk in terms of certain
loss function L(·). This risk can be defined as the expected
loss over the joint distribution P(X,Y), that is,

rL(f) = EX,YL(Y,f(X)),

thus, denoting by P(y |x) the conditional distribution Y =
y given X = x , the risk minimizer f∗ can be expressed by

f∗(x) = argmin
f

∑
y∈Y

P(y |x)L(y,f(x)).

Let us comment that the conditional distribution P(y |x)
presents different properties which are crucial for optimizing
different loss functions. Despite several loss functions have
been taken for evaluating MLC, like Hamming loss or F1,
here we will focus on just the subset 0/1 loss. This measure
looks if predicted and relevant label subsets are equal or not:

LS0/1
(y,f(x)) = [[y 6= f(x)]]1.

In case of this evaluation measure, it suffices taking the
mode of the entire joint conditional distribution for optimiz-
ing this loss. Formally, the risk minimizer adopts the simpli-
fied following form

f∗(x) = argmax
y∈Y

P(y |x).

Among MLC algorithms, let us focus on PCC methods.
This group of algorithms is based on learning a CC model
[Read et al., 2011] so the training phase consists on 1) taking
an order of the label set and 2) training a probabilistic binary
classifier for estimating P(yj |x, y1, . . . , yj−1) for each label
`j following this order. The probabilistic model fj obtained
for predicting label `j is of the form

fj : X × {0, 1}j−1 −→ [0, 1].

The training data for classifier fj is the set Sj =
{(x1, y1,j), . . . , (xn, yn,j)} where xi=(x, yi,1, . . . , yi,j−1),
that is, the features are xi supplemented by the relevance of
the labels `1, . . . , `j−1 preceding `j in the chain and the cat-
egory is the relevance of label `j .

The great advantage of PCC approaches is that they al-
low to perform inference for each instance, which consists
of estimating the risk minimizer for a given loss function
over the estimated entire joint conditional distribution. The
idea revolves around repeatedly applying the product rule
of probability to the joint distribution of the labels Y =
(Y1,Y2, . . . ,Ym), that is, computing

P(y |x) =
m∏
j=1

P(yj |x, y1, . . . , yj−1).

Notice that from a theoretical point of view, this expression
holds for any order considered for the labels.

1The expression [[p]] evaluates to 1 if p is true and 0 otherwise.

3 Inference in Probabilistic Classifier Chains

Several methods have been previously proposed for inference
in PCC. Before proceeding to cope with the particularities of
some of them, let us recall that their training phases are equal,
thus, the models fj will be the same. So, in what follows we
will just describe their respective prediction phases.

In this sense, let now consider the task of performing dif-
ferent inference procedures as different manners of explor-
ing a probability binary tree. In such tree, the root node is
labeled by the empty set whereas a generic node k of level
j < m with k ≤ 2j , is labeled by ykj = (v1, v2, . . . , vj)
with vi ∈ {0, 1} for i = 1, . . . , j. This node has two
children respectively labeled as y2k−1j+1 = (v1, v2, . . . , vj , 0)

and y2kj+1 = (v1, v2, . . . , vj , 1) and with marginal joint con-
ditional probability P(y1 = v1, . . . , yj = vj , yj+1 = 0 |x)
and P(y1 = v1, . . . , yj = vj , yj+1 = 1 |x). The weights
of the edges between both father and children are respec-
tively P(yj+1 = 0 |x, y1 = v1, . . . , yj = vj) and P(yj+1 =
1 |x, y1=v1, . . . , yj=vj), which are respectively estimated
by 1 − fj+1(x, v1, . . . , vj) and fj+1(x, v1, . . . , vj). The
marginal joint conditional probability of the children are com-
puted by the product rule of probability: P(y1=v1, . . . , yj=
vj , yj+1 = vj+1 |x) =P(yj+1 = vj+1 |x, y1 = v1, . . . , yj =
vj) ·P(y1=v1, . . . , yj=vj |x). See the examples in Figure 1.

