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Abstract Multilabel classification (ML) aims to assign

a set of labels to an instance. This generalization of

multiclass classification yields to the redefinition of loss

functions and the learning tasks become harder. The

objective of this paper is to gain insights into the rela-

tions of optimization aims and some of the most popular

performance measures: subset (or 0/1), Hamming, and

the example-based F-measure. To make a fair compar-

ison, we implemented three ML learners for optimiz-

ing explicitly each one of these measures in a common

framework. This can be done considering a subset of

labels as a structured output. Then we use Structured

output Support Vector Machines (SSVM) tailored to

optimize a given loss function. The paper includes an

exhaustive experimental comparison. The conclusion is

that in most cases, the optimization of the Hamming
loss produces the best or competitive scores. This is a

practical result since the Hamming loss can be mini-

mized using a bunch of binary classifiers, one for each

label separately, and therefore it is a scalable and fast

method to learn ML tasks. Additionally, we observe

that in noise free learning tasks optimizing the sub-

set loss is the best option, but the differences are very

small. We have also noticed that the biggest room for

improvement can be found when the goal is to optimize

an F-measure in noisy learning tasks.
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1 Introduction

The aim of multilabel classification (ML) is to obtain

simultaneously a collection of binary classifications; the

positive classes are referred to as labels, the so-called

relevant labels of the instances. Many complex classi-

fication tasks can be included into this paradigm. In

document categorization, items are tagged for future

retrieval; frequently, news or other kind of documents

should be annotated with more than one label accord-

ing to different points of view. Other application fields

include semantic annotation of images and video, func-

tional genomics, music categorization into emotions and

directed marketing. Tsoumakas et al. [26,27] have made

a detailed presentation of ML and their applications.

A number of strategies to tackle multilabel classifi-
cation tasks have been published. Basically, they can be

divided in two groups. Strategies in the first group try

to transform the learning tasks into a set of single-label

(binary or multiclass) classification tasks. Binary Rel-

evance (BR) is the simplest, but very effective, trans-

formation strategy. Each label is classified as relevant

or irrelevant without any relation with the other la-

bels. On the other hand, genuine multilabel strategies

try to take advantage of correlation or interdependence

between labels. In other words, these strategies try to

take into account that the relevance of a label is con-

ditioned not only by the feature values of an instance,

but also by the values of the remaining labels.

There are several alternatives to assess the loss of

ML classifiers. Since the aim is to predict a subset, it is

possible to count the number of times that the predicted

and the true subsets are different. But this is probably

a too severe way to measure the loss. To obtain more

sensitive loss functions it is possible to assess the degree

of coincidence of predictions and true sets using some
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measures drawn from the field of Information Retrieval.

This is the case of Precision, Recall, and their harmonic

averages: F-measures.

In the literature there are algorithms that try to

learn using heuristic strategies to achieve a good perfor-

mance, but the results are no guaranteed to fulfill the

expectations. Other methods explicitly aim to optimize

the scores provided by a given loss function. However,

these methods are not easy to scale for learning tasks

with many features or labels. The objective of this pa-

per is to gain insight into the relations of optimization

aims and loss functions. We suggest some guidelines

to solve a tradeoff between algorithmic complexity and

performance of multilabel learners.

In the following sections we present three learning

algorithms specially devised to optimize specific loss

functions considering ML classifiers as structured out-

put functions. This framework leads us to a tensor space

of input instances and subsets of labels. The advantage

of this approach is that it provides a common frame-

work that allows a fair comparison of scores.

The ML learners are built adapting a Joachims’ al-

gorithm devised for optimizing multivariate loss func-

tions like F-measures [12]. In this context the first con-

tribution of the paper is to present an efficient algo-

rithm for optimizing loss functions based on contin-

gency tables in ML learning tasks. The second contri-

bution is an exhaustive empirical study devised to com-

pare the relation of these learners and the loss functions

under different levels of label noise.

The paper is organized as follows. The next sec-

tion reviews a formal framework for ML learning tasks,

hypotheses, and loss functions. The structured output
approach is presented in Section 3. Then, we introduce

the optimization algorithms devised for three different

loss functions. Then a section is devoted to review the

related work. An experimental comparison is reported

in Section 6. The last section summarizes some conclu-

sions.

2 Formal Framework for Multilabel

Classification

Let L be a finite and non-empty set of labels {l1, . . . , lL},
let X be an input space, and let Y be the output space,

the set of subsets (power set) of labels. A multilabel

classification task can be represented by a dataset

D = {(x1,y1), . . . , (xn,yn)} ⊂ X × Y (1)

of pairs of input instances xi ∈ X and subsets of labels

yi ∈ Y.

We identify the output space Y with vectors of di-

mension L with components in {0, 1}.

Y = P(L ) = {0, 1}L.

