
Operations Research Perspectives 1 (2014) 6–17
Contents lists available at ScienceDirect

Operations Research Perspectives

journal homepage: www.elsevier.com/locate/orp

Using the latent class approach to cluster firms in
benchmarking: An application to the US electricity transmission
industry
Manuel Llorca a,∗, Luis Orea a, Michael G. Pollitt b
a Oviedo Efficiency Group, Department of Economics, University of Oviedo, Spain
b Energy Policy Research Group and Judge Business School, University of Cambridge, United Kingdom

a r t i c l e i n f o

Article history:
Received 29 January 2014
Received in revised form
26 February 2014
Accepted 18 March 2014
Available online 13 April 2014

JEL classification:
D22
L51
L94

Keywords:
Electricity transmission
Utilities regulation
Latent class model approach
Nonparametric analysis

a b s t r a c t

In this paper we advocate using the latent class model (LCM) approach to control for technological
differences in traditional efficiency analysis of regulated electricity networks. Our proposal relies on
the fact that latent class models are designed to cluster firms by uncovering differences in technology
parameters. Moreover, it can be viewed as a supervised method for clustering data that takes into
account the same (production or cost) relationship that is analysed later, often using nonparametric
frontier techniques. The simulation exercises show that the proposed approach outperforms other sample
selection procedures. The proposed methodology is illustrated with an application to a sample of US
electricity transmission firms for the period 2001–2009.
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1. Introduction

Electricity networks are often regulated by implementing
incentive-based regulation schemes that use some types of bench-
marking, i.e. a comparison of utilities’ performance with best-
practice references. As shown by Zhou et al. [1], the nonparametric
DEA (Data Envelopment Analysis) has become a very popular tool
in energy and environmental studies, especially for benchmarking
electric utilities. Unlike the econometric SFA (Stochastic Frontier
Analysis) that requires the specification of a particular functional
form for the cost or production functions to be estimated, DEA im-
poses fewer assumptions on the shape of firms’ technology and it
allows regulators to address traditional convergence problems and
the well-known ‘wrong skewness problem’ in the SFA literature.

A key issue that is sometimes not taken into account by
regulators (and researchers) is the heterogeneity or unobserved

∗ Correspondence to: Faculty of Economics and Business, University of Oviedo,
Av. del Cristo, s/n, 33006, Oviedo, Spain. Tel.: +34 985104885.

E-mail addresses: llorcamanuel@gmail.com, llorcamanuel@uniovi.es
(M. Llorca).

http://dx.doi.org/10.1016/j.orp.2014.03.002
2214-7160/© 2014 The Authors. Published by Elsevier Ltd. This is an open access artic
0/).
differences among firms, although utilities are usually quick to
mention this issue to the regulators. This concern underlies the ne-
gotiations between regulators and utilities, where utilities wield
uniqueness as a reason to avoid being compared with their peers.
However, it is often assumed in this setting that the whole set
of benchmarked firms share the same technology, and hence dif-
ferences in behaviour are attributed to inefficient use of factors
that are under the control of the companies. Possible differences
among utilities associated with different technologies are either
overlooked or are addressed using simple sample selection proce-
dures, mostly based on factors that may affect performance such
as geographic location or utilities’ size. Therefore, the efficiency
scores obtained from these analyses might be biased and some
firms might be penalized (or rewarded) in excess if their underly-
ing technology is less (more) productive than the technology used
by other firms operating with more (less) advantageous condi-
tions. This is particularly important in the case of incentive regu-
lation and benchmarking of electricity networks where the results
of efficiency analysis have important financial implications for the
firms.

In this paper we examine whether we should (a) split the sam-
ple arbitrarily on the basis of a single size variable, or (b) use a
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comprehensive statistical procedure to control for technological
differences, before carrying out a traditional efficiency analysis of
regulated electricity networks.We advocate using the so-called la-
tent classmodel (LCM) approach that allows us to split the electric-
ity networks into a number of different classes, where each class is
associated with a different technology. We advocate this approach
for several reasons. First, LCM clusters firms by searching for dif-
ferences in production or cost parameters, which is exactly what
regulators are looking for. Second, our approach can be viewed as
a ‘‘supervised’’ method for clustering data as it takes into account
in the first stage the same (production or cost) relationship that is
analysed later, often using nonparametric frontier techniques. In-
deed, the literature on data dimension reduction uses this expres-
sion for thosemethods that not only use the information contained
in the explanatory variables to be aggregated, but also the informa-
tion of the dependent variable that will be predicted later on. And
third, our approach is not more ‘‘technical’’ than other clustering
methods as it can be implemented using standard software and us-
ing the same variables that will be used to get efficiency scores in
a later stage. Having practicality in mind, we have proposed some
simplifications such as the use of simple specifications for both the
deterministic (e.g. Cobb–Douglas) and stochastic (e.g. normal dis-
tribution) parts of the model to facilitate its application. The use
of the same variables in both the latent class stage and the sec-
ond, DEA, stage also contributes to simplify the use of the proposed
procedure.

The same idea is currently being developed by Agrell et al. [2]
in a very recent study where they use the LCM approach to con-
trol for technological differences in an application to Norwegian
power distribution firms. Our paper reinforces the approach from
both a theoretical and an empirical point of view. In particular, we
carry out a simulation analysis to examinewhether the latent class
approach outperforms other more arbitrary and less robust proce-
dures for splitting a sample of observations—such as the k-means
clustering algorithm or simply using the median of some relevant
variables. The simulation exercises confirm our expectations and
show that the proposed approach outperforms alternative sample
selection procedures. We illustrate this procedure with an appli-
cation to the US electricity transmission firms examined in [3]. We
find two statistically different groups of firms that should be com-
pared or treated separately. In order to confirm the results from
the simulation exercise, we compare the partition of the sample
obtained through this method with those from alternative cluster-
ing procedures.

This paper is organized as follows. Section 2 introduces the two-
stage procedure that is proposed to control for unobservable dif-
ferences in firms’ technology (environment) in energy regulation.
Section 3 introduces the simulation analysis performed and its
main outcomes. Section 4 uses data from the US electricity trans-
mission industry to compare the relative performance of our ap-
proach and alternative procedures. Section 5 concludes.

2. A two-stage procedure to address unobserved heterogeneity
in utility regulation

As Haney and Pollitt [4] pointed out in a recent survey, reg-
ulators have been using several statistical methods to determine
the performance of energy utilities. Obtaining reliable measures
of firms’ performance requires dealing with controllable factors
and monitoring for the different environmental conditions under
which firms operate. However, both regulators’ reports and aca-
demic studies do not usually deal with these technological differ-
ences. Statisticalmethods have recently been developed to address
this issue. Inmost of thesemethods, heterogeneity is understood as
an unobserved determinant of the production/cost frontier, while
inefficiency is interpreted as the ‘distance’ to the frontier once het-
erogeneity has been taken into account.

