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1 Introduction

All the information of a quantum field theory is encoded in the generating functional of its

correlation functions. In general this is very hard to compute, yet in some cases and for

some other observables such as partition functions and Wilson loops it is possible to perform

exact computations that include all non-perturbative effects. For supersymmetric gauge

theories in particular and starting with the work of Pestun [1], localization techniques

– 1 –



J
H
E
P
0
5
(
2
0
1
5
)
1
1
1

have led to remarkable progress regarding our understanding of such theories in diverse

dimensions. Thus, supersymmetric theories emerge as ideal laboratories that allow us to

perform exact computations regardless of the strength of the interaction.

At the same time it has become evident that one can obtain a deeper understanding of

a supersymmetric gauge theory by placing it on different compact manifolds. See e.g. [2–5].

In this paper we take a further step along both of the above directions by considering the

partition function of pure N = 2 gauge theories with arbitrary classical Lie algebras g on

generic four-dimensional toric Kähler manifolds M4. For the sake of concreteness however,

we will illustrate our computations with M4 = CP
2. As the topology of these manifolds is

non-trivial, it allows in principle for non-trivial first Chern class for the gauge field. Yet in

this paper we will consider the case of vanishing c1.

In general dimension, placing a supersymmetric theory on a compact space in such a

way that some supersymmetry is preserved is per se a non-trivial task. We will follow the

strategy developed in [6, 7], which amounts to coupling the gauge theory to supergravity.

This way, the supersymmetric couplings to the curved space are automatically fixed. Then,

a rigid limit freezes the gravitational dynamics and one is left with the desired supersym-

metric gauge theory on the background manifold. An important technical aspect of this

approach is that one does not eliminate the auxiliary fields. The supersymmetry algebra

closes independently of the equations of motion and the values of the background fields

can be found by simply imposing the vanishing of the supersymmetry variations in the

supergravity sector.

In the case of Euclidean N = 2 theories there are in general two symplectic Majorana

Weyl spinors of opposite chirality. There is a degenerate class of solutions for which only

spinors of one chirality are used in order to preserve supersymmetry. The Witten (or

topological) twist that can be used to define a theory on any four manifold and leads

to a topological quantum field theory belongs to this class [8, 9]. We will focus on the

general case in which both chiralities are preserved. Here, [10] showed that the necessary

and sufficient condition for supersymmetry is the existence of a conformal Killing spinor

V on M4. V is of course a spinor bilinear involving spinors of both chiralities. It plays a

crucial role as it twists the superalgebra equivariantly. In our case we will choose V to be

a generator of the T
2 torus action on M4.

The topological twist is intimately linked to the computation of the Donaldson invari-

ants of M4, and has thus been studied extensively in the past. See e.g. [11–14]. In this

paper in turn we are interested in the equivariant version of the theory. As mentioned

above, the strategy to compute the equivariant supersymmetric partition function of the

pure gage theory on M4 will be to use localization along the lines of [1, 15, 16]. Following

what has become by now a fairly standard procedure, we will add a strictly positive δ-exact

term −t Sloc to the action; that is, Sloc = δ(
∫

V). Here, δ is any fermionic symmetry of the

theory, which in practice one usually chooses to be a combination of BRST and supersym-

metry, so that it follows that the partition function does not depend on the parameter t.

Upon taking the classical limit t → ∞ the saddle point approximation becomes exact and

the partition function is simply given by one-loop fluctuations around the classical action

evaluated at the saddle points of Sloc. One says that the path integral localizes to the

localization loci Sloc = 0.
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Since Kähler manifolds are closely related to Sasakian ones, it is reasonable to expect

our theories to have some similarity to the five-dimensional N = 1 ones on Sasakian

manifolds that were studied in [17–20]. Therefore we will occasionally compare the chiral

limit of our theories obtained by taking V to zero with the dimensional reduction of the

five-dimensional ones. Conversely, it is interesting to wonder to what extend the methods

used in this paper can be applied to five dimensional N = 2 theories that have so-far been

studied in [21].

Returning to the details of our localization calculation, we note that points with non-

vanishing V 2 define a dense, open subset of M4. Thus there are two types of saddle point

configurations. Generic ones for which V 2 6= 0 and a superimposed sector of solutions

sitting at the loci where V 2 = 0. This is familiar from many, yet not all known examples

of localization on four-dimensional manifolds. See e.g. [22]. As we will see below, the

finite-action configurations1 in the V = 0 sector are anti-instantons. We will assume the

loci where V = 0 to be isolated which corresponds to a slight restriction on the possible

choices of V in T
2. Close to any such point the background takes the form of a copy of

the Ω background [23, 24] and we can compute the instanton contribution to the partition

function by appropriately gluing copies of the Nekrasov instanton partition function.

Somewhat remarkably, we find that the fluctuation determinant for the case of toric

Kähler manifolds considered is simply 1. Since in addition the classical action can also be

written as a sum of three copies of a function evaluated at precisely the Ω background pa-

rameters corresponding to the loci V 2 = 0, we immediately find an interesting factorization

of the partition function whose implications remain yet to be fully understood.

The structure of this paper is as follows: section 2 begins with a summary of the

relevant parts of the N = 2 conformal supergravity that are needed for the subsequent

construction of the gauge theory. Studying the BPS equations arising from the gravitino

and dilatino variations we then find the supersymmetric background and as well as the

Killing spinors for both the topological and the equivariant twists. This allows us to define

the gauge theory on the curved space M4. We also construct the cohomological version of

the supersymmetry algebra, which explicitly shows the equivariant twist. In section 3 we

study the localization locus of the gauge theory. To begin, we do so by directly studying

the BPS equations of the vector multiplet. In section 3.1.2 we write down an explicitly

localization term Sloc and show that the solution to the BPS equations precisely coincides

with the set of configurations on which Sloc = 0. While these configurations correspond

to V 2 6= 0, we study the instanton solutions sitting at the locus V 2 = 0 in section 3.1.3.

Finally, we discuss the gauge fixing sector, which combines the BRST with the SUSY

complex (and plays an interesting subtle role in fully determining the relevant localization

locus. See below.) Then, in section 4 we compute the partition function by explicitly

writing down the classical, one-loop and instanton contributions. Remarkably, these three

contributions can be written in a factorized form as the product of a function evaluated at

the Ω backgrounds around each of the points where V 2 = 0. We end with some conclusions

1Infinite action configurations would not contribute to the partition function as their contribution to the

path integral would be weighted by zero.
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and future projects in section 5. We leave for the appendices technical aspects of relevance

for the computations in the main text.

Note added. In the closing stages of this project we received [25, 26], which consider

M4 = P
1 × P

1. Especially [25] obtains, where applicable, similar results to ours.

2 Rigid supersymmetry on toric Kähler manifolds

Our aim is to study N = 2 gauge theories on toric Kähler manifolds, with CP
2 being

our star example. Hence, our first task will be the construction of the supersymmetric

Lagrangian of the theory on the curved space. Following [6], we couple the gauge theory to

supergravity and then take a rigid limit so that the globally supersymmetric Lagrangian

automatically emerges. Following [10], we will use four-dimensional N = 2 conformal

supergravity and refer to [27, 28] for a thorough introduction to the subject. The field

content of the Weyl multiplet is

gmn , D , Tmn , Ax , A4 , ψi
± , χi

± . (2.1)

Here Ax and A4 are the connections for the SU(2) and U(1) R-symmetries, Tmn is a

two-form, and D a scalar. Furthermore, x and i are adjoint and fundamental SU(2) in-

dices respectively. After Wick rotation [29], the supersymmetry transformations of the

fermions are

δψi
+m = ∇mǫi+ +

ı

2
Amxσ

xi
jǫ

j
+ +

1

2
Am4ǫ

i
+ +

ı

4
T+
mnγ

nǫi− − γmηi− , (2.2a)

δψi
−m = ∇mǫi− +

ı

2
Amxσ

xi
jǫ

j
− −

1

2
Am4ǫ

i
− +

ı

4
T−
mnγ

nǫi+ − γmηi+ , (2.2b)

δχi
+ =

ı

6
(∇m +Am4)T+

mnγ
nǫi− −

1

6
dA4 · γǫ

i
+ +

D

3
ǫi+ +

ı

12
γ · T+ηi+

+
ı

6

(

∂[mAx
n] +

1

2
Ay

mAz
nǫ

yzx

)

γmnσxi
jǫ

j
+ , (2.2c)

δχi
− =

ı

6
(∇m −Am4)T−

mnγ
nǫi+ +

1

6
dA4 · γǫ

i
− +

D

3
ǫi− +

ı

12
γ · T−ηi−

+
ı

6

(

∂[mAx
n] +

1

2
Ay

mAz
nǫ

yzx

)

γmnσxi
jǫ

j
− . (2.2d)

Occasionally we will write ∇A
mǫi+ = ∇mǫi++ ı

2Amxσ
xi
jǫ

j
+ for the SU(2)-covariant derivative.

When studying for supersymmetric solutions of the above, ηi± can be immediately elimi-

nated from the system by contracting the gravitino equations with γm. For comparison

with [10], note that the d appearing there is related to the above D via 6d = 4D +R.

In addition to the Weyl multiplet, we consider a vector multiplet. Eventually and upon

taking the rigid limit, the field theory of interest will be that of this vector multiplet. The

standard N = 2 vector multiplet contains a complex scalar φ, an auxiliary SU(2) triplet Yij ,

the gauge connection A and the gaugino. Note that, after Wick rotation, φ and φ̄ are a pri-

ori independent. The Wick-rotated supersymmetry variations for the vector multiplet are

δφI=−
ı

2
ǫi+BΩI

i+ , (2.3a)

– 4 –



J
H
E
P
0
5
(
2
0
1
5
)
1
1
1

δφ̄I=
ı

2
ǫ−iBΩIi

− , (2.3b)

δAI
m=

1

2
ǫijǫi−BγmΩI

j+ +
1

2
ǫijǫ

i
+BγmΩIj

− , (2.3c)

δΩIi
+=ı /DφIǫi− −

1

4
γab
(

F I+
ab −

1

2
φ̄IT+

ab

)

ǫi+ +
1

2
Y Ii

jǫ
j
+ − gφJ φ̄Kf I

JK ǫi+ + 2ıφIηi+, (2.3d)

δΩIi
−=−ı /Dφ̄Iǫi+ +

1

4
γab
(

F I−
ab −

1

2
φIT−

ab

)

ǫi− −
1

2
Y Ii

jǫ
j
− − gφJ φ̄Kf I

JK ǫi− − 2ıφ̄Iηi−, (2.3e)

δY I
ij=ǫ(i−B /DΩI

j)+ + ǫikǫjlǫ
(k
+B /DΩ

l)I
− + 2ıgǫk(i

(

ǫj)−BφJΩkK
− + ǫk+Bφ̄JΩK

j)+

)

f I
JK . (2.3f)

Here, the covariant derivatives appearing in the supersymmetry transformations are

DmΩIi
+ = ∇mΩIi

+ +
ı

2
Amxσ

xi
jΩ

Ij
+ + g[Am,Ωi

+]
I ,

DmΩIi
− = ∇mΩIi

− +
ı

2
Amxσ

xi
jΩ

Ij
− + g[Am,Ωi

−]
I ,

DmφI = ∂mφI + g[Am, φ]I .

