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Processes such as cell proliferation, angiogenesis, apoptosis, or invasion are strongly influ-
enced by the surrounding microenvironment of the tumor. Therefore, the ability to change
these surroundings represents an important property through which tumor cells are able to
acquire specific functions necessary for tumor growth and dissemination. Matrix metallo-
proteinases (MMPs) constitute key players in this process, allowing tumor cells to modify
the extracellular matrix (ECM) and release cytokines, growth factors, and other cell-surface
molecules, ultimately facilitating protease-dependent tumor progression. Remodeling of
the ECM by collagenolytic enzymes such as MMP1, MMP8, MMP13, or the membrane-
bound MT1-MMP as well as by other membrane-anchored proteases is required for invasion
and recruitment of novel blood vessels. However, the multiple roles of the MMPs do
not all fit into a simple pattern. Despite the pro-tumorigenic function of certain metallo-
proteinases, recent studies have shown that other members of these families, such as
MMP8 or MMP11, have a protective role against tumor growth and metastasis in ani-
mal models. These studies have been further expanded by large-scale genomic analysis,
revealing that the genes encoding metalloproteinases, such as MMP8, MMP27, ADAM7,
and ADAM29, are recurrently mutated in specific tumors, while several ADAMTSs are epi-
genetically silenced in different cancers. The importance of these proteases in modifying
the tumor microenvironment highlights the need for a deeper understanding of how stroma
cells and the ECM can modulate tumor progression.
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INTRODUCTION
Genetic alterations in tumor cells are essential for tumor devel-
opment but not sufficient to generate malignant tumors. The
tumor stroma resulting from an evolving crosstalk between tumor
cells and different host cell types is required to create a permis-
sive environment for the invasion of genetically altered tumor
cells (Hanahan and Weinberg, 2011; Lu et al., 2012). Key mod-
ifications of the stromal environment include enhanced vascu-
larization following an “angiogenic switch” (Bergers et al., 2000),
quantitative and qualitative changes in the extracellular matrix
(ECM), and the recruitment of resident fibroblastic cells (Kalluri
and Zeisberg, 2006), bone marrow-derived mesenchymal stem
cells (Spaeth et al., 2009) and inflammatory cells (Coussens and
Werb, 2001). The importance of the tumor microenvironment
is now recognized as fundamental for cancer progression (Joyce
and Pollard, 2009), but the critical molecular changes occurring
in the tumor stroma accompanying and affecting cancer evolu-
tion remain largely unknown. Desmoplasia, the fibrotic stromal
reaction associated with most carcinomas, is characterized by the
local deposition of fibrillar collagen types I, III, and V. This host
reaction correlating with adverse prognosis in mammary carcino-
mas (Hasebe et al., 2002) is also seen in metastatic sites (Erler and

Weaver, 2009). Remarkably, increased expression of interstitial col-
lagen and many of its remodeling enzymes is frequently detected in
gene signatures associated with poor prognosis in cancer patients
(Ramaswamy et al., 2003; Finak et al., 2008; Tavazoie et al., 2008).
In addition to quantitative changes in collagen deposition, the
architecture of the collagen scaffold is also drastically affected dur-
ing cancer evolution. In this context, collagen crosslinking by lysyl
oxidase (LOX) whose expression is increased upon hypoxic condi-
tions has emerged as a key determinant of late stage tumors (Erler
et al., 2009).

It is now recognized that proteinases contribute actively to the
elaboration of the stromal microenvironment during early and
late stages of primary and secondary tumor development (Holm-
beck et al., 2003; Noel et al., 2008). The degradation of collagen
by cathepsins and matrix metalloproteinases (MMPs), and the
receptor-mediated endocytosis of degraded collagen are impor-
tant events that regulate cancer cell survival, growth, migration,
and invasion. Proteinases act not only by disrupting physiological
barriers to ease cell migration, but importantly by releasing growth
and chemotactic factors from the ECM and unmasking cryptic
domains of matrix components (Lopez-Otin and Overall, 2002;
Kalluri, 2003). In addition, these enzymes are key regulators of
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shedding, activation, and/or degradation of cell-surface molecules
including adhesion molecules, mediators of apoptosis, receptors of
chemokines/cytokines, and intercellular junction proteins (Over-
all and Kleifeld, 2006; Cauwe et al., 2007; Lopez-Otin and Hunter,
2010).