Following Greene [5,6] we can distinguish two types of models
that allow us to achieve our aim, namely the so-called True Fixed
Effects (TFE) and True Random Effects (TRE) models introduced by
this author, and the LCM, also known as finite mixture models,
which have been broadly used in several fields of research (see
[7]; or [8], for simple applications; and [9]; or [10], for more
comprehensive applications that aim to examine technological
gaps using a metafrontier approach). Both approaches have their
own strengths andweaknesses. In the TFE/TREmodels, unobserved
heterogeneity is captured through a set of firm-specific intercepts
that are simultaneously estimated with other parameters. Hence,
this approach assumes that there are as many technologies as
firms. However, as it imposes common slopes for all firms, all of
them share the same marginal costs, economies of scale and other
technological characteristics.

In contrast to the TFE/TREmodels, the LCM approach allows the
estimation of different parameters for firms belonging to different
groups. This can be easily seen if the general specification of a cost
function in this framework is expressed as follows:

ln Xit = αj + βj ln Yit + vit|j (1)

where i stands for firms, t for time and j = 1, . . . , J for class. Xit is a
measure of firms’ cost, Yit is a vector of explanatory variables, and
the random term vit follows a normal distribution with zero mean
and variance σ 2

v . As both αj and βj, are j-specific parameters, the
technological characteristics vary across classes.

Letting θj denote all parameters associated with class j, the
conditional likelihood function of a firm i belonging to class j is
LFij(θj). The unconditional likelihood for firm i is then obtained as
the weighted sum of their j-class likelihood functions, where the
weights are the probabilities of class membership, Pij. That is:

LFi(θ, δ) =

J
j=1

LFij(θj)Pij(δj), 0 ≤ Pij(δj) ≤ 1,

J
j=1

Pij(δj) = 1 (2)

where θ = (θ1, . . . , θj), δ = (δ1, . . . , δj) and the class probabilities
are parameterized as a multinomial logit model:

Pij(δj) =
exp(δ′

jqi)
J

j=1
exp(δ′

jqi)
, j = 1, . . . , J, δJ = 0 (3)

where qi is either an intercept or a vector of individual-specific
variables. Therefore, the overall likelihood function resulting from
(2) and (3) is a continuous function of the vectors of parameters θ
and δ, and can be written as:

ln LF (θ, δ) =

N
i=1

ln LFi (θ, δ) =

N
i=1

ln


J

j=1

LFij

θj


Pij


δj


. (4)

Maximizing the above maximum likelihood gives asymptoti-
cally efficient estimates of all parameters. A necessary condition
to identify the whole set of parameters is that the sample must
be generated from at least two different technologies or two noise
terms.

Several comments are in order. First, in this framework each
firmbelongs to one and only one class.1 Therefore, the probabilities

1 This does not mean that a specific firm is going to be always in the same class.
The clusters are created without taking into account the panel structure of the data,
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of class membership just reflect the uncertainty that researchers
or regulators have about the true partition of the sample. The
estimated parameters can be used to compute posterior class
membership probabilities using the following expression:

P (j|i) =

LFij

θ̂j


Pij


δ̂j


J

j=1
LFij


θ̂j


Pij


δ̂j

 . (5)

These posterior probabilities of membership can then be used
to allocate each firm to a particular class, e.g., each firm is allocated
to the class with the higher posterior probability.

Second, only between-groups and not individual heterogeneity
is controlled using a latent class model because all firms belong-
ing to a particular group share the same technology. This situation
is possible in energy economics if firms operating in areas with
different environmental conditions must choose between a lim-
ited number of technical standards2 to expand and maintain their
networks. If firms have similar technologies, the estimated differ-
ences in technology (i.e. parameters) are likely to be capturing het-
erogeneity in operating environments.3 Therefore, the differences
in parameters between classes can be interpreted either as differ-
ences in technology or differences in environmental variables that
might be unobserved.

Third, the number of classes J should be chosen in advance
by the researcher or regulator. Selecting the number of classes
is a key issue of the proposed approach, and is common to
other clustering methods. Fortunately there are several statistical
tests that are commonly used and accepted in the finite mixture
models literature to choose the appropriate number of classes. For
instance, the Akaike Information Criterion (AIC) or the Bayesian
Information Criterion (BIC) are frequently used in the LCM
literature. These criteria involveminimizing an index that balances
the lack of fit (too few classes) and overfitting (toomany classes) as
it includes a penalty that increaseswith the number of parameters.
Models with lower AIC or BIC are generally preferred. The BIC
considers a greater penalty for overfitting than AIC and, hence,
BIC tends to favour more parsimonious models, which in turn
help to estimate model coefficients with more precision (see [11],
p. 61). Many authors (see for instance Koehler and Murphree [12])
observed that the traditional AIC criterion and some of their
variants tend to overestimate the correct number of classes. For
those criteria that tend to overfit and favour more comprehensive
models, it is very useful to examine a graph of the values of the
computed statistic as the classes increase and look for the natural
bend or break point where the curve flattens out. The number
of data points till the ‘‘break’’ (i.e., including the point at which
the break occurs) can be used as the number of classes to select.
This method (labelled a ‘‘scree test’’) is often used in principal
components or factor analyses to select the number of factors and
it is described and pictured in every textbook discussion of factor
analysis (see, for instance, [13], p. 2–3).

Finally, it should be noted that the random term in (1) fol-
lows a symmetric distribution because it does not include a tra-
ditional one-sided inefficiency term. In other words, we advocate

i.e. a particular firm can be in different clusters over time. It has been done in this
way to give more flexibility to our model by allowing changes in firms’ technology
along the sample period. Moreover this type of approach usually yields similar
results to those obtained if the belonging to a certain class is imposed for the whole
sample period.
2 These standards are either proposed by the International Electrotechnical

Commission or the Institute of Electrical and Electronics Engineers.
3 We are grateful to a referee for pointing this out.
using a simple normal distribution in the first stage of our proce-
dure and obtaining the efficiency scores later. There are three rea-
sons for this. First, ignoring the asymmetric error term traditionally
associated with inefficiency prevents the appearance of conver-
gence problems in practice when estimating a latent class model,
which by nature is highly non-linear. This facilitates replication of
the procedure when researchers or regulators compare different
specifications of the underlying technology. Second, this empirical
strategy allows us to compute efficiency scores usingmore flexible
representation of firms’ technologies if nonparametric techniques
such as DEA are employed. Finally, DEA is the method mainly used
by regulators (see [4]).

The main advantage of using an LCM approach to cluster firms
is that it allows us to control for environmental factors (i.e. contex-
tual z-variables) that are not observable, difficult to measure ac-
curately or even unknown in some cases. The LCM–DEA approach
also allows the inclusion of z-variables to identify groups of com-
parable firms that share similar environmental or technological
features (for a discussion on this topic in the DEA and SFA litera-
ture, see for instance [14,15]). Thus it is more sophisticated than
simply including z-variables without clustering. In this sense, our
approach is consistent with the idea of benchmarking, which is
based on the existence of comparable firms. However it extends
this by avoiding the need for arbitrary clustering, which is often
undertaken by researchers and regulators. Under arbitrary cluster-
ing larger samples are often split into sub-samples to be analysed
separately on the basis of a single size metric (such as number of
customers) or using subjective value judgement.

