
Using an SQL Coverage Measurement for Testing
Database Applications

María José Suárez-Cabal

University of Oviedo
Department of Computer Science

Campus de Viesques, Gijón, Spain
(+34) 985 18 2506

cabal@uniovi.es

Javier Tuya
University of Oviedo

Department of Computer Science
Campus de Viesques, Gijón, Spain

(+34) 985 18 2049

tuya@uniovi.es

ABSTRACT
Many software applications have a component based on database
management systems in which information is generally handled
through SQL queries embedded in the application code. When
automation of software testing is mentioned in the research, this is
normally associated with programs written in imperative and
structured languages. However, the problem of automated software
testing applied to programs that manage databases using SQL is still
an open issue. This paper presents a measurement of the coverage
of SQL queries and the tool that automates it. We also show how
database test data may be revised and changed using this
measurement by means of completing or deleting information to
achieve the highest possible value of coverage of queries that have
access to the database.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging – Testing
tools, coverage testing

General Terms
Experimentation, Languages, Measurement, Verification.

Keywords
verification and validation, software testing, database testing, SQL
testing, statement coverage.

1. INTRODUCTION
Testing is one of the most expensive processes in the development
and maintenance of software products, with over 30% of resources
being committed to this end [7]. A recent NIST study [11] estimates
that the costs of software faults total 59.5 billion dollars, more than a

third of which are incurred during development. It is estimated that
these costs could be reduced by half should an adequate
infrastructure for testing be available. As the majority of defects are
introduced in the initial phases of programming, it is essential to
include improvements in the software testing process that can be
used by programmers in these phases [6].

On the other hand, it is common for software applications written in
an imperative language to have access to the database through SQL
statements embedded in the code. These queries are part of the
application’s business logic. Because of this, it is necessary to have
conducted suitable testing in the same way of the rest of the code.
The tests should cover all the query situations and avoid producing
undesired results so as to obtain their maximum possible coverage.
Test design is a difficult task, mainly due to the information
contained in the databases and to the SQL code itself.

The main aims of the present paper are to:

• Define a measurement of coverage of SQL SELECT queries
in relation to a database loaded with test data that can be used
as an adequacy criterion to carry out the testing of applications
with access to databases.

• Present an algorithm that automates the calculation of
coverage in order to help the software tester.

• Extract a subset of database information that allows the
obtainment of at least the same result as the original set for the
established adequacy criterion.

• Guide the expert with respect to how the database tuples might
be changed to increase the obtained coverage value, if
possible.

The remainder of this paper is organized as follows. Section 2
examines the relationship between software testing and database
applications. Firstly, some of the published work related to this topic
is briefly described in Subsection 2.1. Then, some characteristics of
software testing applied to applications that access databases
through SQL statements are discussed in more detail in Subsection
2.2. After that, Subsection 2.3 presents an example of detection of
faults in a SELECT query. Following this, a method for measuring
the coverage of SQL SELECT queries is established in Section 3,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGSOFT’04/FSE-12, Oct. 31–Nov. 6, 2004, Newport Beach, CA, USA.
Copyright 2004 ACM 1-58113-855-5/04/0010…$5.00.

along with how this is calculated and supported by a tool.
Subsequently, the results of the algorithm run on the SELECT
queries with a real database are described in Section 4. To finish,
Section 5 presents the conclusions we have reached, together with
future lines of research and development.

2. SOFTWARE TESTING AND DATABASES
2.1 Related work
A number of studies have been found in the literature related to the
topic of software testing for databases and applications that access
these through SQL statements embedded in the code. Some of
these articles are described below.

One of the studies [9] was carried out by the Microsoft research
team. Valid SQL statements were randomly generated and run on
several systems that contained identical databases. The aim was to
evaluate database management systems with the SQL statements
so-produced and compare the outputs obtained. In [4], a set of valid
and invalid data was generated from a database structure and its
constraints at field-level in order to automatically load the initial
database However, the SQL statements that run with the generated
data were not considered, nor was the adequacy criterion used for
the generation of tests indicated.

In a further study [3], a design of a tool was presented whose
function is to facilitate testing of applications with testing databases.
The test data generation is basically based on specifications and
boundary values. Input data were generated to fill a database,
satisfying integrity constraints and considering SQL queries of
application. Once the output had been obtained, this was compared
with the expected results and the final state of the database was
checked.

Another study [2] used white box testing on applications with
access to databases. The embedded SQL code was translated to
the same application imperative code, allowing conventional
techniques to then be applied. Other studies showed how to
generate instances for databases from the semantics of the SQL
statements of a program [12]. Both were based on SQL code, but
they considered neither database schema nor database integrity
constraints.