In this sense for y ∈ Y,

l ∈ y and y[l] = 1

will appear interchangeably and will be considered equiv-

alent.

The goal of a multilabel classification task D is to

induce a ML hypothesis defined as a function h from

the input space to the output space,

h : X −→ Y.

2.1 Loss Functions for Multilabel Classification

ML classifiers can be evaluated from different points of

view. The predictions can be considered as a biparti-

tion or a ranking of the set of labels. In this paper the

performance of ML classifiers will be evaluated as a bi-

partition. Thus, loss functions must compare subsets of

labels.

Usually these measures can be divided in two groups

[27]. The example-based measures compute the average

differences of the actual and the predicted sets of labels

over all examples.

The label-based measures decompose the evaluation

into separate assessments for each label. There are two

options here, averaging the measure labelwise (usually

called macro-average), or computing a single value over

all predictions, the so-called micro-average version of

a measure. In a previous work [7] we proposed an ap-

proach to improve micro-averaged measures. Interest-

ingly, the optimization of macro-averaged measures is

equivalent to the optimization of those measures in the

subordinate Binary Relevance (BR) classifiers.

The goal in this paper is to optimize example-based

measures. For further reference, let us recall the for-

mal definitions of these measures. For a prediction of a

multilabel hypothesis h(x) and a subset of truly rele-

vant labels y ⊂ L the most basic loss function is the

0/1 loss (usually called subset 0/1 loss). This loss func-

tion assesses value 0 when the prediction is the same as

the true value, and 1 in other cases. In symbols,

∆0/1(y, h(x)) = [[y 6= h(x)]]

where the value of [[q]] for a predicate q is 1 when it is

true, and 0 otherwise.

But this measure is too strict. In fact it is blind to

appreciate the degree of the discrepancy between pre-

diction and true values. The 0/1 loss ignores if h(x) and
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y differ in one or in all the labels. To introduce more

sensitive measures, for the prediction h(x) of each ex-

ample (x,y) we can compute the following contingency

matrix, where l ∈ L :

l ∈ y l 6∈ y

l ∈ h(x) a b

l 6∈ h(x) c d

(2)

in which each entry (a, b, c, d) is the number of times

that the corresponding combination of memberships oc-

curs. Notice that a+ b+ c+ d = L.

The example-based performance measures are now

defined as follows. Throughout these definitions,

D′ = {(x′
1,y
′
1), . . . , (x′

n′ ,y
′
n′)}

is a test set.

Definition 1 The Recall is defined as the proportion

of truly relevant labels that are included in predictions.

The Recall for an input x′ and the average Recall are

given by

R(h(x′),y′) =
a

a+ c
; R =

∑
x′∈D′ R(h(x′),y′)

|D′|
.

Definition 2 The Precision is defined as the propor-

tion of predicted labels that are truly relevant. The Pre-

cision for an input x′ and the average Precision are

given by

P (h(x′),y′) =
a

a+ b
; P =

∑
x′∈D′ P (h(x′),y′)

|D′|
.

The trade-off between Precision and Recall is for-

malized by their harmonic mean. So, in general, the Fβ
(β ≥ 0) is defined by

Fβ =
(1 + β2)P ·R
β2P +R

.

Definition 3 The Fβ (β ≥ 0) for an example and the

average values of a test set are defined by

Fβ(h(x′),y′) =
(1 + β2)a

(1 + β2)a+ b+ β2c
;

Fβ =

∑
x′∈D′ Fβ(h(x′),y′)

|D′|
.

The most frequently used F-measure is F1.

Other performance measures can also be defined us-

ing the contingency matrices (2). This is the case of the

Accuracy and Hamming loss.

Definition 4 The Accuracy [26] (or the Jaccard index)

is a slight modification of the F1 measure defined by

Ac(h(x′),y′) =
a

a+ b+ c
; Ac =

Ac(h(x′),y′)

|D′|
.

Definition 5 The Hamming loss measures the propor-

tion of misclassifications,

Hl(h(x′),y′) =
b+ c

a+ b+ c+ d
;

Hl =

∑
x′∈D′ Hl(h(x′),y′)

|D′|
.

Throughout the paper we use the term loss function

to mean a measure for which lower values are preferable,

as happens with the 0/1 and the Hamming losses. On

the other hand, we reserve the term score function for

Fβ where higher values mean better performance.

3 Structural Approach for Multilabel

Classification

In this section we follow [14,13] to learn a hypothesis h

from an input space X to an output space Y endowed

with some kind of structure. For instance, the outputs

may be parsing trees, or a total ordering in web search,

or an alignment between two amino acid sequences in

protein threading. But Y may be as simple as a set of

classes; thus multiclass and multilabel classification are

included in this framework.