In a second stage DEA is separately applied for each class. DEA
is a type of efficiency analysis which involves mathematical pro-
gramming to construct a frontier of best performing companies.4
Farrell [16] was the first to propose this type of frontier analysis
and since then there have beenmany authors who have developed
and applied different models which have enlarged the literature in
DEA methodology (see [17]).

In this paper, we will use an input-oriented DEA model as we
assume that the output level cannot be modified by firms. This is a
reasonable assumption for a network utility required to provide
network capacity to service ultimate demand which is largely
out of its control. Technical inefficiency can be then viewed as a
proportional reduction in input usage or cost while maintaining
the output levels constant. In our simulation exercise we impose
constant returns to scale (CRS) as similar results are obtained if this
assumption is relaxed. The optimization problem in this case can
be represented as:

min
θ,λ

θ,

st − yi + Yλ ≥ 0,
θxi − Xλ ≥ 0,
λ ≥ 0

(6)

where λ is a vector of constants and θ is a scalar calculated for
each observation which represents the efficiency score for the ith

4 Although DEA is a rather flexible method that does not impose implicitly the
same ‘parameters’ on the whole sample of firms, we would like to point out,
however, that obtaining differentmarginal products (elasticities) at different points
of the sample does not mean in economics that we have estimated different
technologies. From the engineering point of view, the term ‘‘technology’’ is often
associated with a particular production process. Nevertheless in microeconomic
theory, technology is more broadly defined as the set of processes technically
feasible and available for firms in a moment of time, and movements along the
frontier just represent different production processes within a certain technology.
The differences in technology across firms (or over time) are captured in economic
analysis by shifts of the production frontier. Thus, only differences in production
processes are controlled when a single frontier is estimated either using DEA or
SFA.
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firm. yi and xi are the vectors of outputs and inputs for the ith firm
respectively,while Y andX are the output and inputmatrices for all
I firms. This linear programming problem must be solved I times
and gives an efficiency score θ equal or lower than one for each
firm. In our empirical application we do not assume that all the
firms exhibit constant returns to scale as electricity transmission
firms are natural monopolies and increasing returns to scale were
obtained inmany applied studies.5 A variable returns to scale (VRS)
specification only requires adding the convexity constraint I1′λ =

1 to the minimization problem in (6). I1 is a vector of ones, and
multiplying by the vector of weights λ ensures that firms are only
compared with firms of a similar size.

As pointed out by one referee, we are using a two-stage proce-
dure that combines parametric and nonparametric techniques. Al-
though it is unlikely that both techniques are fully compatible, we
do not have to deal with the inconsistency problem that appears
in the traditional two-stage DEA procedure. This problem arises
in a different situation, when DEA is undertaken first and para-
metric analysis is then performed on the DEA results. Simar and
Wilson [21] have shown that applying a parametric regression in a
second stage using the estimates obtained in a first stage through
DEA is not consistent because firms’ inefficiency is a relative mea-
sure and, hence, the nonparametric efficiency scores are serially
correlated. As the order is reversed, this problem does not emerge
in our case. Moreover, none of the variables used in our second
stage are predicted or estimated variables.

Furthermore it should be mentioned that the DEA approach
can be used as a clustering method. There is an evolving literature
on this topic from [22–24]. However [25] find that this approach,
which is based on the piecewise production functions obtained
from DEA models for clustering the data, faces several problems.
Firstly, it may have alternative optimal solutions and hence the
clusters produced are not unique. Secondly, they find that it is
possible not to achieve any strictly positive multiplier weight for
inputs and outputs in evaluating all firms. And finally, some of the
obtained clusters may have overlapping units.

3. Simulation analysis

In this section we carry out a simulation exercise to examine
whether a latent class approach is a good procedure to find groups
of comparable companies within a sample whenwe aim to apply a
benchmarking with DEA, commonly used in regulatory processes.
It should be pointed out that the LCM is compared with other
clustering methods as a point of comparison. However, the main
objective in our simulation is to test the discriminatory power of
the LCM under different scenarios when technological and output
differences arise, which as far as we know has not been performed
before in the efficiency analysis literature.

The simulation exercise can be summarized as follows. Firms’
costs are calculated using simulated data and following the
normalized linear specification proposed by Bogetoft and Otto [26]
for the regulation of electrical Distribution System Operators
in Germany. This functional form allows us to easily introduce
heteroscedasticity in our data generation process. Following this
specification, our cost function can be expressed as follows:

Xi

Y1i
= β1 + β2

Y2i

Y1i
+ u+

i + vi (7)

where Xi is our cost, while β1 and β2 stand for the marginal costs
of the outputs Y1 and Y2 and define our technologies. Although
we are imposing constant returns to scale in (7) to prevent size

5 See for instance [18–20,3].
effects when comparing our sample separating methods, the use
of variable returns to scale in the simulation produces the same
partition of the sample and slightly larger efficiency scores.

In the papers in which simulations are carried out, the choice
of the approach used in the Data Generation Process (DGP) is fre-
quently quite contentious (see for instance [27]). However, theway
in which our DGP is defined here is not uncommon in efficiency
analysis papers and can be found both in the SFA literature (see
for instance [28]; or [29]) and in the DEA literature (see for in-
stance [30]; or [31]).

Inefficiency levels are obtained assuming that the inefficiency
term, u+, is a positive half-normal distributionwith zeromean and
σ 2
u variance. Random noise is simulated assuming that the noise

term v follows a normal distribution with zero mean and σ 2
v vari-

ance.We impose σ =


σ 2
u + σ 2

v equal to 1, which, given the spec-
ification that we have chosen, implies that the size of the random
term in our function is relatively low, i.e. our levels of generated
efficiency are quite high. We also fixed γ = σ 2

u /(σ 2
u + σ 2

v ) equal
to 0.5, which implies that the weights of inefficiency and noise in
the function are the same. Given the previous values, this implies
that σu = σv = 0.71, and therefore is equivalent to generating a
value of λ = σu/σv equal to 1.6

We randomly generate 1000 observations of two hypothetical
outputs (Y1, Y2) using a uniform distribution between 0 and 1. We
have chosen this distribution instead of the normal distribution
because these variables cannot take negative values, and outputs
in DEA must be positive. As the random noise term takes both
positive and negative values, we impose on all technologies that
(β1 + β2) = 10 to obtain positive costs. Technologies thus differ
in relative marginal costs, i.e. the relative weight of each β . In
particular, we have simulated three possible technologies:

• Technology A: β2 = β1, (β1 = 5, β2 = 5)
• Technology B: β2 = 2β1, (β1 = 10/3, β2 = 20/3)
• Technology C: β2 = 4β1, (β1 = 2, β2 = 8).