Adequacy criteria were defined to ensure the quality of the tests
designed manually for database applications in [8]. These criteria
made use of controlflow and dataflow techniques associated with
relational database entities. In [5], dataflow and controlflow analysis
and the dependences between components of a database application
were used to determine the components that should be tested when
any change was produced and to minimize the set of test cases in
regression testing, but its aim was not the design of test cases.

In the commercial area, there are a small number of generators of
database instances [3,4], e.g. TestByte 3, TestBase or DataTect,
that generate random information depending on the type of fields.
More sophisticated tools permit the user to define sets of data for
names, cities, value ranges, permitted and forbidden values. The
problem with these generators is that the user needs to know the
database structure. There are other tools, such as SQLUnit [10],
that facilitate testing of stored procedures and SQL statements.
Calls to stored procedures, variables, constraints and expected
results of queries can be specified through XML.

As can be seen, there are not many research papers related to this
topic; perhaps as a result of the problems outlined below. What is
more, the approach of each of the authors is quite different.

2.2 Characteristics of software testing with
databases
The process of software testing of applications with access to
databases through embedded SQL queries entails several problems
that make this testing difficult for the following possible reasons:

• The first task is to design the initial instances for loading
the test database. The selection of this information is one
of the most important steps to obtain a good set of unit
test cases, as it will be the input to any SQL statement. It
is necessary to decide what data are relevant, and which
and how many are required. Moreover, combinations
between tuples must be taken into account to cover all the
SQL query situations. If there is a low number of
instances, the costs of loading are much smaller, and
finding and resolving possible faults will be much easier.

• Another point to consider in the design of the test
database is that applications do not have only one
statement. Therefore, the data should be useful for the
greatest possible number of statements, as loading a test
databases with different information for each query would
have a very high cost.

• The information contained in a database will be the input
for any SQL statement, but this information is not static; it
will be modified during the running of queries.
Consequently, when designing a test database, it is
necessary to consider the order in which queries are
executed and whether these will modify the data that will
be the input to others.

• As in imperative languages, SQL statements may be
parameterized by variables and constants. When
designing the testing plan, these inputs must also be
considered, and test data provided for them.

• Another of the problems to overcome lies in judging the
adequacy of the unit test data generated: whether this
really covers all the possible situations and whether the
output obtained through the application of the plan fulfils
the requirements for which the software was designed; in
this case, the SQL statements.

2.3 Detecting faults in SELECT queries
One of the problems encountered when performing tests of SQL
statements is that of estimating the adequacy of the test cases. This
means that, given an SQL statement and data from the database, is
it possible to know whether all the possibilities of the query are
covered?

Let us take a simple example: a small database with suppliers and
orders. The query specification is to obtain a list of orders including
their suppliers. Figure 1 shows the Entity-Relation diagram, the data
in the database, the SELECT query for the specification given, and
the results of the query.

Supplier Order

sup_code
001
002

sup_name
sup1
sup2

ord_num sup_code
1 001
2 001
3 002

SELECT sup_name, ord_num
FROM tSup s LEFT JOIN tOrd o
 ON (s.sup_code=o.sup_code)

ord_num sup_name
1 sup1
2 sup1
3 sup2

Figure 1. Example with E-R diagram, data and SELECT
query.

At first glance, both the database and the query look correct. When
the application is run in production, suppliers without orders are
possibly included; so will the information returned by the query
continue to be correct? The E-R diagram determines that there may
be suppliers with no orders, but this situation is not represented in
the tuples of the test database, because all suppliers have at least
one order. Therefore, it is impossible to know whether the query
always returns the information required in the specification: orders
with their suppliers, or whether it may produce incorrect outputs: in
this case, including suppliers that do not have orders. Hence, we can
affirm that an adequate SELECT coverage is not obtained with
these test data.

3. MEASUREMENT OF COVERAGE
The approach proposed in this paper is to establish a way of
measuring the coverage of an SQL query based on the coverage
concept whereby the conditions take into account the true and false
values during the explorations of their different combinations [13].

Given the variety of SQL statements that can be found in an
application, we have restricted these to a subset of SELECT queries
specified in SQL3 [1], according to the grammar in BNF notation
shown in Figure 2, in order to first achieve testing with simple SQL
queries, to subsequently extend the analysis to other, more complex
queries.

3.1 Coverage tree and evaluation of conditions
The solution for the automated search of SQL query situations
covered with the data stored in the database is to evaluate the
conditions of SELECT queries that are in the FROM clause, when
they include JOIN, and in the WHERE clause. Moreover, the null
values of fields will be verified at the same time as the conditions
are evaluated.