The core idea to learn structured predictions is to

induce a discriminant function

f : X × Y −→ R

that gives rise to a prediction hypothesis

h : X −→ Y (3)

x −→ h(x) = argmax
y∈Y

f(x,y).

The intended meaning is to predict for x the output y

with the highest f -value. Thus, the discriminant func-

tion becomes, de facto, a general matching or similarity

function.

A straightforward approach to represent a similarity

function is by means of a bilinear map. In fact, these

maps are a generalization of inner products extended

to a couple of different spaces. Thus, if we assume that

both the input and the output are vector spaces, a dis-

criminant function will be a bilinear function

fbl : X × Y −→ R.

But bilinear functions from a product space are in one-

to-one correspondence with linear functions from the

tensor product space. Thus, discriminant functions can

be thought as linear maps

fli : X ⊗ Y −→ R.
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The identification of both ways to represent discrimi-

nant functions is given by

f(x,y) = fbl(x,y) = fli(x⊗ y) = 〈w,x⊗ y〉,

for some director vector w ∈ X ⊗ Y.

In the literature of structured output learning, dis-

criminant functions are presented as linear maps from

a Hilbert space to R

f(x,y) = 〈w, Ψ(x,y)〉.

In this context Ψ(x,y) is a feature vector in the joint

feature space relating inputs and outputs. In our study

we have applied the tensor product as a straightforward

definition of such joint feature space,

Ψ(x,y) = x⊗ y.

To illustrate this formal framework, let us assume

that x ∈ X = Rp and y ∈ Y = RL. The Kronecker

product of these vectors is a representation of the tensor

product by another Euclidean vector:

x⊗ y = (x · y[1], . . . ,x · y[L]),

so

x⊗ y ∈ (Rp)L = R(p×L) ∼= Rp ⊗ RL = H.

To interpret a discriminant function in this context,

let us assume that w ∈ H is given by

w = (w1, . . . ,wL), wl ∈ Rp, l ∈ L . (4)

Then we have that

f(x,y) = 〈w, (x⊗ y)〉 =

L∑
l=1

〈wl,x〉 · y[l].

Sometimes it is useful to write f in terms of the

image of some tensor products. For this purpose, let

{el : l = 1, . . . , L} be the canonical basis of Y = RL,

then the prediction hypothesis (3) is given by

h(x) = argmax
y∈Y

f(x,y)

= argmax
y∈Y

fbl(x,

L∑
l=1

ely[l])

= argmax
y∈Y

L∑
l=1

〈w,x⊗ el〉 · y[l]

= {l ∈ L : 〈w,x⊗ el〉 > 0}
= {l ∈ L : 〈wl,x〉 > 0}.

Let us remark that there is an interesting and alter-

native way to present a discriminant function. If vectors

x and y are column vectors, and W is the matrix whose

columns are w1, . . . ,wL (4), then

f(x,y) =

L∑
l=1

〈wl,x〉 · y[l] = xTWy.

This is the typical representation of bilinear functions.

Finally, notice that when for each output we have that∑
l∈L

y[l] = 1,

then the multilabel task is just a multiclass classifica-

tion task. As was pointed out by Joachims et al. [14],

the approach presented here is then identical to the

multiclass approach of Crammer and Singer [2].

In the preceding derivation, we lost the intercept

terms frequently used in linear hypotheses. Thus, we

add a new constant feature for all vectors x. This trick

recovers the intercept terms; therefore, in practice,

X ⊂ Rp+1. (5)

4 Learning Discriminant Functions

A general approach to learn the parameter w is to use

a regularized risk minimization method [29]. The aim is

to search for a model that minimizes the average predic-

tion loss in the training set plus a quadratic regularizer

that penalizes complex solutions. There are different

optimization problems that formalize the search for an

optimal w. We shall use the 1-slack structural SVM

with margin-rescaling [14]:

min
w,ξ≥0

1

2
〈w,w〉+ Cξ, (6)

s.t.
1

n
〈w,

n∑
i=1

[
Ψ(xi,yi)−Ψ(xi, ȳi)

]
〉≥ 1

n

n∑
i=1

∆(yi, ȳi)−ξ

∀(ȳ1, . . . ȳn) ∈ Yn.

This problem can be solved in time linear in n using

SVMstruct [14].

Let us emphasize that in this approach to multil-

abel classification, the loss function∆ refers to example-

based errors (see Section 2.1). In fact, the average loss

is bounded by the parameter ξ that must be minimized

according to (6). To see this, let us observe that the

constraints of (6) ensure that for every collection of n

subsets of the label set, ∀(ȳ1, . . . ȳn) ∈ Yn, we have

that

ξ ≥ 1

n

n∑
i=1

∆(yi, ȳi)−
1

n
〈w,

n∑
i=1

[
Ψ(xi,yi)− Ψ(xi, ȳi)

]
〉.
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On the other hand, given the definition of the prediction

hypothesis (3), for h(xi) = ȳi we obtain that

0 ≥ 1

n
〈w,

n∑
i=1

[
Ψ(xi,yi)− Ψ(xi, h(xi))

]
〉.