(2.4)

These transformations leave the action of the gauge theory invariant, which can be taken

from [10]. Its bosonic part is

L = dφφ̄+DmφDmφ̄+
1

8
Y i

jY
j
i − g[φ, φ̄]2 +

1

8
FmnF

mn

−
1

4
(φFmnT

+mn + φ̄FmnT
−mn)−

1

16
(φ2T+

mnT
+mn + φ̄2T−

mnT
−mn) .

(2.5)

Up to conventions, this agrees with the action of [16].

2.1 Supersymmetric backgrounds

Since the super Yang-Mills theory on the curved space arises from the rigid limit of the

combined supergravity plus vector multiplet system, the relevant background for the later

can be found by imposing the vanishing of the Weyl multiplet supersymmetry variations

in eqs. (2.2). Solving these fully determines the supersymmetry variations of the vector

multiplet (2.3) as well as the action (2.5).

In order to provide a very explicit example, we will first construct the Killing spinors

for CP2 before generalizing to arbitrary toric Kähler manifolds.

2.1.1 M4 = CP
2

For CP2 we use the metric

ds2 = dρ2 +
sin2 ρ

4

[

σ2
1 + σ2

2 + cos2 ρ σ2
3

]

, (2.6)

with Maurer-Cartan forms

σ1 = cosψ dθ+sinψ sin θ dφ , σ2 = sinψ dθ−cosψ sin θ dφ , σ3 = dψ+cos θ dφ , (2.7)

and ρ ∈ [0, π/2], θ ∈ [0, π], φ ∈ [0, 2π], and ψ ∈ [0, 4π]. The two torus is generated by the

Killing vectors ∂φ, ∂ψ. We choose the frame

e1 = dρ , e2 =
sin ρ cos ρ

2
σ3 , e3 =

sin ρ

2
σ1 e4 =

sin ρ

2
σ2, . (2.8)
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Defining

z1 = tan ρ cos
θ

2
ei

ψ+φ
2 , z2 = tan ρ sin

θ

2
ei

ψ−φ
2 , (2.9)

the metric can be rewritten in terms of the Kähler potential K = log(1 + |z1|2 + |z2|2),

ds2 =
∂2K

∂ zi ∂ z̄j
dzi dz̄j . (2.10)

Furthermore

J =
i

2
∂∂̄K = e1 ∧ e2 + e3 ∧ e4 =

1

2
dΘ, Θ =

sin2 ρ

2
σ3 . (2.11)

After calculating the spin connection, dea+ωa
be

b = 0, one finds two negative chirality

spinors ǫi− satisfying ∂mǫi− = 0 as well as the projections γ12ǫi− = γ34ǫi− = ıσ3i
jǫ

j
−. Their

Killing spinor equation is

∇mǫi− −
3ı

2
Θmσ3i

jǫ
j
− = 0 . (2.12)

Comparing (2.12) with the SUSY variations (2.2), one sees that δψi
+m = δψi

−m = 0 if

A3 = −3Θ , A1 = A2 = A4 = T+ = ǫi+ = ηi± = 0 . (2.13)

A similar analysis for the dilatino variations δχi
± imposes D = −R

4 = −6. One can verify

this using the equations in [10]. Since 6d = 4D + R, this corresponds to d = 0 in that

paper. Note that this causes the φ φ̄ mass-like term in (2.5) to vanish, as opposed to the

case of squashed spheres.

The solution which we have found involves only negative chirality spinors. In fact,

it just corresponds to the familiar topologically twisted theory. In order to construct

the equivariantly twisted theory we need to add positive chirality spinors, so that we

can construct a vector-like spinor bilinear providing the equivariant parameters. To add

positive chirality spinors, we pick a generic Killing vector V generating a U(1) action inside

the torus. We can parametrize it as V = pψ∂ψ + pφ∂φ for pψ, pφ ∈ R. As we will see below,

these pψ, pφ are essentially the equivariant parameters. Note that

V 2 =
1

4

(

p2φ sin2 θ sin2 ρ+

(

pψ + pφ cos θ

2

)2

sin2 2ρ

)

. (2.14)

Hence, for generic pψ, pφ, V
2 vanishes at ρ = 0, {ρ = π

2 , θ = 0} and {ρ = π
2 , θ = π}. Note

however that, for particular choices of pψ and pφ, V
2 vanishes on more generic subspaces.2

In the following we will assume that pψ, pφ take generic values in such a way that V 2 = 0

only happens at the three reported points.

With this V we can construct positive chirality spinors as ǫi+ = ı /V ǫi−. A direct analysis

of the gravitino equations imposes

T− = 0 , T+ = −2dV + . (2.15)

As in the previous case, the dilatino variations vanish for D = −6 or d = 0 respectively.

2For example , if pψ = pφ, then V 2 vanishes at θ = π for any value of ρ. Another example is pψ = 0 or

pφ = 0, when we find that V 2 vanishes for ρ = {0, π
2
} regardless of θ.
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2.1.2 Toric Kähler manifolds

In this section, we generalize the results of the previous section to any four-dimensional

toric Kähler manifoldM4. Such manifolds can be defined as closed connected 4-dimensional

Kähler manifolds with an effective Hamiltonian holomorphic action of the real 2-torus T2.

However, for our purposes it is best to think of the Delzant construction [30] and the work

of Guillemin and Abreu [31, 32], which we will quickly review here. Further details are in

appendix E. To start, one introduces symplectic coordinates (xi, yi), i = 1, 2 with the yi
parametrizing the T

2 and the xi being the coordinates of the Delzant polytope P . The

most familiar example is CP2 with the polytope defined by 0 ≤ x1, 0 ≤ x2, and x1+x2 ≤ 1.

For CP1 × CP
1, one has 0 ≤ x1,2 ≤ 1. On each edge of the polytope the torus collapses to

an S1. Thus, the vertices are the fixed points of the torus action. The symplectic form is

ω = dxi ∧ dyi and metric and almost complex structure are given in terms of a potential

function g(x) = gP (x) + h(x). Assume the polytope is defined by inequalities 〈x, µr〉 ≥ λr,

r = 1, . . . , d, each µr being a primitive element of the lattice Z
2 ⊂ R

2 and inward pointing

normal to the r-th (n − 1)-dimensional face of P . Then, the canonical potential gP (x) is

defined in terms of the functions lr : R
2 → R, defined by

lr(x) = 〈x, µr〉 − λr (2.16)

as

gP (x) =
1

2

d
∑

r=1

lr(x) log lr(x) . (2.17)

Define G = Hessx(g), i.e. (G)ij = ∂xi∂xjg. Then

J =

(

0 −G−1

G 0

)

, ds2 =

(

G 0

0 G−1

)

. (2.18)

The function h(x) has to be smooth on P and chosen such that there is a smooth and

strictly positive function δ(x) satisfying

detG =

[

δ(x)
d
∏

r=1

lr(x)

]−1

. (2.19)

Any Kähler manifold M4 admits a spinor ψ satisfying3

∇Y ψ =
ı

2
ARic(Y )ψ (2.20)

with the connection one-form ARic defined by dARic = ρ where ρ is the Ricci form

of M . Here ρ is defined in terms of the Ricci tensor and the complex structure as

ρ(X,Y ) = Ric(JX, Y ) [34]. The symplectic Majorana conjugate of (2.20) satisfies ∇Y ψ
∗ =

− ı
2ARic(Y )ψ∗. To match this with our calculation for CP

2, we note that CP
2 carries an

Einstein metric. Thus Ric = 6g and ρ = −6J . With dΘ = 2J , one sees that ARic = −3Θ.

3For details we refer to the summary in [33] and the references therein. In the conventions of [33], ψ is

the constant section of
∧0,even

T ∗
M

∼= V+; i.e. has positive chirality.
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By comparison with our previous results it is clear that

ǫ1− = ψ∗ , ǫ2− = ıBψ , A3 = ARic (2.21)

solve the gravitino and dilatino equations in the absence of ǫi+. Just as before, this corre-

sponds to the topological twist. In order to construct the equivariantly twisted theory, we

pick a generic Killing vector

V = p ∂y1 + q ∂y2 , p, q ∈ R , (2.22)

and define ǫi+ = ı /V ǫi−. Since ∇A
µ ǫ

i
− = 0, we have ∇A

µ ǫ
i
+ = ı

2dVµνγ
νǫi− and the gravitino

equations are solved by T+ = −2dV +, ηi− = ı
8dVabγ

abǫi− and T− = ηi+ = 0. Again, one

fixes the scalar fields D or d by solving the dilatino variation. And once again, one finds

D = −R
4 as well as d = 0, meaning that the mass term in (2.5) vanishes. If we choose a

vielbein such that J = e12 + e34, we can maintain the projections for ǫi−.

Generalizing the CP2 case, we restrict p, q such that V 2 vanishes only at certain isolated

points in the manifold. One can see — cf. appendix E — that these correspond to the

vertices of the Delzant polytope — of which there were three in the above discussion of

CP
2. Nevertheless, exactly as in the CP

2 case and for certain choices of p and q, V 2 can

vanish at more generic loci, namely CP
1s corresponding to edges of the polytope.

2.2 Cohomological form of the supersymmetry transformations

Substituting the background fields as well as the Killing spinors from the previous sections

into eq. (2.5) gives us the Lagrangian for the gauge theory on toric Kähler manifolds. In

turn, the supersymmetry variations can be found from eqs. (2.3).

We now bring the supersymmetry transformations into standard cohomological form.

Details are relegated to appendix B. To begin, we note that by absorbing ηi− into a previ-

ously zero T−, we can rewrite the gaugino variations (2.3) as

δΩi
+ = ı /Dφǫi− −

1

4

(

F+
ab −

1

2
φ̄T+

ab

)

γabǫi+ +
1

2
Y i

jǫ
j
+ − g[φ, φ̄]ǫi+ ,

δΩi
− = −ı /Dφ̄ǫi+ +

1

4

(

F−
ab −

1

2
φ̄T−

ab

)

γabǫi− −
1

2
Y i

jǫ
j
− − g[φ, φ̄]ǫi− ,

(2.23)

and without any ηi± terms yet with T = −2dV . We define F = F − 1
2 φ̄T .

