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Summary

Automation is the field of engineering that deals with the development
of control systems for operating systems such as industrial processes,
railways, machinery or aircraft without human intervention. In most
of the cases, a failure in these control systems can cause a disaster in
terms of economic losses, environmental damages or human losses.

For that reason, providing safe, reliable and robust control systems
is a first priority goal for control engineers. Ideally, control engineers
should be able to guarantee that both software and hardware fulfill the
design requirements. This is an enormous challenge in which industry
and academia have been working and making progresses in the last
decades.

This thesis focuses on one particular type of control systems that
operates industrial processes, the PLC (Programmable Logic Con-
troller) - based control systems. Moreover it targets one of the main
challenges for these systems, guaranteeing that PLC programs are
compliant with their specifications.

Traditionally in industry, PLC programs are checked using test-
ing techniques. Testing consists in checking the requirements on the
real system. Although these testing techniques have achieved good
results in different kind of systems, they have some well-known draw-
backs such as the difficulty to check safety and liveness properties (e.g.
ensuring a forbidden output value combination should never occur).

This thesis proposes an alternative for checking PLC programs.
A methodology based on formal verification techniques, which can
complement the testing techniques to guarantee that a PLC program
is compliant with the specifications.

Formal verification is a technique meant to prove the correctness
of a system by using formal methods. One of the most popular formal
verification techniques is model checking, which consist in checking a
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vi Summary

formalized requirement in a formal model of the system. Comparing
model checking with testing, model checking explores all the possible
combinations of the state space in the formal model to guarantee that
the formal requirement is satisfied.

Formal verification and in particular model checking appears to be
a very appropriate technique for this goal. However, the industrial
automation community has not adopted yet this approach to verify
PLC code, even if some standards, like the IEC 61508 (2010), highly
recommend the use of formal methods for Safety Instrumented Sys-
tems. This is due to following challenges for control engineers: (1)
the difficulty of building formal models representing real-life PLC pro-
grams, (2) the difficulty of using specification formalisms to express
the requirements and finally, (3) when creating formal models out of
real-life software, the number of combinations can be huge and model
checking tools may not be able to handle the state space, thus cannot
evaluate the given requirement.

This research deals with these three main challenges and tries to fill
the gap between the industrial automation and the formal verification
communities.

The thesis proposes a general methodology for applying automated
formal verification to PLC programs and any complexity related to
formal methods is hidden from control engineers.

In this methodology, formal models are built automatically out of
the PLC programs. The model transformations are divided in two
parts: PLC programs, from the IEC 61131 (2013) standard, are trans-
lated to an Intermediate Model (IM), which is the central piece of
this methodology. The IM is then transformed to the input model-
ing languages of different verification tools (e.g. nuXmv, UPPAAL
or BIP). This modeling strategy simplifies the model transformations
and makes the integration of new verification tools easier.

Regarding the requirements formalization, this methodology pro-
vides a solution that allows control engineers to express the require-
ments in a simple and natural language based on patterns with well-
defined semantics. Then, these requirements are translated to tempo-
ral logic formalisms as they are the most common formalisms used by
the verification tools.

Regarding the state space explosion problem, this methodology
provides a set of reduction and abstraction techniques that are applied
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to the IM. These techniques are a fundamental part of the method-
ology, as they make the verification of real-life PLC programs, which
usually have huge state spaces, possible.

The methodology has been applied to real-life PLC programs de-
veloped at CERN. These experimental results have demonstrated the
usability of this methodology by control engineers with no experience
in formal methods.





Resumen

Automatización industrial es el campo de la ingenieŕıa que se dedica al
desarrollo de sistemas de control para operar sistemas como procesos
industriales, trenes, maquinaria o aviones sin intervención humana.
En la mayoŕıa de los casos, un fallo en estos sistemas de control pue-
de provocar un desastre en términos de pérdidas económicas, daños
medioambientales o pérdidas humanas.

Por esa razón, proporcionar sistemas de control seguros, fiables y
robustos es un objetivo de primera prioridad para los ingenieros de
control. Idealmente, ingenieros de control debeŕıan de ser capaces de
garantizar que tanto el hardware como el software satisfacen los requi-
sitos del diseño. Esto es un gran reto en el cual industria y academia
han estado trabajando y haciendo progresos en las últimas décadas.

Esta tesis se centra en un tipo particular de sistemas de control
que opera procesos industriales, los sistemas de control basados en
PLCs (Programmable Logic Controller) y tiene como meta uno de
los principales retos para estos sistemas, garantizar los programas del
PLC respetan las especificaciones de diseño.

Tradicionalmente en industria, los programas de PLCs son com-
probados utilizando técnicas de testeo. Testear un sistema consiste en
comprobar los requisitos del diseño en el sistema real. Aunque estas
técnicas han logrado buenos resultados en diferentes tipos de siste-
mas, tiene algunas limitaciones bien conocidas, como son la dificultad
de testear propiedades de seguridad o “liveness” (por ejemplo asegurar
que un valor prohibido de una variable de salida nunca ocurra en el
sistema).

Esta tesis propone una alternativa para chequear programas de los
PLCs. Una metodoloǵıa basada en técnicas de verificación formal, las
cuales pueden complementar las técnicas de testeo para garantizar que
el programa del PLC respeta sus especificaciones.
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x Resumen

Verificación formal es una técnica que tiene por objetivo probar
que un sistema está correctamente diseñado o implementado utilizan-
do métodos formales. Una de las técnicas de verificación formal más
populares es “model checking”, la cual consiste en comprobar que un
requisito formalizado es respetado en un modelo formal del sistema
real. Comparando model checking con las técnicas de testeo, model
checking explora todas las posibles combinaciones en el modelo formal
para garantizar que el modelo respeta el requisito formalizado.

Técnicas de verificación formal y en particular model checking, pa-
recen ser técnicas muy apropiadas para el objetivo de esta tesis. Sin
embargo, la comunidad de automatización industrial no ha adopta-
do aún estas técnicas para verificar el código de los PLCs, incluso si
estándares como el IEC 61508 (2010) recomiendan el uso de métodos
formales para sistemas de seguridad. Esto es debido a tres factores
fundamentales: (1) la dificultad de construir los modelos formales que
representan programas de PLC, (2) la dificultad de usar los forma-
lismos para especificar los requisitos del sistemas y finalmente, (3)
cuando se crea un modelo formal de un software real, el número de
combinaciones posibles a explorar puede ser enorme y las herramientas
que implementan model checking pueden no ser capaces de explorar
el espacio de estados, por lo tanto no pueden evaluar los requisitos
dados.

Este trabajo de investigación se centra en estos tres aspectos e
intenta cubrir la grieta que existe en las comunidades cient́ıficas de
automatización industrial y verificación formal.

La tesis propone una metodoloǵıa para aplicar automáticamente
(sin intervención humana) técnicas de verificación formal a programas
PLC y toda complejidad relacionada con métodos formales está oculta
para los ingenieros de control.

En esta metodoloǵıa, modelos formales son generados a partir de
los programas PLC. La transformación de modelos está dividida en dos
partes: los programas PLC, definidos en el estándar IEC 61131 (2013),
son traducidos a un modelo intermedio, referenciado como IM en to-
do el documento por sus siglas en Inglés (Intermediate model). Este
modelo intermedio es la pieza central de esta metodoloǵıa. Más tarde,
el IM es transformado en los modelos necesarios para las diferentes
herramientas de verificación (por ejemplo, nuXmv, UPPAAL o BIP).
Esta estrategia de modelado simplifica las transformaciones entre mo-
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delos y hace mucho más sencilla la integración de nuevas herramientas
de verificación.

En cuanto la formalización de los requisitos que el programa debe
cumplir, esta metodoloǵıa proporciona una solución que permite a los
ingenieros de control expresar los requisitos con un lenguaje natural y
sencillo basado en el uso de patrones con una semántica bien definida.
Más tarde, estos requisitos son traducidos a lógica temporal, ya es
que el formalismo más utilizado por las herramientas de verificación
formal.

En cuanto al problema de la explosión del espacio de estados, esta
metodoloǵıa proporciona un conjunto de técnicas de reducción y de
abstracción de modelos, las cuales son aplicadas al IM. Estas técni-
cas son una pieza fundamental de la metodoloǵıa, ya que hace posible
la verificación formal de programas PLC que controlan sistemas in-
dustriales reales, los cuales normalmente tiene un espacio de estados
enorme.

La metodoloǵıa ha sido empleada en programas PLC reales desa-
rrollados en el CERN. Los resultados experimentales han demostrado
la utilidad de esta metodoloǵıa, usada por ingenieros de control sin
experiencia en métodos formales.





Contents

Summary v

Resumen ix

Acknowledgements xvii

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Motivation and objectives . . . . . . . . . . . . . . . . 5
1.3 Contributions of this thesis . . . . . . . . . . . . . . . . 6
1.4 Publications linked to this thesis . . . . . . . . . . . . . 8
1.5 Document structure . . . . . . . . . . . . . . . . . . . . 10

2 Background and related work 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 PLC-based control systems . . . . . . . . . . . . . . . . 14

2.2.1 Control system classification . . . . . . . . . . . 16
2.2.2 Standards . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Frameworks . . . . . . . . . . . . . . . . . . . . 19
2.2.4 PLC hardware . . . . . . . . . . . . . . . . . . . 23
2.2.5 PLC software . . . . . . . . . . . . . . . . . . . 25

2.3 Formal methods and formal verification . . . . . . . . . 32
2.3.1 Formal methods . . . . . . . . . . . . . . . . . . 32
2.3.2 Formal verification . . . . . . . . . . . . . . . . 35
2.3.3 Model checking . . . . . . . . . . . . . . . . . . 37
2.3.4 Verification tools . . . . . . . . . . . . . . . . . 44

2.4 Related work . . . . . . . . . . . . . . . . . . . . . . . 45
2.4.1 Testing-based techniques . . . . . . . . . . . . . 46
2.4.2 Formal verification based techniques . . . . . . 47

xiii



xiv Contents

2.5 Summary of the chapter . . . . . . . . . . . . . . . . . 56

3 Approach 59
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 General overview of the approach . . . . . . . . . . . . 62
3.3 Intermediate model . . . . . . . . . . . . . . . . . . . . 70

3.3.1 Intermediate model syntax . . . . . . . . . . . . 70
3.3.2 Intermediate model semantics . . . . . . . . . . 71

3.4 Formal specifications . . . . . . . . . . . . . . . . . . . 73
3.4.1 Patterns . . . . . . . . . . . . . . . . . . . . . . 75

3.5 PLC hardware modeling . . . . . . . . . . . . . . . . . 79
3.5.1 PLC inputs . . . . . . . . . . . . . . . . . . . . 80
3.5.2 Safety and Standard PLCs . . . . . . . . . . . . 82
3.5.3 Interrupts and restarts in PLCs . . . . . . . . . 82

3.6 PLC code – IM transformation . . . . . . . . . . . . . 83
3.6.1 General PLC – IM transformation . . . . . . . . 84
3.6.2 ST – IM transformation . . . . . . . . . . . . . 89
3.6.3 SFC – IM transformation . . . . . . . . . . . . 93

3.7 Reduction techniques . . . . . . . . . . . . . . . . . . . 94
3.7.1 Cone of influence . . . . . . . . . . . . . . . . . 98
3.7.2 Rule-based reductions . . . . . . . . . . . . . . 104
3.7.3 Mode selection . . . . . . . . . . . . . . . . . . 107
3.7.4 Iterative variable abstraction . . . . . . . . . . . 108

3.8 IM– verification tools transformation . . . . . . . . . . 130
3.8.1 IM–nuXmv transformation . . . . . . . . . . . . 130
3.8.2 IM–UPPAAL transformation . . . . . . . . . . 137
3.8.3 IM–BIP transformation . . . . . . . . . . . . . . 148

3.9 Modeling timing aspects of PLCs . . . . . . . . . . . . 160
3.9.1 Realistic approach . . . . . . . . . . . . . . . . 161
3.9.2 Abstract approach . . . . . . . . . . . . . . . . 169
3.9.3 Refinement between the two approaches . . . . 172

3.10 Process modeling . . . . . . . . . . . . . . . . . . . . . 174
3.11 Verification and counterexample analysis . . . . . . . . 177

3.11.1 Counterexample analysis . . . . . . . . . . . . . 178
3.12 Methodology CASE tool . . . . . . . . . . . . . . . . . 181
3.13 Summary of the chapter . . . . . . . . . . . . . . . . . 182



Contents xv

4 Case studies and measurements 185
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 185
4.2 UNICOS framework . . . . . . . . . . . . . . . . . . . 186
4.3 UNICOS baseline object case study . . . . . . . . . . . 191

4.3.1 Object description and specification . . . . . . . 191
4.3.2 Experimental results regarding model generation 192
4.3.3 Experimental results regarding verification of

complex properties . . . . . . . . . . . . . . . . 199
4.3.4 Experimental results regarding verification of

time properties . . . . . . . . . . . . . . . . . . 201
4.3.5 Counterexample analysis . . . . . . . . . . . . . 205

4.4 Full UNICOS application case study . . . . . . . . . . 208
4.4.1 Process description and specification . . . . . . 208
4.4.2 Experimental results regarding verification of

safety properties . . . . . . . . . . . . . . . . . 209
4.5 Summary of the chapter . . . . . . . . . . . . . . . . . 217

5 Evaluation and analysis 219
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 219
5.2 Evaluation of requirements formalization . . . . . . . . 220
5.3 Evaluation of PLC hardware and process modeling . . 222
5.4 Evaluation of the PLC program – IM transformation . 224

5.4.1 Evaluation of the time-related transformation
rules . . . . . . . . . . . . . . . . . . . . . . . . 226

5.5 Evaluation of the reduction techniques . . . . . . . . . 227
5.5.1 Property preserving reduction techniques . . . . 228
5.5.2 State space . . . . . . . . . . . . . . . . . . . . 228
5.5.3 Verification run-time . . . . . . . . . . . . . . . 229
5.5.4 Variable abstraction . . . . . . . . . . . . . . . 230

5.6 Evaluation of the IM – verification tools transformation 232
5.7 Evaluation of the verification results . . . . . . . . . . 234
5.8 Correctness of our approach . . . . . . . . . . . . . . . 235
5.9 Summary of the chapter . . . . . . . . . . . . . . . . . 236

6 Conclusions and future work 239
6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 239
6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . 241

6.2.1 Methodology . . . . . . . . . . . . . . . . . . . 241



xvi Contents

6.2.2 IM syntax and semantics . . . . . . . . . . . . . 241
6.2.3 PLC code - IM transformation rules . . . . . . 242
6.2.4 IM- input verification tools transformation rules 242
6.2.5 Reduction techniques . . . . . . . . . . . . . . . 242
6.2.6 Modeling the timing aspects of PLCs . . . . . . 243
6.2.7 PLC behavior analysis . . . . . . . . . . . . . . 243
6.2.8 Applicability on CERN control systems . . . . . 244

6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . 245

7 Conclusiones y trabajo futuro 249
7.1 Discusión . . . . . . . . . . . . . . . . . . . . . . . . . 249
7.2 Contribuciones . . . . . . . . . . . . . . . . . . . . . . 251
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Chapter 1

Introduction

In the nineteenth century, the industrial revolution provoked very sig-
nificant economic and social changes in the human society. From this
event until now, the development of new machines and technologies
have an enormous impact on our lives. Industrial automation was
created to free humans from tedious monitoring tasks in industrial
processes. Since 1910, when Henry Ford automated his automobile as-
sembly plant, industrial automation has been evolving and becoming
an essential element in the development of any industry. The trans-
formation of automation technologies, from the first electro-pneumatic
devices to the complex programmable controllers existing today, shows
the evolution of this industry, led by a high demand of complex and
flexible control devices from other industries.