Thus

ξ ≥ 1

n

n∑
i=1

∆(yi, h(xi))

4.1 Optimization Algorithm

As was mentioned above, there is an efficient algorithm

to find the optimum parameters in (6) for a given ∆ loss

function. This job is done by the cutting plane algorithm

(Alg. 1) of [14]. The core point is the argmax step (line

6 in Alg. 1) where the algorithm looks for the most

violated constraint. This step is specific for each loss

function and should be computationally efficient.

For each element of the multilabel task D (1) the

purpose is to find the output with the highest value of

the sum of the loss plus the discriminant function. To

avoid unnecessary subindexes, let (x,y) be an arbitrary

training pair of D. Then, for w ∈ H, the aim is to solve

argmax
ŷ∈Y

{
∆(y, ŷ) + 〈w, Ψ(x, ŷ)〉

}
= (7)

argmax
ŷ∈Y

{
∆(y, ŷ) +

L∑
l=1

〈w,x⊗ el〉 · ŷ[l]
}
.

Once this step is performed for all training exam-

ples, the most violated constraint corresponds to the

output formed by the joint of the outputs returned by

(7) for each element in D.

Therefore, we are able to build specific algorithms

to optimize example-based loss functions whenever we

can devise algorithms to compute the argmax of (7).

In the following subsections we present algorithms for

different loss functions.

4.2 Subset 0/1 Loss

In this case, the loss is 1 if y 6= ŷ, otherwise it is 0.

Thus, (7) becomes

argmax
ŷ∈Y

{
[[y 6= ŷ]] +

L∑
l=1

〈w,x⊗ el〉 · ŷ[l]
}
. (8)

To maximize the sum, define ỹ such that

∀l ∈ {1, . . . , n}, ỹ[l] = [[〈w,x⊗ el〉 > 0]].

If y 6= ỹ, then the loss is 1, the maximum possible

value. Otherwise the loss is 0; in this case, let ỹ′ be ỹ

Algorithm 1 Algorithm to find the optimum of (6)

1: Input: {(x1, y1), . . . , (xn, yn)}, C, ε
2: CS ← ∅
3: repeat
4: (w, ξ)← argmin

w,ξ≥0

1
2
〈w,w〉+Cξ,

s.t. 1
n
〈w,

∑n
i=1

[
Ψ(xi, yi)− Ψ(xi, ȳi)

]
〉 ≥

1
n

∑n
i=1∆(yi, ȳi)− ξ

∀(ȳ1, . . . , ȳn) ∈ CS
5: for i = 1 to n do
6: ŷi ← argmax

ŷ∈Y
{∆ (yi, ŷ) + 〈w, Ψ (xi, ŷ)〉}

7: end for
8: CS ← CS ∪ {(ŷ1, . . . , ŷn)}
9: until 1

n

∑n
i=1∆(yi, ŷi)

− 1
n
〈w,

∑n
i=1

[
Ψ(xi, yi)−Ψ(xi, ŷi)

]
〉 ≤ ξ + ε

10: return (w, ξ)

swapping the component with the lowest influence in

the sum. In symbols, swap the component with index

l̃ = argmin
l∈{1,...,n}

|〈w,x⊗ el〉|.

In this situation, for ỹ′ against ỹ, we obtain an increase

of 1 (due to the loss) in the expression to be maximized,

but a decrease of |〈w,x⊗el̃〉|. Thus, we select the most

convenient vector as the result for the argmax problem

(8).

4.3 Hamming Loss

The argmax problem can now be written as follows.

argmax
ŷ∈Y

{
L∑
l=1

[[y[l] 6= ŷ[l]]]

L
+

L∑
l=1

〈w,x⊗ el〉 · ŷ[l]

}
=

argmax
ŷ∈Y

{
L∑
l=1

(
[[y[l] 6= ŷ[l]]]

L
+ 〈w,x⊗ el〉 · ŷ[l]

)}
=

argmax
ŷ[l]∈{0,1}

{
[[y[l] 6= ŷ[l]]]

L
+〈w,x⊗ el〉·ŷ[l]

}
: l = 1, . . . , L.

That is to say, the argmax problem for Hamming

loss can be solved point-wise. There is no multilabel ef-

fect here. The predictions about one label do not affect

other labels in any sense. This was already acknowl-

edged in [3].