Both coefficients are the same in technology A, while marginal
costs are increasingly different in the other two technologies, B and
C. Although these differences in parameters between classes are
associatedwith different technologies, we have alreadymentioned
before that they can be interpreted either as differences in
technology or differences in environmental variables. Next, we
will examine the robustness of our results by adding differences
between outputs. In particular, we modify the original statistical
distribution of the second output by doubling (Y2 ∼ 2 · U(0, 1))
and quadrupling (Y2 ∼ 4 · U(0, 1)) its range of values.

Taking into account that we always apply the technology A
to the first 500 observations and then B or C to the following
500 observations, and that we have three output distributions, 6
possible scenarios are obtained. In Table 1, we show the scenarios
and the percentage success in predicting the underlying class
membership using different clustering methods. Percentages of
success can be obtained through the identification of the groups,
which is possible after comparing the real β-ratios with those
obtained using group-specific OLS regressions. The estimated
ratios that are also shown in Table 1 give an idea about how well
each procedure is able to identify the underlying, but different,
technologies.

The first empirical exercise has to dowith the case inwhichDEA
is applied using the real separation of our data. By construction,
the percentage of success in this case is 100%. For this reason, this
exercise is used as a benchmark to study the performance of four

6 Although the values of these parameters have been arbitrarily chosen, the
results obtained from the simulation are consistentwith respect to changes in them
as long as we keep the underlying efficiency at ‘normal’ levels.
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Table 1
First stage simulation results: percentage success in identifying technologies.

Simulation Procedure % Success Underlying technology
Group 1 (β1/β2) Group 2 (β1/β2)

A&B Simulation – 1.000 0.500
(OD 1) Real separation 100.00 1.080 0.597

Median (C) 49.60 0.890 0.756
Cluster (Y1, Y2) 46.50 0.849 0.815
Cluster (Y1, Y2 , C) 49.30 0.894 0.763
LCM 65.70 1.063 0.555

A&C Simulation – 1.000 0.250
(OD 1) Real separation 100.00 1.080 0.331

Median (C) 50.20 0.678 0.575
Cluster (Y1, Y2) 46.50 0.646 0.642
Cluster (Y1, Y2 , C) 49.90 0.684 0.593
LCM 79.20 1.162 0.337

A&B Simulation – 1.000 0.500
(OD 2) Real separation 100.00 1.077 0.597

Median (C) 55.00 0.834 0.799
Cluster (Y1, Y2) 54.00 0.822 0.812
Cluster (Y1, Y2 , C) 55.10 0.822 0.802
LCM 79.30 1.110 0.596

A&C Simulation – 1.000 0.250
(OD 2) Real separation 100.00 1.077 0.331

Median (C) 57.20 0.723 0.562
Cluster (Y1, Y2) 54.00 0.656 0.609
Cluster (Y1, Y2 , C) 58.30 0.714 0.529
LCM 87.90 1.099 0.337

A&B Simulation – 1.000 0.500
(OD 3) Real separation 100.00 1.076 0.598

Median (C) 57.40 0.868 0.765
Cluster (Y1, Y2) 53.90 0.833 0.785
Cluster (Y1, Y2 , C) 57.80 0.863 0.754
LCM 90.60 1.097 0.583

A&C Simulation – 1.000 0.250
(OD 3) Real separation 100.00 1.076 0.331

Median (C) 60.60 0.779 0.493
Cluster (Y1, Y2) 53.90 0.674 0.576
Cluster (Y1, Y2 , C) 61.80 0.772 0.486
LCM 94.70 1.102 0.328
sample separation methods: the median of the cost, the k-means
clustering algorithm considering the outputs, the k-means cluster-
ing algorithm including both outputs and cost, and the latent class
model (that involves both output and cost information). Looking
at the percentages of success and the β-ratios we can confirm that
the LCM is themethod that better allocates observations to specific
technologies. It is also the best clusteringmethod at identifying the
relationship between technologies represented by the β-ratios. As
we move to a different scenario where there are more uneven fea-
tures among groups, we observe that there is a clear divergence
in the behaviour of the procedures: whereas the LCM improves its
percentage of prediction success,7 the alternative procedures only
slightly improve their performances.

We show in Table 2 the average efficiencies that are obtained
after DEA is applied separately to each group of firms. The last
column shows the sum of squared differences (SSD) with respect
to the real separation case. The SSD is calculated as the total sum of
squared differences of the predicted efficiency with respect to the
value of the underlying efficiency of each observation. The smallest
SSD value allows us to identify the best individual predictor
procedure, i.e. the clustering method that better predicts the ‘real’
efficiencies. Leaving aside the real separation case where SSD is
zero by construction, LCM provides by far the smallest SSD in all
scenarios. As LCM is the procedure that gives the closest efficiency

7 The estimated probabilities for the most likely latent class also increase, so the
LCM not only improves its prediction capacity but also the precision with which
each observation is assigned.
levels to the real separation case, it is the best at predicting
individual efficiencies.

When we move from a model with only one class to a model
with two classes and unobserved heterogeneity is somehow taken
into account (or ‘removed’) in a first stage, larger efficiency
scores are obtained when carrying out a traditional DEA analysis.
The computed efficiency improvements are partially caused
by the fact that the number of peers necessarily decreases
when a model with two classes is used,8 regardless of the
clustering method. However, our simulation exercise shows that
these efficiency increases have also to do with the selection
of a specific clustering method. In particular, Tables 1 and
2 (and Fig. 1) indicate that the better the partition is, the
larger the average efficiency scores are. Moreover, this result
happens regardless of whether we carry out either traditional
DEA or SFA (not shown) analyses in the second stage of our
procedure.

Fig. 1 shows the positive correlation that exists between
efficiency and success in assigning observations to technologies
using the LCM approach. This figure allows us to examine the
discriminatory power of the model when there are either larger
differences between technologies (illustrated as the shift from
the blue to the red line) or between output data generation

8 This does not necessarily happen when we move from 2 to 3 classes (and so
on) because there is a reallocation of the observations into the different classes.
Indeed, as a larger partition of the sample does not imply that one class is divided
into two separable classes, some observations might have ‘‘new’’ peers and, hence,
their (relative) efficiency might be less than before.
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Table 2
Second stage (DEA) simulation results: predicted vs. underlying efficiency.