A tree structure, called coverage tree, is created prior to coverage
evaluation, in which each level represents a condition of the query
beginning with the conditions of the JOIN clause, if it exists, and
then with those of the WHERE clause, in the same order in which
they are found in the query. Each node of the tree will store:

• Whether the condition is true for values of the fields;
represented in the coverage tree as T.

• Whether the condition is false for values of the fields;
represented in the tree as Fl and Fr. Note that, in this
case, it is necessary to consider a different treatment for
the cases in which the condition is evaluated from left to
right and from right to left, as explained below.

• Whether there are null values in condition fields in the
database; this information will then be included in the
coverage tree as Nl, Nr and Nb. Note the different
treatment, too.

<select> ::= SELECT <select list>
 <from clause>[<where clause>]
<select list> ::= ‘*’
 |<column name>[{ ‘,’<column name>}]
<from clause> ::= FROM <table reference>
 [{ ‘,’ <table reference> }]
<table reference> ::= <table name>
 [[AS] <correlation name>]
 | <table reference> [<join type>]
 JOIN <table reference>
 ON <search condition>
<join type> ::= INNER
 | <outer join type> [OUTER]
<outer join type> ::= LEFT | RIGHT
<where clause> ::= WHERE <search condition>
<search condition> ::= <boolean term>
 | <search condition> OR <boolean term>
<boolean term> ::= <boolean factor>
 | <boolean term> AND <boolean factor>
 <search condition>
<boolean factor> ::= [NOT]<boolean primary>
<boolean primary> ::= <expression>
 | (<search condition>)
<expression> ::= <ope1> <op> <ope2>
<op1> ::= <column reference>
<op2> ::= <column reference>
 | <null specification>
 | <literal>
<op> ::= ‘=’ | ‘!=’ | ‘<’ | ‘>’ | ‘<=’ | ‘>=’
<column reference> ::= <column name>
 | <table name> ‘.’ <column name>
 | <correlation name> ‘.’ <column name>

Figure 2. Simplified BNF grammar of SELECT query.

Conditions are not evaluated between a single pair of values, but
between sets of values, since the information in each field
corresponds to a column from a table and several rows in the
database. Therefore, during the evaluation of a condition, each value
in the first field must be compared with each one in the second field,
and each value in the second field with each one in the first, as
shown in Figure 3.

value-i

value-j

operation1st. Field 2nd. Field

Figure 3. Operation between values of two fields.

The performed evaluation is represented in Figure 4 and is explained
below:

• A condition will be true if it is verified for a pair of values
from the fields to compare. It is the same result if the
condition is evaluated from left to right or from right to
left.

• A condition will be false from left to right, Fl, if none of
the values from the second field verifies the condition
with a value from the first field. While there are values
from the second field for comparing and the condition
remains false, the evaluation is considered temporarily
NOT true, because it is not true, although it is not yet
known whether it is false.

• A condition will be false from right to left, Fr, if none of
the values from the first field verifies the condition with a
value from the second. As in the previous case, while
there are values from the first field for comparing and the
condition remains false, the evaluation is considered
temporarily NOT true.

• A condition will have null values when a value from the
first field is null, Nl, when a value from the second field is
null, Nr, or when both values, from the first and second
fields, are null, Nb.

)(Both Nb)y(field)x(field/y,x
) field (Second Nr)y(field/y

) field(First Nl)x(field/x

left) right to from (Fr))y(fieldOP)x(field(/y,x
right) left to from (Fl))y(fieldOP)x(field(/y,x

)(T)y(fieldOP)x(field/y,x

} , , , ,! ,{OP
)jtable(tuplesy),itable(tuplesx

NULLNULLNULL
NULLNULL

NULLNULL

FALSE
FALSE

TRUE

ji

j
i

ji

ji

ji

⇒=∧=∃∃
⇒=∃
⇒=∃

⇒¬∃∀
⇒¬∀∃

⇒∃∃

>=<=><==∈
∈∈

Figure 4. Evaluation of a condition.

Figure 5 shows the coverage tree corresponding to the example
indicated in Figure 1 (this simple query has only one node
representing the join). As can be seen, the node has six elements
and only the T element is evaluated (represented by Y), because
there is a situation in which both terms are true. However the
condition is neither false from left to right nor false from right to left
and there are no null values in the fields, represented by N.

s.sup_code=o.sup_code

Nl Nb
N

Nr
NN

Fl T
N

Fr
NY

Figure 5. Coverage tree of the simple example.

3.2 Evaluation of the coverage tree and
calculation of coverage
The complete evaluation of the query is carried out by crossing over
the tuples of the tables that participate in the conditions at each level
of the coverage tree. The evaluation finishes when the entire tree
has been covered, i.e. 100% coverage has been covered, or when
there are no more values for comparing.