New progresses in control theory and in control technologies, such
as distributed systems, have transformed industrial automation into a
relevant area of research with an countless number of practical appli-
cations in any aspect of our lives.

“Overall, with more than two centuries’ development and evo-
lution, industrial control and automation technologies have so
advanced that they benefit us in all aspects of our life and in
all kinds of production systems; they are closely integrated with
computer hardware and software, network devices and communi-
cation technologies; they are faithfully based on modern results
in the mathematical and physical sciences.” (Zhang (2010)).

Nowadays, one of the main needs in industrial automation is the
ability of designing safe, reliable and robust control systems which are
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2 Chapter 1. Introduction

compliant with their specifications. Model-based design and verifica-
tion of controllers (hardware and software) are some of the research
trends in automation nowadays. Software failures in control systems
can provoke enormous damages to human beings, to the environment
and cause an enormous economic breakdown. One of many unfortu-
nate examples is the software error which provoked the accident of
Ariane 5 space rocket from the European Space Agency. The Ariane
5 software was previously tested.

The formal verification community provides solutions to guarantee
that a system is compliant with the system specifications, using strong
mathematical bases.

This thesis fills the gap between these two communities, industrial
automation and formal verification, to make progress in the devel-
opment of safer, more reliable and more robust control systems, by
guaranteeing that the control software is compliant with the specifica-
tions. This thesis focuses on PLC (Programmable Logic Controller) –
based control systems, as PLCs are the most common control devices
used in industry.

It is important to mention that in the automation industry the
so-called “Safety Instrumented Systems” (SIS), defined by the IEC
61511 (2003), are systems designed to protect people, environment
and industrial installations. With the evolution of technologies these
systems are mostly based on programmable controllers, such as PLCs.
This thesis concentrates on the software of PLC control systems in-
dependently of its purpose. Obviously guaranteeing that the PLC
program of a SIS is compliant with the specification is essential and
highly recommended by the standards (for example, the IEC 61508
(2010) standard) but this is also desirable in any PLC control system
that monitors and regulates an industrial installation. This is because
as a software bug can provoke significant damages or the cost of fixing
this bug is bigger than the cost of using formal methods. Moreover,
nowadays industry demands high availability of industrial control sys-
tems to maximize the uptime of the controlled process, even if a bug
in the code would not provoke a damage on the installation, it could
imply to stop the installation with the corresponding economic losses.

This chapter is divided in the following sections:

1. Section 1.1 presents the general context of this thesis.
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2. Section 1.2 gives an overview of the motivation for this research.

3. Section 1.3 enumerates the contributions of this thesis.

4. Section 1.4 lists the scientific publications that are the result of
this research.

5. Finally, Section 1.5 introduces the structure of this thesis.

1.1 Context

This PhD has been developed under the doctoral student program at
CERN (European Organization for Nuclear Research) in collaboration
with the University of Oviedo (Spain).

CERN is the biggest particle physics laboratory in the world, lo-
cated at the border between France and Switzerland. CERN has four
main goals:

1. Push forward the frontiers of knowledge in particle physics.

2. Develop new technologies for accelerators and detectors. Many
of these technique can also be applied to other industries. The
transfer of knowledge and technology is also an important goal
of CERN.

3. Train the scientists and the engineers of tomorrow.

4. Unite people from different countries and cultures.

CERN has a particle accelerator complex to perform the experiments
and some of these particle accelerator are: PS (Proton Synchrotron),
SPS (Super Proton Synchrotron), LINACs (LINear ACcelerators) and
LHC (Large Hadron Collider) (See Fig. 1.1). The LHC is the biggest
particle accelerator in the world with 27 km of circumference. The
goal is this machine is to recreate the conditions existing immediately
after the big bang. To do that, the LHC accelerates heavy particles
(e.g. protons) to a speed close to the speed of light and make them
collide. These collisions, at a very high energy (14 TeV), provide a very
valuable insight of the particles by observing their outcome: energies,
trajectories and eventually, new particles creation. Some of them are
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well-known by the physicists but some others are just part of theories
and it has never been proved their existence. The LHC has the goal
of proving or disproving these theories, helping in the understanding
of the universe. To detect these new particles the LHC has four main
particle detectors (ATLAS, CMS, ALICE and LHCb).

CMS

ATLAS

LHCmbALICE LHC

PS

SPS

BOOSTER

AD

CTF3
LINACd2

LINACd3

CNGS

ISOLDE

WestdArea

EastdArea

NorthdArea

Towards
GrandSasso

nmTOF

TI2
TT10

TT60

TT2

TI8

protons
ions
neutrons

antiprotons
electrons
neutrinos

LHC LargedHadrondCollider
SPS SuperdProtondSynchrotron
PS ProtondSynchrotron

CNGS CERNdNeutrinosdGrandSasso
nmTOF NeutrondTimedOfdFlight
AD AntiprotondDecelerator

CTF3 CLICdTestFacilityd3

Figure 1.1: CERN accelerator complex from http://en.wikipedia.

org/wiki/CERN

Producing these high energy collisions, requires some auxiliary in-
dustrial processes (e.g. cryogenics and vacuum systems) to provide
the optimized conditions for the particle accelerators and detectors.
Moreover, these industrial processes have to be operated automati-
cally, therefore they need industrial control systems. At CERN, this
research was done at the ICE (Industrial Controls & Engineering)
group inside the EN (Engineering) department, which develops solu-
tions and provides support in the domain of large and medium scale
industrial control systems as well as the accelerator systems.

At the Oviedo University, the thesis is supported by the ISA (Sys-
tem Engineering and Automation) area inside the DIEECS (Electric,
Electronics, Computers and Systems Engineering) department. ISA
focuses its research in the different areas of the automation field.

http://en.wikipedia.org/wiki/CERN
http://en.wikipedia.org/wiki/CERN
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1.2 Motivation and objectives

Nowadays any industrial installation has to be controlled and operated
automatically, looking for these three main objectives:

1. Increasing the quality and efficiency of the process.

2. Enforcing the safety by reducing human interaction with the
industrial process.

3. Reducing the costs by optimizing the energy consumption of the
installation.

It is obvious that having a control system that contains flaws may
cause damages and economic losses to the installation itself, but it also
can affect the environment and people. Having a safe, robust and bug-
free control system is a common “desire” of designers and developers
involved in the project. However, producing a control system that is
fully compliant with the project specifications is a very challenging
task. The automation industry lacks of modern software engineering
best practices to guarantee it and this research is focused on this topic.

Some standards address this problem, specially standards focused
on functional safety, like the IEC 61508 (2010). This standard pro-
poses some guidelines for the development of safety systems and their
verification (more details about the standard can be found in Chapter
2).

Certainly, the most challenging task is to guarantee that the con-
trol system software is compliant with the specification. In industry,
many techniques have been applied to achieve this goal, like manual
and automated testing or applying simulation. However these tech-
niques have several drawbacks, like the difficulty of checking liveness
properties (e.g. “after a manual request from the operator, the valve v
will eventually be closed”) or the difficulty of checking all the possible
combinations of the state space in a safety property (e.g. “if valve v
is closed, then valve w can never be closed at the same time”).

The IEC 61508 standard recommends the use of formal methods
to guarantee that the software is compliant with the specifications,
specially for systems with a high Safety Integrity Level (SIL)1, see

1SIL is is an integrity characteristic to measure the risk-reduction provided by
a safety function in a safety instrumented system.
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Table 1.1. This table appears in “Part 3: Software requirements (Table
A.2, page 37)” of the IEC 61508 (2010) standard.

Table 1.1: Software design and development: software architecture
design (see Table 7.4.3 from the IEC 61508 (2010) standard)

Technique/Measure Ref SIL1 SIL2 SIL3 SIL4

7b Semi-formal methods Table
B.7

R R HR HR

7c Formal methods C.2.4 – R R HR

8 Computer-aided

specification tools B.2.4 R R HR HR

NR: Not Recommended.
R: Recommended.
HR: Highly Recommended.

Programmable Logic Controllers are the most widely used control
devices in industry for automation purposes. At CERN, many indus-
trial installation such as the LHC cryogenic system, cooling & ven-
tilation systems, LHC vacuum systems, etc. are controlled by PLCs
(e.g. Willeman et al. (2011)). These systems are developed using
the so-called UNICOS framework described in Blanco Viñuela et al.
(2011).

The fundamental goal of this thesis is to provide a methodology
guaranties that any PLC program is compliant with the project spec-
ifications. This methodology is based on applying automated formal
verification to PLC programs, hiding the complexity from the control
engineers.

1.3 Contributions of this thesis

To the best of the author’s knowledge, this thesis presents several
contributions on the field of formal verification of PLC programs, as
follows:

1. The internal behavior (informal semantics) of a PLC is described
in this thesis. This description is focused on Siemens PLCs as it
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is one of the two PLC suppliers at CERN. This analysis, which
is presented in Chapter 2, is essential to justify the decisions and
the modeling strategy.

2. This thesis presents a general methodology for applying auto-
mated formal verification to PLC programs. The methodology
is based on an Intermediate Model (IM) and PLC programs writ-
ten in any PLC language from the IEC 61131 (2013) standard
can be expressed in this IM. This IM can be transformed to the
input modeling languages of many verification tools. In Chap-
ter 3, the methodology is presented in Section 3.2.

3. The syntax and formal semantics of the IM are described. In
Chapter 3, the IM is presented in Section 3.3.

4. As the ST and SFC languages are the most relevant languages
in CERN PLC control systems, the formal transformation rules
from ST and SFC to the IM are described. The rules are pre-
sented in Chapter 3, Section 3.6.

5. The methodology is supported by a CASE tool, which is able to
generate formal models from ST and SFC PLC programming
languages passing through the IM. Currently the tool gener-
ates models for the following verification tools: nuXmv Cavada
et al. (2014), UPPAAL Amnell et al. (2001) and BIP Basu et al.
(2011). The rules are presented in Chapter 3, Section 3.8.

6. The generated models of real-life PLC programs have usually a
huge state space, which cannot be verified by any of the verifi-
cation tools. Reduction and abstraction techniques are applied
to the intermediate model making verification of these programs
feasible (including novel and existing algorithms adapted to this
methodology, achieving better results than existing solutions).

7. Modeling time and real time systems increases the complexity
of the model and the state space. The strategy of modeling the
timing aspects of PLC programs is presented. These particular
rules are presented in Chapter 3, Section 3.9.
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8. The methodology has been applied to real-life systems at CERN,
showing the feasibility and applicability of the methodology. The
experimental results are presented in Chapter 4.

1.4 Publications linked to this thesis

The following articles were published during the development of this
thesis:

1. Fernández Adiego, B., Blanco Viñuela, E., and Merezhin, A.
(2013a). Testing & verification of PLC code for process control.
In Proc. of 13th ICALEPCS. This paper describes two different
approaches to verify PLC programs: testing and formal verifica-
tion.

2. Fernández Adiego, B., Blanco Viñuela, E., Tournier, J.-C.,
González Suárez, V. M., and Bliudze, S. (2013b). Model-based
automated testing of critical PLC programs. In 11th IEEE Int.
Conf. on Industrial Informatics, pages 722–727. This paper de-
scribes a first approach of modeling UNICOS control systems in
order to apply automated model-based testing.

3. Darvas, D., Fernández Adiego, B., and Blanco Viñuela, E.
(2013). Transforming PLC programs into formal models for veri-
fication purposes. Internal Note CERN-ACC-NOTE-2013-0040,
CERN. This technical report describes the first version of some
of the transformation rules from PLC code to the NuSMV mod-
eling language.

4. Fernández Adiego, B., Darvas, D., Tournier, J.-C.,
Blanco Viñuela, E., and González Suárez, V. M. (2014c).
Bringing automated model checking to PLC program develop-
ment – A CERN case study. In Proc. of the 12th IFAC–IEEE
International Workshop on Discrete Event Systems. This paper
presents a case study of applying the proposed methodology to
a PLC control system developed at CERN.

5. Darvas, D., Fernández Adiego, B., Vörös, A., Bartha, T.,
Blanco Viñuela, E., and González Suárez, V. M. (2014). For-
mal verification of complex properties on PLC programs. In
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Ábrahám, E. and Palamidessi, C., editors, Formal Techniques
for Distributed Objects, Components, and Systems, volume 8461
of Lecture Notes in Computer Science, pages 284–299. Springer.
This paper describes the property preserving reduction tech-
niques applied in the methodology.