Simulation Procedure Av. Eff. (%) Sum of squared differences

A&B Real separation 76.73 —
(OD 1) No separation 67.15 135,252

Median (C) 73.29 118,885
Cluster (Y1, Y2) 70.38 108,590
Cluster (Y1 , Y2 , C) 72.91 118,993
LCM 73.35 40,268

A&C Real separation 75.16 —
(OD 1) No separation 54.70 533,029

Median (C) 65.26 322,549
Cluster (Y1 , Y2) 61.65 379,683
Cluster (Y1 , Y2 , C) 64.65 338,483
LCM 78.93 139,993

A&B Real separation 83.61 —
(OD 2) No separation 73.28 151,038

Median (C) 76.75 121,264
Cluster (Y1 , Y2) 75.93 119,387
Cluster (Y1 , Y2 , C) 76.22 124,400
LCM 85.75 51,232

A&C Real separation 83.14 —
(OD 2) No separation 63.22 507,703

Median (C) 69.29 372,090
Cluster (Y1 , Y2) 68.14 386,773
Cluster (Y1 , Y2 , C) 68.32 389,718
LCM 85.87 45,663

A&B Real separation 89.26 —
(OD 3) No separation 78.75 180,309

Median (C) 80.36 158,268
Cluster (Y1 , Y2) 79.99 160,646
Cluster (Y1 , Y2 , C) 80.20 159,799
LCM 90.76 29,598

A&C Real separation 89.24 —
(OD 3) No separation 70.49 511,481

Median (C) 73.45 429,212
Cluster (Y1 , Y2) 72.86 446,596
Cluster (Y1 , Y2 , C) 72.95 438,210
LCM 90.15 16,511
Y2 ~ U (0,1)

Y2 ~ U (0,1)

Y2 ~ 2·U (0,1)
Y2 ~ 2·U (0,1)

Y2 ~ 4·U (0,1)
Y2 ~ 4·U (0,1)
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Fig. 1. Average efficiency and percentage of success for the LCM.

processes (illustrated as movements along the red and blue lines).
As expected, the percentages of success are much larger when
the two technologies differ notably in their characteristics. It is
worth mentioning that this increase in percentages of success is
especially important when there is no separating information on
the output side, i.e. when both outputs are similarly generated.
When outputs provide additional information to split the sample,
both efficiency levels and percentages of success increase,
regardless of whether the technologies are similar or diverse. On
the other hand, Fig. 1 also shows that as inequalities between
groups rise, the average efficiency score obtained using LCM as
a sample separation method even exceed the average efficiency
score from the real separation case. This shows that an imperfect
assignment of firms to groups can lead us to obtain higher levels of
efficiency. In other words, making a good partition of the sample
does not necessarily imply obtaining larger efficiencies.

In summary, the above results clearly indicate that LCM
deals with unobserved heterogeneity much better than the other
clustering methods. We attribute this better performance to the
fact that LCM splits the data taking into account the objective of
the second stage, where a relationship between outputs and inputs
(or costs) is estimated in order to compute inefficiency scores.
In this sense, and borrowing the terminology used for dimension
reduction, this approach can be interpreted as a ‘supervised’
method to split the data.

From a regulation point of view, the above results suggest
that, given a number of classes, regulators could use this statistic
(i.e. the mean efficiency) to compare the relative performance of
several clustering methods in a real case in which they do not
have information about the ‘underlying partition’ of the sample.
Our proposed procedure thus can be labelled as a conservative
approach. However, using a method that provides conservative
efficiency estimates is common among regulators. For example,
in Germany, the regulator assesses the performance of each firm
using both DEA and SFA efficiency scores and chooses the larger
of the two estimates [32]. Here we provide an additional reason,
based on simulation results, that justifies the use of a conservative
approach when, and only when, clustering methods are used in
benchmarking.

4. Application to the US electricity transmission industry

4.1. Data, sample and variables

We next illustrate the proposed procedure with an application
to the US electricity transmission industry. As is highlighted by
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Table 3
Descriptive statistics.

Variable Units Mean Max. Min. Std. Dev.

Totex Cost US$ 144,602,000 667,127,000 20,713,600 120,324,000
Peak load Output MW 6173 23,111 380 5533
Electricity delivered Output MWh 6,280,310 74,584,700 56,730 8,839,980
Total energy Output MWh 34,557,900 116,415,000 2339,000 26,752,600
Network length Output Miles 4064 16,292 1087 3253
Minimum temperature Weather ° F −10.35 19.90 −59.80 16.51
Wind speed Weather Knots 6.84 9.60 4.63 1.01
Precipitation Weather Inches 0.07 0.16 0.01 0.03
Growth in demand Other % 0.03 244.11 −74.96 17.72
[33], benchmarking of electricity transmission utilities is a chal-
lenging task due to the small number of transmission utilities that
usually operate in the jurisdiction of a particular regulator. This
likely explains why there are few empirical papers published on
efficiency analysis of electricity transmission firms. Exceptions are
[18–20,34]. However, none of these articles deal with unobserved
heterogeneity or technological differences.9

The database used in this paper is as described in [3] and con-
tains 405 observations on 59 US electricity transmission firms for
the period 2001–2009. Following the literature, we specify a stan-
dard cost function with four outputs where our cost variable is
Totex (which includes operation and maintenance expenses, an-
nual depreciation on capital assets, and annual return on the bal-
ance of capital, and measured in 2000 dollars). The four outputs
are: Peak Load (PL), which is the maximum peak load of the year
during 60 min; Electricity Delivered (DE), which is the total annual
energy delivered by the system; Total Energy (TE), which stands
for the total energy of the system, including total net own gen-
eration, total purchases from others, net exchanges in the system
(received–delivered), net transmission for others and transmission
by others; and Network length (NL), which is a measure of the ge-
ographic spread of each company and is obtained as the sum of all
transmission lines in miles regardless of the number of power ca-
bles on each power line. The four outputs considered (explanatory
variables) and the cost variable (dependent variable) will be used
later on in the DEA stage.

To analyse robustness, we extend the standardmodel by adding
four time-invariant environmental variables to split the sample
of transmission utilities. Three of these are weather variables:
Temperature (TMIN), which represents the annual minimum
temperature in Fahrenheit degrees; Wind speed (WIND), which
is the average of the daily mean wind speeds in knots; and
Precipitation (PRCP), which is the average of daily precipitation in
inches. The last environmental variable is the Growth in Demand
(GDEM) for each firm over time. The descriptive statistics of the
full set of variables are shown in Table 3.

4.2. Empirical results

As above mentioned, we should initially use a simple specifica-
tion of the cost function to split the sample in order to facilitate the
replication of the procedure and to avoid convergence problems
whenmore comprehensivemodels are estimated. In this sense, we
use a Cobb–Douglas (or logarithm) specification of the cost func-
tion due to its widespread use and acceptance in previous empir-
ical studies. Convergence problems prevented us from estimating

9 On the contrary there is an extensive literature in electricity distribution (see
for instance, [35], for a European survey) and there are many articles that address
the issue of heterogeneity including environmental factors in this sector (see for
instance, [36–38], or [39]).
Table 4
Efficiencies with the LCM–DEA procedure.

Number of classes Average efficiency ∆ % Obs. improv.

1 64.84 – –
2 77.03 12.20 100.00
3 79.55 2.51 93.09
4 80.36 0.81 97.28
5 84.31 3.95 76.30
6 82.64 −1.66 56.79
7 86.71 4.06 69.14
8 87.51 0.80 61.23
9 87.41 −0.10 62.72

the LCM formore than two classeswith the linear specification that
we used in our simulation exercise. However, these problems did
not appear using the Cobb–Douglas functional form. As we do not
know the true number of underlying technologies, this is an inter-
esting advantage of the logarithm specification of the model. The
coefficients for the Cobb–Douglas specification are shown in the
Appendix.