3.1 Greedy Search and Exhaustive Search

The Greedy Search (GS) strategy defines the original CC
method [Read et al., 2009; 2011]. CC provides an output
ŷ=(ŷ1, . . . , ŷm) for a new unlabeled instance x by succes-
sively querying each classifier fj that estimates the probabil-
ity P(yj |x, y1, . . . , yj−1). Notice that when ŷj is estimated,
fj uses the predictions of the previous labels, ŷ1, . . . , ŷj−1.
This means that, in terms of the probability binary tree de-
fined above, GS only explores one path. In the example de-
picted in Figure 1, GS would select the rightmost leaf, so the
optimal solution is not reached.

Concerning the optimization of subset 0/1 loss, a rigorous
analysis [Dembczynski et al., 2012b] establishes bounds for
the performance of GS, concluding that it offers quite poor
performance for this loss function. However, the work con-
cludes stating that GS tries to optimize subset 0/1 loss, since
it is more suitable for estimating the mode of the joint rather
of the marginal conditional distribution.

Unlike GS that explores only one path, Exhaustive Search
(ES) explores all possible paths in the tree. Thus, ES esti-
mates the entire joint conditional distribution P(· |x), provid-
ing Bayes optimal inference. For each combination of labels
y = (y1, y2, . . . , ym) it computes P(y |x) and L(y,f(x))
for all f(x) and outputs the combination ŷ = (ŷ1, . . . , ŷm) =
f∗(x) with minimum risk for the given loss L(·, ·). By do-
ing so, it generally improves in terms of performance, since it
perfectly estimates the risk minimizer, albeit at the cost of a
higher computational cost, as it comes down to summing over
an exponential (2m) number of label combinations. ES is the
inference process used by the original PCC method [Dem-
bczyński et al., 2010].
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(a) ε-Aproximate with ε = .0

(0,0,0) 
0.032 

(0,0,1) 
0.048 

(0,1,0) 
0.096 

(0,1,1) 
0.224 

(1,0,0) 
0 

(1,0,1) 
0.24 

(1,1,0) 
0.144 

(1,1,1) 
0.216 

(0,0) 
0.08 

0.4 0.6 

(0,1) 
0.32 

0.3 0.7 

(1,0) 
0.24 

0 1 

(1,1) 
0.36 

0.4 0.6 

(0) 
0.4 

0.2 0.8 

(1) 
0.6 

0.4 0.6 

( ) 
1 

0.4 0.6 

(b) Beams Search with b = 2

Figure 1: An example of the paths followed by ε-A (ε = .0)
and BS (b = 2). The dotted arrows show the path followed
by the algorithm. In the case of BS, the nodes with a cross
are not explored anymore because they have not any of the
highest marginal joint conditional probabilities at their level

3.2 ε-Approximate algorithm
The ε-Approximate (ε-A) algorithm [Dembczynski et al.,
2012b] arises as an alternative to the high computational
cost of ES and to the poor performance of GS. In terms
of the probability tree defined above, it expands only
those nodes whose marginal joint conditional probability,
P(y1, . . . , yj |x), exceeds the threshold ε = 2−k, with 1 ≤
k ≤ m. In fact, the nodes are expanded in the decreasing
order established by this probability (see Figure 1(a)). Two
situations can be found: i) the node expanded is a leaf or ii)
there are not more nodes that exceed the threshold ε. If the
former situation happens, the prediction for the unlabeled in-
stance will be the label combination of such leaf. Conversely,
if situation ii) takes place, then GS is applied to the those
nodes whose children do not exceed the threshold, and the
prediction will be that with the highest entire joint conditional
probability P(y1, . . . , ym |x).

The parameter ε plays a key role. The particular case of
ε=0 (or any value in the interval [0, 2−m], that is, k=m) has
special interest, since the algorithm performs a uniform-cost

search (UC) and always finds the optimal solution. This is
so because the marginal joint conditional probabilities for at
least one leaf is guaranteed to be higher than ε. Even more,
this leaf is the optimal solution, since the marginal joint con-
ditional probabilities decrease in the successive steps of the
algorithm. Figure 1(a) illustrates this situation. The dotted
arrows show the path followed by the algorithm and at the
end the optimal label combination in terms of subset 0/1 loss
is reached (1, 0, 1). Conversely, the method is looking to GS
as ε grows, being GS in case of k=1, ε=2−1=0.5.