6. Fernández Adiego, B., Darvas, D., Blanco Viñuela, E., Tournier,
J.-C., González Suárez, V. M., and Blech, J. O. (2014a). Mod-
elling and formal verification of timing aspects in large PLC pro-
grams. In Proc. of IFAC World Congress. This paper describes
the modeling strategy of the timing aspect of PLCs.

7. Fernández Adiego, B., Darvas, D., Tournier, J.-C.,
Blanco Viñuela, E., Blech, J. O., and González Suárez,
V. M. (2014b). Automated generation of formal models from
ST control programs for verification purposes. Internal Note
CERN-ACC-NOTE-2014-0037, CERN. This paper describes
the transformation rules from ST PLC code into the modeling
languages of verification tools through an intermediate model.

Before focusing my research on the formal verification of PLC pro-
grams, I studied the most relevant control system frameworks which
have been applied mainly in scientific installations. In addition, the
real-life PLC programs, presented in experimental results of this thesis,
have been developed at CERN using the UNICOS framework. Three
papers, in which I have participated, have been published about the
UNICOS framework:

1. Fernández Adiego, B., Blanco Viñuela, E., and Barreiro, P.
(2011). UNICOS CPC6: Automated code generation for process
control applications. In Proc. of 12th ICALEPCS. This paper
describes the architecture of the automatic generation tool for
UNICOS control systems.

2. Copy, B., Blanco Viñuela, E., Fernández Adiego, B.,
Nogueira Fernandes, R., and Barreiro, P. (2011). Model oriented
application generation for industrial control systems. In Proc. of
12th ICALEPCS. This paper presents the UNICOS metamodel
used as definition of the UNICOS library meant to represent
control system instrumentation as UNICOS objects.
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3. Blanco Viñuela, E., Merezhin, A., Bradu, B., Fernández Adiego,
B., Willeman, D., Rochez, J., Beckers, J., Ortola Vidal, J., Du-
rand, P., and Izquierdo Rosas, S. (2011). UNICOS evolution:
CPC version 6. In Proc. of 12th ICALEPCS. This paper de-
scribes the new features of the CPC package from the UNICOS
framework.

1.5 Document structure

This thesis is organized as follows:

Chapter 1: this first chapter describes the context of this thesis,
presents the motivation and objectives and gives a general
overview of the contributions. It also lists the publications pro-
duced out of this research.

Chapter 2: this chapter gives an overview of the two different
“worlds” linked to this research, industrial automation and for-
mal verification. Initially, it introduces the chapter explaining
the link between both fields. Then, it describes the main features
related to PLC-based control systems needed to explain the pro-
posed modeling strategy. Lately, an overview of main concepts
of formal verification is introduced. Finally, the related work
of formal verification applied to PLC-based control systems is
presented.

Chapter 3: this chapter presents the core of this thesis. The pro-
posed methodology is introduced and lately the details of the
different steps of the methodology are presented: formalization
of requirements, system modeling, reduction techniques, verifi-
cation strategy and analysis of verification results.

Chapter 4: this chapter presents the experimental results obtained
by applying the methodology on real-life CERN control sys-
tems. These systems are developed using the UNICOS frame-
work. This framework is introduced in this chapter and the two
selected systems are presented.

Chapter 5: this chapter presents an evaluation and analysis of the
obtained results.
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Chapter 6: this chapter concludes the thesis, summarizing the con-
tributions and results and presenting the future work of this
research.

Appendix A: this appendix presents one of the real-life PLC pro-
grams, which have been verified applying the proposed method-
ology

Appendix B: this appendix presents some of the generated nuXmv
models out of the real-life PLC programs.

Lists The thesis finishes with the list of acronyms, figures, tables and
bibliography.





Chapter 2

Background and related
work

2.1 Introduction

This chapter gives an overview of the relevant concepts of the two fields
of study involved in this research: industrial automation and formal
verification. The automation concepts are either fundamental to un-
derstand the proposed methodology for applying formal verification
to PLC programs (e.g. description of hardware and software in PLCs)
or relevant in the design of reliable control systems (e.g. standards or
frameworks).

Automation, in general, is the use of control systems for operating
different equipments such as processes in factories, aircraft, machin-
ery, etc. reducing human intervention. Many different devices are
used as control systems depending on the equipment to be controlled
(e.g. digital or analog devices) and the needs of control (e.g. speed,
PID regulation). Some of the most common devices are: FPGAs
(Field-Programmable Gate Array), industrial PCs and PLCs. PLC is
the most popular control device for industrial processes such as cool-
ing and ventilation, oil or chemical processes. PLCs are appropriate
devices for processes with both digital and analog instrumentation
(e.g. digital and analog valves, temperature sensors, digital pumps,
etc.) and with strong requirements in reliability under harsh environ-
ment. Section 2.2 describes the main characteristics and concepts of
PLC-based control systems that have been taken into account in this

13
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research.
Formal verification is a technique meant to prove the correctness of

a system by using formal methods of mathematics. Formal verification
and formal methods are also introduced in this chapter. In the last
two decades, these techniques have been applied successfully in many
different industries such as aircraft, space shuttle, and railway systems.
The related work section presents a brief overview of the applicability
of these techniques in other areas. However, despite PLCs are the most
common control device for safety and for standard control systems,
formal verification is not really applied in this industry yet. Section
2.4 presents a detailed overview of the different techniques designed
to check PLC programs and the differences with this thesis approach.

2.2 PLC-based control systems

The first PLC was born in 1968, when GM Hydramatic asked for
an alternative to replace all the hard-wired relay systems by a pro-
grammable alternative. The company Bedford Associates came with
the wining proposal and the first PLC was created. This first pro-
totype was called 084. Bedford Associates started a new company
dedicated to develop, manufacture, sell, and service this new product:
Modicon, which is currently property of Schneider Electrics (Schneider
Electrics automation website (2014)). One of the person who worked
on that project was Dick Morley, who is considered to be the “father”
of the PLC.

The PLC is the most widely-used programmable electronic device
designed for controlling industrial processes. Even if other kind of
controllers, such as industrial PCs, are more powerful, sophisticated
and offer more alternatives in terms of programming capacities, PLCs
remain the most popular control device due to its reliability and ro-
bustness in industrial environments.

A PLC mainly consists of a processing unit and peripheries to con-
nect with sensors and actuators of the process or with other electronic
devices.

This thesis is based on Siemens PLCs (Siemens automation web-
site (2014)), as they are widely used at CERN. Although some minor
differences exist with the models produced by other manufacturers,
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they all have a common PLC architecture described in the IEC 61131
(2013) standard.

Industrial control systems are traditionally divided in three main
layers:

1. Supervision: this layer provides the interface with the process
operator. The tool is usually called SCADA (Supervisory Con-
trol and Data Acquisition). It is in charge of showing the process
variables to the operator, storing their values in databases and
giving access to the operator to send manual orders to the control
layer.

2. Control: this layer is composed of the control devices (e.g. PLCs)
which contain the logic to automatize the process.

3. Field: this layer is in contact with the process to be controlled.
It is composed of sensors, which take the information from the
process, and actuators, which execute the orders given by the
control layer.

Note that modern control systems include more parts (layers or
sub-layers) to this traditional architecture. For example MES (Manu-
facturing Execution System) or ERP (Enterprise Resource Planning).
Fig. 2.1 shows a common representation of the control system layers.

Field

Control

Supervision

MSE

ERP

Figure 2.1: Control system layers
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2.2.1 Control system classification

Independently of the use of PLCs or other control device, industrial
control systems can have many different classifications based on the
characteristics of the control layer: type of control applied to the pro-
cess, controllers architecture, its purpose, etc.

Regarding the control applied to the process, an industrial control
system can be classified as:

− Open-loop control system: it is a control system that only uses
the current state of the input values and the program of the
controller. It does not use feedback to guarantee if the output
has the intended value due to the input request.

− Closed-loop control system: it is a control system that uses the
current state of the input values, the program of the controller
and some information from the output of the system that is re-
turned back to the input and computed by the control program.

Regarding the controllers architecture, an industrial control system
can be classified as:

− Centralized control system: it is a control system managed by a
single controller, which contains the whole control logic.

− Distributed control system (DCS): it is a control system which
is managed by more than one controller. In these systems the
logic is split into different controllers. The controllers use field
buses for the communication between them. The IEC 61499
(2013) standard proposes a methodology to design distributed
systems based on function blocks (this concept is introduced in
Section 2.2.5).

Please note that very often in industry the term DCS may refer to a
distributed system in terms of the supervision layer, where different
servers store the information from the industrial process in a database
(usually a distributed database). Both architectures can be combined
in the same control system.

Both centralized and distributed control systems can have a de-
centralized periphery, which uses field buses to communicate with the
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controllers. Some of the most common field buses are Modbus (Mod-
bus website (2014)), Profibus and Profinet (Profibus - Profinet website
(2014)).

Regarding the purpose, an industrial control system can be classi-
fied as:

− Standard control system: it is a control system dedicated to
control and monitor the industrial process.

− Safety control system: it is a control system dedicated to protect
people, environment and installations. They are defined by the
IEC 61508 (2010) standard as SISs and their goal is to provide
Functional Safety, which increases the reliability of the global
system.

2.2.2 Standards

When developing industrial control systems, the developer should fol-
low a set of rules to guarantee certain common requirements, such as
safety, maintainability or quality of control code. These rules, pre-
sented as guidelines, are given by the standards. There are several
international organizations in charge of producing standards. The two
more relevant organizations for the standardization in the automation
discipline are:

− IEC (International Electrotechnical Commission): it is the
world’s leading organization that prepares and publishes interna-
tional standards for all electrical, electronic and related technolo-
gies (International Electrotechnical Commission website (2014)).

− ISA (International Society of Automation): is a leading, global,
nonprofit organization that prepares and publishes international
standards for automation (International Society of Automation
website (2014)).

Other organizations, like ISO (International Organization for Stan-
dardization website (2014)) or CENELEC (European Committee for
Electrotechnical Standardization website (2014)) in Europe, are also
relevant in the automation community.

Below a summary of the most relevant standards in the develop-
ment or industrial control systems is presented:
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1. IEC 61131 (2013) standard: it is a general standard for pro-
grammable controllers. It is divided into eight parts and it de-
scribes the main features of programmable controllers, such as
equipment requirements, programming languages, guidelines for
the application and implementations of these languages, etc. It is
important to emphasize that PLC programming languages from
different vendors have been developed or adapted, following the
recommendations of this standard, although there are some mi-
nor differences between them. Five languages are defined by this
standard, three graphical languages and two textual languages:
Ladder diagram (LD), Function block diagram (FBD), Sequen-
tial function chart (SFC), Structured text (ST) and Instruction
list (IL).

2. IEC 61499 (2013) standard: this standard extends the concept
of function block (FB) defined in the IEC 61131 standard. The
extension has the goal of improving this concept using object-
oriented features. It also describes a methodology to design the
control software based on these FBs. Fig. 2.2 shows the rep-
resentation of the proposed FB by this standard. This FB is
composed of the ECC (Execution Control Chart) and the con-
trol algorithms. The execution of these algorithms is triggered
by the ECC, which is an event-driven state machine similar to
the well-known Harel Statecharts.

3. ISA 88 (2010) standard: this standard focuses on the batch pro-
cess control. It provides a methodology to design control systems
for this particular case of processes, with the goal of optimizing
the production in a flexible way. It is divided into four parts
and it describes the applied models and terminology, the data
structures, gives some recipe models and provides examples of
use.

4. IEC 61512 (2009) standard: as the previous standard, it focuses
on the batch process control. It is an extended version of the
ISA 88. It proposes the creation of a hierarchy of modules to
model and control the batch processes.

5. IEC 61508 (2010) standard: it is the standard focused on the
Functional Safety of Electrical/Electronic/Programmable Elec-
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tronic Safety-related Systems (E/E/PE, or E/E/PES). The goal
of this standard is to become the reference standard in terms of
functional safety to all kind of industries. It provides guidelines
for all the needed steps for the development of a SIS. These steps
correspond to the so-called Safety Life Cycle, from risk analysis
to the decommissioning of the SIS.

6. IEC 61511 (2003) standard: it is a standard about Functional
Safety as well, but focused on the industrial process. It provides
the definition of safety concepts such as SIS (Safety Instrumented
System), SIF (Safety Instrumented Function) and SIL (Safety
Integrity Level). SIL is used to categorize the level of safety of
a system and it ranges from 1 (for the lowest safety level in this
category) to 4 (for the highest safety level in this category).

7. IEC 62061 (2012) standard: it is a specific implementation of
the IEC 61508 standard for machinery as its title revels: “Safety
of machinery: Functional safety of electrical, electronic and pro-
grammable electronic control systems”.

Figure 2.2: IEC 61499 FB representation

2.2.3 Frameworks

On the top of the standards, several companies and organizations have
developed some “frameworks”, with the goal of homogenizing and
standardizing the control systems even more. Many control system
frameworks can be found in the literature, mostly the ones developed
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by research organizations (e.g. CERN, ESRF, etc.) and universities
as private companies usually do not publish this knowledge. These
frameworks standardize many different aspects of the control systems
such as communication protocols, data storage, control code, SCADA
visualization, etc. Some of the advantages for using these frameworks
are:

− It reduces the development time, as they usually provide some
tools dedicated to solve repetitive tasks, for example code gen-
eration tools.

− It improves and simplifies the maintenance of the control systems
due to the standardization.

− It reduces the chances of having software errors when the frame-
work provides a solution to standardize the control code, due to
the reusability of software blocks (e.g. FBs).

As this thesis has been developed at CERN, some of the most rel-
evant control system frameworks applied to big scientific installations
are presented in this section. These frameworks are: EPICS, TANGO,
FESA and UNICOS.