In Table 4 we show the descriptive statistics of the efficiency
scores obtained using DEA as the number of classes is increased,
and the number of observations (as a percentage) that improve
their efficiency scores as we move from one class to two classes
and so on. As expected, the average efficiency score for the so-
called non-separation model, which can be considered as a model
with one class, is 64.84%, much lower than the average efficiency
obtained from the model with two classes, 77.03%. The most
comprehensive model that is estimated is a LCM with 9 classes.
Although the average efficiency score for this model goes up to
87.4%, the largest change in efficiencies occurswhenwemove from
one class to two classes. We can also see that most observations
have higher efficiency scores when more comprehensive models
are estimated. This is compulsory for the 100% of the observations
when we move from a model with one class to a model with two
classes as the number of peers necessarily decreases in this case.
This does not necessarily happenwhenwemove from2 to 3 classes
(and so on) because there is a reallocation of the observations
into the different classes and some observationsmight have ‘‘new’’
peers.10

The choice of the number of classes is a key issue in any cluster-
ing method. The AIC and BIC model selection criteria and some of
their variants are commonly used to choose the appropriate num-
ber of classes in the LCM literature. The general form ofmost infor-
mation criteria can be written as follows:

− 2 ln LF + Penalty (8)

where the first term is twice the negative logarithm of the max-
imum likelihood which decreases when the number of classes
(complexity) increases. The penalty term penalizes too complex
models, and increaseswith the number of parameters of themodel.

10 See footnote #5.
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Fig. 2. Choice of the number of classes.

Thus, these criteria involve minimizing an index that balances the
lack of fit (too few classes) and overfitting (toomany classes).Mod-
els with lower values of (8) are generally preferred.

Several information criteria are shown in Fig. 2 to illustrate
robustness. The figure includes the traditional AIC and BIC criteria
and some of their variants, the modified AIC criterion (AIC3), the
corrected AIC (AICc), the so-called AICu, and the consistent AIC
(CAIC) that can be considered either an AIC or BIC variant. Formore
details about these criteria and the associated penalty functions,
see [40]. All of them show a remarkable improvement in fitness-
parsimony when we move from just one class to a model with
two classes. While the traditional AIC criterion and some of their
variants (AIC3, AICc, and AICu) show little improvements when
more classes are added, the BIC and CAIC clearly deteriorate their
performance with more than two classes.11 Generally speaking,
the abovementioned tests allow us to conclude that a reasonable
and practical trade-off between good description of the data and
complexity is provided by a model with two classes. We therefore
choose this model as our preferred model.

We also should expect notable differences in the composition
of the two groups of firms if, instead of the LCM-based procedure,
we use other procedures to split the sample. To give a sense of
what difference this makes to the sample selection, we can pay
attention to the percentage of observations forwhich this approach
gives higher efficiencies than other methods. LCM provides not
only the largest average efficiency score in the second stage, but
also the majority of the observations obtain a higher value under
this approach than from the others. More than 70% of observations
are in an equal or better situation under LCM compared to the
median of the network or cost and any cluster application. Thus,
as discussed in the simulation section, the LCM approach provides
the more favourable framework to benchmark firms. In addition,
cluster-based separation procedures provide much more uneven
sample partitions than the LCM approach. While in LCM there
are 129 observations in a group and 276 in the other, under the
two cluster applications the division is as follows: 49/356 when
network is used as separating variable and 72/333 when also cost
is included. This indicates the potential value to regulators of our
LCM approach in reducing the need to rely on the small samples
that can arise while using arbitrary approaches to sub-sample
creation.

11 The same happens if we use a criterion (not shown in Fig. 2) that penalizes
poorly separated classes in LCMs with two or more classes, such as the so-
called Complete Likelihood Classification (CLC) and the Integrated Classification
Likelihood-BIC (ICL-BIC).
Table 5
Efficiencies obtained with different clustering methods.

Procedure Mean Std. Dev. Max. Min.

DEA (No separation) 64.84 21.87 100.00 9.15
LCM–DEA 77.03 19.22 100.00 9.39
Cluster (N)-DEA 65.52 22.45 100.00 9.15
Cluster (N, C)-DEA 67.05 21.23 100.00 11.77
Median of network-DEA 69.54 21.31 100.00 10.42
Median of cost-DEA 74.40 20.12 100.00 31.70

As a result of the above allocation, the alternative sample sep-
aration procedures provide different efficiency scores for each
utility. The estimated efficiency levels are shown in Table 5. In
accordance with the simulation results, the lowest levels are ob-
tained not only when there is no separation of firms but also when
we use cluster procedures using either network size or firms’ cost
as separating variables.12 On the other hand, the largest efficiency
scores are obtained when the LCM is used as a statistical tool to
account for unobserved differences among firms. It is worth not-
ing that most clustering procedures produce rather low efficiency
scores for some observations. It should be noted, however, that this
result has to do with application of DEA in the second stage. If we
instead use a SFA approach, larger efficiencies would be obtained.
This always happens because part of the measured inefficiency us-
ing DEA is now captured by the noise term of the model.

Using the median of cost as a sample-separating variable
not only produces larger efficiency scores, but also a minimum
efficiency (about 32%) that is much larger than in other clustering
methods (including the LCM). This result is caused by the fact
that we have used the same variable to both split the sample
and measure firms’ inefficiency. If we use the median of cost to
split the sample we are falsely minimizing the differences in costs
within each group. For instance, some very inefficient small firms
(with relatively high costs)might be allocatedwith large firms, and
some very efficient large firms (with relatively low costs) might be
allocated with small firms. The consequence of these movements
is both a balance of the average efficiencies of both classes, and
an increase of the minimum efficiency level as the small (large)
firms allocated with large (small) firms will becomemore efficient
because the lack of peers with similar output levels. Generally
speaking, the above discussion highlights the fact that we should
not split the sample using a variable that is also being used to
measure firms’ inefficiency.

To give some intuition about the heterogeneity between classes
that has been disentangled using the LCM procedure, we show in
Table 6 the descriptive statistics of each one of the two groups
that were found.13 It can be seen that the average value of the
cost and all the outputs is higher in class 1 than in class 2 so the
largest companies are mainly located in the first class. However
the standard deviations in class 1 for these variables are in general
larger than in 2, indicating that there are more differences of
size between firms in this class. Maybe this dissimilarity in the
scale is because these firms operate in similar environments as
it can be inferred from the smaller standard deviations of their
environmental variables. The main difference on the average of
these variables is observed for the temperature, indicating that
in general firms of class 1 are located in colder regions, and the
growth of the demand, which is mainly positive for firms in class

12 The sample partition is the samewhenwe take into account all the outputs and
cost, or network size and cost together.
13 To confirm the point made in footnote #1, we have checked the number of
observations that freely change between classes in ourmodel for the sample period.
It can be observed that about 90% of our firms’ observations remain in the same
cluster fromone year to another andhence no erratic changes are observed between
classes over time.
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Table 6
Descriptive statistics of the classes found with LCM.