Notice that this method provides an optimal prediction
whenever its corresponding joint probability is greater or
equal than ε. A more general interpretation for a generic value
of ε=2−k is that the algorithm guarantees to reach an optimal
solution until the k-th level on the tree. Unfortunately, this
optimal combination of labels until k-th level can be differ-
ent from the ones of the optimal solution, since such solution
also depends on what happens hereinafter. From level k+1, if
the entire joint conditional probability of the optimal solution
is greater than ε, then none of its nodes is discarded and hence
this optimal solution is reached. Conversely, if the entire joint
conditional probability of the optimal solution is lower than
ε, then the algorithm never reaches a leaf, and hence, GS is
applied starting at each discarded node. Therefore, the opti-
mal solution is reached only if GS follows the optimal path,
which is not guaranteed.

Consequently, this algorithm estimates the risk minimizer
for the subset 0/1 loss a greater or lesser extent depending
on the value of ε. Even more, a theoretical analysis of this
estimation [Dembczynski et al., 2012b] allows to bound its
goodness as a function of ε.

3.3 Beam search
Beam Search (BS) [Kumar et al., 2012; 2013] also explores
more than one path of the probabilistic tree. This method
includes a parameter b called beam width that limits the num-
ber of label combinations explored. The idea is to explore b
nodes at each level. Hence, depending on such value certain
number of the top levels are exhaustively explored, particu-
larly a total of k∗−1 levels, being k∗ the lowest integer such
that b< 2k

∗
. Then, only b nodes are explored for each of the

remainder levels. The nodes explored from the level k∗ to the
bottom are those with the highest marginal joint conditional
probability seen thus far. At the end, the algorithm outputs the
label combination with highest joint conditional probability.

Figure 1(b) shows an example of the BS algorithm with
b=2. Hence, all nodes of the first level are explored. For the
rest of levels, just two nodes are explored, those with high-
est marginal joint conditional probability among the children
whose parents have been previously explored. At this respect,
notice that the node with the optimal solution is not explored
since its parent was discarded. This example confirms that
BS can not guarantee to reach optimal solutions.

In the case of b=1, BS expands just one node at each level,
that with highest marginal joint conditional probability, so BS
follows just one path and is equivalent to GS. Also, if b=2m,
BS performs an ES. Hence, BS encapsules both GS and ES.
This makes possible to control the trade-off between compu-
tational cost and performance of the method by tuning b.



As final remark, the fact that BS considers marginal joint
conditional probabilities makes the method tend to estimate
the risk minimizer for the subset 0/1 loss. In any case, it
would be possible to consider other loss functions. At this
respect, the authors of this proposal do not include any the-
oretical analysis about the goodness of the estimation of the
risk minimizer. However, they empirically show that taking
certain values of b (b < 15), the risk minimizer provided by
the method converges to the one obtained using ES.

4 A* algorithm for inference in PCC
The algorithm A* is the most widely-known form of best-first
search [Pearl, 1984] in which, at each iteration, the best node
according to an evaluation function e is expanded. The par-
ticularity of A* algorithm is that e can be seen as a functionE
of other two functions g and h, e(k) = E(g(k), h(k)), where
g(k) evaluates the cost of reaching node k from the root and
h(k) evaluates the cost of reaching a solution (a leaf) from
k. Hence, e(k) evaluates the total cost of reaching a solution
from the root through k. In general, it is possible to obtain the
exact value of the known information (g), but the unknown
information must be estimated through an heuristic (h). To
get an optimal solution, h must not overestimate the actual
cost of reaching a solution, that is, it must be an admisible
heuristic. This kind of heuristics are optimistic, because they
estimate that the cost of getting a solution is less than it ac-
tually is. Also, A* algorithm is optimally efficient for any
heuristic, because no other optimal algorithm using the same
heuristic guarantees to expand fewer nodes than A*.