2.2.3.1 EPICS

EPICS (Experimental Physics and Industrial Controls) is a control
system framework co-developed by the “Accelerator technology” con-
trol group at Los Alamos (Accelerator and Operations Technology
website (2014)) and by the “Advanced Photon Source” control group
at the Argonne National Laboratory (Advanced Photon Source web-
site (2014)) in USA. This framework was born to provide a solution
for control and supervision in big scientific installations, as the con-
trol needs of these installation were not available in industry. EPICS
provides a standard solution for the communication between the con-
trol and supervision layers in distributed systems. Fig. 2.3 shows the
EPICS architecture, which is based on a Client – Server model. The
communication is based on the “Channel Access” protocol. The first
documentation about its architecture can be found in Dalesio et al.
(1991). It also provides a set of tools for the control systems develop-
ers. They are called the EPICS subsystems (alarm manager, display
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manager, etc.) and the OPI (Operator Interface) consists in worksta-
tions where the EPICS subsystems are executed. The IOC (Input-
Output Controllers) supports real time databases. The hardware is
based on VME/VXI systems using VxWorks or RTEMS operating
systems.

IOC

OPIOPI OPI

IOC

Ethernet LAN

Channel Access

Figure 2.3: EPICS architecture

In addition EPICS uses a distributed database providing local con-
trol for each IOC. It provides data acquisition, data conversion, alarm
detection and control closed loops. It provides a timing system for the
events synchronization along the network. As it is shown in Fig. 2.4,
different control devices can be connected to the IOCs, e.g. PLCs,
FPGAs, etc.

IOC

OPIOPI OPI

IOC

PLCs

Instrumentation

Other control
systems

Ethernet LAN

Channel Access

Figure 2.4: EPICS control system example

EPICS is used in more than 100 different projects all over the
world, mainly in big scientific installations (e.g. DESY website
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(2014)). More information about EPICS can be found on the EPICS
website (2014).

2.2.3.2 TANGO

TANGO is the European alternative to EPICS. It was developed
initially by the control group of ESRF (ESRF website (2014)), and
currently more research centers collaborate on the development (e.g.
ALBA website (2014)). Nowadays these institutes constitute the
TANGO consortium (TANGO website (2014)), which provides a stan-
dard solution for the communication between the different elements of
the system as it is shown in Fig. 2.5. It was designed for distributed
control systems and it uses the object oriented paradigm based on
CORBA (CORBA website (2014)). It provides a set of tools for the
development of “device servers”. These elements provide access to
all the elements of the control system. Thanks to the consortium, it
is possible to develop “devices servers” and “clients” in different lan-
guages, like C++, Java or Python. In addition, TANGO provides sev-
eral APIs (Application Programming Interface) for the development of
these elements. Hardware can range from simple digital input/outputs
up to sophisticated detector systems or entire plant control systems.
More information about TANGO can be found in Chaize et al. (1999).

Device

MonitoringConfig. Archiving

TANGO software bus

Server
Device
Server

PLCs Other control
systems

User environments:

Matlab, Python,
Labview, etc.

Figure 2.5: TANGO architecture
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2.2.3.3 FESA

FESA (Front-End Software Architecture) is an object oriented frame-
work, developed at CERN by the BE/CO group CERN BE/CO group
website (2014). It generates automatically code for the control layer,
which is based on industrial PCs called FECs (Front End Comput-
ers). It provides a set of tools for design, development and test of
real time software. At the SCADA level, Java applications have been
developed to monitor the information from the FECs. At the control
level, the so-called FESA classes represent real devices from the in-
strumentation of the control system. It also provides a Timing system
for the synchronization along the network. The LHC control system at
CERN is mainly based on FESA. Other scientific institutes started to
use FESA, for example, GSI ( GSI website (2014)). More information
about FESA can be found in Peryt and Mart́ın Marquez (2009).

2.2.3.4 UNICOS

UNICOS (UNified Industrial COntrol System) is a industrial control
framework developed at CERN by the EN/ICE group (CERN EN/ICE
group website (2014)). This framework provides a methodology and
a set of tools to develop industrial control systems. The experiments
presented in Chapter 4 use PLC programs from the UNICOS library
and PLC programs developed using this framework. Therefore, this
framework is described in detail in Section 4.2.

Control system frameworks are important in this research as they
contribute to produce more reliable control systems. However, none
of the described frameworks include the use of formal methods in
their development process yet. More general information about control
system frameworks can be found in Lopez (2006).

2.2.4 PLC hardware

This section describes the main characteristics of the PLC hardware.
The concepts presented in this section are fundamental to understand
the modeling strategy of the PLC execution platform.
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2.2.4.1 Execution schema

The main particularity of the PLC is its execution scheme, the so-
called scan cycle. It consists of three main steps:

1. Reading the inputs from periphery to the Input Image Memory
(IIM).

2. Executing the user program that reads and modifies the Output
Image Memory (OIM) contents.

3. Writing the values to the output periphery.

The PLC reads the information coming from the process (sensors
and actuators) and stores it either in the IIM or the OIM. The IIM
values are frozen during the execution of the user program.

The execution of the scan cycle can be interrupted if an event
(e.g. timer, hardware event, hardware error) triggers the execution
of an interrupt handler. The interrupts are preemptive and they are
assigned to priority classes in compilation time that will determine
their priority.

2.2.4.2 PLC memory

The “data memory” of a PLC is divided into different areas depend-
ing of its purpose. The memory can be divided into two main parts
(Siemens (1998a); Siemens AG (2010)).

1. One part of the memory is globally accessible and allocated stat-
ically. This part stores the image of the input and output values,
and the internal computation results.

2. The rest of the memory is only accessible locally and is allocated
dynamically. The so-called L Stack is in this part and it stores
the temporary data of functions, separately for each priority
class.

2.2.4.3 PLC interrupts and restarts

PLC interrupts are described by the IEC 61131 standard. In Siemens
PLCs, interrupts trigger the call of Organization Blocks (OBs), which



2.2. PLC-based control systems 25

are the interfaces between the operating system and the PLC pro-
gram. They have different priorities and therefore a higher priority
OB can interrupt any lower priority OB. Restarts are a special case of
interrupts and they trigger a specific OB as well.

There are different kind of interrupts in Siemens PLCs, some of
the main examples are:

− Time-of-day interrupts (OB10..17). These interrupts are trig-
gered at a specific time on each day or month.

− Cyclic interrupts (OB30..38). These interrupts are triggered
cyclically with a defined cyclic time.

− Hardware interrupts (OB40..47). These interrupts are triggered
by hardware events (e.g. errors, diagnostics, etc.).

− Startup (OB100..102). These interrupts are triggered when a
PLC restart occurs.

2.2.5 PLC software

The third part of the IEC 61131 (2013) standard describes the different
software resources, which are necessary to build the user program in
PLCs. However, there are some minor differences between the imple-
mentations provided by the PLC vendors. The following paragraphs
describes the PLC resources given by Siemens PLCs.

2.2.5.1 PLC blocks

In Siemens PLCs, several kinds of program blocks are defined for var-
ious purposes Siemens AG (2010).

− A function (FC) is a piece of executable code with input, output
and temporary variables. The variables are stored on the L Stack
and they are deleted after the execution of the function.

− An organization block (OB) is a special function that can be only
called by the system. These are the entry points of the user code.
The main program and the interrupt handlers are implemented
as OBs.
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− A data block (DB) is a collection of static variables that can
be accessed globally in the program. These variables are stored
permanently. The data block does not contain any executable
code.

− A function block (FB) is a piece of executable code with in-
put, output, static and temporary variables. Static variables are
stored in instance data blocks and these variables can be accessed
globally, even before or after the execution of the FB. The tem-
porary variables are stored on the L Stack, similarly to the FC’s
variables.

2.2.5.2 Programming

There are five PLC languages defined by the IEC 61131 (2013) stan-
dard: ST, SFC, Ladder, FBD and IL. The PLC programmer can chose
one or several of these languages, depending on the characteristics of
the application, to build the PLC code.

ST is the most used PLC programming language at CERN. How-
ever SFC and IL are also used:

− ST is a textual high-level language that is syntactically similar
to Pascal.

− The SFC language is a graphical programming language based
on steps and transitions. It is useful when a part of the PLC pro-
gram can be conveniently represented as a finite-state machine
(FSM).

− The IL language is a low level language that is syntactically
similar to assembly.

− The FBD language is a graphical language based on logic gates.

− The Ladder language is a graphical language based on electric
circuit diagrams of relay logic hardware.

All these languages are compiled to a common byte code called
MC7 and this is the code transferred to the PLC. The MC7 instruc-
tions are assumed to be atomic and they cannot be interrupted. A
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single ST or SFC statement can correspond to several MC7 instruc-
tions.

Listing 2.1 shows an example ST code. This example code defines
a function block (FB100) with three variables (a, b, c). There is an
instance data block (DB1) defined for FB100. In the organization
block OB1, the FB100 is called using the instance data block DB1
with input parameter a=false. Then the c variable of this instance is
assigned to the output Q1.0.

1 FUNCTION_BLOCK FB100

2 VAR_INPUT

3 a : BOOL;

4 END_VAR

5 VAR_TEMP

6 b : BOOL;

7 END_VAR

8 VAR

9 c : BOOL;

10 END_VAR

11 BEGIN

12 b := NOT a;

13 c := b;

14 END_FUNCTION_BLOCK

15

16 DATA_BLOCK DB1 FB100

17 BEGIN

18 END_DATA_BLOCK

19

20 ORGANIZATION_BLOCK OB1

21 VAR_TEMP

22 info : ARRAY[0..19] OF BYTE; // reserved
23 END_VAR

24 BEGIN

25 FB100.DB1(a := FALSE);

26 Q1.0 := DB1.c;

27 END_ORGANIZATION_BLOCK

Listing 2.1: Example of ST code

Listing 2.2 shows an example SFC code. It defines a FSM with
three states (Stop, Fill, Run) with three possible transitions. The
conditions of the transitions are Boolean input variables (StopCond,
FillCond, RunCond) and their value is assigned outside of the FSM-
representing function block. The graphical representations can be
seen in Fig. 2.6 and Fig. 2.7 (this last representation corresponds with
screenshot of the SIMATIC tool of Siemens).

1 FUNCTION_BLOCK FB101

2 VAR_INPUT
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3 FillCond : BOOL := FALSE;

4 RunCond : BOOL := FALSE;

5 StopCond : BOOL := FALSE;

6 END_VAR

7

8 INITIAL_STEP Stop: END_STEP

9 STEP Fill: END_STEP

10 STEP Run: END_STEP

11

12 TRANSITION S_F

13 FROM Stop TO Fill CONDITION := FillCond

14 END_TRANSITION

15

16 TRANSITION F_R

17 FROM Fill TO Run CONDITION := RunCond

18 END_TRANSITION

19

20 TRANSITION R_S

21 FROM Run TO Stop CONDITION := StopCond

22 END_TRANSITION

23 END_FUNCTION_BLOCK

Listing 2.2: Example of the textual representation of SFC code

Stop

Fill

[FillCond]

Run

[RunCond]

[StopCond]

Figure 2.6: Example SFC

2.2.5.3 Timing behavior of PLCs

PLC control systems can perform timing operations and these oper-
ations are very common when controlling industrial processes. Un-
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Figure 2.7: Example SFC (Screenshot from SIMATIC tool by
Siemens)

derstanding the behavior of these operations is essential to justify the
proposed modeling strategy.

In standard PLCs, the cycle time is not fixed, but there is an upper
limit surveyed by a watchdog module. If the PLC cycle time gets
longer than this upper limit, e.g. due to an infinite loop in the PLC
program, the PLC executes a special part of the program responsible
for handling timing errors. By contrast, safety PLCs have a fixed cycle
time in order to avoid dangerous situations.

Timing operations, such as timers defined by IEC 61131 (2013),
can be considered as function blocks that delay a signal or produce a
pulse.

Different types of timers can be found in PLCs. The most common
timers are TON (Timer On-delay), TOFF (Timer Off-delay) and TP
(Pulse Timer) timers. Fig. 2.8 shows the three timer diagrams. All
three timers have the same input and output variables. Two input
variables: IN and PT. IN is a Boolean input signal and PT is the
delay time. And two output variables: Q and ET. Q is the Boolean
output variable and ET is the elapsed time.
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TON: in this timer, the value of Q will be true after the predefined
delay (PT ) when IN performs a rising edge, and it will be false if IN
is false. The value of ET is increased until PT, starting when a rising
edge occurred on IN.

TOFF: in this case, the value of Q will be true if IN is true and
it will be false after the predefined delay (PT ) when IN performs a
falling edge. The value of ET is increased until PT, starting when a
falling edge occurred on IN.

TP: in this case, the value of Q will be true if IN is true and it will
be false after the predefined delay (PT ), independently of the value
of IN. The value of ET is increased until PT, starting when a rising
edge occurred on IN.

PLC timers use a specific data type for timing operations called
TIME. The IEC 61131 (2013) standard defines this data type as a
finite variable and states the following:

“The range of values and precision of representation in these
data types is implementation-dependent.”

Representing time by a finite variable leads to a non-monotonic
time representation as the variable can overflow (c.f. the upper part
of 2.9). For example, in Siemens S7 PLCs, the TIME data type is
defined as a signed 32-bit integer with a resolution of 1 ms (see Siemens
(1998b)), having an upper limit of approximately +24 days and a
lower limit of −24 days. However, in Schneider and Beckhoff PLCs,
the TIME data type is an unsigned 32-bit integer with a resolution
of 1 ms. In this thesis, the signed time interpretation as defined in
Siemens PLCs is considered.

The following section presents some fundamental concepts about
formal methods and formal verification.
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2.3 Formal methods and formal verifica-

tion

The selected strategy to guarantee that PLC programs are compliant
with the specification implies to apply formal verification to these
programs. This requires the knowledge and understanding of formal
methods and formal verification. This section presents a small review
of these two fields of research related to this project.

2.3.1 Formal methods

The term “formal methods” has been defined by many authors. Ac-
cording to NASA (1977), formal methods can be defined as follows:

“The term Formal Methods refers to the use of techniques from
logic and discrete mathematics in the specification, design and
construction of computer systems and software. The word formal
derives from formal logic and means pertaining to the structural
relationship (i.e., form) between elements. Formal logic refers to
methods of reasoning that are valid by virtue of their form and
independent of their content.”