Next, we define Grassmann odd forms η ∈ Ω0, Ψ ∈ Ω1, and χ ∈ Ω− ⊂ Ω2.

χ = ǫijǫ
i
−Bγ(2)Ω

j
− ,

Ψ =
1

2

(

ǫijǫ−iBγ(1)Ω+j + ǫijǫ
i
+Bγ(1)Ω

j
−

)

,

η = −
ı

2
ǫijǫ

i
−BΩj

− .

(2.24)

These definitions are invertible. Concerning the bosonic modes, we rewrite the SU(2)

triplet Yij in terms of an anti self-dual two form,

H = −2ıF− +
ı

2
Mij

−Yij − 4ı(Dφ̄ ∧ V )− . (2.25)

– 8 –
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Here, Mij
− = −ıǫi−Bγ(2)ǫ

j
− as in (A.13) in appendix A. The definition of H is such that

δχ = H. In terms of the variables A, φ, φ̄,H and η,Ψ, χ, the algebra is

δφ̄ = η , δη = £V φ̄+Gφ−V 2φ̄−ıV A[φ̄] ,

δA = Ψ , δΨ = £V A+Gφ−V 2φ̄−ıV A[A],

δχ = H , δH = £V χ+Gφ−V 2φ̄−ıV A[χ] ,

(2.26)

with Gθ denoting gauge transformations and defined in (A.4). See equations (B.4) for a

formulation of the above that will be useful when solving the BPS equations in the next

section. In the form of (2.26) it is clear that we have a complex

Z ∈ {φ̄ ,A, χ}, Z ′ ∈ {η,Ψ, H} ,

δZ = Z ′ , δZ ′ = £V Z +Gφ−V 2φ̄−ıV A[Z] ,
(2.27)

with A,Ψ ∈ Ω1, H,χ ∈ Ω−, and φ̄, η ∈ Ω0. This is essentially the equivariant complex

of [1, 19, 35, 36]. Per usual, one of the scalars — here φ — is somewhat special:

δφ = ıV Ψ+ V 2η , δ2φ = £V φ+Gφ−V 2φ̄−ıV A[φ] . (2.28)

Thus δφ = δ(ıV A+V 2φ̄) and the gauge-parameter φ−V 2φ̄− ıV A is invariant under super-

symmetry transformations. Furthermore, note that the gauge parameter has an immediate

dependence on V 2, the norm of the equivariant vector.

3 Localization

Having defined supersymmetric gauge theories on toric Kähler manifolds, we are now inter-

ested in their supersymmetric partition functions, which we will compute using localization.

As it is customary, we deform the action with a δ-exact term −t Sloc. This introduces t
−1

as a new effective ~ on which the partition function does not depend. Then, upon taking

the classical limit t → ∞, the saddle point approximation becomes exact, and the partition

function is simply given by the product of the classical action evaluated at the saddle points

of the localization action times the fluctuation determinant. Hence, our first task will be

to study this localization locus.

In the following we will concentrate on the CP
2 case. Nevertheless, the results hold in

the case of generic toric Kähler manifolds upon performing the obvious substitutions.

3.1 The localization locus

We start by finding the localization locus on which the partition function localizes. Since

these correspond to supersymmetric configurations, we can as well derive them by studying

the BPS equations. In section 3.1.2 we will consider the explicit form of the δ-exact

localization term Sloc that is be added to the action to localize the path integral and show

that the configurations arising from the analysis of the BPS equations are indeed the ones

minimizing the localization action.
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3.1.1 Solving the BPS-equations

To find the localization locus we study solutions of the BPS equations in their cohomological

form of (B.13). Before turning to the general case, we gain some intuition by considering

the topological theory with ǫi+ = 0. While we derived the complex in the presence of both

ǫi± as well as ηi−, the equations include the ηi+ = ηi− = 0 case. One simply sets4

V = T± = 0 . (3.1)

Now, F = F , and Ψ depends only on Ωi
+, while H = −2ıF− + ı

2M
ij
−Yij . The supersym-

metry variations take the same form as in (2.26), except that the gauge parameter is now

just Gφ and that δφ = 0. Also, the Lie-derivatives vanish. So the complex is

δZ = Z ′ , δZ ′ = GφZ . (3.2)

Note that one can obtain the same complex by dimensional reduction of the Sasaki-Einstein

complex [19] along the Reeb vector. The scalars φ, φ̄ are a linear combination of the five-

dimensional real scalar σ and the component of the five-dim. gauge field along the Reeb.

Turning to the vanishing of the supersymmetry variations, the fermions η,Ψ, χ yield

Dφ = [φ, φ̄] = H = 0 . (3.3)

Thus 4F− = Mij
−Yij . Now the reality properties of Yij are crucial. In [10], they are (Yij)

∗ =

Y ij . However, we rotate the countour of integration for the SU(2)-triplet by 90◦ such that

(Yij)
∗ = −Y ij . (3.4)

This choice of contour also renders the Y i
jY

j
i term in (2.5) positive definite and thus con-

vergent. Similar observations regarding contour choices and the convergence of the original

path integral were made in [16, 18]. In order to further probe this choice, it is interesting

to consider the topologically twisted theory. One can easily see that, with this choice, F−

and Yij decouple and

Yij = 0, F− = 0 . (3.5)

We can now compare this saddle point configuration with the five-dimensional N = 1

theories of [17–19]. Note that these references do consider an equivariant twist. However,

the equivariant vector is the Reeb, along which one would naturally reduce to get the 4d

topologically twisted theory.5 In the 5d case, the theories generally localize to contact in-

stantons, i.e. the gauge field satisfies equations like ıRF = 0 and (1− ıR⋆)F = 0. While it

is in general not possible to simply reduce a generic contact instanton to an instanton and

one has to be careful when comparing the two, it is still pleasing that the localization locus

in the chiral theory takes essentially the same form, hence vindicating the contour (3.4).

4One could introduce an arbitrary T− since it is now a free parameter. We refrain from doing so.
5Strictly speaking, [19] allows for generic choices of Reeb while we assume for our argument that we are

dealing with the canonical one.
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Returning to the full theory with V 6= 0 and ǫi+ 6= 0, we again consider the vanishing

of the supersymmetry variations. On the interior of the Delzant polytope, we know that

V 6= 0, and we consider δη = δΨ = δχ = 0. These equations impose

H = 0, DV φ̄ = [φ, φ̄] , ıV F +Dφ− V 2Dφ̄ = 0 . (3.6)

We study H = 0. As before, we consider the action of complex conjugation on

F− = F− −
1

2
φ̄T− =

1

4
Mij

−Yij − 2(Dφ̄ ∧ V )− . (3.7)

With the reality condition for Yij as in (3.4) we can decompose the real and imaginary

parts as

(F +Re φ̄dV )− = −2(DRe φ̄ ∧ V )− ,

ı Im φ̄dV − =
1

4
Mij

−Yij − 2ı(D Im φ̄ ∧ V )− .
(3.8)

Similarly we decompose the ıV F equation into

0 = ıV (F +Re φ̄dV ) +DReφ− V 2DRe φ̄ ,

0 = (Im φ̄)ıV dV +D Imφ− V 2D Im φ̄ .
(3.9)

At this point one can compare the equations involving the gauge field to (3.49) and (3.50)

in [15]. In both cases, the reality conditions decouple the gauge field from the auxiliary

modes, which again vindicates our contour choice (3.4).

To proceed, we set

φ = φ1 + ıφ2 , φ̄ = φ1 − ıφ2 , φ1, φ2 ∈ C∞(M4) . (3.10)

The equation DV φ̄ = [φ, φ̄] then splits into real and imaginary parts

DV φ1 = 0 , DV φ2 = 2[φ1, φ2] . (3.11)

In appendix C we adapt an argument from [15] to show that the above equations for F−

and ıV F imply

F + φ1dV = 0 . (3.12)

This is solved by

A = −φ1V, Dφ1 = dφ1 = 0 . (3.13)

The other scalar φ2 satisfies two equations

0 = (1 + V 2)Dφ2 − φ2ıV dV , DV φ2 = [φ1, φ2] . (3.14)

It follows from the first of these that DV φ2 = 0 so [φ1, φ2] = 0. Since d(V 2) = −ıV dV , the

equation can be immediately integrated

φ2 =
α2

1 + V 2
, α2 ∈ g, [α2, φ1] = 0 . (3.15)
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To conclude, writing φ1 = α1 with α1 ∈ g, the relevant BPS configurations are

φ1 = α1 , φ2 =
α2

1 + V 2
, [α1, α2] = 0 , A = −α1V. (3.16)

The value of the auxiliary triplet Yij can then be directly read off from (3.8) and is given

in appendix D.

Consider now the gauge transformation Gφ−V 2φ̄−ıV A appearing in the supersymmetry

algebra. Substituting the above solution leads to Gα1+ıα2 . Hence, for the moment we are

dealing with a complex gauge transformation. As we will see below, this changes once

one considers the ghost sector as we will do in section 3.2. Note as well that the gauge

parameter, a priori containing the V 2, becomes a constant once evaluated on the saddle

configurations.

Note that the analysis we have so far performed is valid as long as V 2 6= 0. In turn,

the points where V 2 = 0 must be studied separately. As one might suspect, new solutions

will arise from those points. We will discuss them separately in section 3.1.3.

3.1.2 Localization action

One can recover the results from the previous section as the zero locus of the δ-exact action

Sloc = δ

(
∫

Tr( Ω̄i
− δΩi

− + Ω̄i
+ δΩi

+ )

)

. (3.17)

Using the explicit form of the SUSY variations including the background Killing spinors

the bosonic part can be written in a manifestly positive form as

¯δΩi
− δΩi

− + ¯δΩi
+ δΩi

+ = 2 (1 + V −2) |ıV Dφ|2 + 2 (1 + V 2) [φ, φ]2 +
1

2
|M− |2 +

V 2

2
|M+ |2 ,

(3.18)

where

Mmn
+ = (Fmn)+ −

φ̄

2
(T+)mn +

ı

2V 2
Dkφ̄ ǭi+ γmn γk ǫi− +

1

4V 2
Y i

j ǭi+ γmn ǫj+ ,

Mmn
− = (Fmn)− −

ı

2
Dkφ̄ ǭi− γmn γk ǫi+ −

1

4
Y i

j ǭi− γmn ǫj− +
ı

4
φ̄ ǭi− γmn /∇ǫi+ .