For each particular node, the condition is evaluated for a tuple from
the first field and another from the second, and:

• If the result is true, these tuples are fixed in order to
evaluate the conditions of the lower levels of the tree via
the T branch.

• If the result is false from left to right, only the tuple from
the first field is fixed and, if it is false from right to left,
the tuple from the second field is fixed, in order to
evaluate the lower levels of the tree, via the branch at
which the condition is false, Fl or Fr respectively.

It is important to fix the tuples, since the same tables, or even the
same fields, could appear again at lower levels of the tree, and it is
necessary to keep the values of a tuple for the evaluation of all the
conditions.

After evaluating the coverage tree, the measurement of coverage
may be established taking into account the conditions of the
SELECT query. Two different coverage measures are established
and automatically calculated:

• Theoretical coverage: which takes into account every
possible situation at every node.

• Schema coverage: which takes into account the database
schema constraints by excluding the impossible situations
due to these constraints.

The percentage of theoretical coverage is calculated using the
formula in Figure 6, in accordance with the total number of
combinations of values in the conditions and the number of
combinations found in the evaluation (v). The total number of
combinations will be calculated as a function of the number of
conditions of the query (n), the number of condition values in each
node (p) and the number of child-nodes of each node (s).

100*
)1(*

)1(*
coverage%

−

−
=

nsp

sv

where:
 v: number of cases (elements of a node) that it has been
 possible to verify (those marked with Y).
 s: number of child-nodes that a node can have.
 p: number of possible values that a condition can adopt once it
 is evaluated, which in the coverage measurement presented
 here will have six values (Nl, Nr, Nb, T, Fl, Fr).
 n: number of levels of the coverage tree; i.e. the number of
 conditions in the query.

Figure 6. Calculation of theoretical coverage.

Figure 7 shows how this formula is applied to the simple example of
Figure 1, whose coverage tree is represented above.

%67.16100*
)13(*6

)13(*1
coverage%

1
=

−

−
=

where:
 v=1: cases verified
 s=3: each node has 3 child-nodes
 p=6: values (Nl, Nr, Nb, T, Fl, Fr).
 n=1: levels of the coverage tree.

Figure 7. Theoretical coverage for the simple example.

However, it is not usually possible to reach 100% theoretical
coverage, because of forbidden null values or referential integrity
constraints. In these cases, we use schema coverage: the maximum
possible value of coverage is calculated keeping in mind the
elements of each node that are possible to evaluate.

In the example in Figure 1, due to referential integrity, an order
always has a supplier, therefore elements Fr, Nb, and Nr will never
be verified, being represented in the coverage tree in Figure 8 by the
value X. There are three possible situations and the only one
covered is suppliers with orders. Thus, suppliers without orders (null
value) and with non-existent orders should be incorporated into the
test database.

s.sup_code=o.sup_code

Nl Nb
N

Nr
xx

Fl T
N

Fr
xY

%33.33100*
3

1
coverage% ==

Figure 8. Schema coverage for the simple example.

3.3 The tool
Figure 9 presents a schema of the tool developed for measuring the
coverage of a SELECT query.

Figure 9. Inputs and outputs of the program.

As for the inputs, these will be:

• Conditions of the SELECT query. The coverage tree will
be formed on the basis of these.

• Database structure: tables and columns that appear in the
query.

• Data or tuples from the tables: these will be the values
used for the evaluation of the conditions.

The outputs automatically obtained by the process are:

• After executing the program, the percentage of coverage
of the SELECT query can be determined using the
coverage tree, achieving 100% coverage if all possible
situations have been verified at any time.

• During the evaluation of the coverage tree, a trace of
those tuples that give new values for nodes is generated.
By revising this information, a subset of tuples can be
obtained that supply at least the same coverage as the
original data, and that can drastically reduce the size of
the test database.

• Unevaluated nodes are highlighted taking into
consideration the coverage tree. By observing their
conditions, their parent information, the database structure
and the tuples, the expert can be guided in finding the
information missing from the test database to cover all
possible cases.

4. CASE STUDY
The application of the above SQL coverage measurement tool is
described below for a case study with a real database and an SQL
query.

The database used for testing was supplied by a company in the
steel industry as the loading database of an application involved in a
research project between the company and the University of
Oviedo

4.1 The system
The company’s department is responsible for managing the
lamination rolls used in the rolling mills for the manufacture of steel
sheets. The work of the department involves preparing the rolls,
sending them to mills for their assembly and picking up worn,
damaged, or broken-down rolls, as well as trying to resolve the
problems presented for returning them to use. Each roll always

D.B.

SELECT …
FROM …

WHERE ...