In the last decades, formal methods have proved its importance in
the design and implementation of complex and critical systems. The
main goal of formal methods is to minimize human interpretation in
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the different steps of critical system development, by providing lan-
guages with well-defined semantics.

“That is, reduce the acceptability of an argument to a calculation
that can, in principle, be checked mechanically thereby replacing
the inherent subjectivity of the review process with a repeatable
exercise.” (from NASA (1977)).

Formal methods can be applied in different levels of the develop-
ment process of a system. For example, they can be used to produce
unambiguous system requirements or to facilitate communication be-
tween different steps of the development (i.e. design, implementation
and review process). They can be classified by the level of formaliza-
tion or by the scope of use. Each level of formalization corresponds
to a particular scope of formal methods use, as it is represented in
Table 2.1 from NASA (1977).

Table 2.1: The Range of Formal Methods Options Summarized in
Terms of (a) Levels of Formalization and (b) Scope of Formal Methods
Use.

Levels of Formalization Scope of FM Use

1. Mathematical concepts and
notation, informal analysis (if
any), no mechanization

Life cycle phases: all/se-
lected

2. Formalized specification lan-
guages, some mechanized sup-
port

System components: all/s-
elected

3. Formal specification lan-
guages, comprehensive environ-
ment, including automated proof
checker/theorem prover

System functionality: ful-
l/selected

Therefore formal methods can be applied in different steps of a
system development. Here we enumerate some of the most common
ones:

− Specification and modeling: the use of an unambiguous language
describing a system.
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− Execution/Simulation: formal models are create to simulate
them and analyze the behavior of the real system.

− Formal verification: formalized properties are checked against a
formal model.

− Refinement: code refinement is the process of proving that two
pieces of code behave identically, where one version is more ab-
stract. It can be achieved by using formal methods.

− Test generation: formal models can be used to automatically
generate relevant test cases for the real system.

The benefits of using formal methods in the development of critical
systems can be summarized in two essential aspects:

1. Discipline: formal methods provide rigor to the design and devel-
opment processes. A formal proof of correctness can be achieved
by using formal methods.

2. Precision: natural languages are ambiguous and open to inter-
pretations. Formal methods provide specification languages with
formal semantics that can be used to describe a system or func-
tional requirement with precision.

However, in some industries like industrial automation, formal
methods are not widely used. These are the main reasons:

1. Cost: using formal methods is more expensive than traditional
alternatives in engineering. The initial cost of using formal meth-
ods in the design and development of a system is much higher
than other approaches.

2. Limits of computational models: formal models of real-life sys-
tems can be too large to be handled by a simulator or model
checker.

3. Usability: using formal methods implies a learning process of
the formalism and how to use it. This is sometimes a barrier in
industry which makes engineers to look for other alternatives.
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Traditionally, formal methods are considered highly abstract, ex-
tremely rigorous, and very expensive techniques, ignoring some of the
theoretical advances that provide solutions for these drawbacks in the
last years. However, many success stories can be referenced to prove
the applicability and benefits of these techniques in industry.

Under the umbrella of formal methods, a huge range of techniques
and languages can be included, for example: Boolean algebra, finite
automata, Petri Nets, temporal logic, etc. Some of these concepts
are briefly described in the following paragraphs. When using formal
methods for verification purposes, a fact has to be taken into consid-
eration: the more expressive the formalism, the less the proof (that a
property holds) is amenable to be automatized.

More general information about the formal methods can be found
in Clarke and Wing (1996), Virtual Library On Formal Methods
(2014), Formal Methods Europe website (2014), NASA Formal Meth-
ods Symposium website (2014) and NASA Langley Formal Methods
website (2014) as some relevant web-pages.

2.3.2 Formal verification

The term verification refers the act of checking requirements on a sys-
tem as it is shown in Fig. 2.10. In this figure, the requirement specifi-
cation represents “what the engineer wants” and the implementation
“what the engineer gets”. The transformation from the specification
(the idea) into the implementation (the real systems) is done by the
design process. The verification process consists in checking that the
real system “behaves” as it is described in the specifications. The
term verification includes both testing (the specifications are checked
on the real system) and formal verification.

Formal verification is the act of checking the correctness of a sys-
tem with respect to a formal property or specification by using formal
methods. Formal verification techniques explore all the possible com-
binations of the state space to prove that the formal requirement is
satisfied.

There are two main families of formal verification techniques:

1. Axiomatic verification.

2. Algorithmic verification.
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Requirement
Spec.

Design Verification

Implementation

Figure 2.10: Verification schema

Axiomatic verification: it consists in a semiautomatic verification
technique based on reasoning about the functional correctness of a
structured sequential program, by tracing its state changes from an
initial condition P to a final condition R according to a set of self-
evident rules (i.e., axioms).

Theorem provers (tools which apply axiomatic verification) are
driven by skilled researchers or engineers, and the full automation
of the verification process using these techniques is very challenging
and in some cases cannot be achieved.

Formally it can be defined as: {P}S{R}, where P is the precondi-
tion, R the postcondition and S is the program. The correctness of S
is achieved when P holds before the execution of S, S terminates and
R will hold afterward.

Algorithmic verification: it consists in the use of semi-algorithms
to check that a global model, which represents the system, meets the
given formal requirements. Techniques like model checking or static
analysis are included in this category. The main benefit of these tech-
niques is that they are oriented to be fully automatized, avoiding hu-
man interaction. The most well-known drawback of these techniques is
the state explosion problem of real-life models, but it can be overcome
by using appropriate abstraction techniques.

In industry, algorithmic verification is the most popular formal
verification technique because it can be automatized. For that reason,
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algorithmic verification is the selected verification technique in this
thesis. In particular, model checking has been applied to verify PLC
programs. The following sections give an overview of this technique.

2.3.3 Model checking

Model checking is an algorithmic verification, which was first described
by Edmund Clarke and Allen Emerson in Clarke and Emerson (1982),
and also in parallel by Joseph Sifakis in Queille and Sifakis (1982).
Due to their contributions in this area of research, they received the
Turing award in 2007.

Model checking is an automatic verification technique for finite
state systems. Given a global model of the system and a formal prop-
erty (requirement), the model checking algorithm checks exhaustively
that the model meets the property. Three steps are required to per-
form model checking:

1. Requirement formalization.

2. System modeling.

3. Model checking algorithms execution (model checker).

2.3.3.1 Requirements formalization

Requirements engineering is one of the major research challenges
nowadays. The goal of producing a complete and unambiguous speci-
fication of a system by engineers is still an utopia in many industries.
Requirements engineering can be defined as follows (from Laplante
(2013)):

“Requirement engineering is the branch of engineering concerned
with the real-world goals for, functions of, and constraints on,
systems. It is also concerned with the relationship of these fac-
tors to precise specifications of system behavior and to their evo-
lution over time and across families of related systems.”

In order to produce precise and unambiguous requirements, the use
of formal methods is required. In model checking techniques, temporal
logic is the most common formalism to express the requirements or
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properties. Temporal Logic, in general, can be defined as follows (from
Bérard et al. (2001)):

“Temporal logic is a form of logic specifically tailored for state-
ments and reasoning which involve the notion of order in time.”

With temporal logic, engineers and researchers can specify ongo-
ing behaviors, rather than input/output relations. There are multiple
temporal logic formalisms. The two more extended formalisms are:
LTL (Linear Temporal Logic) and CTL (Computation Tree Logic).
Other temporal logic formalism are: PLTL (Propositional Linear Tem-
poral Logic) or ACTL (subset of CTL only using the path quantifier
A).

LTL: properties can be expressed as an infinite sequence of states
where each state has a unique successor. LTL can use the follow-
ing temporal operators: G (always), F (future), X (next), U (until).
Fig. 2.11 represents the meaning of these LTL operators. The vio-
let shading represents the state space where the atomic proposition p
holds.

CTL: properties can be expressed as a combinations of path quan-
tifiers and linear-time operators. The possible path quantifiers are: A
(for every path) and E (there exists a path). The liner-time operators
are: Xp (p holds true next time), Fp (p holds true sometime in the
future), Gp (p holds true globally in the future) and pUq (p holds true
until q holds true), where p and q are atomic propositions. Fig. 2.12
represents the meaning of these CTL properties. The violet shading
represents the state space where p holds.

Some of the properties that can be expressed using CTL and LTL
are:

− Reachability Properties: it states that a particular situation can
be reached. CTL is more suitable than LTL for expressing reach-
ability properties (i.e. EFp).

− Safety Properties: it expresses that, under certain conditions,
an specific event should never occurs. Both CTL and LTL can
easily express safety properties (i.e. AG¬p for CTL and G¬p for
LTL).
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Figure 2.11: LTL operators representation

− Liveness Properties: it states that, under certain conditions,
some event will ultimately occur. The F operator is the most
appropriate for this kind of properties (AG

(
p → AFq

)
for CTL

and G
(
p → Fq

)
for LTL).

− Deadlock-freeness: it states that the system can never be in a
situation in which it cannot progress. CTL is more suitable than
LTL for expressing reachability properties (i.e. AGEXtrue).

More information about the applicability of temporal logic can be
found in Bérard et al. (2001).

2.3.3.2 System Modeling

Once the properties to be verified are identified and formally described,
the construction of the formal model is the second step. As the formal
model consists of an abstraction of the real system, it is important to
express those properties that are relevant for verification.



40 Chapter 2. Background and related work

p

p

p

p

p

p p

(a) AGp

p

p

p

p

(b) EGp

p

p p

(c) AFp

p

(d) EFq

pp

(e) AXp

p

(f) EXp

p

q q

qp

(g) ApUq

p

q

p

(h) EpUq

Figure 2.12: CTL operators representation



2.3. Formal methods and formal verification 41

The first model checking algorithms use an explicit representation
of the Kripke structure. Kripke structure consists in a simple abstract
machine (a mathematical object) to model a computing machine. It
is a graph whose nodes represent the reachable states of the system
and whose edges represent state transitions. A labeling function maps
each node to a set of properties that hold in the corresponding state.
This can be formally defined as follows (from Clarke et al. (1999)):

Definition 1 (Kripke structure) Let AP be a set of atomic propo-
sitions. A Kripke structure is a 4-tuple M = (S, S0, R, L), where S is
a finite set of states, S0 ⊆ S is a finite set of initial states, R ⊆ S×S
is the transition relation that must be total, that is, for every state
s ∈ S such that R(s, s′) and L : S → 2AP is a function that labels each
state with the set of atomic propositions true in that state.

Nowadays in practice, there are many different formalisms used by
model checkers, for example: automata, timed automata, Petri net,
etc. More details about different modeling formalism used by model
checkers can be found in Bérard et al. (2001).

2.3.3.3 Formal definition of model checking

Once the requirements are formalized and the formal model of the sys-
tem is built, the model checking algorithm can be applied. A general
model checking definition can be expressed as follows (from Clarke
(2008)):

Definition 2 (Model checking problem) Let M be a Kripke
structure (i. e., state-transition graph). Let f be a formula of temporal
logic (i.e., the specification or property to be checked). Find all states
s of M such that M, s |= f .

This is a so-called global model checking approach.

2.3.3.4 Model checking approaches

Formal models representing real-life systems usually have a huge state
space. The state space exploration performed by model checking al-
gorithms may find the limits. For that reason, researchers have been
working in improving the model checking algorithms and providing
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some alternatives, in the last decades. The first proposed algorithms
for model checking were called explicit model checking, as they store
and handle the states individually. In the following paragraphs, two
of the most popular model checking approaches are briefly introduced:
symbolic model checking and bounded model checking.

Symbolic model checking: Instead of enumerating reachable
states one at a time, in 1987 Ken McMillan implemented a version
of the CTL model checking algorithm using a symbolic representation
of the state space based on BDDs (Binary Decision Diagrams). More
information about symbolic model checking can be found in McMillan
(1993).

BDDs are data structures where the state space can be encoded.
This symbolic representation allowed to verify much larger systems
(formal model of 1020 states and beyond, see Bruch et al. (1992)).

After the first definition of symbolic model checking, many new
algorithms have been proposed. Some of them are based on decision
diagrams, for example using MDD (Multivalued Decision Diagrams).
In addition, other kind of symbolic model checking is based in SMT
(Satisfiability Modulo Theories) solvers, consisting in SAT-based al-
gorithms.

Bounded model checking: Traditional model checking algorithms
consists in the exploration of the full state space. Sometimes this is
not needed, or not even possible due to the huge size of some models.
Bounded model checking allows to check properties on a part of the
state space.

This technique is appropriate for reachability properties (i.e. EFp
in CTL). If the evaluation of the property or formula p is false, no
answer can be provided, the algorithm will explore a bigger part of
the state space until the evaluation is true or the full state space is
explored. It is also good for safety (invariant) properties. If a coun-
terexample is found in a part of the state space is a valid counterex-
ample for the whole model (and the model checking can be finished).
Some of the advances in this technique can be found in Biere et al.
(2003) and Vörös et al. (2011).

Many other techniques meant to optimize the verification process
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can be mentioned here. For example, statistical model checking (Legay
et al. (2010)), compositional verification (Besalem et al. (2010)), etc.
They all propose alternatives and improvements to deal with the state
space explosion problem.

In addition to the different model checking algorithms, reduction
and abstraction techniques can be applied to the formal models to
face the problem of the state space explosion (e.g. cone of influence
or predicate abstraction). A review of these techniques for model
checking can be found in Radek (2006).

2.3.3.5 Advantages and disadvantages of model checking

Model checking techniques can be found in many different industries,
however still some myths about formal methods in general provoke
that engineers look for other alternatives (Hall (1990) and Bowen and
Hinchey (1995)).

Summarizing the main advantages of applying model checking
techniques are:

− It is an automatic verification method.

− Model checking explores all the possible combinations of the
state space model to guarantee that a property holds.

− When a property does not hold on the model, a counterexam-
ple is produced by the model checker, which contains relevant
information to identify the source of the problem.

− Comparing with testing techniques, model checking can check
safety or liveness properties, e.g. ensuring that a forbidden out-
put value combination should never occur. This is one of the
main limitations of testing.