(3.19)

In the t → ∞ limit only the configurations for which Sloc = 0 contribute to the path

integral. Upon separating the real and imaginary parts of the scalar field as φ = φ1 + ı φ2,

at a generic point, where V 2 6= 0, the zeros of Sloc are readily found as

0 = F−
mn − (D[mφ1 Vn])− +

ı φ1

4
ǭi− γmn /Dǫi+ ,

0 = 2 ı (D[mφ2 Vn])− −
1

2
Y i

j ǭi− γmn ǫj− +
φ2

2
ǭi− γmn /Dǫi+ ,

(3.20)

from imposing M− = 0, and

0 = F+
mn −

1

V 2
(D[mφ1 Vn])+ −

φ1

2
T+
mn ,

0 = 2 ı (D[mφ2 Vn])+ −
1

2
Y i

j ǭi+ γmn ǫj+ + ı φ2 V
2 T+ ,

(3.21)

from M+ = 0. Besides, we also have the conditions [φ, φ̄] = 0 and ıV Dφ = 0. One can

then verify that the solution to these equations is given by (3.16).

– 12 –



J
H
E
P
0
5
(
2
0
1
5
)
1
1
1

3.1.3 Instanton configurations

By inspection of the localization action (3.18), it is clear that, in addition to the config-

urations discussed above, we can have another whole family of solutions arising from the

fixed points of the U(1) action, where V 2 = 0, which must be studied separately.

Considering the V 2 |M+|
2 term first, since the real part of M+ contains a

V −2D[mφ1 Vn], the localization action will contain a V −2D[mφ1 Vn]D[mφ1 Vn] term, which,

at V 2 = 0 blows up unless we set φ1 = α1 a Lie algebra-valued constant. Because of a

similar argument, φ2 must also be set as well to a Lie algebra-valued constant φ2 = α2,

both subject to [α1, α2] = 0. Furthermore, it is easy to convince oneself that the solution

for the Y ’s is Y 1
2 = Y 2

1 = 0 and Y 1
1 = −Y 2

2 = −α2 |dV
−|, where dV − is evaluated at

the fixed points of the U(1) action. In fact, one can check that, as for φ1, φ2, Y
i
j , these

solutions are just the V 2 = 0 limit of the generic V 2 6= 0 configurations. Finally, from the

vanishing of M−, we find an equation for the gauge field, which, using that dV − = J at the

fixed points, can be re-written as F−+α1 J = 0, with J the Kähler form of CP2 evaluated

at the fixed points. Note that, compared with the regular points for which V 2 6= 0, the ASD

part of the gauge field equation drops out due to the V 2 factor multiplying M+. Moreover,

since the neighbourhoods of the fixed points of the U(1) action are locally copies of C2,

J becomes the familiar constant Kähler form on flat space. It is then clear the equation

F−+α1 JC2 = 0 on C
2 admits no finite energy solution unless α1 = 0. Hence, the relevant,

finite energy, configurations around the points where V 2 = 0 are given by

F− = 0 , φ1 = 0 , φ2 = α2 , [α1, α2] = 0 , Y i
i = −

1

2
α2 |dV

−| , Y 1
2 = Y 2

1 = 0 .

(3.22)

Note that, in our conventions, F− = 0 implies Fmn = −1
2 ǫmnab F

ab, while the J on CP
2

satisfies Jmn = 1
2 ǫmnab J

ab. Hence the V 2 = 0 points support localized anti-instanton

solutions.

Note as well that the above configuration seems, at first sight, a bit at odds with that

at generic points, as the latter seems to involve a non-zero α1 while the former demands a

vanishing α1. As we will see in the next subsection, this is resolved once the ghost sector

is taken into account.

3.2 Gauge fixing

The BRST complex and gauge fixing work in the same way as in [1, 16, 35, 36]. For early

accounts of ghosts for ghosts in gauge theories, see [37, 38] and references therein. Carrying

things over to our conventions, we define (see eq. (2.27))

Z = (φ̄,A, χ) , Z ′ = (η,Ψ, H) . (3.23)

and include a ghost sector (c, c̃, b, c0, c̃0, a0, ã0, b0). Here c and c̃ are ghost and anti-ghost

(both fermionic), b is a Lagrange multiplier (bosonic), all remaining fields are introduced

to deal with the zero modes. Out of these, c0 and c̃0 are fermionic, the rest bosonic. For

convenience, we define

σ ≡ φ− V 2φ̄− ıV A = (1− V 2)φ1 − ıV A+ ı(1 + V 2)φ2 . (3.24)
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The supersymmetry variations of the full system are

δSc = −σ , δS c̃ = 0 , δSc0 = 0 , δS c̃0 = 0 ,

δSa0 = 0 , δS ã0 = 0, δSb = £V c̃ , δSb0 = 0 ,

δSσ = 0 , δSZ = Z ′ , δSZ
′ = £V Z +Gσ[Z] .

(3.25)

In addition, we define the BRST transformations

δBc = a0 −
g

2
[c, c] , δB c̃ = b , δBc0 = Ga0b0 , δB c̃0 = Ga0 ã0 ,

δBa0 = 0 , δB ã0 = c̃0 , δBb = Ga0 c̃ , δBb0 = c0,

δBσ = −£V c− g[c, σ] , δBZ = GcZ , δBZ
′ = GcZ

′ .

(3.26)

Then, upon forming

ρ = a0 − σ −
g

2
[c, c] , S = Z ′ +GcZ , (3.27)

and considering the “vectors”

Y = (Z, c, c̃, b0, ã0) , Y ′ = (S, ρ, b, c0, c̃0) , (3.28)

we find for δ = δS + δB

δY = Y ′ , δY ′ = (£V +Ga0)Y , δa0 = 0 . (3.29)

To fix the gauge we add the term δVg.f. to the action. Vg.f. is essentially the same as

in [1], yet with ξ1 = 0. See also [35]. In detail (with ξ2 > 0)

Vg.f. =
(

c̃, ıd†A+ ıb0

)

+

(

c, ã0 −
ξ2
2
a0

)

. (3.30)

Then,
δVg.f. = ı(b, d†A)− ı(c̃, d†Ψ)− ı(c̃, d†dAc)

+ ı(b, b0)− ı(c̃, c0)− (c, c̃0) +

(

ρ, ã0 −
ξ2
2
a0

)

.
(3.31)

We need to verify that this is positive definite, and consider the terms involving a0:
(

ρ, ã0 −
ξ2
2
a0

)

= −
ξ2
2

(

a0 − σ −
g

2
[c, c], a0 −

2

ξ2
ã0

)

. (3.32)

Wick rotating a0, we set a0 = ıaE0 with aE0 ∈ R. Performing the integral over aE0 ,

ξ2
2

(

aE0 + ıσ +
ıg

2
[c, c], aE0 +

2ı

ξ2
ã0

)

→
1

2ξ2

[

ã0 −
ξ2
2

(

σ +
g

2
[c, c]

)

]2

. (3.33)

The partition function is independent of ξ2. At ξ2 = 0,
(

ıaE0 − σ −
g

2
[c, c], ã0

)

(3.34)

we integrate ã0 out we find that

aE0 = Imσ = (1 + V 2)φ2 = α2 , 0 = Reσ = (1− V 2)φ1 − ıV A = α1 . (3.35)
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The other terms in δVg.f. are dealt with as in [1].

Regarding the localization locus, consider

δc = a0 − ı(1 + V 2)φ2 − (1− V 2)φ1 + ıV A−
g

2
[c, c] . (3.36)

Per usual, the previous results on the localization locus (or the BPS solutions) are unaf-

fected. Thus we substitute (3.16) and obtain

δc = a0 − (α1 + ıα2)−
g

2
[c, c] . (3.37)

For the right hand side to vanish, we need a0 = α1 + ıα2. Depending on the reality

condition for a0, one of the two constant factors is set to zero. Choosing the contour such

that a0 = ıaE0 , we obtain

α1 = 0, aE0 = α2 . (3.38)

Note that this has the additional effect of setting to zero the background gauge field in the

localization locus at generic points (3.16), in parallel with the instanton solutions in (3.22).

In addition, the gauge transformation parameter φ − V 2φ̄ − ıV A becomes, as expected,

purely imaginary (and subsequently purely real upon the Wick rotation) and constant.

Moreover, this nicely reconciles with the instanton sector, which demanded α1 = 0 to find

finite action configurations. Note that these saddle points correspond to configurations

with vanishing first Chern class — i.e. F = 0.

The action (3.30) is not unique. Changing the sign of the second term, one finds

that it is necessary to Wick rotate ã0 instead of a0. In this case it follows that α2 = 0

while α1 = a0. Hence, from (3.16) it follows that there is a background field A = −α1 V .

A priori there seems to be nothing that keeps us from making this choice. By explicit

computation one finds that our results for the perturbative partition function would be

different. The instanton sector would exhibit as well crucial differences. Recall that, in

order to have finite energy configurations coming from the V 2 = 0 loci we needed to

demand α1 = 0. Hence the instanton sector would only contribute upon choosing (3.30).

We will come back to this issue below.

4 The partition function

As outlined above, upon taking the classical limit in t, the spurious ~ introduced by the

localization action, the partition function can be exactly computed by saddle point approx-

imation. Hence, it acquires contributions only from the localization locus; each being the

product of the classical action evaluated at the locus times the fluctuation determinant.

Since there are two types of loci, namely the perturbative configurations arising from V 2 6=

0 and the instanton configurations sitting at V 2 = 0, the partition function takes the form
∫

g

[daE0 ]Zcl Z1-loop Zinstantons . (4.1)

In order to compute the various ingredients, we follow [19, 20, 35, 36]. Actually, the

situation is slightly simpler than in [1, 16] since we do not have to worry about an operator
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D10 vanishing on the horizon. As in [35], we make use of the Weyl integration formula (see

e.g. [39]). Then

1

|W |

volG

volT

∫

t

[daE0 ]
∏

β>0

〈aE0 , β〉
2 Zcl(a

E
0 )Z1-loop(a

E
0 )Zinstantons(a

E
0 ) . (4.2)

Note that a side effect of (3.38) is that the integral in (4.1) or (4.2), which otherwise would

have been over the whole complex plane spanned by α1+ı α2, gets projected to the real line.

In the following we will discuss each of the terms in (4.1) individually.

4.1 Tree level contribution

For our background the action (2.5) reduces to

L =
1

8
Y i

jY
j
i+(dφ1)

2+(dφ2)
2−g[φ, φ̄]2+

1

8
FmnF

mn−
1

4
φFmnT

+mn−
1

16
φ2T+

mnT
+mn . (4.3)

Here one should note that while we redefined the gaugino variations such that there are

both T+ and T−, this redefinition does not affect the action (2.5). Hence we need to use

T− = 0 when studying the above action. Evaluating this at the localization locus given

by (3.16) and (3.38) one finds,

Scl =
(aE0 )

2

4g2YM

∫

M4

vol

(

dV

1 + V 2

)2

, Zcl(a
E
0 ) = e−Scl , (4.4)

as we show in appendix D.