In order to adapt A* for inference in PCC, we must take
into account that we have probabilities instead of costs. So,
1) A* must select the node with the highest estimated prob-
ability, 2) h must not underestimate the probability from the
node to a leaf, and 3)E must be the product function, e=g ·h.
Considering all these aspects, e will provide an estimation of
the entire joint conditional probability P(y1, . . . , ym |x) for
optimizing subset 0/1 loss. In order to derive g and h, let see
that the product rule of probability to the joint distribution of
the labels Y=(Y1,Y2, . . . ,Ym) can be rewritten as
P(y1, . . . , ym |x) = P(y1, . . . , yj |x)×

P(yj+1, . . . , ym |x, y1, . . . , yj).
Hence, for a node at level j, let consider g to be the
marginal joint conditional probability P(y1, . . . , yj |x) and
h an heuristic that does not underestimate the marginal joint
conditional probability P(yj+1, . . . , ym |x, y1, . . . , yj). Let
remember that the values of y1, . . . , yj are known at level j.

Before discussing the heuristic h proposed here, let notice
that g is the same marginal joint conditional probability that
both ε-A algorithm and BS calculate to select the nodes to be
expanded. Even more, ε-A with ε= 0 is not only equivalent
to UC, but also to A* with the constant heuristic h=1. This
heuristic is admisible too, since none probability is greater
than 1. But, on the other hand, it is also the worst admisible
heuristic, since any other admisible heuristic will dominate it
and consequently the A* algorithm using such heuristic will
never expand more nodes than A* algorithm using h=1.

Let go now to discuss the heuristic proposed here for
guaranteeing optimal predictions. Since our heuristic should

not underestimate the marginal joint conditional probability
P(yj+1, . . . , ym |x, y1, . . . , yj) in order to be admisible, it
is quite straightforward to pick the maximum value of such
probability for obtaining an optimal heuristic h∗:

h∗= max
(yj+1,...,ym)∈{0,1}m−j

P(yj+1, . . . , ym |x, y1, . . . , yj)

= max
(yj+1,...,ym)

∈{0,1}m−j

m∏
i=j+1

P(yi |x, y1, . . . , yj , yj+1, . . . , yi−1).

However, obtaining such maximum is, in fact, applying an
ES over the set of labels L = {`j+1, . . . , `m}. Hence, this
optimal heuristic is not computationally applicable. So, we
need to obtain a tractable heuristic in exchange of renouncing
to such optimality. This leads to design an heuristic ĥ also
admisible, but less dominant than h∗. For this purpose, let
consider (yj+1, . . . , ym) the values that define h∗, that is

h∗ =

m∏
i=j+1

P(yi |x, y1, . . . , yj , yj+1, . . . , yi−1),

and let notice that values (yj+1, . . . , ym) that maximize the
product do not have to maximize each individual term, then

P(yi |x, y1, . . . , yj , yj+1, . . . , yi−1) ≤
max

(yj+1,...,yi−1)

∈{0,1}i−1−j

P(yi |x, y1, . . . , yj , yj+1, . . . , yi−1).

Hence, defining ĥ as

ĥ =

m∏
i=j+1

max
(yj+1,...,yi−1)

∈{0,1}i−1−j

P(yi |x, y1, . . . , yj , yj+1, . . . , yi−1) (1)

it is easy to deduce that ĥ is admisible and h∗ ≤ ĥ. But
again, ĥ is not computationally applicable in general. How-
ever, this is not the case if we restrict ourselves to the case of
using linear models. Remember that P(yi |x, y1, . . . , yi−1)
is estimated through the model fi(x, y1, . . . , yi−1). Particu-
larly, P(yi = 1 |x, y1, . . . , yi−1) = fi(x, y1, . . . , yi−1) and
P(yi = 0 |x, y1, . . . , yi−1) = 1− fi(x, y1, . . . , yi−1).

Hence, if fi is a linear model, it adopts the following form

fi(x, y1, . . . , yi−1) = 〈wx,x〉+ 〈wy, (y1, . . . , yi−1)〉+ β,

that splitting the second term in the known part (from `1 to
`j) and unknown part (from `j+1 to `i) it leads to

fi(x, y1, . . . , yi−1) = 〈wx,x〉+
j∑

k=1

wy,kyk+

i−1∑
k=j+1

wy,kyk+β.