The main disadvantages of formal verification techniques are:

1. State space explosion.

2. Complexity of building formal models.

3. Difficulty of using property specification formalism like temporal
logic.
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2.3.4 Verification tools

All the concepts and algorithms mentioned before are implemented in
verification tools, which allow engineers to automatize the verification
process or guide them at least. Some of the most popular verification
tools are:

− NuSMV: it performs symbolic model checking for CTL and LTL
formulae on networks of automata extended with variables. The
new version of NuSMV (2014) is called nuXmv. More informa-
tion in NuSMV website (2014) and Cavada et al. (2014).

− UPPAAL: it supports timed automata based models and a sub-
set of CTL for property specification. Internally models are rep-
resented as CDDs (Clock Difference Diagrams). More informa-
tion in UPPAAL website (2014) and Amnell et al. (2001).

− BIP: BIP is a component-based framework for rigorous system
design aiming at correctness-by-construction for essential prop-
erties of the designed system. A BIP model consists of three
layers: Behavior, Interaction and Priority. The BIP framework
provides C code generation from BIP models and its verification
tool, called DFinder, is specialized in deadlock detection. More
information in BIP website (2014) and Basu et al. (2011).

− SPIN: it performs symbolic model checking on LTL formulas.
The modeling language is called PROMELA and it supports em-
bedded C code as part of model specification. More information
in SPIN website (2014).

− KRONOS: it performs symbolic model checking on TCTL (ex-
tension of the temporal logic CTL that allows quantitative tem-
poral reasoning over dense time). Its modeling language is based
on timed automaton. More information in KRONOS website
(2014).

− COQ: it is a theorem prover which implements a program specifi-
cation and mathematical higher-level language called “Gallina”.
More information in Coq website (2014).
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− PVS: it is a mechanized environment for formal specification
and verification. It includes an interactive theorem prover and
a symbolic model checker. More information in PVS website
(2014).

2.4 Related work

This section presents the related work to formal verification of PLC
control systems. As it was mentioned in Chapter 1, the goal of this
thesis is to provide a general solution to guarantee that PLC programs
are compliant with the specifications, independently of the purpose of
the PLC-based control systems.

In addition to safety standards like IEC 61508 (2010) for Safety
Instrumented Systems, where guaranteeing the correctness of the con-
trol code is a critical task, the automation industry has adopted some
solutions trying to minimize the number of errors in PLC programs.

Siemens is one of the most important companies in the develop-
ment of Safety Instrumented Systems based on PLCs. This company
provides the Safety Matrix and the Distributed Safety products, which
are software packages integrated in the SIMATIC and TIA portal pro-
gramming environments for PLCs.

There is an assumption that states that the logic of a Safety In-
strumented System program is much simpler than a standard PLC
program. The Safety matrix package provides a tool and a methodol-
ogy that reduces the configuration, testing and maintenance time by
merging the traditionally separate steps of creating a cause and effect
matrix diagram, and configuring the safety system. It provides a cause
and effect matrix diagram where the PLC programmer can describe
the safety functions and the PLC code is automatically generated from
this matrix. Only very simple Safety PLC programs can be created.
The “philosophy” here is to reduce the number of potential error in
the code by restricting the PLC program variability to the maximum.

A similar approach is provided by the Distributed safety package,
where a library of software blocks (usually FBs), approved by the TÜV
(the certification provider TÜV Rheinland website (2014)), which can
be used by the programmer to build the safety PLC programs. The
goal is to reduce the amount of code produced directly by the PLC
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programmer and allow him to reuse these objects.
In addition to these packages, the Siemens programming environ-

ment of SIMATIC and TIA portal for safety programs is restricted
compared with standard PLC programs which follow the IEC 61131
(2013) standard. For example, only Ladder and FBD languages are
allowed, the data types are also restricted (e.g. the data type REAL is
not allowed), etc.

All these restrictions in the development of PLC programs from
the PLC vendors do not exclude the need of applying testing or other
mechanism to check the code against the specifications.

The use of frameworks like UNICOS and the standardization or
code generation of safety critical software is essential to reduce the
number of potential bugs in the PLC (e.g. Coupat et al. (2014)).

In addition to that, many other tools and methodologies can be
applied in the design of safety systems. These tools are usually not
specific for PLCs (e.g. LDRA, Exidia, ISOGRAPH, RAM commander,
etc.). These tools contribute indirectly to guarantee the safety in
industrial control systems.

The two main “families” or techniques to check control software
against the specifications are testing and formal verification. This sec-
tion presents the related work divided into these two groups. Then,
more details about algorithmic formal verification related work is pre-
sented as this is the solution adopted in this thesis.

2.4.1 Testing-based techniques

Testing is a verification technique that implies the check of certain
properties or test cases in the real system. In the automation indus-
try, manual and automated testing are the most popular verification
techniques. Following the industrial automation standard: ISA 62381
(2010), process control applications testing is done in two main stages:
Factory Acceptance Test (FAT) and Site Acceptance Test (SAT). FAT
is conducted to check if the requirements of a specification are met.
SAT checks if the system meets the requirements and these tests are
performed in the real plant.

In academia, some authors propose solutions for checking PLC
programs based on testing techniques. For example, in Kramer (2001)
a testing approach based on simulation is proposed. In Jee et al.
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(2005), the authors propose a control and data flow testing coverage
criteria to the flow graph in order to generate test cases. The same
authors in Jee et al. (2010) provide a test coverage criteria for FBD
programs.

Testing activities are very useful and needed techniques in the
verification of industrial control systems. However they have some
limitations, testing is unable to check effectively safety and liveness
properties. This is main reason for us, to adopt a formal verification
approach in the verification of PLC programs.

It is important to remark that, testing and formal verification tech-
niques complement each other and for specific parts of a system testing
can be more effective than formal verification.

Our paper Fernández Adiego et al. (2013a), briefly describes some
of the applied testing techniques for PLC programs at CERN and
how they can complement the formal verification approach presented
in this thesis.

2.4.2 Formal verification based techniques

The following sections present the related work to this project. Be-
fore focusing on related work to formal verification of PLC programs,
a brief overview of formal methods applied in different industries is
presented here. The goal is to show how extended are formal methods
in industries with critical systems.

2.4.2.1 Formal verification in industry

The use of formal methods and formal verification in different indus-
tries with critical systems began more than 20 years ago and has many
success stories. Nowadays more and more industries integrate formal
methods in the design, development and verification of their systems.
When talking about the formal verification technique employed, the
big majority applied algorithmic verification techniques (e.g. model
checking or static analysis).

In some industries with safety critical systems, the use of formal
methods has become a common practice. Some of these industries
are: aircraft, space, robotic systems, transportation, etc. Here some
examples are presented:
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− Verification and validation of a NASA flight software: static
analysis, runtime analysis and model checking were compared
to traditional testing with respect to their ability to find seeded
errors in a prototype of the Mars Rover controller (Brat et al.
(2004)).

− Air traffic control systems: formal methods were applied to the
CCF (Central Control Facility) display information system at
the London Air Traffic Control Centre (Hall and Isaac (1992)).

− Train and subway industries: in the subway of Paris, the B
method was employed in the specification of new subway line
(Behm et al. (1999)). Model checking was applied to the Euro-
pean train control system (Faber and Meyer (2006)). SAT-based
model checking has been applied to an interlock railway system
(James and Roggenbach (2010)).

− There are many examples in the automation industry but mainly
restricted to the robotic field. One example can be found in
Abdellatif et al. (2012).

− In nuclear plants, some examples of using formal methods are:
Fukumoto et al. (1998), IAEA (1999), Yoo et al. (2005)

− Finally, one of the most advanced industries in the use of formal
verification and formal methods is the aircraft industry. An
example of the verification of the flight control system can be
found in Meenakshi et al. (2007).

All these examples and many more prove the applicability of formal
methods in real-life systems. Although different industries have differ-
ent challenges to solve, these examples inspired this research project
of providing a solution for the industrial automation systems.

The application of formal methods for PLCs has been studied in
previous works for many years. In Frey and Litz (2000), one of the first
studies about the applicability of formal methods and formal verifica-
tion strategies to PLC programs is presented. The rest of the Section
is divided into two parts, corresponding with the two groups of formal
verification strategies: axiomatic formal verification and algorithmic
formal verification applied to PLC programs.
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2.4.2.2 Axiomatic formal verification applied to PLC pro-
grams

Not many studies or developments are found in the literature when
looking for axiomatic verification applied to PLC programs. The rea-
son, as it was mentioned earlier in this chapter (Section 2.3), is that
axiomatic verification is difficult to automatize and its success highly
depends on the engineer skills.

Some examples of axiomatic verification applied to PLC programs
are presented in the following paragraphs.

In Blech and Ould Biha (2011), a proposal of formal semantics of
two of the PLC languages (IL and SFC) is presented for verification
purposes using the Coq theorem prover.

The paper Xiaoa et al. (2012) presents a modeling strategy of data
types, statements and the denotational semantics of PLC program
with the “Gallina” language. In addition, the Coq theorem prover is
used to prove the correctness of the programs. A similar approach can
be found in Chen et al. (2010).

In Mader et al. (2001), the paper reports on the systematic design
and validation of a PLC control program for the batch plant. The
formal proof of correctness was obtained using the PVS theorem prover
and the SPIN model checker. Both strategies are presented and the
limitations are discussed.

In Völkera and Krämer (1999), the authors suggest to complement
testing techniques with compositional theorem proving for FB-based
industrial control systems.

In Sadolewski (2011), the Coq theorem prover is applied to PLC
programs. The property specification expressiveness is reduced to sim-
ple safety assertions.

These approaches cannot be applied to our systems and needs, as
one of the main requirements of this project was to hide any complexity
related to formal methods to the control engineers. In addition, none
of these approaches deals with PLC programs with a significant size,
therefore they are not applicable to CERN control systems.
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2.4.2.3 Algorithmic formal verification applied to PLC
based programs

Model checking is the most popular algorithmic formal verification
technique suggested by the literature for PLC programs. However
static analysis solutions for PLC programs have been also proposed
by some authors. Static analysis and model checking techniques can
complement each other.

For example, the Arcade.PLC tool (ARCADE.PLC website (2014);
Biallas et al. (2014); Stattelmann et al. (2014)) from the RWTH
Aachen University and the PLC Checker tools (PLC Checker web-
site (2014)) from the Itris Automation Square company provide static
analysis solutions for PLC programs.

The following paragraphs present an exhaustive analysis of related
publications where model checking was the adopted verification tech-
nique for PLC programs. The analysis presents the main differences
with the adopted approach of this thesis, regarding the following as-
pects: the PLC languages, the requirement specification, the modeling
and verification constrains, the abstraction and reduction techniques
and the modeling strategy of the timing aspects in PLC programs.

Many studies and proposals can be found in the literature of ap-
plying model checking to PLCs programs: Bartha et al. (2012); Bauer
et al. (2004); Biallas et al. (2010); Blech et al. (2011); Campos et al.
(2008); Canet et al. (2000a); Flake et al. (2004); Gourcuff et al. (2008);
Huuch (2003); Lange et al. (2013); Mader and Wupper (1999); Moka-
dem et al. (2010); Pavlović and Ehrich (2010); Perin and Faure (2013);
Sarmento et al. (2008); Smet et al. (2000); Soliman and Frey (2011);
Soliman et al. (2012); Sülflow and Drechsler (2008); Yoo et al. (2008).

However, none of the described methods can be applied directly
to the control systems developed at CERN, for the reasons discussed
hereafter.

Regarding the PLC languages: in the literature, most of the the
modeling strategies target a single PLC language.

Formal verification has been mainly applied to IL (e.g. Canet et al.
(2000a); Mader and Wupper (1999)) and SFC (e.g. Bauer et al. (2004);
Sarmento et al. (2008)).
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A few works target the verification of FBD programs (e.g. Bartha
et al. (2012)) and Ladder (e.g. Bender et al. (2008))

Some work targets specifically the verification of ST programs (e.g.
Gourcuff et al. (2006, 2008)).

Finally a very few approaches can handle multiple PLC languages
(e.g. Biallas et al. (2010); Gourcuff et al. (2008); Sadolewski (2011)).

The approach proposed in this document differs from previous
works as the modeling strategy has been designed to provide a gen-
eral methodology where any PLC language can be included. For that,
an automata based formalism has been adopted as an intermediate
step between the PLC code and modeling languages of the verifica-
tion tools. This formalism is appropriate to model all the features of
any PLC language.

In addition, the automatic translation from the PLC languages into
the modeling language of the verification tools is split into two parts,
making the methodology more flexible as adding a new language does
not imply a completely new modeling approach.

Regarding the requirement specification: very few authors tar-
geted the problem of requirement specification in the application of
formal verification of PLC programs, even if this issue is one of the
main obstacles of these approaches to be deployed in industry.

Authors like, Campos et al. (2008) and Campos and Machado
(2013) propose an approach to hide the complexity of using complex
specification formalism like temporal logic. This approach is based
on patterns that can be easily used by the engineers and they are
automatically translated to temporal logic formulas.

The solution provided in this thesis is also based on patterns. A
set of patterns with a well-defined semantics is provided to engineers.
Once the requirement is created with these patterns, the corresponding
temporal logic formula is generated automatically. The main differ-
ence with the previous approaches is the set of patterns. Previous
works did not cover all the specification needs we had for our systems.
Our patterns are based on the experience of the control engineers at
CERN.

These approaches based on patterns are useful to find bugs in the
PLC programs, although it does not guarantee to provide a complete
and coherent formal specification.
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Other authors propose solutions based on UML techniques (e.g.
Flake et al. (2004); Remenska et al. (2014)) to help engineers to build
the temporal logic formulas. Although there are not specific for PLC
control systems, the ideas can be adapted to this field.

An overview of the different approaches in requirements engineer-
ing can be found in Laplante (2013).

Regarding the modeling and verification constraints: In cer-
tain cases, the modeling and verification strategies are applicable to a
reduced set of PLC programs due to some restrictions.