Variable Mean Max. Min. Std. Dev.

CLASS 1 (129 observations)
TOTEX 224,218,000 667,127,000 20,713,600 166,005,000
PL 7730 23,111 380 6708
DE 6,376,580 39,484,700 82,304 7948,270
TE 40,417,200 115,685,000 2339,000 30,081,500
NL 5078 16,292 1088 4733
TMIN −13.04 19.00 −59.80 14.05
WIND 6.81 9.22 4.63 1.05
PRCP 0.07 0.15 0.02 0.03
GDEM 0.80 62.59 −40.35 11.68

CLASS 2 (276 observations)
TOTEX 107,391,000 309,969,000 25,559,800 63,868,300
PL 5446 22,054 427 4730
DE 6235,310 74,584,700 56,730 9,240,720
TE 31,819,300 116,415,000 2,886,900 24,629,500
NL 3591 10,451 1087 2099
TMIN −9.09 19.90 −59.80 17.43
WIND 6.85 9.60 4.76 1.00
PRCP 0.07 0.16 0.01 0.03
GDEM −0.33 244.11 −74.96 19.94

1 and negative for firms in class 2. These reasonable differences
illustrate the nature of the heterogeneity that is controlled in our
model. Clearly we could have arbitrarily allocated firms to two
subsamples using a temperature threshold, however the LCM has
allowed us to identify the number of subsamples to be analysed
separately and then allocated firms between them in a statistically
robust way.

4.3. Robustness analyses

We next introduce some additional tables in which we show
the results obtained from alternative approaches or specifications
that help us to analyse the robustness of the proposed clustering
procedure based on LCM.

We first show in Table 7 the results we get when we introduce
three weather variables and demand growth as sample-separating
variables in the first stage of our procedure. Table 7 shows that both
LCMs give us larger efficiency scores than extended k-means pro-
cedures that include environmental variables (alone or with infor-
mation about the cost function). Based on our simulation results,
we could then conclude that LCM also outperforms other sample
separating methods when information about firms’ environmen-
tal conditions is available. On the other hand, the estimated co-
efficients of the sample-separating variables (see Appendix) are
statistically significant, which implies that they have helped to bet-
ter split the sample. Despite this, our sample partition does vaguely
change when we try to control for environmental variables as the
percentage of coincidence in allocating observations is quite high
(88%). This means that the between-class differences in estimated
parameters are already capturing heterogeneity in firms’ operating
environment. In other words, a simple latent class model is able
to control for those differences without explicitly including envi-
ronmental variables that regulators might find it very difficult or
expensive to collect. To examine better this issue, we have carried
out an auxiliary regression (not shown) where an environmental
variable composite interacts with the rest of explanatory variables
of the frontier function. As we cannot reject that these coefficients
are statistically significant,we can conclude that the parameter dif-
ferences identified in a LCMmodel are, at least partially, capturing
differences in environmental conditions.

Regarding the specification of the functional form, Table 8
provides a brief comparison of both Cobb–Douglas and Translog
results. Again, the parameter estimates are shown in the Appendix.
The correlation of Cobb–Douglas and Translog efficiency scores
Table 7
Clustering methods including environmental variables.

Procedure Mean Std. Dev. Max. Min.

LCM (W, D) - DEA 77.03 20.40 100.00 9.39
Cluster (W, D) - DEA 69.98 22.83 100.00 9.24
Cluster (W, D, N) - DEA 65.52 22.45 100.00 9.15
Cluster (W, D, N, C) - DEA 67.05 21.23 100.00 11.77

Table 8
Cobb–Douglas vs. Translog using LCM–DEA.

Number of obs. Av. eff.
CD Translog CD Translog

Without including environmental variables
Class 1 129 102 66.83 63.61
Class 2 276 303 81.80 81.35
Both 405 405 77.03 76.88

Including environmental variables
Class 1 174 117 69.09 62.78
Class 2 231 288 83.01 82.25
Both 405 405 77.03 76.63

is very high (about 93%) and the overlap between classes is
also remarkable (almost 84%). Furthermore, the model selection
analysis indicates that the best trade-off between fitness and
complexity for the Translog specification is provided once more
by a model with two classes. A Cobb–Douglas specification is still
preferred on the grounds of simplicity and because, in our case, the
way in which the technology is modelled is not very relevant.

Although this paper does not attempt to contribute to the cur-
rent debate about the suitability of parametric and nonparametric
approaches for purposes of benchmark regulation, we now try to
compare the relative performance of our procedure that combines
LCM and DEA and two fully parametric procedures based on LCM,
using both Cobb–Douglas and Translog specifications for the cost
function. Besides the LCM–DEA approach, Table 9 provides results
for the LCM–ALS model in which the traditional stochastic frontier
model developed by Aigner et al. [41] (ALS) is applied in the sec-
ond stage as done in Agrell et al. [2]. The third model, LCSFM, is
a one-stage Latent Class Stochastic Frontier Model introduced by
Greene et al. [6] that adds an inefficiency term to the LCM. Several
interesting remarks are in order. First, when ALS is applied after
the partition of the sample, the average efficiency for the whole
sample is 100% because the estimated value of σu is equal to zero.
This awkward result is often known as the ‘wrong skewness prob-
lem’ in the SFA literature, andmight occur even when the model is
correctly specified [42]. DEA likely became a very popular tool for
benchmarking electric utilities because it allows regulators to ad-
dress this issue. Second, LCSFM provides very similar partitions of
the sample than the proposed procedure based on a non-frontier
specification of the random term. For instance, the percentage of
coincidences is about 98% when a Cobb–Douglas specification is
used. This similarity is caused by the presence again of the ‘wrong’
skewness problem as the inefficiency term or σu (ignored in the
proposed procedure) tends to vanish when a LCSFM is estimated.
Therefore, it seems that a LCM model without a frontier specifica-
tion and DEA is the best option to obtain proper efficiency levels in
our application.

Finally, although the paper is focused on clustering methods,
we also try to compare the relative performance of our proposed
procedure and two non-clustering methods broadly used in the
literature to take into account unobserved heterogeneity: the TFE
and TRE models introduced by Greene [5,6]). As shown in Fig. 3,
most of our earlier model selection criteria indicate that our
empirical strategy based on estimating a LCM model provides a
better fit than any of the stochastic frontier models introduced by
Greene. This happens whether we use a Cobb–Douglas or Translog
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Table 9
1 stage vs. 2 stages LCM clustering methods.