Since x is given and y1, . . . , yj are fixed, the last summa-
tion contains the variables for which the maximum must
be obtained. Then, let denote by K+ = {k | j +1 ≤ k ≤
i−1, wy,k ≥ 0} the indexes of the positive coefficients and
by K− = {k | j + 1 ≤ k ≤ i− 1, wy,k < 0} the indexes of
the negatives. Hence fi(x, y1, . . . , yi−1) is maximum when

yk =

{
1 if k ∈ K+

0 if k ∈ K−,



and similarly 1− fi(x, y1, . . . , yi−1) is maximum if

yk =

{
1 if k ∈ K−
0 if k ∈ K+.

Consequently, if yi,1j+1, . . . , y
i,1
i−1 are the values

that maximize fi(x, y1, . . . , yj , yj+1, . . . , yi−1) and
if yi,0j+1, . . . , y

i,0
i−1 are the values that maximize

1− fi(x, y1, . . . , yj , yj+1, . . . , yi−1), then

yik =

 1 if 1− fi(x, y1, . . . , yj , yi,0j+1, . . . , y
i,0
i−1) ≤

fi(x, y1, . . . , yj , y
i,1
j+1, . . . , y

i,1
i−1)

0 otherwise.

Notice that yi,1k = 1 − yi,0k . Also, if yij+1, . . . , y
i
i−1 equals

either yi,1j+1, . . . , y
i,1
i−1 or yi,0j+1, . . . , y

i,0
i−1 respectively depend-

ing if 1 − fi(x, y1, . . . , yj , y
i,0
j+1, . . . , y

i,0
i−1) is lower than

fi(x, y1, . . . , yj , y
i,1
j+1, . . . , y

i,1
i−1) or not, then the heuristic ĥ

for a node at level j in the linear case will be

ĥ =
m∏

i=j+1

P(yi |x, y1, . . . , yj , yij+1, . . . , y
i
i−1).

Remember that h∗ and ĥ only differ on the values of
yj+1, . . . , yi−1. In the former, the same values are common
for all the factors of the product, whereas in the latter these
values depend on each term i of the product, and hence, they
can be different, what makes ĥ not be an optimal heuristic.
On the other hand, the cost of computing ĥ is of polynomial
order, unlike h∗ which is of exponential order. Figure 2 exem-
plifies ĥ. Let focus on the node labeled by (1). The marginal
joint conditional probability until this node is g = 0.6. For
computing ĥ, first we evaluate the maximum marginal condi-
tional probabilities P (y2 |x, y1 = 1) provided by h2(x, y1)
and P (y3 |x, y1 = 1, y2) provided by h3(x, y1, y2) which
respectively are 0.6 and 1.0. Then we carry out their product
as applying the product rule of the probability to estimate the
marginal joint conditional probability from that node to a leaf.
Notice that the maximum at each level does not correspond to
the same branch of the tree. In other words, the maximum in
the first level correspond to y2 = 1, whereas the maximum
in the second level is obtained by P (y3 |x, y1 = 1, y2 = 0)
when y3 = 1 fixing y2 = 0. This is what makes the heuristic
ĥ not to be the optimal one h∗.

Figure 3 shows the path followed by A* using ĥ. It reaches
the optimal leaf as theoretically is expected. Comparing this
graph with the one in Figure 1(a) that illustrates ε-A with
ε = .0, and taking into account the properties of the heuristics
related to the dominance, ε-A, ε = .0 (equivalent to A* using
h = 1 or UC search) explores more nodes than A* using ĥ.

As final remark, the A* algorithm using ĥ perfectly esti-
mates the risk minimizer for the subset 0/1 loss, as both ε-A
with ε = .0 and ES do it. Even more, A* with ĥ expands
equal or less nodes, since ĥ is more dominant than the heuris-
tic h = 1. Obviously, computing ĥ is more costly than com-
puting h = 1 or applying just uniform-cost search. The ques-
tion is then if this additional computing time compensates the
theoretical guarantee it has of expanding less nodes.
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Figure 2: Computation of heuristic ĥ
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Figure 3: An example of A* using the heuristic ĥ. The dotted
arrows show the path followed by the algorithm. The values
of g are provided inside each node