In this review, we focus on secreted metalloproteinases
(MMPs and disintegrin-metalloproteinases with thrombospondin
domains, referred to as ADAMTSs) and the associated cell-surface
receptor (uPARAP/endo180) specifically involved in interstitial
collagen remodeling. We also describe novel findings generated
by the collaborative EU-FP7 funded network, MicroEnviMet (No.
HEALTH-F2-2008-201279). This project has shed light on novel
functions of membrane-associated MMPs in the control of cell
apoptosis and angiogenesis, as well as on the complex tumor-host
interplay in which proteinases can either boost cancer progression
or protect the host against malignancy.

MMPs AND RELATED ENZYMES
It is now recognized that proteinases contribute to all stages of
tumor progression (growth, angiogenesis, invasion, and evasion
to immune system) and are produced not only by the tumor
cells themselves, but mainly by the different non-malignant host
cells composing the tumor. Among the different classes of pro-
teinases implicated during different stages of cancer progression,
the MMPs constitute a family of 24 human zinc-binding endopep-
tidases that can degrade virtually all ECM components and have
a growing number of substrates belonging to all important fam-
ilies of cell regulators: integrins, cell-surface receptors, kinases,
chemokines, and cytokines (Egeblad and Werb, 2002; Lopez-Otin
and Overall, 2002; Folgueras et al., 2004; Overall and Kleifeld, 2006;

Cauwe et al., 2007; Lopez-Otin and Hunter, 2010). Most MMPs are
secreted as soluble enzymes but six of them are membrane-type
MMPs (MT-MMPs) that are associated with the cell membrane
by either a COOH-terminal transmembrane domain (MT1-,
MT2-, MT3-, MT5-MMP) or a glycosylphosphatidyl-inositol
(GPI) anchor (MT4- and MT6-MMP). For a description of the
structure, function, and regulation of MMPs and MT-MMPs, the
reader is referred to previous reviews (Zucker et al., 2003; Sounni
and Noel, 2005; Page-McCaw et al., 2007; Sohail et al., 2008;
Fanjul-Fernandez et al., 2010; Kessenbrock et al., 2010; Stron-
gin, 2010). The ADAMs are membrane-anchored proteinases that
share the catalytic domain with the MMPs but which include two
main differences: (1) the absence of a hemopexin-like domain
and (2) the insertion of three additional domains [cysteine-rich
domain, epidermal growth factor (EGF)-like domain and the dis-
integrin domain; Figure 1; Klein and Bischoff, 2011]. The related
ADAMTS family contains 19 human metalloproteinases with a
variable number of type-1 thrombospondin (TSP-1) domains in
their C-terminal region. ADAMTSs are now viewed as key regula-
tors of collagen maturation (ADAMTS-2, -3, and -14; Colige et al.,
2005; Dubail et al., 2010), cartilage degradation (ADAMTS-1, -4, -
5, -8, and -9), microfibril biogenesis (Hubmacher and Apte, 2011),
von Willebrand factor maturation (ADAMTS-13), reproduction
(ADAMTS-9, -20; Llamazares et al., 2007), and cancer progression
(Handsley and Edwards, 2005; Rocks et al., 2008).

COLLAGEN REMODELING
The fibrillar collagens (e.g., types I, II, III) are composed of three
polypeptides α-chains (homotrimers or heterotrimers) assembled
into a triple-helical structure forming the collagenous domain.

FIGURE 1 | Schematic representation of MMPs, MT-MMPs, ADAMs, and ADAMTSs.
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The N-terminal non-collagenous domain of these fibrillar col-
lagens is proteolytically removed by ADAMTS-2 (Dubail et al.,
2010). Interstitial collagenases are the only known mammalian
enzymes able to degrade triple-helical fibrillar collagens through
specific cleavage of all three α-chains at a single locus three-
quarters from the N-terminus. Collagenolytic MMPs include
soluble MMPs (MMP1, MMP8, MMP13) and the membrane-
associated MMP14/MT1-MMP, MMP15, and MMP16. More
recently, MMP2 has been identified as an interstitial collagenase
that can cleave native type I collagen in a distinctive way from other
collagenases without generating the classical 3/4 and 1/4 fragments
(Egeblad et al., 2007). The very similar gelatinase, MMP9, does
not cleave collagen but shares gelatinolytic activity with MMP2
(Vihinen et al., 2005).