1. % coverage of the query
2. Subset of information
3. Guide to insert new test
 cases into the D.B.

Structure

Data
Quer
y

Coverage Tree

works in the same rolling mill, where the rolls are arranged in boxes,
so that a mill may consist of one or more boxes, and if the mill is
rolling, there are several rolls in the boxes, as can be seen in Figure
10. After a certain period of usage in the boxes, the rolls become
worn and must be repaired; they are hence removed from the boxes
and replaced by others.

The department manages thousands of rolls, as well as dozens of
boxes and mills. It is thus necessary to maintain this information in a
database and to efficiently manage this via a software application.
As regards the database used for testing, note should be taken of
the large amount of information: it has about a thousand rolls and
twenty boxes and mills.

Several SELECT queries that contain distinct tables of the system
have been analyzed with the tool, and several faults in the queries
and incomplete test cases have been found. Table 1 shows the
number of tables and conditions for each query and the percentages
of theoretical and schema coverage.

Table 1. Queries analyzed

Query Tables Cond. %TCov %SCov
1 1 1 33.33% 66.67%
2 1 2 25.00% 37.50%
3 1 3 20.51% 30.77%
4 2 1 50.00% 50.00%
5 2 2 20.83% 20.83%
6 2 2 25.00% 40.00%
7 2 2 29.16% 58.33%
8 3 3 11.54% 11.84%
9 3 3 11.54% 17.65%

10 3 3 21.79% 28.33%
11 3 4 7.92% 8.19%
12 3 3 19.23% 46.87%

Below, we detail the use of coverage for the query numbered 12.
This query is large enough to illustrate the tool’s performance, while
it is small enough to allow us to understand the results and resolve
the faults.

Rolling Mill Boxes

Sheet of steel

Rolls

Figure 10. Schema of a rolling mill with boxes and rolls.

4.2 Data model, database design and query
specification
Figure 11 shows the E-R model in which the information on the
rolling mills, boxes and rolls is related. Each mill may be made up of
several boxes, but there may be mills (that have been recently

installed) that do not have any associated box. On entering the
department, the rolls are assigned to a mill according to their
physical properties and this assignment is fixed during the entire life
of each roll. However, rolls are not always associated with the
same box, in fact they only have a box when they are working in a
rolling mill.

Mill Box Roll

Figure 11. E-R model.

The tables corresponding to the entities of the E-R model described
above and their primary keys (PK) are shown in Figure 12. Thus,
the field “mill_type” (mill type) of the tables “box” and “roll” should
be a foreign key of the identically named field in the table “mill”.
Moreover, as it is not mandatory for rolls to stay in a box, the field
“box_code” (box code) of the table “roll” can be null, but the mill
type of roll will always be not null.

roll

roll_num (PK)
mill_type (not null)
box_code
...

mill

mill_type (PK)

box

box_code (PK)
mill_type (not null)
...

Figure 12. Tables, primary keys and possible null fields.

For the case study, the que ry numbered 12 has been chosen. It
obtains information about all mills and their respective boxes, if any,
and the rolls that are working in the mills at that moment. Its code is
presented in Figure 13.

SELECT *
FROM (mill LEFT JOIN box ON
 mill.mill_type=box.mill_type)
 LEFT JOIN roll ON
 (box.mill_type=roll.mill_type) AND
 (box.box_code=roll.box_code)

Figure 13. SELECT query for mills, boxes and rolls.

Since mills without boxes may exist (when the installations are
recent) and also mills and boxes without rolls (for example if the mill
is under maintenance and it is not laminating at the moment of
query), it seems adequate to use two “LEFT JOIN” clauses: one for
the tables “mill” and “box”, so that all mills are obtained with or
without boxes; and another for “box” and “roll”, with the goal of
obtaining all boxes, with or without rolls.

4.3 Ad-Hoc testing
Running the query stated above, the result obtained is more than a
thousand rows with mills, boxes and rolls. The doubt that arises is
whether every situation that could occur in the database is covered,
or whether introducing modifications in the database might lead to
the query returning wrong data.

Via the use of “LEFT JOIN”, the following situations must be given
with the test database:

• rolling mills without boxes in them,

• rolling mills with boxes,

• couples of mills and boxes without rolls laminating on
them,

• couples of mills and boxes with rolls installed.

Of these situations, there are mills in the result obtained in the query
that do not have boxes and mills that do, but there are no couples of
mills and boxes without associated rolls. This means all mills with
boxes in them have rolls and hence they are laminating.

Moreover, the structure of the database tables should be kept in
mind when detecting fields that can be null and checking the
existence of null and non-null values. In the case study, rolls may be
laminating and thus their box code may have a null value. However,
in the table “roll”, there are no rolls with this field null. This means
that all rolls are working in some box. In practice this is impossible,
since rolls have to exist in the department for replacing those that
are working with others when necessary.