Specif. Procedure Class 1 Class 2
Number of obs. Av. eff. σu Number of obs. Av. eff. σu

LCM–DEA 129 66.83 – 276 81.80 –
CD LCM–ALS 129 100.00 0.00 276 100.00 0.00

LCSFM 138 87.28 0.32 267 100.00 0.00
LCM–DEA 102 63.61 – 303 81.35 –

Translog LCM–ALS 102 100.00 0.00 303 100.00 0.00
LCSFM 67 77.21 0.52 338 100.00 0.00
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Fig. 3. Clustering vs. non-clustering model selection.

specification for the cost frontier. Our results seem to indicate
that the underlying heterogeneity is better captured by a finite
number of technologies rather than assuming that there are as
many technologies as firms, but with the same marginal costs,
economies of scale and other technological characteristics.

5. Conclusions

Electricity networks are often regulated by implementing
incentive-based regulation schemes based on a comparison of
utilities’ performance with best-practice references. A key issue
that is sometimes not taken into account is the heterogeneity
or unobserved differences among firms associated with different
technologies or environmental conditions. As in Agrell et al. [2],
in this paper we propose using a latent class approach as a
statistical clustering method to split the sample into groups of
more comparable firms before carrying out a traditional efficiency
analysis using DEA, the most common frontier analysis technique
used by regulators in utility benchmarking.
Weadvocate this approach for several reasons. First, latent class
models are specifically designed to cluster firms by searching for
differences in production or cost parameters, which is exactlywhat
regulators are looking for. Second, our approach can be viewed as a
‘‘supervised’’method for clustering data as it takes into account the
same relationship that is analysed later, often using nonparametric
frontier techniques. And third, our approach is not more ‘‘techni-
cal’’ than other clustering methods as it can be implemented using
standard software. The use of the same variables in both the latent
class stage and the DEA stage and the use of simple model specifi-
cations contribute to simplifying the proposed procedure.We have
demonstrated through a simulation exercise that the latent class
approach better allocates observations into different classes than
alternative clustering procedures and better predicts the underly-
ing efficiency of each observation. The discriminatory capacity and
the assignment success of the proposed clusteringmethod increase
when large differences between technologies or output distribu-
tions arise. This, in turn, yields a convergence of estimated effi-
ciency levels to the true underlying levels. Moreover, the better the
partition is, the larger the average efficiency scores are, whether
we carry out either parametric or nonparametric efficiency analy-
ses in the second stage of our procedure. From a regulation point of
view, this outcome indicates that, given a number of classes, regu-
lators could use the average efficiency level to compare the relative
performance of several clustering methods in a real case in which
they donot have information about the ‘underlying partition’ of the
sample. In this sense, our simulation exercise justifies the use of a
method that provides conservative efficiency estimates in bench-
marking when, and only when, clustering methods are used.

Finally, we illustrate the proposed method with an applica-
tion to a sample of US electricity transmission firms for the period
2001–2009. Severalmodel selection tests allow us to conclude that
a reasonable and practical trade-off between good description of
the data and complexity is provided by a latent class model with
two classes. In this sense, we also find that the largest change in
efficiency scores occurs when we move from a one-class model
(without any partition of the sample) to a model with only two
classes. In line with our earlier simulation results, the largest ef-
ficiency scores are obtained when the LCM is used as a statistical
tool to account for unobserved differences among firms.

We have also found that a simple latent class model is able to
control for heterogeneity in firms’ operating environment without
explicitly including environmental variables that regulators might
find it very difficult or expensive to collect. Our results seem to
indicate that the underlying heterogeneity is better captured by a
finite number of technologies (identified by a clustering method)
than by using non-clustering methods that, in contrast, assume
that there are as many technologies as firms, but with the same
technological characteristics.
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Table A.1
Parameter estimates of the LCM using the US electricity transmission data.

Variable Cobb–Douglas Translog
Coeff. t-ratio Coeff. t-ratio Coeff. t-ratio Coeff. t-ratio

Class 1
Constant 18.686 326.6 18.668 383.3 18.586 185.5 18.634 209.0
ln PLit 0.808 4.853 0.800 4.907 0.554 1.692 0.445 1.276
ln DEit 0.044 1.900 0.042 1.457 0.040 0.492 0.087 1.170
ln TEit −0.261 −1.357 −0.237 −1.300 0.048 0.133 0.176 0.579
ln NLit 0.184 2.038 0.182 2.085 0.047 0.212 0.004 0.022
1/2(ln PLit )2 0.347 0.148 −0.754 −0.727
1/2(ln DEit )

2 0.049 0.783 0.098 1.170
1/2(ln TEit )

2 1.086 0.344 −0.894 −0.769
1/2(ln NLit )2 0.362 0.513 0.183 0.294
ln PLit · ln DEit 0.521 2.002 0.327 1.295
ln PLit · ln TEit −0.678 −0.258 0.849 0.850
ln PLit · ln NLit 0.015 0.024 −0.412 −0.731
ln DEit · ln TEit −0.567 −1.803 −0.485 −2.025
ln DEit · ln NLit 0.055 0.413 0.100 0.795
ln TEit · ln NLit −0.142 −0.174 0.322 0.497
Sigma 0.380 22.982 0.381 22.078 0.356 15.218 0.332 15.719

Class 2
Constant 18.385 1664.0 18.390 1649.0 18.227 1186.4 18.201 1164.2
ln PLit 0.144 3.109 0.166 3.881 0.273 6.622 0.423 8.491
ln DEit 0.054 5.258 0.060 5.823 0.048 5.113 0.043 4.069
ln TEit 0.415 7.817 0.401 7.785 0.295 5.794 0.106 1.754
ln NLit 0.136 6.192 0.123 5.133 0.164 9.013 0.182 8.158
1/2(ln PLit )2 0.440 2.403 1.519 5.569
1/2(ln DEit )

2 0.066 6.968 0.024 2.071
1/2(ln TEit )

2 0.017 0.060 1.624 3.870
1/2(ln NLit )2 0.487 9.009 0.4 71 7.533
ln PLit · ln DEit −0.142 −3.626 −0.126 −2.734
ln PLit · ln TEit −0.177 −0.796 −1.457 −4.398
ln PLit · ln NLit 0.182 3.035 0.324 4.064
ln DEit · ln TEit 0.090 1.789 0.093 1.649
ln DEit · ln NLit −0.041 −2.606 0.006 0.308
ln TEit · ln NLit −0.165 −2.127 −0.371 −3.318
Sigma 0.119 11.332 0.111 11.382 0.109 12.219 0.117 15.357

Class membership probabilities
Constant −0.088 −0.416 −0.881 −3.524
TMINi −0.065 −3.001 −0.074 −3.255
WINDi −0.373 −2.153 0.974 3.215
PRCPi 11.910 1.535 31.827 3.268
GDEMi 0.092 1.744 −0.086 −1.582
Prior class prob. 0.444 0.556 0.479 0.521 0.351 0.649 0.292 0.708

Log LF −39.666 −26.726 34.342 54.986
Policy Research Group (University of Cambridge) and the Spanish
Ministry of Science and Innovation through the project ECO2010-
17240. Pollitt acknowledges the support of Ofgem in the collection
of the US data.

Appendix

See Table A.1.
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