Interestingly, microarray analyses have identified collagenolytic
MMP1 in a gene expression signature able to predict distant metas-
tasis in breast cancer patients (van’t Veer et al., 2002; Gupta et al.,
2007). Moreover, MMP1 appears to be a key determinant that
selectively mediates lung metastasis in a murine breast cancer
model (Minn et al., 2005, 2007; Nguyen and Massague, 2007).
MMP13 (collagenase-3) originally identified in human breast can-
cer tissue (Freije et al., 1994) is viewed as a potential tumor marker
for breast cancer diagnosis (Chang et al., 2009) and its expression
is correlated with metastasis formation (Ellsworth et al., 2009; Lee
et al., 2009). In experimental models, MMP13 appears as a key
stromal mediator of cancer progression that regulates the release
of angiogenic factors (Lederle et al., 2009) and metastatic dissemi-
nation (Zigrino et al., 2009). Interestingly, the presence of microin-
vasion in ductal carcinoma in situ (DCIS) is associated with focal
expression of MMP13 mRNA in stromal fibroblasts (Nielsen et al.,
2001, 2007). However, in the aggressive mouse mammary tumor
virus-polyoma middle T-antigen (MMTV-PyMT) model of breast
cancer, the absence of MMP13 did not influence tumor growth,
vascularization, or metastasis to the lungs, suggesting that the role
of MMP13 in breast cancer may depend on the nature of the
genetic lesions driving malignancy (Nielsen et al., 2008).

MT1-MMP (MMP14) has emerged as an important collage-
nase that cancer cells use to degrade and invade in a collagen-
rich environment (Poincloux et al., 2009; Sabeh et al., 2009).
Mmp14−/− mice exhibit skeletal defects with craniofacial abnor-
malities, osteopenia, and impaired angiogenesis (Holmbeck et al.,
1999; Zhou et al., 2000). These mutant mice are the unique Mmp-
deficient mice generated up to now that are associated with a severe
phenotype leading to death after birth. Type I collagen cleavage
by MT1-MMP at the endothelial cell-surface stimulates migra-
tion, guidance, and organization of endothelial cells into tubular
structures (Collen et al., 2003). In the tumor microenvironment,
type I collagen remodeling by MT1-MMP enables cancer cells to
escape the mechanical barriers confined by the collagen matrix,
and stimulates tumor growth in vivo (Hotary et al., 2003). We
have recently demonstrated that while poorly invasive breast ade-
nocarcinoma cells undergo apoptosis when confronted with a
collagen-rich environment, the production of MT1-MMP endows
these cells with the capacity to escape from collagen-induced
apoptosis (Maquoi et al., 2012). Beyond its well known gelati-
nolytic functions, MMP2 also displays interstitial collagenolytic
activity (Egeblad et al., 2007) that unexpectedly contributes to

lymphangiogenesis, the formation of new lymphatic vessels (Detry
et al., 2011). The other gelatinase, MMP9, plays a critical role in
tumor-induced angiogenesis through release of vascular endothe-
lial growth factor (VEGF) sequestered from the ECM (Bergers
et al., 2000).

In addition to this MMP-driven collagen degradation process,
separate pathways, mediated by cysteine protease cathepsins, are
operative in acidic extracellular or intracellular microenviron-
ments. The intracellular pathway involves the binding of collagen
fibrils to specific cell-surface receptors followed by the cellular
uptake and proteolytic degradation of internalized collagen in the
lysosomal compartment. One such receptor is uPARAP/Endo180,
a member of the macrophage mannose receptor family of endo-
cytic transmembrane glycoproteins. This receptor plays a key
role in the cellular uptake and lysosomal degradation of collagen
fragments generated through the initial MMP-mediated collagen
cleavage (Kjoller et al., 2004; Curino et al., 2005; Engelholm et al.,
2009). In cell lines, the amount of internalized collagen correlates
with the levels of uPARAP expression (Madsen et al., 2007, 2011).
The genetic ablation of uPARAP/Endo180 in mice demonstrated
that the uPARAP-driven endocytic route of collagen breakdown is
a rate-limiting factor in collagenolysis by fibroblastic cells, chon-
drocytes, and osteoclasts (Engelholm et al., 2003; Kjoller et al.,
2004; Sulek et al., 2007), as well as in collagen turnover in fibro-
sis (Bundesmann et al., 2012; Lopez-Guisa et al., 2012; Madsen
et al., 2012) and in the invasive growth of breast tumors in mice
(Curino et al., 2005). Notably, uPARAP regulates the autolysis and
cell-surface level of MT1-MMP reinforcing the functional inter-
play between two collagen degradation pathways (Kogianni et al.,
2009; Messaritou et al., 2009).