Some authors apply formal verification, but only for small exam-
ples, without discussing the reduction of the models that is unavoid-
able for verifying industrial-sized programs. For example, Bartha et al.
(2012); Canet et al. (2000a); Mokadem et al. (2010); Pavlović and
Ehrich (2010); Perin and Faure (2013); Sarmento et al. (2008); Soli-
man and Frey (2011); Soliman et al. (2012); Sülflow and Drechsler
(2008). Only a few authors deal with this important issue (e.g. Bial-
las et al. (2010); Gourcuff et al. (2008); Lange et al. (2013)).

Some of the studies only target the modeling of PLCs without
providing a verification solution. For example, Blech et al. (2011);
Mader and Wupper (1999).

Many papers do not address the automatic generation of the model
from the PLC program, or just explain the high-level principles. For
example, Bartha et al. (2012); Bauer et al. (2004); Biallas et al. (2010);
Canet et al. (2000a); Mokadem et al. (2010); Pavlović and Ehrich
(2010); Perin and Faure (2013); Sarmento et al. (2008); Smet et al.
(2000); Soliman and Frey (2011); Yoo et al. (2008).

In some cases, the modeling strategies restrict the expressiveness
of the property specifications. In Sadolewski (2011), the proposed ap-
proach restricts the requirements to assertions that provide smaller
expressiveness than LTL or CTL (in this work, axiomatic formal ver-
ification was applied). In other cases, the abstraction techniques im-
ply constraints in the expressiveness of properties (e.g. Biallas et al.
(2010); Lange et al. (2013))

In addition, most of the approaches are attached to a specific ver-
ification tool. In the literature, the most popular verification tools for
PLC programs are NuSMV and UPPAAL.

Table 2.2 summarizes some of the constraints of the previous work.
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Table 2.2: Related work
Reference Input

lang.
Verifier Req.

language

Bauer et al. (2004) SFC Cadence SMV CTL

Sarmento et al. (2008) SFC UPPAAL CTL sub-
set

Bauer et al. (2004) timed
SFC

UPPAAL CTL sub-
set

Blech et al. (2011) SFC,
FBD

BIP —

Bartha et al. (2012) FBD PetriDotNet CTL

Canet et al. (2000b) IL Cadence SMV LTL

Mader and Wupper (1999)1 IL UPPAAL CTL sub-
set

Gourcuff et al. (2006)2 ST NuSMV —

1 Only Boolean variables are permitted.
2 The following limitations apply: only Boolean variables, no it-

eration statements. The method can be applied for LD and IL
too, but it is not presented in Gourcuff et al. (2006).
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The main differences of this thesis with previous works, are the
following ones:

− We propose a fully automated methodology from the property
specification to the counterexample analysis.

− We do not target a single verification tool, which allow us to
select the appropriate tool for different verification cases.

− We verify “complex” properties expressed with temporal logic
and we provide two kind of reduction technique for our mod-
els: property preserving reduction techniques and the variable
abstraction technique. The first group does not bring any con-
straint to the expressiveness of the property specification but the
second group is restricted to safety properties. The second group
is only applied when the property preserving techniques are not
powerful enough for a specific property and PLC program.

Regarding the abstraction and reduction techniques: As it
was mentioned before, only a few authors targeted the issue of reduc-
tion techniques for PLC program verification.

In Gourcuff et al. (2008), the authors address the problem of state
explosion of formal models derived from IL (Instruction List) PLC
programs by using an algorithm based on data and interpretation ab-
straction. Their algorithm has some limitations, e.g. only Boolean
variables can be used.

The paper Biallas et al. (2010) applies CEGAR (counterexample-
guided abstraction refinement, proposed in Clarke et al. (2000)) to
models of PLC programs written in IL, but they do not present large
case studies that would show the scalability of the methods. The limi-
tations of the approach are the same as for other CEGAR approaches:
it can handle only ACTL properties.

In Biallas et al. (2013), the authors apply predicate abstraction to
PLC programs. As well as the previous paper, the author focus on
safety properties.

In Lange et al. (2013), bounded model checking is applied to PLC
programs. The authors introduce powerful reduction methods applied
to IL code. Reduction techniques such as constant folding, slicing, and
forward expression propagation are employed to optimize the models
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for bounded model checking. This approach restricts the requirement
language to simple safety properties.

Table 2.3 summarizes the related work of abstraction and reduction
techniques applied to formal models from PLC programs.

Table 2.3: Related work: Abstraction techniques

Reference Abstraction
techniques

PLC
lan-
guage

Constraints

Gourcuff et al. (2008) data and
interpretation
abstraction

IL only
Boolean
var.

Lange et al. (2013) constant fold-
ing, slicing,
and forward
expression
propagation

IL only Safety
properties

Biallas et al. (2010) CEGAR IL only Safety
properties

Biallas et al. (2013) Predicate ab-
straction

ST only Safety
properties

These papers provide very interesting ideas and contributions to
improve the performance of PLC programs verification. Our approach
differs with these works in the following aspects:

− Our reductions are independent of the verification tools as they
are applied in a higher level of our methodology, the IM.

− In addition, as mentioned before, we provide two kind of re-
duction techniques for our models: property preserving reduc-
tion techniques and the variable abstraction technique. The first
group does not bring any constraint to the expressiveness of the
property specification but the second group is restricted to safety
properties.

Regarding the modeling strategy for the timing aspects of
PLC programs: finally, most of the described works do not model
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time in PLCs. Only a few works have been found targeting time
and timers in PLCs, i.e. Mader and Wupper (1999); Mokadem et al.
(2010); Perin and Faure (2013); Wang et al. (2013).

Indeed, Mader and Wupper (1999) or Perin and Faure (2013) pro-
pose an approach for modeling PLC timers using timed automaton
models, but they do not present verification results. As time is consid-
ered as a linear and monotonic function, the generated models would
have a huge state space, making verification not feasible if this ap-
proach would be applied to large systems, as the systems developed
at CERN.

Similarly, Mokadem et al. (2010) presents a case study where a
global model for a timed multitask PLC program is created for ver-
ification purposes. This approach is similar to the one proposed by
Mader and Wupper (1999) but verification is performed with UPPAAL
using clocks and therefore with monotonic time representation.

In Wang et al. (2013), several aspects of PLC control systems in-
cluding timers are modeled, using the component-based BIP frame-
work. In this case, they assume fixed PLC cycle length which is a big
constraint, and timer models are not precise enough compare to real
PLC timers. In addition, verification results are not presented.

Table 2.4 summarizes the related work of modeling strategies for
the timing aspects of PLC programs.

This thesis proposes two different approaches to model time and
timers in PLCs:

− The first one includes a realistic approach in which time is mod-
eled as a finite variable as it is implemented in PLCs.

− The alternative is a very abstract model of timer where time
is not modeled in order to deal with the state space explosion
problem.

All the details are presented in Section 3.9.

2.5 Summary of the chapter

This chapter presented the theoretical background and the related
work needed to understand the contributions of this thesis. From
the automation community, the main concepts of PLC-based control
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Table 2.4: Related work: Time modeling strategy

Reference Formalism Ver.
tool

Time
model

Mader and Wupper (1999) Timed
automa-
ton

– monotonic
represen-
tation

Perin and Faure (2013) Timed
automa-
ton

– monotonic
represen-
tation

Mokadem et al. (2010) Timed
automa-
ton

UPPAAL monotonic
represen-
tation

Wang et al. (2013) BIP lan-
guage

– monotonic
represen-
tation

systems are described, including classification, standards and basic
concepts about the hardware and software of these systems. From the
formal methods community, some definitions of formal methods and
formal verification are included. The focus of this section is on the
model checking technique. Finally, the related work of this thesis is
presented, including a discussion of the most relevant contributions
on this topic of research. The main differences of previous works with
this thesis are also described.





Chapter 3

Approach

3.1 Introduction

This chapter presents the proposed approach and main contribution
of this thesis. It consists in a methodology that allows to apply au-
tomated formal verification to PLC programs. The two main goals of
this research are:

1. Finding bugs in the PLC code, increasing the quality of the
software.

2. Hiding the complexity of applying formal methods, from control
engineers and designers.

Nowadays, development of PLC programs in industry is a very tra-
ditional procedure in most of the cases as it is represented in Fig. 3.1.
An informal specification is the starting point, where the control en-
gineer and the process engineer describe the required logic to control
the process in a natural language. Then the PLC programmer (often
the same person as the control engineer) implements the PLC code
according to the specifications. In the best case, the PLC program-
mer uses some standards in the development process (e.g. IEC 61499
(2013)) or frameworks (e.g. UNICOS framework from Blanco Viñuela
et al. (2011) for CERN control systems). Finally manual testing is
performed on the PLC before the commissioning of the system. For
safety systems the procedure is more strict, as all the steps defined in
the so-called “Safety Life Cycle” have to be performed. The “Safety
Life Cycle” is defined in IEC 61508 (2010).

59
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Informal Spec

PLC code

Compiler

IEC61131-3

IEC 61512

IEC 61499
Frameworks

PLC programmer

Process engineer Control engineer

PLC control system

Figure 3.1: Traditional PLC program development

The methodology proposed here is meant to be integrated in this
traditional development process or in any variant of this schema. It
has the goal of not modifying the PLC program development process
of any company or developer. Therefore existing PLC programs can
also be verified.

This methodology creates automatically formal models out of PLC
programs and is meant to be general and able to transform the lan-
guages defined in IEC 61131 (2013) standard into different modeling
languages used by formal verification tools. This transformation is
based on an Intermediate Model (IM), which is the central point of
the methodology.

The content of this chapter is divided according to the different
steps of the methodology.

− Section 3.2 presents a general overview of the approach.

− Section 3.3 describes the syntax and semantics of the IM.

− Section 3.4 presents the procedure for formalizing the informal
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requirements from developers and designers.

− Section 3.5 presents the “execution platform” knowledge in-
cluded in the formal models, extracted from the PLC hardware.

− Section 3.6 presents the transformation rules from the PLC pro-
grams into the IM. Currently the methodology includes ST and
SFC languages

− Section 3.7 presents the reduction techniques on the formal mod-
els that make possible formal verification.

− Section 3.8 presents the transformation rules from the IM into
the modeling languages used by the formal verification tools.
Currently the methodology includes nuXmv, UPPAAL and BIP
modeling languages.

Two extra sections have been created to describe in detail two
particular subjects in the modeling strategy:

− Section 3.9 presents the transformation rules related to time and
timers. Due to the complexity of these transformation rules, they
are presented as an independent section.

− Section 3.10 presents the adopted solution for including process
information in the formal models.

The chapter concludes with the last step of the methodology and
a brief overview of the implementation of the methodology in a CASE
(Computer-Aided Software Engineering) tool.

− Section 3.11 presents the final step of the methodology, how
the verification procedure is applied and how the information
extracted from the verification tools is used to help the PLC
programmers to find the source of the problem.

− Section 3.12 describes describes the basis of the CASE tool,
which implements the methodology.
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3.2 General overview of the approach

The methodology presented in this chapter allows control engineers
and designers to apply formal verification to PLC programs without
any expertise in the field of formal methods or formal verification. The
methodology is designed to be general so any PLC language can be
included in it. Moreover, its design allows to extend the methodology
with several formal verification tools. To achieve that, it relies on an
intermediate model (IM) which is the central piece of the methodol-
ogy. This IM is an automata-based formalism extended with data (the
formal definition of the IM syntax and semantics are defined in Section
3.3). PLC code is automatically translated to the IM, including the
PLC execution platform knowledge. In a second step, the IM is trans-
lated to several input models for different verification tools. It also
provides a solution for formalization of the requirement specification.
The methodology is represented in Fig. 3.2.

"PLC world" Internal model Analysis

Model checking

+ Analysis of

counterexample

UPPAAL model

...

External models

reductions
abstractions /

SFC code

ST code

IL code

Requirement

intermediate
model

nuXmv model

PLC knowledge BIP model

Formal 
Requirement

Figure 3.2: Methodology overview

The figure is divided in four blocks, suggesting the reader the dif-
ferent steps of the methodology.

− The first block is called “PLC world”. It shows the source of
information needed to build the formal models and the formal
requirements. In this block, the PLC programs, the informal re-
quirements and the execution platform knowledge are included.
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− The second block is called “Internal model”. It is composed
of the IM, the formalized requirements to be verified and the
reduction techniques to simplify the model.

− The third block is called “External models”. In this block, the
IM is translated into the input modeling language of the selected
verification tools.

− The fourth and final block is called “Analysis”. It is where the
verification is performed and the verification results are analyzed
and presented to the PLC developers in order to find the source
of the problem if any.

From the user point of view, i.e. the control system developer
and designer, they only need to feed the methodology with the re-
quirements to be fulfilled and the PLC programs. As a result, an
analysis report is obtained, extracting the information from the ver-
ification results given by the verification tools. This report tells the
user if the models meet the requirements, and if not, it provides useful
information to find the source of the problem. All the intermediate
transformations are hidden and fully automatized by the CASE tool.

The internal steps of the methodology are the following:

1. Formalization of the requirements: usually the requirement spec-
ifications are expressed in a non-formal language by the control
system developers and designers. Temporal logic formalisms are
the most popular formalism used by verification tools for prop-
erty specification. However, they are complex and control sys-
tems developers and designers are not familiar with them. Sec-
tion 3.4 describes this first step, hiding the complexity of using
temporal logic for the requirement specification.

2. PLC code – IM transformation: This step consists in the trans-
formation of the PLC code into the IM. The PLC code is parsed,
building an Abstract Syntax Tree (AST), which represents the
abstract syntax of the PLC code. This AST is then transformed
to a Control Flow Graph (CFG) which represents the semantics
of the code as an automata-based IM. The transformation pro-
cess uses the abstract model of the PLC hardware to be able to
represent the PLC scan cycle. The transformation rules from
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the PLC code into the IM are presented in Section 3.6. The ex-
ecution platform information used to build the abstract model
of the PLC hardware is presented in Section 3.5.

3. Reduction and abstraction techniques applied to the IM: when
modeling real-life PLC programs, the state space of the gener-
ated model is huge and in most cases formal verification cannot
be applied. Section 3.7 presents the reduction techniques pro-
posed in this methodology to make formal verification possible.