Consequently, it seems that there are situations in the SELECT
query that are not covered with the information loaded in the
database. What is more, further hidden faults might be present. To
eliminate these problems, new test data ought to be inserted into the
database to cover all situations and avoid subsequent errors.

It should be verified whether all the conditions of the SQL query
present true and false values as well as the constraints at field -level
for null values. The amount of information managed (about twenty
mills and boxes and more than a thousand rolls) means that it is not
viable to check all situations manually in order to complete the test
cases. Therefore, the need arises to automate the process as
explained below.

4.4 Analysis of coverage results
Applying the tool and concepts described above, the coverage tree
shown in Figure 14 is generated for the query and database of our
case study. The conditions considered are in the “join” clauses;
therefore the corresponding coverage tree that will be created will
have three levels, one for each condition.

After running the algorithm, the obtained theoretical coverage value
of the SELECT query is 19.23%. 100% coverage is not achieved,
as only 15 out of the 78 possible situations established are tested.

In the following subsections, we will use this information to reduce
the amount of database records and to complete it with new cases.
Moreover, we will consider the constraints for null values and
referential integrity.

4.5 Simplification of tuples
Owing to the number of records being handled and the number of
comparisons that need to be performed for the evaluation, it is very
complex to determine new tuples that complete the previously
achieved result. To simplify matte rs, we make use of the values
(traces) that have allowed new information to be incorporated into
elements of nodes of the coverage tree while its evaluation was
being carried out; at least the same percentage coverage result
would be obtained with these. These traces are automatically
generated by the tool.

For the “mill”, “roll” and “box” tables, only the database rows
shown in Table 2 will be necessary. Moreover, it is necessary to
include the tuple indicated in Table 3 in the “mill” table so as to
maintain the referential integrity of the “roll” table.

Furthermore, tuples in the “box” table should be inserted to maintain
referential integrity, as there is information in the “roll” table with
values for the box code that does not correspond to any informa tion
in the “box” table. Although the database constraints permit these
situations, this indicates a potential error of referential integrity in the
database structure.

mill.mill_type=box.mill_type

box.box_code=roll.box_code

box.mill_type=roll.mill_type

Nl Nb Nr
Fl T Fr

N N N
Y Y N

N N N
Y Y N

N N N
Y Y Y

N N N
N N N

N N N
N N N

N N N
N Y N

N N N
Y Y N N N N

N Y N

N N N
Y Y N

N N N
Y Y N

N N N
N N N

N N N
N N N

N N N
N N N

Figure 14. Coverage tree.

Table 2. Simplified database information

mill
mill_name mill_type
AP. TANDEM 1 TAN1A
DESCASCAR. DES42
FINISHER F0 ACTF0
ACA F1/F6 ACTF6

box
box_code box_name mill_type
F0 CAJA F0 ACTF0
F1 CAJA F1 ACTF6
1 D. VERT DES42

roll
box_code roll_num mill_type
F0 F211 ACTF0
F3 1569 ACTF6
1 K001 SKINP
F1 1558 ACTF6

Table 3. Information added to maintain referential integrity

mill
mill_name mill_type
SKINPASS SKINP

Obviously, the number of tuples for each table is much lower than in
the original; only five rows are returned by the query and of course
both the execution of the program and the loading of the database
with these data are much quicker. Additionally, when the new
coverage tree is measured for the SELECT query, the number of
nodes achieved is extended due to the elimination of information and
hence these encompass conditions that now are evaluated as false.
The coverage tree for the query and simplified information is shown
in Figure 15, in which the newly achieved nodes are marked in
italics and the impossible ones are marked ‘X’. Even tuples that
cover the same situations as others can be deleted; for example the
“roll” table tuple whose code table is “F0” covers the same
situations as the one whose code box is “F1”, and so the latter may

be removed. In this case, the percentage of theoretical coverage is
29.49% and the schema coverage is 71.87%.

4.6 Completing the test data
The next task after simplifying information in the test database is to
complete with new test cases in order to increase the coverage. In
order to do so, the coverage tree generated will be examined. The
null values will be completed first and then the remaining situations
in a top-down fashion. New tuples for completing the database can
be seen in Table 4.

As regards null values, there are none in the tables. Some are
impossible to add: fields which are primary keys (mill type of “mill”
table, box code of “box” table and roll number of “roll” table) and
fields that have constraints in the database structure for null values
(mill type of “box” and “roll” tables). These cases will be indicated
in the coverage tree by an X, as these values are forbidden.
However, it would be appropriate to try to insert null values to
ensure that the database has considered these constraints and that
they can be used in regression testing. (Cases 1, 2, 3, 4, 5).