PRO-TUMORIGENIC FUNCTIONS OF MT-MMPs
Beside its role in tumor cells, MT1-MMP is recognized as a
crucial regulator of angiogenesis in collagen- or fibrin-rich envi-
ronments (Chun et al., 2004; Stratman et al., 2009). MT1-MMP’s
pro-angiogenic capacities in both physiological and pathological
conditions are related to several mechanisms including: (1) ECM
remodeling (Hotary et al., 2003), (2) interaction with cell-surface
molecules, such as CD44 (Kajita et al., 2001) and sphingosine
1-phosphate (S1P; Langlois et al., 2004), (3) degradation of anti-
angiogenic factors such as decorin in cornea (Mimura et al., 2009),
or (4) interaction with TIMP-2 and signaling through ERK1/2
during cell migration (Sounni et al., 2010b). In addition, MT1-
MMP plays a role in transcriptional and posttranslational control
of VEGF expression and bio-availability (Deryugina et al., 2002;
Sounni et al., 2002, 2004; Eisenach et al., 2010), as well as in
hematopoietic progenitor cell mobilization (Vagima et al., 2009),
due to so far unknown molecular mechanisms. Furthermore, a
number of recent reports have shed light on an important interplay
between MT1-MMP and TGFβ during angiogenesis and vessel
maturation (Tatti et al., 2008; Hawinkels et al., 2010; Sounni et al.,
2010a, 2011).

In contrast to MT1-MMP, MT4-MMP is unable to acti-
vate proMMP2. Furthermore, MT4-MMP is rather inefficient
in hydrolyzing most ECM components compared to the other
MT-MMPs (Zucker et al., 2003). Its catalytic domain is able to
cleave very few substrates in vitro, including gelatin, fibrin(ogen),
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lipoprotein receptor-related protein, proTNF-alpha, and the
aggrecanase ADAMTS-4 (Sohail et al., 2008). The largely over-
looked functions of the GPI-anchored MT4-MMP have been
explored by the MicroEnviMet partners. In human breast can-
cer samples, a higher intensity of MT4-MMP immunostaining is
observed in cancer cells compared to normal breast epithelial cells
(Chabottaux et al., 2006). The overexpression of MT4-MMP in
the breast cancer cell line MDA-MB-231 enhances subcutaneous
tumor growth and most importantly leads to lung metastasis when
cells are inoculated in RAG-1 immunodeficient mice (Chabot-
taux et al., 2006, 2009). The pro-metastatic effect of MT4-MMP is
dependent on its proteolytic activity (Chabottaux et al., 2006) and
relies on the induction of an early angiogenic switch (Host et al.,
2012) and the perturbation of blood vessel structure characterized
by pericyte detachment (Chabottaux et al., 2009). These obser-
vations identify MT4-MMP as a cancer cell-derived MMP with
pro-angiogenic and pro-metastatic effect that deserves further
in-depth investigations.

THE PROTECTIVE EFFECTS OF MMPs AND RELATED
ENZYMES
After years of considering MMPs as pro-tumorigenic enzymes, an
intriguing observation has prompted re-evaluation of the roles
of MMPs in cancer. In fact, MMP8 deficient mice challenged with