It appears as if (4.4) might depend on the metric. However, since our derivation as-

sumed from the start that the manifold M is toric Kähler, the metric is directly related

to the complex structure. By direct calculation one can establish the dependence on the

potential g(x) appearing in the construction of Guillemin and Abreu [31, 32], yet this corre-

sponds to different choices of Kähler potential. The situation appears to be similar to that

when comparing the partition functions on the four-sphere [1] and the ellipsoid [16], where

the overall result shows a clear dependence on the squashing parameters. Note as well that

the V 2 dependence was already a feature of the supersymmetry complex while the appear-

ance of the 1 + V 2 term can also be thought of in terms of the norms of both spinors ǫi±.

Evaluating (4.4) for CP2 using the canonical metric and symplectic structure given by

the potential g(x) = gP (x), we find

(

dV

1 + V 2

)2

= 8
p2(5x21 − 4x1 + 1) + q2(5x22 − 4x2 + 1) + 2pq(5x1x2 − x1 − x2)

[2p2(x21 − x1) + 2q2(x22 − x2) + 4pqx1x2 − 1]2
≡ I

CP
2 .

(4.5)

Thus we can calculate the integral using the measure

∫

CP
2
vol =

∫ 1

0
dx2

∫ 1−x2

0
dx1

∫ 2π

0
dy1

∫ 2π

0
dy2 . (4.6)
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In the end, the overall result is

SCP
2

cl =
4(aE0 )

2π2

g2YM

1

pq(p− q)
√

(p2 + 2)(q2 + 2)[(p− q)2 + 2]

×

{

−
√

(q2 + 2)[(p− q)2 + 2](5p2 − 2pq + 2q2 + 9) arctanh
p

√

p2 + 2

+
√

(p2 + 2)[(p− q)2 + 2](5q2 − 2pq + 2p2 + 9) arctanh
q

√

q2 + 2

+
√

(p2 + 2)(q2 + 2)(5p2 − 8pq + 5q2 + 9) arctanh
p− q

√

(p− q)2 + 2

}

.

(4.7)

4.2 One-loop contribution

Following the localization argument, the fluctuation determinant is

Z1-loop(a
E
0 ) =

√

detfermions δ2

detbosons δ2
, (4.8)

with δ2 given by (3.29). In opposite to [1, 16], we can evaluate the above directly just as

in [20]. The fermions appearing in Y are χ ∈ Ω− = Ω2,0⊕Ω0,0J⊕Ω0,2, as well as c, c̃ ∈ Ω0,0.

The bosonic modes are φ1 ∈ Ω0,0, A ∈ Ω1,0 ⊕ Ω0,1 as well as the zero-modes b0, ã0, which

are harmonic functions. Of course we mean Ωp,q = Ωp,q(M, g). φ is not included here as

it is not among the “coordinates” (3.28). We will deal with it in the final matrix integral.

Thus we want to calculate

Z1-loop(a
E
0 ) =

√

detLΩ2,0 detLΩ0,0

detLΩ1,0

√

detLΩ0,2 detLΩ0,0

detLΩ0,1

1

detLH0
, (4.9)

where L = £V + ıGaE0
and we have changed the notation detAB → detB A for readability.

There are no non-trivial harmonic forms on a compact Kähler manifold, so we drop the

last term. Then the evaluation of the above is based on the fact that we have effectively

two copies of the Dolbeault complex

. . .
∂̄
−→ Ω0,q−1 ∂̄

−→ Ω0,q ∂̄
−→ Ω0,q+1 ∂̄

−→ . . . . (4.10)

Now, any form η ∈ Ω0,q−1 defines a form ∂̄η ∈ Ω0,q. These cancel in the alternating product

unless η is holomorphic. Next one has only to consider elements ψ ∈ Ω0,q that don’t

descent from Ω0,q−1; i.e. that are not exact. Again they cancel against their descendants

∂̄ψ ∈ Ω0,q+1 unless they are holomorphic. So we are counting holomorphic modulo exact

forms and the result is the alternating quotient

Z1-loop(a
E
0 ) =

√

detLH0,2 detLH0,0

detLH0,1

√

detLH2,0 detLH0,0

detLH1,0
. (4.11)

Once again we note that this is formally identical to the Sasaki-Einstein case with Dolbeault

cohomology taking the role of Kohn-Rossi cohomology [20]. Now, we know that h0,0 = 0.

Moreover, h1,0 = 1
2b1 = 0 and h2,0 = 0 unless M is Calabi-Yau. Thus we conclude that

Z1-loop(a
E
0 ) = 1 . (4.12)
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This agrees with [25] in the special case m = n = 0. Furthermore, it is also consistent with

the 5d result in [36], which becomes non-trivial only when the S1 is fibered on top of the

CP
2 so as to make an S5. See also [40].

Again one can expect the results of this section to change when choosing the alternate

ghost contour ã0 = ıãE0 . Due to the background field F = −α1dV we could for example

no longer link the zero modes of d†dA to harmonic functions.

4.3 Instantons

In addition to the V 2 6= 0 saddle points of the localization action we have extra saddle

points sitting at the loci where V 2 = 0. As we have discussed, we are considering a

generic V such that the set V 2 = 0 contains a discrete and isolated number of points,

around which the space looks like a copy of C
2. As discussed in section (3.1.2), the

relevant configurations sitting at V 2 = 0 are given by the equation F− + α1 JC2 = 0,

with JC2 the Kähler form on C
2. However, the solution to this equation on C

2 does

not yield finite energy (action) configurations unless α1 = 0, in which case the equation

becomes the familiar Fmn = −1
2 ǫmnab F

ab. Hence we have anti-instanton configurations

only contributing upon setting α1 = 0. This fits nicely with our choice of gauge-fixing

action (3.30) which restricts the perturbative solutions to the subset α1 = 0. Recall that

our V 2 = 0 configurations are just the V = 0 limit of those in (3.16) (dropping of course

the ASD part in the gauge field equation). Hence the gauge-fixing choice not only projects

the gauge parameter to be purely imaginary (as otherwise it would have been α1 + ı α2)

but it is also such that it allows for anti-instantons located at V 2 = 0.

The configurations sitting at the points V 2 = 0 are given by eq. (3.22). By inspection,

one can convince oneself that, in the neighbourhood of any point V 2 = 0, the background

becomes a copy of the Ω background [23, 24] with equivariant parameters given, at each

of them, by (see appendix E)

(ǫ
(1)
1 , ǫ

(1)
2 ) = (p, q) (x1, x2) = (0, 0),

(ǫ
(2)
1 , ǫ

(2)
2 ) = (q − p, −p) (x1, x2) = (1, 0),

(ǫ
(3)
1 , ǫ

(3)
2 ) = (−q, p− q) (x1, x2) = (0, 1).

(4.13)

Since each fixed point is a copy of the Ω background, the contribution of each is a copy

of the Nekrasov instanton partition function ZNekrasov(ǫ1, ǫ2, a
E
0 ). Explicit expressions for

ZNekrasov have been computed in the literature for all the classical groups (see e.g. [41] for

a thorough introduction and compilation of results). Hence

Zinstantons(a
E
0 ) =

3
∏

i=1

ZNekrasov(ǫ
(i)
1 , ǫ

(i)
2 , aE0 ) . (4.14)

The apparent factorization extends to the classical part as well. Upon inspection of

the classical action in (4.7), we observe that it can be neatly re-written as

SCP
2

cl =
3
∑

i=1

S0(ǫ
(i)
1 , ǫ

(i)
2 , aE0 ) ; (4.15)
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where the function S0(ǫ1, ǫ2, a
E
0 ) is given by

S0(ǫ1, ǫ2, a
E
0 ) =

4(aE0 )
2π2

g2YM

9 + 5 ǫ21 − 8 ǫ1 ǫ2 + 5 ǫ22
ǫ1 ǫ2 (ǫ1 − ǫ2)

√

(ǫ1 − ǫ2)2 + 2
arctanh

(

ǫ1 − ǫ2
√

2 + (ǫ1 − ǫ2)2

)

.

(4.16)

Therefore the classical contribution to the partition function splits into three contributions

as Zcl =
∏3

i=1 Z0
cl(ǫ

(i)
1 , ǫ

(i)
2 , aE0 ), with Z0

cl(ǫ1, ǫ2, a
E
0 ) = e−S0(ǫ1, ǫ2, aE0 ). Keeping in mind

that Z1−loop = 1, we see that the whole integrand in the partition function takes a

factorized form

Zcl Z1−loop Zinstantons =
corners
∏

i=1

Z0
cl(ǫ

(i)
1 , ǫ

(i)
2 , aE0 ) Z

Nekrasov(ǫ
(i)
1 , ǫ

(i)
2 , aE0 ). (4.17)

The product runs to the solutions of V 2 = 0, that is, the corners of the Delzant polytope

where, for the case of CP2, the corresponding values of the ǫ
(i)
1, 2 are given by (4.13). Even

though the instanton part of each of the corner contributions is just that of flat space, the

classical and one-loop contributions do not coincide with their C
2 counterparts. While

the one-loop piece, which in our case is just 1, might admit more suited factorizations, the

classical contribution, involving arctanh, seems harder to understand along the lines of

factorization in 3d and 5d (see e.g. [42–46] for recent developments in a similar context).

We leave this problem open for future research.

5 Conclusions

In this paper we have studied pure N = 2 supersymmetric gauge theories on toric Kähler

manifolds, concentrating in particular on the case of CP2. By equivariantly twisting with a

Killing vector generating part of the T2 action, we computed the supersymmetric partition

function of the theory using localization. As one might expect, we found the theory localizes

to a purely perturbative path integral in the bulk augmented by instantons situated at the

fixed-points of the T2 action. While the explicit V dependence appearing in the localization

equations (3.16) might seem puzzling, we noted that it simplifies the gauge transformation

appearing in the supersymmetry complex (2.27) to a complex gauge transformation.

The partition function has contributions from the classical action, one-loop determi-

nant and instanton sector. We found the one-loop determinant to be trivial as fermionic

and bosonic modes cancel exactly. This is in agreement with both [25] and the dimen-

sional reduction of five-dimensional results. In the latter case, the one-loop function counts

functions that are holomorphic with respect to the so-called tangential Cauchy-Riemann

operator that are charged along the Reeb [20]. When reducing along the Reeb, all the

charged modes should be discarded and one finds agreement with our result. Returning to

the four-dimensional case, we showed that the classical contribution can be factorized into

contributions arising from the V 2 = 0 loci. Hence, we find a natural factorization of the par-

tition function which remains to be fully understood. Note that, assuming factorization for

the one-loop action as well, we could consider the index of the self-dual complex [15] at the

V 2 = 0 points. It is easy to see that this sum is just a constant, in agreement with the triv-

ial one-loop determinant which we find. In fact this might provide a better understanding
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of (4.17). It should be remarked however that the factorization observed here for the classi-

cal action can be thought of as a direct consequence of our use of the Delzant construction.