Table 4. Tuples for completing the database

mill

Case mill_name mill_type

(1)* TREN-NULL NULL

roll
Case box_code roll_num mill_type

(2)* 1 NULL ACTF0
(3)* 1 3333 NULL
(6) NULL 6666 ACTF0
(7) NULL 7777 SKINP
(10) 10 1010 SKINP

box

Case box_code box_nam
e

mill_type

(4)* NULL C-NULL ACTF0
(5)* F5 CT-NULL NULL
(8)* F8 CAJA F8 ACAAP
(9) F9 CAJA F9 DES42

mill.mill_type=box.mill_type

box.box_code=roll.box_code

box.mill_type=roll.mill_type

Nl Nb Nr
Fl T Fr

X X X
Y Y X

X X X
Y Y Y

X X X
Y Y Y

X X X
X X X

X X N
Y Y N

X X N
N Y Y

X X N
Y Y Y X X N

N Y Y

X X N
Y Y Y

X X N
Y Y Y

X X X
X X X

X X X
X X X

X X X
X X X

Figure 15. Coverage tree for query and simplified data.

On other hand, there are fields that can be null but are never so: the
box code of the “roll” table. To complete the test cases, it will be
necessary to add two tuples to the “roll” table with a null value for
their box code: one whose mill type coincides with one from the
“box” table (Case 6), and another whose mill type does not exist
(Case 7).

The level of the coverage tree for the condition
“mill.mill_type=box.mill_type” indicates that:

• There are mill types in the “mill” and “box” tables that
coincide (T).

• The condition is evaluated as false from left to right (Fl);
therefore some mill type in the “mill” table does not
correspond to any one in the “box” table.

• The condition is not evaluated as false from right to left
(Fr), because all mill types in the “box” table coincide
with some in the “mill” table.

These situations are the desired ones, as the E-R model establishes
that mills without boxes may exist, but boxes cannot exist without
being linked to a mill. However, it would be interesting to insert a
tuple in the “box” table whose mill type was different from any one
in the “mill” table so as to force the Database Management System
(DBMS) to detect and indicate that it is impossible to add it (Case
8).

After simplification of tuples in the database, the level of the
coverage tree for the condition “box.mill_type=roll.mill_type” has
covered all possible situations.

On the level of the coverage tree corresponding to the
“box.box_code=roll.box_code” condition:

• There are tuples from the “box” table whose box code
coincides with tuples from the “roll” table, whether their
mill type also coincides or not.

• The Fl situations are not obtained at two nodes on this
level. This indicates that all the tuples in the “box” table
coincide with respect to their box code with some from
the “roll” table having a different mill type. Therefore, a
new tuple in the “box” table should be inserted in the
database whose mill type and box code are distinct to any
one of the rolls at the same time (Case 9).

• The Fr situations are never achieved at any node on this
level; i.e. all the rolls have a box code that coincides with
one from the “box” table. In the light of the E-R model,
this point seems to be correct. However, it would be
appropriate to try to insert a roll with a box code that was
not included in the “box” table to ensure the database has
considered this constraint. Some of these situations are
covered with the simplified database by means of the
tuple in the “mill” table whose box code is “F3”.
However, it would be necessary to add a new tuple to this
table with a mill type and box code that is simultaneously
different to any of the tuples from the “box” table (Case
10).

With the aforementioned insertions, the coverage tree (Figure 16)
evaluates the conditions for all possible values and with all
combinations, and the maximum possible coverage of the query is
100% schema coverage. It is impossible to reach 100% theoretical
coverage owing to referential integrity, but it would be necessary to
test the insertions in the database with test cases marked with ‘*’ in
the Table 4.

Table 5. Result of query

mill_type box_code roll_num

TAN1A
SKINP
DES42 1
DES42 F9
ACTF6 F1 1558
ACTF0 F0 F211

In this case, the result of the query obtained is six rows with mills
with and without boxes and couples of mills and boxes with and
without rolls, as can be seen in Table 5.

Another fault is observed with the simplified database and Case 10:
rolls may have a box code that does not figure in the “box” table.
This means that the information will not be valid or fulfill the
specifications. This would be a problem of database design and
would need to be solved by means of including the field box code in
the “roll” table as a foreign key of the “box” table, or by controlling

mill.mill_type=box.mill_type

box.box_code=roll.box_code

box.mill_type=roll.mill_type

X X X
Y Y X

X X X
Y Y Y

X X X
Y Y Y

X X Y
Y Y Y

X X Y
Y Y Y

X X Y
Y Y Y

X X Y
Y Y Y

X X Y
Y Y Y

X X Y
Y Y Y

Nl Nb Nr
Fl T Fr

Figure 16. Coverage tree with the maximum possible coverage.

these situations by program code, with triggers or stored
procedures.

