ResearchGate

See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/236867840

S41-Monday-1130-Alvarez

DATASET · MAY 2013

DOWNLOA	DS	VIEWS
46		72
7 AUTHO	DRS, INCLUDING:	
\bigcirc	Jorge Díez	Juan José del Coz
22	Iniversity of Oviedo	University of Oviedo
	49 PUBLICATIONS 335 CITATIONS	51 PUBLICATIONS 297 CITATIONS
	SEE PROFILE	SEE PROFILE

Automated classification techniques targeted to improve the precision of biomass estimates

<u>Eva Álvarez</u>

Ángel López-Urrutia

Enrique Nogueira

Rafael González-Quirós

Pablo González

Jorge Díez

Juan José del Coz

Instituto Español de Oceanografía Centro Oceanográfico de Gijón Asturias, Spain

Artificial Intelligence Center University of Oviedo Asturias, Spain

Automatic sampling and classification techniques

Abundance per taxonomic group

Littman, R.A. et al. J. Exp. Mar. Biol. Ecol. (2008)

San Martin, E. et al. *Limnol. Oceanogr.* (2006)

Biomass per taxonomic or functional group

Ide, K.et al. J. Plankton Res. (2007)

Abundance oriented method vs biomass oriented method

Biovolume based on projected area

Automatic sampling devices based on image-analysis measure particle volume from the Equivalent Spherical Diameter (ESD)

Biovolume based on projected area

Automatic sampling devices based on image-analysis measure particle volume from the Equivalent Spherical Diameter (ESD)

considering every particle as an sphere independently of its shape.

Biovolume based on projected area

Automatic sampling devices based on image-analysis measure particle volume from the Equivalent Spherical Diameter (ESD)

considering every particle as an sphere independently of its shape.

Biovolume based on shape

Traditionally biovolume has been measured assigning shape to the cells and calculating the volume accordingly.

Biovolume based on shape

Traditionally biovolume has been measured assigning shape to the cells and calculating the volume accordingly.

Biovolume based on shape

Traditionally biovolume has been measured assigning shape to the cells and calculating the volume accordingly.

The way we measure the volume can modify the size-spectra slope depending on the morphological composition of the sample.

The way we measure the volume can modify the size-spectra slope depending on the morphological composition of the sample.

To know automatically the particle shape we need to classify taxonomically in morphologically homogeneous classes.

Abundance-oriented Support Vector Machine

Training set

$$S = \{ (x_1, y_1, c_1), (x_2, y_2, c_2) ... (x_n, y_n, c_n) \}$$

Abundance-oriented Support Vector Machine

Training set

$$S = \{ (x_1, y_1, c_1), (x_2, y_2, c_2) ... (x_n, y_n, c_n) \}$$

Abundance-oriented Support Vector Machine

Training set

$$S = \{ (x_1, y_1, c_1), (x_2, y_2, c_2) ... (x_n, y_n, c_n) \}$$

Abundance-oriented Support Vector Machine

Training set

$$S = \{ (x_1, y_1, c_1), (x_2, y_2, c_2) ... (x_n, y_n, c_n) \}$$

Model

$$h: S' \longrightarrow Y'$$

Abundance-oriented Support Vector Machine

Training set $S = \{ (x_1, y_1, c_1), (x_2, y_2, c_2) \dots (x_n, y_n, c_n) \}$

Model

$$h: S' \longrightarrow Y'$$

Loss function

$$\Delta_{\text{LOSS}}(h, S') = \frac{\sum_{x_i \in S'} c_i [h(x_i) \neq y_i]}{\sum_{x_i \in S'} c_i}$$

Abundance-oriented Support Vector Machine

Training set $S = \{ (x_1, y_1, c_1), (x_2, y_2, c_2) \dots (x_n, y_n, c_n) \}$

Model

$$h: S' \longrightarrow Y'$$

Loss function

$$\Delta_{\text{LOSS}}(h, S') = \frac{\sum_{x_i \in S'} c_i [h(x_i) \neq y_i]}{\sum_{x_i \in S'} c_i}$$

An error occurs when the predicted class does not mach the actual class.

Abundance-oriented Support Vector Machine

Training set $S = \{ (x_1, y_1, c_1), (x_2, y_2, c_2) \dots (x_n, y_n, c_n) \}$

Model

 $h: S' \longrightarrow Y'$

An error occurs when the predicted class does not mach the actual class.

In an abundance-oriented classification the cost of error (c) is 1 for all the examples.

Abundance-oriented Support Vector Machine

Abundance estimates Accuracy = 0.89

Abundance-oriented Support Vector Machine

Abundance estimates Accuracy = 0.89

Number of cells

Biovolume based on manual shape Biovolume based on automatic shape

To improve the biomass estimates the SVM is built considering the error a function of biomass.

Loss function

$$\Delta_{\text{LOSS}}(h, S') = \frac{\sum_{x_i \in S'} c_i [h(x_i) \neq y_i]}{\sum_{x_i \in S'} c_i}$$

To improve the biomass estimates the SVM is built considering the error a function of biomass.

Loss function

The cost of misclassifying one example (c_i) is the value of biomass for this example.

To improve the biomass estimates the SVM is built considering the error a function of biomass.

Loss function

$$\Delta_{\text{LOSS}}(h, S') = \frac{\sum_{x_i \in S'} c_i [h(x_i) \neq y_i]}{\sum_{x_i \in S'} c_i}$$

The cost of misclassifying one example (c_i) is the value of biomass for this example.

To improve the biomass estimates the SVM is built considering the error a function of biomass.

Loss function

$$\Delta_{\text{LOSS}}(h, S') = \frac{\sum_{x_i \in S'} c_i [h(x_i) \neq y_i]}{\sum_{x_i \in S'} c_i}$$

The cost of misclassifying one example (c_i) is the value of biomass for this example.

Abundance estimates

Biomass estimates

Biomass oriented SVM

Number of cells

3 5 ŝ 9 r 4 യ **ന** 0.96 Diatom chains 0.86 Non living 0.86 Diatom spheres Abundance 0.32 Flagellates 0.89oriented 0.67 Diatom discuses -0.94 Silicoflagellates 0.88 Dinoflagellates 0.84 Ciliates 0.95 Crustaceans

Abundance estimates

Biomass estimates

Biomass oriented

Number of cells

0.96

0.86

0.86

0.32

0.67

0.94

0.88

0.84

0.95

Abundance estimates

4 9 9 7 8 6

0.89

3 5

Diatom chains

Diatom spheres

Diatom discuses

Silicoflagellates

Dinoflagellates

Crustaceans

Ciliates

Non living

Flagellates

Biomass estimates

0.97

0.82

0.77

0.33

0.68

0.93

0.87

0.81

0.98

Abundance

oriented

Biomass oriented

Number of cells

0.96

0.86

0.86

0.32

0.67

0.94

0.88

0.84

0.95

0.88

0.86

0.73

0.05

0.22

0.92

0.90

0.78

0.93

Abundance estimates

Abundance oriented

Biomass oriented

Number of cells

 1000	1011	1012	1012	100

Biomass estimates

0.93

0.92

0.73

0.05

0.22

0.88

0.89

0.78

0.96

ດ

Diatom chains -Non_living -Diatom spheres -Flagellates -Diatom discuses -Silicoflagellates -Dinoflagellates -Ciliates -Crustaceans -

pg Carbon

Conclusions

• Size spectra calculated with projected area-based volume or shape-based volume can be different depending on the morphological composition of the sample.

• To improve the biomass estimates the SVM can be designed considering the error a function of biomass.