As we followed [32], the complex structure and metric receive contributions from each ver-

tex in the polytope. Thus it is to be expected that the overall result respects this structure.

The form of the classical action is the most surprising result. It should be noted

however that all the ingredients appearing in (4.4) were somewhat to be expected. The

combination 1 + V 2 is the sum of the norms of both spinors while dV appeared naturally

after eliminating the spinors ηi±.

A crucial question is of course whether (4.4) depends on the metric. Naively it might

appear so. Yet, as we have described, this dependence is somewhat spurious, as we are deal-

ing with a rather constrained space as it is a toric Kähler manifold and the metric is equiva-

lent to the complex structure. Nevertheless it would be important to fully clarify this point.

Since our results follow directly from supergravity via rigid supersymmetry, it is im-

portant to point out that our result for the classical action appears different from that

of [25] whose authors did not take the supergravity approach. Note that the evaluation of

the classical action is also intimately related to factorization, hence providing yet another

motivation for a further study of this point.

A technical point ubiquitously appearing throughout this work is the question of

choosing appropriate contours. We encountered this both when considering the contour of

the auxiliary triplet Yij and that of the ghosts. While our choice for the former — (3.4)

— is in agreement with expectations from [15, 16, 18, 19], it is not the only choice that

renders the action (2.5) positive definite. Indeed, one could in principle rotate the contour

by up to 45◦ from (3.4). This would allow for mixing between F and YijM
ij
− and thus

with the Kähler form.

The last point is especially interesting as it raises the question of how to generalize our

results to non-vanishing first Chern class in order to make a better connection with [14, 25].

Alternatively one could wonder whether it is appropriate to add an operator e
∫
F∧ω to the

path integral, where ω is a suitably chosen two-form.

A natural extension would be to incorporate matter hypermultiplets. It would be very

interesting to check whether their contribution to the one-loop determinant is 1 as well, as

one might be tempted to conclude, if factorization is assumed, by summing the index of

the Dirac complex [15] at the corners of the CP
2 Delzant polytope. Comparison with the

Sasakian case does once again suggest so [45, 46].

In [4, 5] it was argued that the S4 N = 2 partition function for SCFT’s computes

the Kähler potential on the conformal manifold. Likewise, it would be very interesting

to elucidate the physical meaning of the CP
2 (or generic toric Kähler manifold) partition

function — possibly in the conformal case, upon the addition of the suitable matter content.

We have assumed the Killing vector V to be generic, so that V 2 = 0 only happens at a

discrete set of points corresponding to the corners of the Delzant polytope. Nevertheless,

for particular choices of V , we can have more general situations where V 2 vanishes over a

whole CP
1 corresponding to an edge of the polytope. In the case of CP2 one such case is

pφ = 0 or pψ = 0 in eq. (2.14), which corresponds to |ǫ1| = |ǫ2|. Hence, the familiar case of
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ǫ1 = ǫ2 belongs to the cases which, strictly speaking, are excluded from our computation.

It would be interesting to understand this point better.
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A Conventions

General conventions. Our conventions are to a large extend as in [10, 27, 28]. Self-

duality and the Hodge dual are defined as (note the normalisation of Ω±):

⋆ Ωab = −
1

2
ǫabcdΩ

cd , Ω± =
1

2
(Ω± ⋆Ω) . (A.1)

Then,

ǫ cd
ab Ω±

cd = ∓2Ω±
ab . (A.2)

It’s worthwhile to point out that due to the sign in ⋆, we have

∀α, β ∈ Ω2, α ∧ ⋆β = ⋆β ∧ α = −
1

2
αabβ

ab vol4 , (A.3)

so α ∧ ⋆α is negative definite.

Turning to Yang-Mills theory, field strengths, covariant derivatives and transformations

are
F = dA+A ∧A , DXφ = ∇Xφ+ g[AX , φ] ,

δθAX = ∇Xθ + g[AX , θ] ≡ Gθ[φ] , δθφ = −g[θ, φ] ≡ Gθ[φ] .
(A.4)

Spinors. For explicit calculations, we choose a basis

γ1 = σ1 ⊗ 1 , γ2 = σ2 ⊗ 1 , γ3 = σ3 ⊗ σ1 , γ4 = σ3 ⊗ σ2 . (A.5)

Then, γ∗m = γTm and γ = γ1234 = −σ3⊗σ3. Some useful standard identities involving chiral

spinors χ± are

γnχ± = ∓
1

3!
ǫklmnγklmχ± , γklmχ± = ∓ǫklmnγ

nχ± , γmnχ± = ∓
1

2
ǫklmnγklχ± . (A.6)
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Here, γm1...mp = 1
p!γ[m1

. . . γmp]. For differential forms that arise from spinor bilinears we

use the notation γ(p) = γm1...mpdx
m1 ⊗ · · · ⊗ dxmp . The conjugation matrix is given by

B = ıγ24 and signs work out such that BγmB−1 = γTm = γ∗m. Moreover, B∗ = BT = −B,

B−1 = B. The projections on the susy spinor lead to

ǫ1− = (λ1, 0, 0, 0)
T , ǫ2− = (0, 0, 0, λ2)

T . (A.7)

There is a symplectic Majorana condition

(ǫi+)
∗ = ıBǫijǫ

j
+ , (ǫ+i)

∗ = ıBǫijǫ+j ,

(ǫi−)
∗ = −ıBǫijǫ

j
− , (ǫ−i)

∗ = −ıBǫijǫ−j ,

(ηi−)
∗ = ıBǫijη

j
− , (η−i)

∗ = ıBǫijη−j ,

(ηi+)
∗ = −ıBǫijη

j
+ , (η+i)

∗ = −ıBǫijη+j , ,

(A.8)

from which it follows that λ∗
2 = λ1. We choose a normalisation such that

|λ1|
2 = |λ2|

2 = 1 . (A.9)

We could fix the phase, yet there’s a danger of deriving phase-dependent expressions. In

other words, we choose a normalisation that keeps a phase ϕ:

λ1 = eıϕ , λ2 = e−ıϕ . (A.10)

Note that the symplectic Majorana condition implies that

(ǫi+)
† = −ı(ǫj+)

T ǫjiB , (ǫ+i)
† = −ı(ǫ+j)

T ǫjiB ,

(ǫi−)
† = ı(ǫj−)

T ǫjiB , (ǫ−i)
† = ı(ǫ−j)

T ǫjiB .
(A.11)

As with the symplectic Majorana condition, the signs for (ηi±)
† are switched.

Turning to bilinears, our normalisation corresponds to

ǫi−Bǫj− = ıǫij , (ǫi−)
†ǫj− = δji . (A.12)

Due to the chirality, ǫi−Bγ(1)ǫ
j
− = ǫi−Bγ(3)ǫ

j
− = 0. However, there are two-forms. We define

Mij
+ = ıǫi+Bγ(2)ǫ

j
+ = V 2

(

λ2
1(e

1 − ıe2) ∧ (e3 + ıe4) ı(e12 − e34)

ı(e12 − e34) (λ∗
1)

2(e1 + ıe2) ∧ (e3 − ıe4)

)

,

Mij
− = −ıǫi−Bγ(2)ǫ

j
− =

(

λ2
1Ω −ıω

−ıω (λ∗
1)

2Ω̄

)

,

(A.13)

with ω = J = e12 + e34 and Ω = (e1 + ıe2) ∧ (e3 + ıe4). The factors of ı render the SU(2)

transformations sensible. That is, (Mij
±)

∗ = ǫikǫjlM±kl. Moreover,

Mij
−mn[(M

kl
−)

∗]mn = 4(δikδ
j
l + δilδ

j
k) ,

Mij
+mn[(M

kl
+)

∗]mn = 4V 4(δikδ
j
l + δilδ

j
k) .

(A.14)
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Similarly, we define

N ij = ǫi−Bγ(1)ǫ
j
+ , ǫi+Bγ(1)ǫ

j
− = −N ji . (A.15)

The various matrices are related,

N ij
a +Mij

−abV
b + ǫijVa = 0 , N ij

a − V −2Mij
+abV

b + ǫijVa = 0 . (A.16)

Regarding the raising and lowering of SU(2) indices,

ǫi+ = ǫijǫ
j
+ , ǫi+ = −ǫijǫ+j , ǫi− = ǫijǫ−j , ǫ−i = −ǫijǫ

j
− . (A.17)

(In the main text this is ǫi of course). As to the various fields, we use the following.

ΩIi
+ = ǫijΩI

+j , ΩI
−i = ǫijΩ

Ij
− , ψ+i = ǫijψ

j
+ , ψi

− = ǫijψ−j ,

χ+i = ǫijχ
j
+ , χi

− = ǫijχ−j ,
(A.18)

B Calculation of the cohomological complex

We supplement the discussion of the cohomological complex in section 2.2. To do so, we

introduce some additional forms,

χ+ = ǫijǫ
i
+Bγ(2)Ω

j
+ , χ = ǫijǫ

i
−Bγ(2)Ω

j
− ,

Ψ+ =
1

2
ǫijǫ−iBγ(1)Ω+j , Ψ− =

1

2
ǫijǫ

i
+Bγ(1)Ω

j
− ,

η+ =
ı

2
ǫijǫ

i
+BΩj

+ , η = −
ı

2
ǫijǫ

i
−BΩj

− .