5. CONCLUSIONS AND FUTURE WORK
To finish, a number of conclusions are enumerated below. Firstly,
the most important aim considered: two different coverage
measures for the coverage of SQL queries have been established,
specifically for the case of the SELECT query, that are
automatically calculated taking into consideration the information of
database, the schema constraints and the SQL query. Like the
measurement of coverage for imperative and structured languages,
this is an indicator that helps improve designed test cases with the
purpose of detecting faults in SELECT queries. In the case study, it
was detected that although we have lots of real data in production,
the total possible coverage is not achieved due to incomplete test
information.

Furthermore, the number of tuples in the database may be simplified
by tracing the coverage tree. This is useful for creating smaller
databases and for detecting information that would have to be
inserted to make them complete. Reducing the number of tuples in
the tables leads to the detection of database design problems and
helps to complete the test cases.

We next cite some points that have been established and which will
influence current and future work.

On the one hand, the SQL queries analyzed until now are simple
and isolated, although we plan to increase the complexity of the
queries and carry out more studies that will confirm the obtained
results, as well as including parameters in the query. Besides,
greater complexity implies the evaluation of sets of queries, for
example those found in a stored procedure. It will be necessary to
integrate SQL coverage criteria with other criteria for imperative
languages that would permit complete transactions or store
procedures to be tested.

On the other hand, all the information on the database structure is
not exploited. This could be used to improve the information supplied
to the user with output data and to detect the specific test cases
needed in a more automatic way, as well as those test cases that,
even though an attempt was made to add them to the database,
cannot be incorporated due to constraints in the tables.

As the number of nodes of the coverage tree might be large
depending on the number of conditions in the query, another point to
be studied is that of new ways of measuring coverage, also possibly
based on other traditional measurements of coverage in imperative
languages, such as decision/condition or full predicate where the
combinations will not be so numerous, or incorporating different
concepts.

6. ACKNOWLEDGMENTS
This work is supported by the Department of Science and
Technology (Spain) under the National Program for Research,

Development and Innovation, project TIC2001-1143-C03-03
(ARGO).

The case study data is based on information obtained by the project
entitled AITOR, which was funded by the European Coal and Steel
Community (ECSC) (7210-PR-148) and Aceralia Corporación
Siderúrgica (CN-99-287-B1).

7. REFERENCES
[1] ANSI/ISO/IEC International Standard (IS). Database

Language SQL—Part 2: Foundation (SQL/Foundation).
“Part 2”. 1999

[2] Chan, M.Y. and Cheung, S.C. Applying white box testing to
database applications . CSTR, Hong Kong University of
Science and Technology, HKUST-CS99-01. 1999

[3] Chays D., Deng, Y., Frankl, P.G., Dan S., Vokolos, F.I. and
Weyuker, E.J. An AGENDA for testing relational database
applications. Software Testing, Verification and Reliability. 14
17-44. 2004

[4] Davies, R.A., Beynon, R.J.A. and Jones, B.F. Automating the
testing of databases. 1st International Workshop of
Automated Program Analysis, Testing and Verification. 2000

[5] Daou, B., Haraty, R.A. and Mansour, N. Regression testing
of database applications. Symposium of Applied Computing.
ACM. 2001

[6] Encontre, V. Empowering the developer to be a tester tool.
Int. Symposium on Software Testing and Analysis, Industry
panel. ACM SIGSOFT Software Engineering Notes. 2002

[7] Hartman, A. Is ISSTA research relevant to industry? Int.
Symposium on Software Testing and Analysis, Industry panel.
ACM SIGSOFT Software Engineering Notes. 2002

[8] Kapfhammer, G.M. and Soffa, M.L. A family of test
adequacy criteria for database-driven applications.
ESEC/FSE’03. ACM SIGSOFT Software Engineering Notes.
2003

[9] Slutz, D. Massive Stochastic Testing of SQL. 24th Very
Large Data Base Conference. 1998

[10] SQLUnit Project. http://sqlunit.sourceforge.net

[11] Tassey, G. The economic impacts of inadequate
infrastructure for software testing. National Institute of
Standards and Technology. Planning Report 02-3. 2002

[12] Zang, J., Xu, C. and Cheung, S. C. Automatic generation of
database instances for white -box testing. 25th International
Computer Software and Applications Conference. 2001

[13] Zhu, H., Hall, P. A. V., May, J. H. R. Software Unit Test
Coverage and Adequacy. ACM Computing Surveys, 49(4)
366-427. 1997