4.4 Example-Based on Contingency Matrices

There is a number of loss functions that can be com-

puted from contingency matrices including F1, Accu-

racy, Precision, and Recall, see Section 2.1. In these

cases, the argmax step of Algorithm 1 can be computed
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Algorithm 2 Algorithm for computing argmax with

loss functions that can be computed from a contingency

table; it is based on [12]

1: Input: (x, y) ∈ D
2: (l+1 , . . . , l

+
#pos)←sort{l :y[l]=1}by 〈w,x⊗el〉(desc. ord.)

3: (l−1 ,. . ., l
−
#neg)←sort {l :y[l]=0} by 〈w,x⊗el〉(desc. ord.)

4: for a = 0 to #pos do
5: c← #pos− a
6: set ŷ[l+1 ],. . ., ŷ[l+a ] to 1 AND ŷ[l+a+1],. . ., ŷ[l+#pos] to 0
7: for d = 0 to #neg do
8: b← #neg − d
9: set ŷ[l−1 ],. . .,ŷ[l−b ] to 1 AND ŷ[l−b+1],. . .,ŷ[l−#neg] to 0

10: v ← ∆(a, b, c, d) +
∑L
l=1〈w,x⊗ el〉 · ŷ[l]

11: if v is the largest so far then
12: ŷ∗ ← ŷ
13: end if
14: end for
15: end for
16: Return: ŷ∗

using the idea of Joachims in [12] (Algorithm 2, and

Lemma 1).

The core observation is that the computation of the

argmax can be done iterating over all possible contin-

gency tables. Thus, for each contingency table of values

(a, b, c, d), it is sufficient to compute the output ŷ with

the highest value of the discriminant function. There-

fore,

argmax
ŷ∈Y

{
∆(y, ŷ) +

L∑
l=1

〈w,x⊗ el〉 · ŷ[l]
}

=

argmax
ŷ∈Y

{
max

(a,b,c,d)

{
∆(a, b, c, d) +

max
ŷ∈Y(a,b,c,d)

L∑
l=1

〈w,x⊗ el〉 · ŷ[l]
}}

.

Hence, we need to compute the output ŷ with the

highest value for those that produce a given contingency

matrix:

argmax
ŷ∈Y(a,b,c,d)

L∑
l=1

〈w,x⊗ el〉 · ŷ[l].

The maximum value is achieved when the true pos-

itive hits (a) are obtained with those labels l with the

highest value in

〈w,x⊗ el〉 · ŷ[l],

and the true negatives correspond to labels with the

lowest value in that amount. Thus, Algorithm 2 com-

putes the argmax step for optimizing example-based

loss functions that can be computed using a contin-

gency table.

The complexity of this algorithm for solving the

argmax problem is related to L, the number of labels.

In the worst case it is O(L2). Thus, the multilabel clas-

sifier can be computed in O(n ·L2) using Algorithms 1

and 2.

5 Related Work

There are many ML learning algorithms, some early

approaches have been proposed by Schapire and Singer

[24] and by Elisseeff and Weston [8]. There have been

proposals from different points of view: nearest neigh-

bors [32], logistic regression [1], Bayesian methods [3,

31], using some kind of stacking or chaining iterations

[19,23,18], extending multiclass classifications [28]. A

review of ML learning methods can be seen in [27].

However this paper is more closely related to those

approaches that explicitly aim to optimize a target loss

function in the ML arena. There are also some theoreti-

cal studies, like [3,9,5,6]. Other alternative approaches

consist of searching for an optimal thresholding after

ranking the set of labels to be assigned to an instance

[8,22].

The approach of structured output using tensor prod-

ucts has been used before. For instance, in [11], tensor

products were used to derive a learner for optimizing

loss functions that decompose over the individual la-

bels. This yields to deal with macro-averages and Ham-

ming loss, that can be optimized by a Binary Relevance

method.

Petterson and Caetano present, in [20], a similar

approach but limited to optimize macro-averaged loss

functions and in [21] also propose to optimize example-

based F1 using the correlations of some sets of labels.

These approaches are compared, in [4], with a con-

sistent Bayesian algorithm that estimates all parame-

ters required for a Bayes-optimal prediction via a set

of multinomial regression models. The difference be-

tween our proposal and [4], is that our method in-

tends to maximize example-based F1 measure during

learning (following a structured loss minimization ap-

proach) whereas the method presented in [4] makes

F-measure maximizing predictions from probabilistic

models during an inference step (following a plug-in

rule approach). Thus, both methods are quite different

and our proposal is more related to [21]).

Notice that the objective of this paper is not to com-

pare a particular couple of learners but to study the

relations between loss functions and optimization aims;

thus we need a common framework.

The use of structured outputs in this paper fol-

lows the works by Joachims and co-workers [25,13,14].

The optimization of multivariate loss functions was also

adapted from the paper [12].
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Other structured output approaches can be found

in [15] and in [10] (in this case using Conditional Ran-

dom Fields). In these cases, an important issue to be

addressed is the inference problem, that is, to determine

the most likely output for a given input.