carcinogens showed a markedly increased susceptibility to tumori-
genesis in comparison with corresponding wild-type mice (Balbin
et al., 2003). Further histopathological studies demonstrated that
sustained inflammation resulting from MMP8-deficiency creates a
permissive environment for cancer progression. Importantly, bone
marrow transplantation assays in those mutant mice revealed that
MMP8-producing neutrophils are sufficient to rescue the anti-
tumor protection conferred by this enzyme (Balbin et al., 2003).
This study provided the first evidence for a protective role of a
MMP family member in tumor progression, which has been fur-
ther extended to other proteases (Lopez-Otin and Matrisian, 2007)
as out-lined below. These findings underline the dual functions
of host cells that can either boost the tumor or protect the host
toward cancer expansion (Figure 2). In addition, MMP8 downreg-
ulation in non-metastatic cells increases their metastatic potential
(Montel et al., 2004; Gutierrez-Fernandez et al., 2008), and high
MMP8 levels in human carcinomas correlate with lower metas-
tasis incidence and a better prognosis to patients with breast or
oral cancer (Decock et al., 2007; Korpi et al., 2008). Such anti-
tumor effects or dual functions with protective roles in specific
circumstances have been extended to other proteinases including
MMP11, MMP12, MMP19, MMP26 (Lopez-Otin and Matrisian,
2007; Lopez-Otin et al., 2009). Furthermore, we reported that
ADAMTS-12 exhibits anti-tumorigenic properties by modulating

FIGURE 2 | Schematic representation of the brake and booster
functions of metalloproteinases. Recent advances in genomic and
proteomic technologies have increased our knowledge on MMP
contributions to different processes associated with tumor development
such as tumor growth, angiogenesis, invasion and inflammation. Despite

their implication in ECM remodeling and growth factor signaling that favor
angiogenesis and boost tumor development, some metalloproteinases
exert protective effects that brake the tumor development. Several cancer
protective enzymes are silenced through epigenetic and genetic
modifications in malignant cancer.
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Table 1 | Lessons from the past, present advances, and future challenges for MMP inhibition in cancer.

Strategies applied Lessons learnt

PAST

Design of broad spectrum MMP inhibitors (MMPIs) in the decade of 1990’s: First clinical trials era:

(non-exhaustive list) No significant evidence of efficacy, and even adverse effects

Zinc-binding MMPIs

Mechanism-based MMPIs

Disconnection between promising preclinical studies and clinical trials, most

of them being conducted in patients with late stage tumors

Chemically modified tetracycline Coussens et al. (2002), Overall and Lopez-Otin (2002), Fingleton (2003),

Kruger et al. (2010)Synthesized peptides

Shark cartilage extracts

Kleifeld et al. (2001), Hu et al. (2007), Devel et al. (2010)

PRESENT

Novel strategies to generate selective MMPIs: Era of MMP complexity elucidation:

(non-exhaustive list) MMPs belong to a protease network (protease degradome)

Specific zinc-binding MMPIs MMPs as cell regulators beyond matrix degradating enzymes

MMPIs without zinc-binding groups MMPs with intracellular activities

Neutralizing antibodies toward recombinant enzymes

Neutralizing antibodies toward catalytic zinc complex

MMPs as builders of the tumor microenvironment in primary and secondary

sites (i.e., inflammation, angiogenesis, lymphangiogenesis)

Non-catalytic hemopexin domain (PEX) inhibitors MMPs with opposite functions depending on cancer type/stage

Humanizing neutralizing monoclonal antibodies raised in MMPs with tumor suppressive functions

MMP knock-out mice

Devel et al. (2006, 2010), Devy et al. (2009), Remacle et al.

(2012), Sela-Passwell et al. (2012)

Lopez-Otin et al. (2009), Cauwe and Opdenakker (2010), Fingleton and Lynch

(2010), Kruger et al. (2010), Rodriguez et al. (2010), Hua et al. (2011), Schelter

et al. (2011a,b), Sounni et al. (2011), Detry et al. (2012)

FUTURE

Toward new therapeutic approaches: Challenging issues:

Personalized therapy using selective MMPIs combined with

other therapies, including kinase inhibitors

Design of efficient selective inhibitors

Design of appropriate clinical trials and endpoints given the fact that MMP

inhibitors are expected to be efficient at early stagesLopez-Otin and Hunter (2010)

Identification of biomarkers with added values for clinical practice to predict

or monitor drug response

Define which patients will benefit from a specific anti-MMP drug and at which

disease stage

Fingleton (2007, 2008), Hu et al. (2007), Zucker and Cao (2009), Cauwe and

Opdenakker (2010), Decock et al. (2011), Hua et al. (2011)

the Ras-dependent ERK pathway (Llamazares et al., 2007). A
knock-out mouse strain in which the Adamts-12 gene is deleted
(Adamts-12−/−) has been established to elucidate the in vivo func-
tions of ADAMTS-12 (El Hour et al., 2010). A protective effect
of host cell-derived ADAMTS-12 is seen when different in vivo
models of angiogenesis (malignant keratinocyte transplantation,
Matrigel plug, and aortic ring assays) are applied to these knock-
out mice. In the absence of ADAMTS-12, both the angiogenic
response and tumor invasion into host tissue are increased. This
finding is in line with the anti-angiogenic functions reported for
other ADAMTS family members such as ADAMTS-1,ADAMTS-2,
and ADAMTS-8 (Lee et al., 2006; Rodriguez-Manzaneque et al.,
2009; Dubail et al., 2010).