(B.1)

Of course, Ψ = Ψ+ +Ψ−. The above are related via

η+ = −ıV Ψ+ , V 2η = −ıV Ψ− ,

V 2Ψ+ = −
ı

2
ıV χ+ + η+V , Ψ− =

ı

2
ıV χ− ηV ,

ı

4
χ+ = (Ψ+ ∧ V )+ , −

ı

4
V 2χ = (Ψ− ∧ V )− .

(B.2)

The gauginos are recovered from

Ωi
+ = −ı

(

Ψa + ηVa −
ı

2
ıV χa

)

γaǫi− ,

Ωi
− =

( ı

8
χabγab + η

)

ǫi− .
(B.3)

By direct calculation, one finds

δA = Ψ , (B.4a)

δφ = ıV Ψ+ V 2η , (B.4b)

δφ̄ = η , (B.4c)

δη = DV φ̄− g[φ, φ̄] , (B.4d)

δΨ = ıV F +Dφ− V 2Dφ̄ = ıV F +D(φ− V 2φ̄) , (B.4e)
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δχ = H , (B.4f)

δH =
(

£V χ− − g[φ− V 2φ̄− ıV A, χ]
)−

. (B.4g)

When calculating δH, the most involved step is the evaluation of Mij
−δYij . Here,

Mij
−δYij = Mij

−ǫikǫjl(−ǫk−B /DΩl
+ + ǫk+B /DΩl

− − 2ıgǫk−B[φ,Ωl
−] + 2ıgǫk+B[φ̄,Ωl

+]) . (B.5)

The last two terms are pretty straightforward. Using

Mij
−ǫikǫjlǫ

l
−BΩk

− = −|λ1|
2χ ,

Mij
−ǫikǫjlǫ

l
+BΩk

+ = −4ı|λ1|
2(Ψ+ ∧ V )− ,

(B.6)

one can rewrite the right hand side as

Mij
−ǫikǫjl

(

−ǫk−B /DΩl
+ + ǫk+B /DΩl

−

)

+ |λ1|
2
(

2ıg[φ, χ] + 8g[φ̄, (Ψ+ ∧ V )−]
)

. (B.7)

Since covariant derivatives (2.4) include coupling to the SU(2) background, the first terms

expands to

Mij
−ǫikǫjl

{

∓ǫk∓Bγm
(

∇mΩl
± + g[Am,Ωl

±] +
ı

2
A(Ric)mσ3l

l̂
Ωl̂
±

)

.
}

(B.8)

For the moment we ignore the terms involving [A, •]. Then one can show that the remainder

is equal to

|λ1|
2

{

− 2ııV [3ǫijǫ
i
−Bγ[mn∇l]Ω

j
−dx

l ⊗ dxm ⊗ dxn]

− 2ııV

[

3
ı

2
ǫijǫ

i
−Bγ[mnA(Ric)l]σ

3j
kΩ

k
−

]

− 4V ∧

[

−
ı

2
ǫijǫ

i
−B∇mΩj

−dx
m

]

+ 4[−ǫijǫ
i
−Bγ[n∇m]Ω

j
+dx

m ⊗ dxn]

+ 4

[

−
ı

2
ǫijǫ

i
−Bγ[nA(Ric)m]Ω

j
+dx

m ⊗ dxn
]}−

= |λ1|
2{−2ııV dχ+ 4dη ∧ V + 4dΨ+}

−.

(B.9)

The last step uses6

dηm = −
ı

2
ǫijǫ

i
−B

(

∇mΩj
− +

ı

2
A(Ric)mσ3j

kΩ
k
−

)

,

dΨ+mn = −ǫijǫ
i
−Bγ[n

(

∇m]Ω
j
+ +

ı

2
A(Ric)m]σ

3j
kΩ

k
+

)

,

dχlmn = 3ǫijǫ
i
−Bγ[lm

(

∇k]Ω
j
− +

ı

2
A(Ric)k]σ

3j
kΩ

k
−

)

,

(B.10)

6For convenience, recall:

∇mǫ
i
− = −

ı

2
A(Ric)mσ

3i
jǫ
j
−, ∇mǫ

i
+ = −

ı

2
A(Ric)mσ

3i
jǫ
j
+ −

ı

4
Tmnγ

n
ǫ
i
−.
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which follow directly from the definitions of the forms.7 For the commutator terms, we use

Mij
−ǫikǫjlǫ

k
−Bγm[Am,Ωl

+] = 4|λ1|
2[A,Ψ+]

− ,

Mij
−ǫikǫjlǫ

k
+Bγm[Am,Ωl

−] = |λ1|
2 (4[A, ηV ]− 2ııV [A, χ])− .

(B.11)

Returning to Mij
−δYij ,

Mij
−δYij = |λ1|

2{ − 2ııV dχ− 2ıgıV [A, χ] + 2ıg[φ, χ]

+ 4dη ∧ V + 4g[A, ηV ]

+ 4(d+ g[A, •])Ψ+ + 8g[φ̄,Ψ+ ∧ V ]}− .

(B.12)

Of course, ıV [A, χ] = [ıV A, χ]− [A, ıV χ].

The SUSY transformations of the variables introduced here are as follows (the matrices

N ij are defined in equation (A.15)):

δA = Ψ+ +Ψ− , (B.13a)

δφ = η+ , (B.13b)

δφ̄ = η , (B.13c)

δη+ = DV φ− V 2[φ, φ̄] , (B.13d)

δη = DV φ̄− [φ, φ̄] , (B.13e)

δΨ+ = Dφ− g[φ, φ̄]V +
1

4
N ijYij + ıV F

+ , (B.13f)

δΨ− = −V 2Dφ̄+ g[φ, φ̄]V −
1

4
N ijYij + ıV F

− , (B.13g)

δΨ = ıV F +Dφ− V 2Dφ̄ = ıV F +D(φ− V 2φ̄) , (B.13h)

δχ = −2ıF− +
ı

2
Mij

−Yij − 4ı(Dφ̄ ∧ V )− = H , (B.13i)

δχ+ = −2ıV 2F+ +
ı

2
Mij

+Yij + 4ı(Dφ ∧ V )+ , (B.13j)

Mij
−δYij = |λ1|

2{2ı(−ıV dχ− gıV [A, χ] + g[φ, χ])

+4Dη ∧ V + 4dAΨ+ + 8g[φ̄,Ψ+ ∧ V ]}− , (B.13k)

δF− = (dAΨ)− −
1

2
ηT−

= (dAΨ+)
− +

ı

2
(dıV χ+ g[A, ıV χ])

− − (Dη ∧ V )− , (B.13l)

δ(Dφ̄ ∧ V )− = (Dη ∧ V )− + g[(Ψ+ ∧ V )−, φ̄]−
ı

4
gV 2[χ, φ̄], (B.13m)

δH =
(

£V χ− g[φ− V 2φ̄− ıV A, χ]
)−

. (B.13n)

Here we used the notation

dAΨ = (DmΨn −DnΨm)dxm ⊗ dxn = dΨ+ g[A,Ψ] , (B.14)

with DmΨn as in (A.4).

7One can derive a similar equation for Ψ−:

dΨ−mn = ǫijǫ
i
+Bγ[n

(

∇m]Ω
j
− +

ı

2
A(Ric)m]σ

3j
kΩ

k
−

)

+
1

2
Tmnη −

ı

4
T[m|sχ

s
|n] .
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There is another minor technicality involving δΨ = δ2A. The supersymmetry varia-

tions yield

δ2A = ıV F + (Dφ− V 2Dφ̄) . (B.15)

Using

V 2Dφ̄ = D(V 2φ̄)−
1

4
ıV T φ̄ , (B.16)

however, one can show that

δ2A = ıV F +D(φ− V 2φ̄) , (B.17)

where now the actual field strength F makes an appearance instead of F . With ıV F =

£V A−D(ıV A) it follows that

δ2A = £V A+D(φ− V 2φ̄− ıV A) . (B.18)

C The localization locus

Turning to the gauge field, we adapt the argument of [15] to the case at hand. The relevant

equations are
0 = ıV (F + φ1dV ) + (1− V 2)Dφ1,

0 = (F + φ1dV )− + 2(Dφ1 ∧ V )− .
(C.1)

Combining the two,

ıV ⋆ (F + φ1dV ) = −(1 + V 2)Dφ1 . (C.2)

Integrating with a yet undetermined measure µ, (note the sign due to (A.3))

0=−

∫

µ
[

ıV ⋆ (F + φ1dV ) + (1 + V 2)Dφ1

]

∧ ⋆
[

ıV ⋆ (F + φ1dV ) + (1 + V 2)Dφ1

]

=

∫

µ |ıV ⋆ (F+φ1dV )|2+µ
∣

∣(1+V 2)Dφ1

∣

∣

2
−2µ(1+V 2)Dφ ∧ ⋆ıV ⋆ (F+φ1dV ) .

(C.3)

We focus on the cross term. Up to an overall sign and factor that play no importance, this

is

µ(1 + V 2)Dφ1 ∧ (F + φ1dV ) ∧ V . (C.4)

Setting Â = A+φ1V we have F̂ = F +φ1dV +Dφ∧V and D̂φ1 = Dφ1; also ıV F̂ = −Dφ1.

Moreover, we choose µ = V −2(1 + V 2)−1. Then

Dφ1 ∧ F̂ ∧ (V −2V ) = D̂(φ1F̂ ) ∧ (V −2V ) = D̂(φ1F̂ ∧ V −2V )− φ1F̂ ∧ d(V −2V ) . (C.5)

At this point, we drop the total derivative. Focussing on the remainder, we note that

d(V −2V ) = V −2dV + V −4ıV dV ∧ V = ıV (V
−4dV ∧ V ) . (C.6)

Therefore

φ1F̂ ∧ d(V −2V ) = φ1F̂ ıV (V
−4dV ∧ V ) = −V −4φ1ıV F̂ ∧ dV ∧ V . (C.7)
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Substituting our earlier result ıV F̂ = −Dφ1,

. . . =
1

2
V −4D̂(φ2) ∧ dV ∧ V

=
1

2
D̂(φ2V −4dV ∧ V )−

1

2
φ2dV ∧ d(V −4V )

=
1

2
D̂(φ2V −4dV ∧ V )−

1

2
φ2V −6(V 2dV ∧ dV + 2dV ∧ ıV dV ∧ V ) .

(C.8)

Again discarding the total derivative, we note that

ıV (V
2dV ∧ dV + 2dV ∧ ıV dV ∧ V ) = 0 , (C.9)

from which it follows that the term in parentheses vanish. Thus the cross term vanishes

and we are left with

0 =

∫

M4

1

V 2(1 + V 2)

[

|ıV ⋆ (F + φ1dV )|2 +
∣

∣(1 + V 2)Dφ1

∣

∣

2
]

. (C.10)

Clearly

Dφ1 = 0 , (C.11)

and substituting this in our previous equations,

0 = ıV (F + φ1dV ) = (F + φ1dV )− = ıV ⋆ (F + φ1dV ) . (C.12)

Note that for a generic two-form ω,

V 2ω = ıV (V ∧ ω) + V ∧ (ıV ω) = {ıV , V ∧}ω . (C.13)

In other words, knowing ıV ω and V ∧ω is enough to reconstruct the form. As we remarked

earlier

⋆ ıV ⋆ (F + φ1dV ) = ±(F + φ1dV ) ∧ V , (C.14)

so we can conclude that

F + φ1dV = 0 . (C.15)

In other words,

A = −φ1V, Dφ1 = dφ1 = 0 . (C.16)

D The tree level action

We complement the discussion of the tree level action in section 4.1. At the localization

locus given by (3.16) and (3.38), the non-vanishing terms contributing to (2.5) are

Mij
−Yij = −4ı(φ2dV + 2Dφ2 ∧ V )− ,

(dφ2)
2 = (aE0 )

2

(

ıV dV

(1 + V 2)2

)2

,

φ2(T+)2 = −4(aE0 )
2

(

dV +

1 + V 2

)2

.