6 Experimental Results

In this section we present a number of experimental

results devised to show the performance of the struc-

tural optimization approaches discussed in this paper.

The purpose is to show the differences in performance

when the aim is to optimize one specific measure while

the assessment is done using either the same or an-

other measure. For this purpose we implemented three

learners to optimize the Hamming loss, F1 score, and

0/1 loss respectively. We shall refer to these systems by

Struct(Hl), Struct(F1), and Struct(01) respectively.

The implementation was done using the svm-struct-

matlab of [30], a MATLAB wrapper of SVMstruct [25,

14]. In this framework, we codified the argmax functions

detailed in sections 4.2, 4.3, and 4.4 (Algorithm 2). In

the experiments reported in this section, SVMstruct was

used with parameters ε = 0.1, margin rescaling, and 1-

slack formulation with constraint cache.

6.1 Datasets

The experiments were done using synthetic datasets,

we preferred them to ’real’ datasets. The reason is that

we want to provide a strong support using data with a

variety of characteristics since we are trying to show the

influence of those characteristics on the performance of

the learners.

We used a synthetic dataset generator to build 48

datasets: each one composed by a training, a valida-

tion and a testing set. In all cases the input space was

Rp+1 with p = 25, see (5). The size L of the set of la-

bels varied in {10, 25, 50}; we generated 16 datasets for

each number of labels. The target cardinalities (average

number of labels per example) ranged from 2 to 4. In

Table 1 it is shown maximum, minimum, average and

standard deviation of cardinality and density in these

datasets grouped by the number of labels.The collection

of datasets used in the experiments is publicly available

in our website with an implementation and a detailed

description of the generator1.

The generator draws a set of 400 points in [0, 1]p

that constitute the inputs of the training set. Then, us-

ing a genetic algorithm, it searches for L hyperplanes

1 http://www.aic.uniovi.es/ml_generator/

such that the set of labels so obtained fits as much

as possible to the target characteristics. Those hyper-

planes are then used to generate the validation and test-

ing sets with 400 and 600 examples respectively.

In addition to these 48 datasets we used noisy ver-

sions of them. The noise was added to training and val-

idation sets using two procedures: Bernoulli and Swap.

The first procedure uses a Bernoulli distribution with

probability pr to change the values (0 and 1) of the

matrix of labels. We used

pr ∈ {0.01, 0.03, 0.05, 0.07, 0.09}.

On the other hand, the Swap procedure adds noise in-

terchanging a couple of (0, 1) values in the same exam-

ple with probability pr; notice that this method pre-

serves the cardinality of the datasets. In this case,

pr ∈ {0.05, 0.10, 0.20, 0.30, 0.40}.

Thus, we have 528 datasets.

In general, the role of noise is to make harder a

learning task. Of course, the effect of these two kinds of

noise is not the same: it should depend on the value of

pr (we can somehow consider it captures the intensity

of the effect), but also on the type of noise and even on

the loss function used to measure the performance.

6.2 Results and Discussion

For each of the 528 datasets we computed the score in

the test set after adjusting the C parameter (6) using

train and validation sets. We searched for C values in

{10i : i = 4, 5, 6} for noise free datasets and {10i : i =

2, 3, 4, 5} for noisy ones.

In Table 2 we reported the average values of the

performance of the learners measured with Hamming

loss, 0/1 loss, and the example-based F1 loss in a train-

test experiment; that is, 1−F1. All values are expressed

as percentages for ease of reading. The averages are

computed for each measure function, number of labels

and type of noise.

Struct(01) reaches the best scores for all perfor-

mance measures in noise free datasets; these can be con-

sidered easier learning tasks. Thus, when a hypothesis

correctly predicts the whole set of labels, it achieves the

best possible results independently of the measure used

to assess the performance. Even with low noise this is

the best learner, although the differences are very small

in all cases.

However, as the degree of noise increases, the perfor-

mance of Struct(01) drops substantially. In noisy data

it is a good option to optimize Hamming loss or the F1

http://www.aic.uniovi.es/ml_generator/
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Table 1 Cardinality and density statistics of the 48 free-noise datasets. Datasets with Bernoulli and swap noise present similar
figures

Cardinality Density

50 Labels

max 4.3 9%
min 2.5 5%
mean 3.3 7%
std dev 0.5 1%

25 Labels

max 4.3 17%
min 2.4 10%
mean 3.1 13%
std dev 0.6 2%

10 Labels

max 4.0 40%
min 1.8 18%
mean 2.9 29%
std dev 0.7 7%

score, despite the performance measure used to assess

the classifier.

To see at a glance the whole bunch of results, we

show Figures 1 and 2. Here we represent the average

scores for increasing levels of noise obtained by the

learners Struct(Hl), Struct(F1), and Struct(01).