Interestingly, recent large-scale genomic studies have explored
the possibility that metalloproteinases could be genetically or epi-
genetically altered in various human malignant tumors. It appears
that human melanomas are frequently associated with muta-
tions in Mmp8 and Mmp27 genes leading to loss-of-function
and enhanced progression of the cancer (Palavalli et al., 2009).

Similarly, somatic mutations are found in Adamts-15 (Viloria et al.,
2009) and Adamts-18 (Wei et al., 2010) in human colorectal can-
cer and melanoma samples, respectively. Likewise, Adam7 and
Adam29 genes are frequently mutated in melanoma (Wei et al.,
2010). These findings of tumor-specific mutations, likely to affect
tumor cell behavior, implicate these genes as drivers in human
cancers and underscore the necessity to revisit the initial con-
cept that alteration of proteinase expression was secondary to
transcriptional changes rather than genetic mutations. Beyond
somatic mutations, several of the ADAMTS genes are epigenet-
ically silenced in various cancers (Moncada-Pazos et al., 2009).
The Adamts-12 promoter is hypermethylated in cancer cell lines
and tumor tissues leading to reduced production of ADAMTS-
12 (Moncada-Pazos et al., 2009) that exerts anti-tumorigenic
effect (Cal et al., 2002). Remarkably, this epigenetic silencing in
the tumor cells is associated with a concurrent overexpression
of ADAMTS-12 in the stromal compartment (Moncada-Pazos
et al., 2009) where it exerts an anti-angiogenic effect (El Hour
et al., 2010). These findings suggest that fibroblasts or more likely
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specific subsets of fibroblasts might react to the presence of tumor
cells by overexpressing tumor-inhibiting enzymes. These data pro-
vide a strong support for the concept that several proteinases
have the ability to apply a brake on cancer cells and protect the
host toward cancer progression (Figure 2). Furthermore, they
underline the complexity of the tumor-host interface that deserves
further in-depth investigation.

CONCLUSION AND PERSPECTIVES
The emerging picture arising from these studies reveals a complex
interplay between tumor-derived proteases produced in cancer
cells and tumor associated stromal cells, the surrounding cells
and the ECM. Tumor cells acquire some of the required prop-
erties for growth and invasion by the specific modification of the
tumor microenvironment. However, due to the complex nature
of these interactions, it is only by altering specific components of
this network that it has been possible to identify proteases with
pro-tumorigenic or pro-metastatic functions, as well as proteases
with tumor-defying properties. The recent identification of recur-
rently mutated proteases in melanoma and colorectal cancer high-
lights the growing list of metalloproteinases with protective func-
tions against tumor development. Nevertheless, the mechanisms
by which these proteases exert their pro- or anti-tumorigenic

properties at the molecular level are largely unknown and repre-
sent a challenging issue for the near future. In fact, several MMPs,
such as MMP9 or MMP12, might have dual roles either promot-
ing or suppressing tumorigenesis depending on the type of cell
in which they are expressed. Given that MMP family members
can exert promoting or protective effects and that some individual
MMPs can display opposite roles in different cancer types or phases
of progression, a required step toward personalized cancer therapy
is now the identification of the most appropriate MMP(s) to be tar-
geted in each case. Discerning which MMP(s) to target and when
to inhibit are major issues that are facing researchers in the field. In
addition, the design of highly selective MMP inhibitors is manda-
tory to overcome the failure of broad spectrum MMP inhibitors
in clinical trials (Table 1). In this context, novel strategies are
emerging to generate new specific synthetic inhibitors or neu-
tralizing antibodies (Table 1). Hopefully, the clarification of these
questions will finally result in clinical introduction of inhibitors
of selected matrix-remodeling enzymes as new components of
anticancer therapies.
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