5 Experimental results
The experiments reported here were performed over several
benchmark datasets previously used in many MLC papers.
The main characteristic for these experiments is the number
of labels, which varies between 5 and 101. The methods
compared were those discussed along the paper, except ES
because it is computationally intractable. We do not include
other approaches, like Monte Carlo sampling, due to the lack
of space to properly discuss them in the paper. Hence, the
methods compared were GS, uniform-cost search, ε-A for
different values of ε ∈ {.0, .25, .5}, BS for several values
of beam width b ∈ {1, 2, 3} and A* with the linear heuris-
tic ĥ. Recall that ε-A(ε = .0) is equivalent to UC, whereas
ε-A(ε = .5) is equivalent to GS and to BS with b = 1. The
results will be presented in terms of the subset 0/1 loss esti-
mated by means of a 10-fold cross-validation.

The base learner employed to obtain the binary classifiers
fi was logistic regression [Lin et al., 2008] with probabilis-
tic output. The regularization parameter C was established
for each individual binary classifier performing a grid search
over the values C ∈ {10−3, 10−2, . . . , 102, 103} optimizing
the brier loss [Brier, 1950] estimated by means of a balanced
2-fold cross validation repeated 5 times. This loss function
is a proper score that measures the accuracy of probabilistic
predictions, as those provided by logistic regression.

Table 1 shows subset 0/1 scores. UC, ε-A(.0) and A*(ĥ)



UC/A*(ĥ) GS/BS(1) BS(2) BS(3)
Datasets ε-A(.0) ε-A(.25) ε-A(.5)
emotions 71.16 71.82 72.83 72.16 71.32
enron 83.14 84.26 85.43 83.43 83.37
flags 87.13 87.16 86.13 88.21 87.13
mediamill 83.86 84.58 85.80 84.10 83.86
medical 30.37 30.37 30.67 30.37 30.37
reuters 22.73 22.70 23.60 22.69 22.73
slashdot 51.80 52.22 54.49 51.77 51.80
yeast 76.95 77.62 79.77 76.83 77.08

Table 1: Subset 0/1 scores. Those scores that are equal or
better than optimal predictions are shown in bold

provide optimal predictions in terms 0/1 subset loss, given the
fi classifiers learned. They are shown all together in the first
column. As expected, the performance of ε-A algorithm de-
creases as the value of ε increases (.25 or .5). These two ver-
sions combined perform worse than UC, ε-A(.0) and A*(ĥ) in
13 out of 16 cases. On the other hand, the performance of BS
converges to the optimal one as the value of b increases. For
BS(2) there are four datasets in which its scores are worse
than those of A*(ĥ), UC and ε-A(.0) and in the other four
its results are equal or better. Notice that the differences are
larger when BS(2) performs worse. In the case of BS(3), in
five datasets its scores are exactly the same than those of UC,
ε-A(.0) and A*(ĥ), showing the convergence of the method.
We do not run further experiments to study this aspect, be-
cause as we shall analyze later, the number of nodes explored
by BS(3) is greater than those of the optimal methods.

Table 2 contains the number of nodes explored by each
method and average prediction times. GS (or ε-A(.5) and
BS(1)) is, of course, the method which explores the least
number of nodes, since it only goes over one path in the tree.
Such number corresponds to the number of labels plus one,
because the root node is also explored. In the comparison be-
tween those methods that do not return optimal predictions,
it seems that ε-A(.25) tends to explore less nodes than BS(2),
but it is worse in terms of subset 0/1 loss. BS(3) is the algo-
rithm that expands the most number of nodes.

Focusing on the methods that return optimal predictions,
A*(ĥ) explores less nodes, as we proved theoretically before.
In fact, it explores a number of nodes lower than two times the
number of labels (those of BS(2)), and sometimes it is quite
close to the number of nodes explored by GS. This suggest
that ĥ seems a quite good heuristic. However, the difference
with respect to ε-A(.0) or UC is surprisingly small. The num-
ber of nodes explored by these two algorithms is lower than
expected. The reason may be that the predictions of classi-
fiers fi along the optimal path are usually close to 1 or to 0.
There is not much uncertainty, so the level of backtracking is
low. All these results suggest that the inference in PCC over
these concrete MLC datasets, analyzed as a searching prob-
lem, is a quite easy task. In this sense, it is worth noting that
those approaches based on sampling techniques, like Monte
Carlo sampling, should use very small samples in order to be
competitive over these benchmark datasets, further consider-
ing that such methods do not guarantee optimal predictions.