In these figures we see that Struct(Hl) is a quite

competitive learner. As expected, it is the best when

the purpose is to win in Hamming loss, but the scores

obtained with the other performance measures are very

good too. In fact, Struct(Hl) outperforms the other op-

tions in datasets with some noise when the performance

measure is 0/1 loss. In F1, Struct(Hl) outperforms the

scores of Struct(F1) when the learning task is easier,

with a small proportion of noisy examples. Only when

the learning task has high levels of noise, there is a room

for improvement: Struct(F1) is better in these cases.

Nevertheless, there are no big differences and a tradeoff

between performance and algorithmic complexity may

be favorable to Struct(Hl).

The competitive performance showed by Struct(Hl)

on example-based measures is in line with the results of

BR reported in the experimental study [17]. Let us re-

call that Struct(Hl) is conceptually equivalent to a BR

(Section 2.1) with the only difference that Struct(Hl)

performs a combined regularization for all models de-

fined in (4).

In general, since the optimization of the Hamming

loss produces competitive scores, a simple Binary Rel-

evance classifier is useful to solve ML tasks (this con-

clusion was also reached in [16]). This is not the case

when the aim is to minimize the subset 0/1 loss with-

out noise. In that case the learner optimizing 0/1 loss

performs better.

The Appendix at the end of the paper contains a

detailed graphical description of the winning regions of

each learner in the whole collection of datasets used in

the experiments.

7 Conclusions

There is a tradeoff between performance and computa-

tional complexity in classification tasks. When the goal

is to optimize a loss function defined over the whole

classification of a set, as in the F-measures, the learner

has to deal with contingency tables. If the aim is to

predict a set of labels instead of a single class, the al-

gorithms become more complex.

We have presented some contributions to guide the

search of a tradeoff in ML classification. On the one

hand, we implemented, using a common framework,

three learners that explicitly optimize three of the most

popular performance measures of ML classifiers, respec-

tively: subset 0/1 loss, Hamming loss, and the example-

based F-measure. For this purpose we used Structured

output Support Vector Machines (SSVM) and extended

to ML the method presented by Joachims in [12] to

optimize multivariate performance measures. Then, to

compare these learners in a wide variety of situations,

we used a collection of 528 synthetic ML datasets. Here

we included different levels of noise and number of la-

bels.

The results of the comparison are detailed in Sec-

tion 6 and in the Appendix at the end of the paper.
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Table 2 Average train-test results in different noise settings in 528 datasets. The learners used aim to optimize Hamming
loss, F1 score, and 0/1 loss. The performance measures are 0/1 loss (0/1), Hamming loss (Hl) and 1 − F1. Noise was added
using Bernoulli and Swap (Section 6.1) procedures

Struct(Hl) Struct(F1) Struct(01)
L 0/1 Hl 1− F1 0/1 Hl 1− F1 0/1 Hl 1− F1

Noise free

50 49.39 2.07 14.24 52.04 2.12 14.73 47.70 2.02 14.16
25 36.55 2.52 9.71 39.62 2.60 10.18 35.70 2.46 9.51
10 21.57 2.62 5.18 23.49 2.88 5.63 20.90 2.56 5.02

Bernoulli

0.01 50 62.41 2.88 21.68 71.81 3.35 22.29 75.31 4.03 27.55
25 48.18 3.47 13.81 51.01 3.63 13.65 50.34 3.74 14.66
10 29.02 3.68 7.06 30.94 3.90 7.39 29.03 3.88 7.60

0.03 50 67.86 3.27 25.35 74.52 3.52 23.45 91.45 6.49 41.50
25 51.01 3.81 15.13 55.56 4.05 15.20 76.86 7.14 26.69
10 33.41 4.37 8.39 37.04 4.91 9.12 38.77 5.51 10.29

0.05 50 75.51 3.86 31.43 78.99 4.07 26.38 96.33 8.61 50.96
25 56.68 4.45 17.86 63.00 4.90 18.10 87.58 9.73 34.55
10 37.16 5.09 9.98 41.97 5.82 10.76 56.52 8.85 16.47

0.07 50 79.53 4.15 37.95 84.20 4.76 29.95 98.43 10.28 56.68
25 62.47 5.05 20.40 70.20 5.92 21.34 91.98 11.78 42.77
10 39.92 5.62 11.11 47.56 6.92 12.42 68.50 12.00 22.57

0.09 50 81.05 4.34 39.80 88.73 5.59 33.47 99.56 11.96 61.07
25 66.32 5.63 23.71 75.84 6.90 23.95 95.36 14.17 47.21
10 44.51 6.47 12.80 54.81 8.43 14.80 76.13 14.17 25.96