(D.1)
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We also need
1

8
Y i

jY
j
i =

1

64
(Mij

−Yij)
mn(Mkl

−Ykl)
∗
mn , (D.2)

which follows from (A.14). These combine to

(aE0 )
2

∫

M4

vol

(1 + V 2)2

{

1

4

[

2(ıV dV ∧ V )−

1 + V 2
+ dV −

]2

+
1

(1 + V 2)2
(ıV dV )2 +

1

4
(dV +)2

}

.

(D.3)

To proceed, we study this term by term.

First we note that
(

2ıV dV ∧ V −

1 + V 2
+ dV −

)2

=
4

(1 + V 2)2
(ıV dV ∧ V −)2 + (dV −)2 +

4

1 + V 2
(ıV dV ∧ V )−mndV

−mn .

(D.4)

The first of these three terms can be rewritten using

vol(ıV dV ∧ V −)2 = vol

[

1

2
(ıV dV ∧ V )2 −

1

2
(ıV dV ∧ V )mn ⋆ (ıV dV ∧ V )mn

]

= volV 2(ıV dV )2 + ıV dV ∧ V ∧ ıV dV ∧ V = volV 2(ıV dV )2 .

(D.5)

The crossterm on the other hand is

vol(ıV dV ∧ V −)mndV
−mn = −2ıV dV ∧ V ∧ ⋆dV −

= −ıV dV ∧ V ∧ dV + ıV dV ∧ V ∧ ⋆dV

= −
1

2
ıV (dV ∧ dV ) ∧ V + dV ∧ V ∧ ⋆(dV ∧ V )

= −
1

2
V 2dV ∧ dV − vol(ıV dV )2 .

(D.6)

Therefore

vol

(

2ıV dV ∧ V −

1 + V 2
+ dV −

)2

= vol

[

−
4

(1 + V 2)2
(ıV dV )2 + (dV −)2

]

−
2V 2

1 + V 2
dV ∧ dV .

(D.7)

Returning to (D.3), the (ıV dV )2 terms cancel and the expression simplifies to

(aE0 )
2

∫

M4

1

(1 + V 2)2

(

vol

4
dV 2 −

V 2

2(1 + V 2)
dV ∧ dV

)

. (D.8)

We can rewrite this as

−
(aE0 )

2

2

∫

M4

1

(1 + V 2)2

(

dV ∧ ⋆dV +
V 2

(1 + V 2)
dV ∧ dV

)

. (D.9)

Here the second term vanishes. To see this, consider a generic function f(V 2). One finds
∫

f(V 2)dV ∧ dV = −1
2

∫

f ′(V 2)V 2dV ∧ dV . Thus

∫

M4

[2f(V 2) + f ′(V 2)V 2]dV ∧ dV = 0 . (D.10)
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Observing that

f(V 2) =
1

V 4

[

3 + 4V 2

2(1 + V 2)2
+ log(V 2 + 1) + const

]

(D.11)

satisfies

2f(V 2) + f ′(V 2)V 2 =
V 2

(1 + V 2)3
(D.12)

settles things.

Finally we arrive at the result of this section. The tree level action is given by

−
(aE0 )

2

2

∫

M4

1

(1 + V 2)2
dV ∧ ⋆dV =

(aE0 )
2

4

∫

M4

(

dV

1 + V 2

)2

. (D.13)

E Toric Kähler geometry

Consider a toric Kähler manifold M4. The image of the moment map φ : M4 → R
4 is

the Delzant polytope P = φ(M4) ⊂ R
4, P ◦ its interior. Then M◦

4 = φ−1(P ◦) is an open

dense subset of M4. M
◦
4 is symplectomorphic to P ◦ ×T

2 and we can introduce symplectic

coordinates (x, y):

M◦
4
∼= P ◦ × T

2 =
{

(x, y)|x ∈ P ◦ ⊂ R
2, y ∈ R

2/Z2
}

. (E.1)

The torus acts as

t · (x, y) = (x, y + t) t ∈ T
2 (E.2)

and the symplectic form is ω = dx ∧ dy =
∑

i dx
i ∧ dyi. The volume form is trivially

1
2ω ∧ ω, and Guillemin [31] tells us that the symplectic volume of M4,

∫

M4
eω is (2π)2, the

Euclidean volume of the Delzant polytope ∆.

The work of Guillemin and Abreu [31, 32] gives us a simple recipe to calculate the

canonical almost complex structure and metric from the Delzant polytope. The Delzant

polytope can be described by a set of inequalities of the form 〈x, µr〉 ≥ λr, r = 1, . . . , d,

each µr being a primitive element of the lattice Z2 ⊂ R
2 and inward pointing normal to the

r-th (n− 1)-dimensional face of P . Consider the affine functions lr : R
2 → R, defined by

lr(x) = 〈x, µr〉 − λr . (E.3)

The function

gP (x) =
1

2

d
∑

r=1

lr(x) log lr(x) (E.4)

is smooth on P ◦. Define GP = Hessx(g), i.e. (GP )ij = ∂xi∂xjg. Then

JP =

(

0 −G−1
P

GP 0

)

, ds2 =

(

GP 0

0 G−1
P

)

. (E.5)

We can calculate the Christoffel symbols

Γyi
ykxl

=
1

2
Gij∂l(G

−1)jk , Γxi

ykyl
= −

1

2
(G−1)ij∂j(G

−1)kl ,

Γxi

xkxl =
1

2
(G−1)ij(∂kGjl + ∂lGjk − ∂jGkl) ,

(E.6)

– 29 –



J
H
E
P
0
5
(
2
0
1
5
)
1
1
1

as well as the Ricci tensor.

Now, we pick a generic Killing vector V = V [p, q] = p∂y1+q∂y2 ; V = Vi∂yi . It’s norm is

V 2 = p2(G−1
P )11 + q2(G−1

P )22 + 2pq(G−1
P )12 . (E.7)

And of course G−1
P = (detGP )

−1G# = (detGP )
−1
(

G22 −G12
−G12 G11

)

. There is a dual form

v = v[p, q] which satisfies (ǫ12 = 1 = ǫ 2
1 )

v = 〈V, ·〉 =
(

p(G−1
P )11 + q(G−1

P )12
)

dy1 +
(

p(G−1
P )21 + q(G−1

P )22
)

dy2 ,

dv = ∂xivyjdx
i ∧ dyj ,

⋆dv = −∂xivyj ǫ
i
kǫ

l
j dx

k ∧ dyl,

dv± =
1

2
(δikδ

j
l ∓ ǫikǫ

l
j )∂xivyjdx

k ∧ dyl .

(E.8)

With 〈dxi ∧ dyj , dx
k ∧ dyl〉 = 2(G−1

P )ik(GP )jl,

(dv)2 = 2∂xivyj∂xkvyl(G
−1
P )ik(GP )jl ,

(dv±)2 =
1

2

(

δikδ
l
j ∓ ǫikǫ

l
j

)(

δî
k̂
δ l̂
ĵ
∓ ǫî

k̂
ǫ l̂

ĵ

)

(∂xivyj )(∂xîvyĵ )(G
−1
P )kk̂(GP )ll̂ .

(E.9)

One can massage these terms a bit as ∂xiG
−1 = −G−1∂xiGG−1.

dv = −(p q)i(G
−1
P )ij(G−1

P )kl(∂m∂j∂kgP )dx
m ∧ dyl . (E.10)

Local form of the CP
2 metric. For CP2, we have

l1 = x1 , l2 = x2 , l3 = 1− x1 − x2 . (E.11)

Therefore

G−1
P = 2

(

x1(1− x1) −x1x2
−x1x2 x2(1− x2)

)

. (E.12)

The polytope is the triangle bounded by x1 = 0, x2 = 0, and x1 + x2 = 1.

Near (0, 0), we expand the metric

ds2 =
1

2

[

(x−1
1 + 1 + x1 + x2)dx

2
1 + (x−1

2 + 1 + x1 + x2)dx
2
2

+(1 + x1 + x2)(dx1dx2 + dx2dx1)
]

+ 2(x1dy
2
1 + x2dy

2
2) +O(x2i ),

V =
∑

i

pi∂yi . (E.13)

Our aim is to rewrite this in terms of two copies of R2 in polar coordinates which will allow

us to identify the Ω parameters. In a first step, we introduce 2xi = ρ̃2i . After a further

coordinate change of the form dρi =

√

1 +
ρ̃2i
2 dρ̃i, the local form of the metric is

ds2 = dρ21 + ρ21dy
2
1 + dρ22 + ρ22dy

2
2 +

ρ1ρ2
2

(dρ1dρ2 + dρ2dρ1) +O(ρ3i ); (E.14)
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the vector V is as before. Finally, we introduce cartesian coordinates Xi = ρi cos yi,

Yi = ρi sin yi. In these coordinates ρ1ρ2dρ1dρ2 = (X1dX1 + Y1dY1)(X2dX2 + Y2dY2), so

the off-diagonal terms are of higher order than the diagonal ones. In other words, we have

ds2 =
∑

i

dX2
i + dY 2

i +O(Xi, Yi), V =
∑

i

pi(−Yi∂Xi +Xi∂Yi). (E.15)

For the Killing spinors this means that

ǫi+ = −ıp1(Y1γ1 −X1γ2)ǫ
i
− − ıp2(Y2γ3 −X2γ4)ǫ

i
− . (E.16)

Thus, around (0, 0) we have Ω parameters (p1, p2).

Next we study the metric, vector and spinors around (1, 0). If we introduce coordinates

x̂1 = 1− x1 − x2, x̂2 = x2, ŷ1 = y1, ŷ2 = y1 − y2, the metric takes the form of the previous

case and

V = p1∂ŷ1 + (p1 − p2)∂ŷ2 . (E.17)

By comparison with the previous case, the Ω parameters are (p2 − p1,−p1).

Similarly, around (0, 1) one performs a coordinate transformations to x̂1 = x1, x̂2 =

1− x1 − x2, ŷ1 = y1 − y2, and ŷ2 = y2. Then

V = (p1 − p2)∂ŷ1 + p2∂ŷ2 . (E.18)

The Ω parameters are thus (−p2, p1 − p2).

The same result can be obtained as well starting with the metric in (2.6) and gravipho-

ton in (2.15). In these coordinates the set V 2 = 0 is ρ = 0, {ρ = π
2 , θ = 0} and {ρ = π

2 , θ =

π}. Expanding the background around each of these points one can see that, around them,

in the appropriate coordinates it becomes a copy of flat space ds2 = dx2i such that

V = ǫ
(i)
1 (x1 ∂x2−x2 ∂x1)+ǫ

(i)
2 (x3 ∂x4−x4 ∂x3) , T+ = −2 (ǫ

(i)
1 −ǫ

(i)
2 ) (dx1∧dx2−dx3∧dx4) ;

(E.19)

being ǫ
(i)
1, 2 given by (4.13).
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