A*(ĥ) UC GS/BS(1) BS(2) BS(3)
Datasets ε-A(.0) ε-A(.25) ε-A(.5)
emotions(6) 7.5 10.7 10.8 7.0 13.0 18.0
enron(53) 78.2 114.8 77.3 54.0 107.0 159.0
flags(7) 9.0 22.6 16.3 8.0 15.0 21.0
mediamill(101) 180.9 191.8 142.4 102.0 203.0 303.0
medical(45) 46.1 46.6 46.6 46.0 91.0 135.0
reuters(7) 8.2 8.2 8.3 8.0 15.0 21.0
slashdot(22) 24.8 25.3 24.9 23.0 45.0 66.0
yeast(14) 21.2 26.1 26.0 15.0 29.0 42.0
emotions(6) .0011 .0006 .0006 .0004 .0005 .0006
enron(53) .1084 .0072 .0030 .0019 .0039 .0055
flags(7) .0015 .0012 .0007 .0004 .0005 .0007
mediamill(101) .4847 .0115 .0055 .0037 .0072 .0105
medical(45) .0495 .0027 .0027 .0027 .0033 .0046
reuters(7) .0013 .0005 .0005 .0005 .0005 .0007
slashdot(22) .0124 .0015 .0014 .0012 .0016 .0022
yeast(14) .0075 .0015 .0010 .0006 .0010 .0014

Table 2: Average number of explored nodes (top) and aver-
age prediction time (in seconds) per example (bottom). The
number of labels of each dataset is between parentheses

Looking at prediction times, interestingly ε-A(.0) and UC
are not much slower than ε-A(.25) and ε-A(.5) and sim-
ilar to BS(2) and BS(3). Moreover, UC and ε-A(.0) are
faster than A*(ĥ) despite they explore more nodes. The
reason is obviously the computational cost of ĥ, which is
due to the number of probabilities that must be computed
{P(yi |x, y1, . . . , yi−1)|i = j+1..m}, see (1). An alterna-
tive is to reduce the number of probabilities calculated, for
instance, only the next d probabilities. Parameter d would
allow us to control computational complexity.

6 Conclusions and future work

This paper proposes a new approach based on A* algorithm
with an admisible heuristic for inferring predictions in PCC.
Hence, our proposal A*(ĥ) provides optimal predictions in
terms of subset 0/1 loss and explores less nodes than previ-
ous approaches that also produce optimal predictions. A*(ĥ)
is limited to linear models, but this is not a major drawback
because it is quite common to employ linear models. This is
usually the case of MLC problems with many labels in which
the examples of some classes may be scarce, since using non-
linear models in such problems can lead to overfitting.

In the experiments performed, uniform-cost search (or ε-
A(ε = .0)) is a better choice than A*(ĥ) since the computa-
tional cost of evaluating the heuristic does not compensate
the reduction in nodes explored. In any case, the benchmark
datasets employed here seem quite simple and these meth-
ods should be tested over more complex problems. At this
respect, approaches like beam search, Monte Carlo sampling
and our proposal begin to have sense for more complex and
difficult –as inference problems– MLC tasks.

In our opinion, heuristic search is a promising line of re-
search for inference in PCC. As future work, new heuris-
tics can be devised, keeping in mind that we should look for
a trade off between their computational complexity and the
quality of the estimations. For instance, limiting the depth of
the heuristic may be a plausible alternative.
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E. Hüllermeier. Bayes Optimal Multilabel Classification
via Probabilistic Classifier Chains. In ICML, 2010, pages
279–286, 2010.
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man, W. Cheng, and E. Hüllermeier. On label dependence
and loss minimization in multi-label classification. Ma-
chine Learning, 88(1-2):5–45, 2012.

[Dembczynski et al., 2012b] K. Dembczynski, W. Waege-
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