Swap

0.05 50 56.16 2.43 17.57 60.17 2.54 17.53 53.58 2.30 17.03
25 44.14 3.04 12.30 47.02 3.23 12.54 42.47 2.86 12.16
10 30.37 3.82 7.76 32.68 4.15 7.86 29.91 3.91 7.78

0.1 50 59.51 2.64 19.57 64.09 2.81 19.25 58.70 2.54 19.20
25 48.60 3.41 14.04 51.19 3.56 13.65 47.81 3.48 14.41
10 33.12 4.28 8.74 34.11 4.40 8.35 33.15 4.42 9.00

0.2 50 64.83 2.94 24.09 70.21 3.21 21.66 69.45 3.29 24.95
25 52.71 3.81 16.39 55.15 3.96 14.97 60.08 4.67 19.15
10 36.97 4.96 10.62 39.72 5.39 10.08 48.32 7.20 14.49

0.3 50 68.66 3.16 27.44 74.29 3.58 24.00 79.14 4.19 32.75
25 58.40 4.28 19.55 59.94 4.43 16.97 74.70 6.59 27.76
10 42.29 5.88 12.82 45.85 6.54 11.97 66.74 11.20 23.41

0.4 50 71.69 3.34 30.93 77.16 3.91 25.85 84.42 4.77 37.04
25 61.64 4.59 21.53 62.77 4.83 18.11 77.87 7.22 30.41
10 48.22 7.09 16.09 51.53 7.60 13.67 75.17 13.82 27.01

But the overall conclusions can be summarized in a few

words.

In most cases, the optimization of the Hamming loss

produces the best or competitive scores. Notice that

this is very important in a practical sense since a sim-

ple Binary Relevance classifier can be used for this pur-

pose. Any binary classifier can be utilized to learn the

relevancy of each label separately. Thus, ML tasks can

be tackled with a scalable and effective method most of

the times.

The limits of this general rule are when the aim is to

minimize the subset 0/1 loss in noise-free datasets. In

these cases, the specialized learner Struct(01) achieves

the best results, although the differences are very small.

Bigger differences are appreciated when learning tasks

have high levels of noise and the purpose is to improve

the performance in F-measure. In this case the learner

that explicitly optimizes this loss outperforms the oth-

ers.
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Appendix

In this section we report the results obtained in the

whole collection of datasets. Since we have two differ-

ent ways to introduce noise in a learning task (see Sec-

tion 6.1), in order to represent all datasets at once, we

define the similarity of noise free and noisy versions for

each dataset and loss or score function. For a loss func-

tion ∆, the similarity is the complementary of the loss

of the noisy release with respect to the noise free output

in the test set,

Sim(∆,Y, noise(Y))=1−∆(Y, noise(Y)) (9)

where Y represents the matrix of actual labels. On the

other hand, the similarity does not use the complemen-

tary in F1,

Sim(F1,Y, noise(Y)) = F1(Y, noise(Y)). (10)

In Figure 3 each dataset is represented in a 2-dimension

space. The horizontal axis represents the F1 score achieved

by Struct(F1) in the noise free version of the dataset.

The vertical axis represents the similarity of the dataset

(measured with F1). Thus, points near the top of the

picture stand for datasets noise free or datasets with low

noise. On the other hand, points near the left side rep-

resent harder datasets, in the sense that the noise free

releases achieves lower F1 scores. Finally, the points in

this space are labeled by the name of the learner that

achieved the best F1 score.

Here we observe that Struct(F1) outperforms the

other learners in terms of F1 when tackling harder learn-

ing tasks (left bottom corner of Figure 3). In easier

tasks, mainly those with 10 or 25 labels, the procedure

(Algorithm 2) seems to require more evidences in order

to estimate the optimal expected F1. In any case, the

differences in the easiest learning tasks are small.

To complete the discussion of the results, we made

figures analogous to Figure 3 using subset 0/1 loss (Fig. 4),

and Hamming loss (Fig. 5).
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Fig. 3 Learners winning in F1 score in the 528 datasets. The horizontal axis represents the F1 score of datasets in the noise
free releases. Thus points at the right hand side stand for easier datasets, typically those with less number of labels. The
vertical axis represent the similarity of label sets, using F1 similarity (10), with the noise free version. The higher the points
in the figure, the lower the noise in the datasets
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Fig. 4 Learners winning in 0/1 loss in the 528 datasets. The horizontal axis represents the 0/1 loss of datasets in the noise
free releases. Thus points at the left hand side stand for easier datasets, typically those with less number of labels. The vertical
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Fig. 5 Learners winning in Hamming loss in the 528 datasets. The horizontal axis represents the Hamming loss of datasets
in the noise free releases. Thus points at the left hand side stand for easier datasets, typically those with less number of labels.
The vertical axis represent the similarity of label sets, using Hamming loss similarity (9), with the noise free version. The
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