4. Transformation IM– modeling languages of the verification tools:
once the IM is reduced, it is translated into the input modeling
language of specific verification tools. Section 3.8 shows the IM
translation into the selected verification tools. Currently NuS-
MV/nuXmv (from this point referenced as nuXmv), UPPAAL
and BIP are included.

5. Verification and analysis of the results: when the verification
tool finds discrepancies between the formal model and the formal
specification, a counterexample is produced. This information is
analyzed, reduced and presented in a report to the developers
and designers, providing useful information in order to find the
source of the problem. Section 3.11 presents this analysis of the
information provided by the verification tools.

A CASE tool based on EMF (Eclipse Modeling Framework) that
supports this methodology has been developed. It provides a graphical
interface for the PLC program developer.

This brief description of the methodology may have risen some
obvious questions to the reader. This section is dedicated to answer
them in order to introduce and justify our decisions.

Why model checking? Among different formal verification tech-
niques, model checking was the most appropriate for our purposes.
The main reasons are: it is possible to automatize and it is possible
to hide the complexity from PLC developers as it was mentioned be-
fore. About the specific model checking technique, the methodology is
meant to be general and open to any tool with different model check-
ing techniques. For example, symbolic model checking is applied as
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nuXmv is integrated and by using BIP framework, compositional veri-
fication (Bensalem et al. (2011)) and statistical model checking (Basu
et al. (2012)) can be applied.

Why the models are created out of the PLC code? When the
methodology design started, two possibilities were considered: (1) The
first one was to build the models from a high-level specification, then
verify these models and finally generate the PLC code (See Fig. 3.3(a)).
This is the so-called “correctness by construction” approach, and many
authors and even companies promote this approach (e.g the SCADE
tool-set from Esterel technologies1 or the BIP framework from the Ver-
imag laboratory2). This approach has multiple and obvious benefits
in the design of safety critical systems. For example, at the specifi-
cation level, many constrains can be introduced and the variability is
reduced, therefore the space state of the models is smaller. It is ac-
tually the ideal approach for any software design. But it also implies
to impose the developers and designers to use a specific formalism for
specification, however, there is not a standard nor a single solution
adopted so far by the automation community. This approach would
imply to change the development process of PLC programs and verifi-
cation of existing PLC control systems would not be possible. (2) The
second possibility considered, which was the selected approach, was to
build the models out of the PLC code (See Fig. 3.3(b)). This approach
has two main drawbacks: the complexity of the transformation rules
from the PLC code into the formal models and the state space size of
the generated models, as the PLC developer can write PLC programs
without any constraint (just the ones imposed by the PLC language).
However, we have strong arguments for using the second approach.
As it was mention before, nowadays there is no unified formalism to
specify industrial control systems, including of course PLC control sys-
tems. Requirements for software engineering is a topic addressed by
some authors (e.g. Laplante (2013)), even some general standards give
some guidelines about software specification (e.g. IEEE 830 (1998))
but in industry, almost every company that develops control systems
has a different way to specify. However, the PLC languages are unified
by the IEC 61131 (2013) standard, there are only small differences in

1http://www.esterel-technologies.com/products/scade-suite/
2http://www-verimag.imag.fr/Rigorous-Design-of-Component-Based.html
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the languages implemented by the different PLC vendors, and every
PLC developer uses them. In addition, a requirement for this project
was to provide a solution for verifying and finding bugs in existing
systems. These systems have been developed using completely differ-
ent specification techniques. The methodology is meant to be general
and it can be used by any PLC developer. Similar approaches were
adopted also for many different authors (See Section 2.4).

Formal Spec

Formal Model

PLC code

Formal Verification

IEC61131-3

(a) Correctness by construction

PLC code

Formal Model Formal Spec

Formal Verification

Compiler

IEC61131-3

Report

(b) Our approach

Figure 3.3: Two main approaches for the verification and design of
PLC programs.

In addition, as it was mentioned before, this approach is meant to
be integrated in the existing, traditional process of PLC programs de-
velopment. Fig. 3.4 shows the proposed methodology integrated in the
PLC program development process. In the left part of the figure, the
“traditional” PLC program development is shown. The PLC code is
produced from an informal specification. In the best cases, the devel-
oper uses some standards (e.g. IEC 61499 (2013)) or frameworks (e.g.
UNICOS framework Blanco Viñuela et al. (2011) for CERN control
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systems) and testing is performed before or during the commissioning
phase of the project. The new methodology creates formal models
out of the PLC code and the formal specification is created by using
patterns. A model checker is used to check the requirements on the
model and when a bug is found, the counterexample can be used to
generate a “Verification report” with the useful information to help
the developers to find the source of the problem. Moreover, a “PLC
demonstrator” can be a automatically generated and integrated in the
PLC program for proving that the bug found by the model checker
exists in the real system.

PLC code

Formal Model Formal Spec

Model Checker

Counterexample

Informal Spec

Patterns

Report

PLC

Model
generation

Methodology

Verification

IEC 61512

IEC 61499
Frameworks

PLC programmer

IEC61131-3

Process engineer Control engineer

Compiler

PLC control system

demonstrator

Figure 3.4: Integration of the proposed methodology in the PLC pro-
gram development process.
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Why introducing an intermediate model? There are multiple
reasons to include an intermediate step in our approach, including:

− It implies the transformation from PLC code into the input lan-
guages of the verification tools. The transformation rules are
split into two parts: “AST to CFG” (Abstract Syntax Tree to
Control Flow Graph) transformation from the PLC code into the
IM and “CFG to CFG” (Control Flow Graph to Control Flow
Graph) transformation from the IM into the different model
checker inputs. The “CFG to CFG” transformations are much
simpler than the first ones, it consists in transforming the IM
in another formalism with a different syntax. By decoupling the
transformations in two different steps it allows to clearly separate
the two roles of the transformation by making them independent
one from another (separation of concerns design approach).

− This approach allows us to easily add new model checkers, if
their input languages are close to an automata-based formalism.

− Abstraction techniques can be applied to the IM, therefore the
performance of the verification can be increased for all the model
checkers included in the tool chain.

Why automata-based intermediate model? Automata-based
formalism is a simple formalism but strong enough to model all the
features of a PLC control system. In addition, many verification
tools use modeling languages close to this idea, e.g. nuXmv (Cavada
et al. (2014)), UPPAAL (Amnell et al. (2001)) and the BIP framework
(Basu et al. (2011)). Therefore the transformation rules between the
IM and the input of nuXmv, UPPAAL, DFinder (from the BIP frame-
work) or any other similar model checkers are simple to implement and
the methodology, as well as the tool, can be easily extended.

Why not timed automata as intermediate model? When mod-
eling PLC programs, one of the main problems we had to face is how
to model the timing aspects of these systems, i.e. modeling time and
timers. As a first thought, we considered to use timed automata for
this purpose, using for example the UPPAAL formalism. However
PLC timers use a specific data type defined by the IEC 61131 (2013)
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standard called TIME. This data type is a finite variable and its rep-
resentation is a non-monotonic time representation as the variable can
overflow. Each PLC brand has its own definition of the TIME data
type. For example, Simenes S7 PLCs represents TIME as a signed
32-bit integer with a precision of 1 ms. Modeling time with clocks,
for example using the UPPAAL formalism, will imply a monotonic
representation of the TIME data type, which it was not desirable for
our approach. For that reason, we decided to use an automata-based
formalism which is closer to more verification tools formalism and the
TIME data is modeled as a finite variable. All the details about mod-
eling timing aspects of PLCs are described in Section 3.9.

Why more than one verification tool is needed? The exist-
ing verification tools provide different advantages and disadvantages
in terms of performance, simulation facilities and properties specifi-
cation. The formal verification community is advancing fast and new
algorithms are providing better verification performance. Our goal is
not to develop a new verification tool, therefore we wanted to compare
them according to this three features and provide the PLC develop-
ers the best alternative for our models. For instance, up to now,
nuXmv provides better results in terms of verification performance
for our current models. nuXmv also supports the full LTL and CTL
for the specification properties but it lacks good simulation facilities;
UPPAAL provides very good simulation facilities but it only supports
a subset of CTL; BIP provides a language for modeling component-
based systems, code generation and simulation facilities. From BIP,
model-based automated testing can be applied, some results applied to
PLC control systems can be found in Fernández Adiego et al. (2013b)
and its verification tool for compositional verification (called DFinder)
only supports deadlock and safety properties. The formal verification
community is continuously proposing new and improved verification
algorithms and tools, which can be easily included in the proposed
methodology. This strategy makes the methodology independent of a
single verification tool.

How to avoid state space explosion in large PLC program
models? Automata-based models of PLC programs, as any software
model for verification purposes, usually face the problem of huge state
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space. Therefore abstraction and reduction techniques are needed to
be able to apply formal verification to PLC programs. In this method-
ology these techniques are applied to the IM and all the specific model
formats can benefit from these techniques. Section 3.7 presents the
proposed reduction and abstraction techniques.

3.3 Intermediate model

This section presents the definition of syntax and semantics of the IM.

3.3.1 Intermediate model syntax

The IM is based on an automata network model, consisting of syn-
chronized automata.

Definition 3 (Network of automata) A network of automata is a
tuple N = (A, I), where A is a finite set of automata, I is a finite set
of synchronizations.

Definition 4 (Interactive automaton) An automaton is a struc-
ture a = (L, T, l0, Va,Val0) ∈ A, where L = {l0, l1, . . . } is a finite set
of locations, T is a finite set of guarded transitions, l0 ∈ L is the initial
location of the automaton, Va = {v1, . . . , vm} is a finite set of variables,
and Val0 = (Val1,0, . . . ,Valm,0) is the initial value of the variables.

Let V̂ be the set of all variables in the network of automata N , i.e.
V̂ =

⋃
a∈A Va. (∀a, b ∈ A : Va ∩ Vb = ∅)

Definition 5 (State) A state of an interactive automaton is a pair
LVa = (l,Val), where l ∈ L is the current location and Val is the vector
of current values of each variable v ∈ V (in a fixed order).

Definition 6 (Interactive transition) A transition is a tuple t =
(l, g, amt, i, l′), where l ∈ L is the source location, g is a logical expres-
sion on variables of V̂ that is the guard, amt is the memory change
(variable assignment), i ∈ I ∪ {NONE} is a synchronization attached
to the transition, and l′ ∈ L is the target location.

Definition 7 (Synchronization) A synchronization is a pair i =
(t, t′), where t ∈ T and t′ ∈ T ′ are two synchronized transitions in dif-
ferent automata. The variable assignments attached to the transitions
t and t′ should not use the same variables.



3.3. Intermediate model 71

Fig. 3.5 shows an example of the IM built from PLC code. In this
example, the reader can observe all the elements, which have just been
defined in this section. Please note that initial and final locations (i.e.
l0 and ln) are represented as init and end respectively on the figures to
make them more clear. The green box represents a part the user PLC
program logic. The red box represents a function call to the function
FC1 (represented by the automaton FC1 ). All the details about the
transformation from the PLC program into the IM will be explained
in the following Sections.

initialization of inputs

xa := F
[¬(ia > 0)]

xb := F
[¬(ib > 0)]

xb := T

[ib > 0]

c := c+ 1

xa := T
[ia > 0]

init

l1

l2

l3

l4

PLC

parameters

l5

end

iFC1!

iFC1 ret?

OB1

init

l1

end

iFC1?

ya := T

iFC1 ret!

Function
Call

Sync.

FC1

program

Figure 3.5: Example of IM

3.3.2 Intermediate model semantics

The behavior of this automata-based formalism can be easily explained
informally as follows: when an automaton is in location l and a tran-
sition t goes from l to l′, it is enabled if its guard g is satisfied and
it has no synchronizations (i = NONE). If this transition t occurs
(fires), the location of the automaton will be l′ and the variable as-
signments defined for t will be executed. The transitions joined by
a synchronization can only fire together and only if both are enabled
(synchronous composition).

In the next paragraphs, the previous informally introduced seman-
tics is presented in a formal way. For that purpose, the product-
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automaton of our IM (with regards to the synchronizations) is repre-
sented as a state transition system (STS).

Definition 8 (State transition system) A (finite) state transition
system is a (SSTS, s0,N ) tuple, where SSTS is a finite set of states,
s0 ⊆ SSTS is a set of initial states, N ⊆ SSTS × SSTS is a relation
over SSTS which describes the possible state changes i.e. transitions.
In the following, a transition from state s to s′ will be marked as s→ s′

to improve readability.

Definition 9 (Semantics of interactive automata network)
Let N = (A, I) be an interactive automata network (where
A = {a1, . . . , an}). The semantics of this automata network can be
defined as a state transition system (SSTS, s0,N ), where SSTS is the
set of states LVa1 × · · · × LVan, and s0 = (l0,1, V al0,1 . . . , l0,n, V al0,n)
is the initial state. The set of transitions N ⊆ SSTS × SSTS is
constructed in the following way:

− For every transition t = (l, g, amt, int, l′) ∈ T in an automaton
ai, where int = NONE (defined as i in the IM syntax), for every
(V al, V al∗) ∈ amt: if g(V al) = true, then add:

(lv1, . . . , lvi−1, (l, V al), lvi+1, . . . , lvn)→

(lv1, . . . , lvi−1, (l
′, V al∗), lvi+1, . . . , lvn)

(∀lvj ∈ LVAj
, where j 6= i).

− For every transition t = (l, g, amt, int, k) ∈ T in automaton
ai, where int = (t, t′) (defined as i in the IM syntax) and
t′ = (l′, g′, amt′, int, k′) in automaton aj, for every (V al, V al∗) ∈
amt, for every (V al′, V al∗′) ∈ amt′, for every (V al∗, V al∗∗) ∈
iamt, and for every (V al∗′, V al∗∗′) ∈ iamt: if g(V al) = true and
g′(V al′) = true, then add:

(lv1, . . . , lvi−1, (l, V al), . . . , (l
′, V al′), lvj+1, . . . )→

(lv1, . . . , lvi−1, (k, V al
∗∗), . . . , (k′, V al∗∗′), lvj+1, . . . )

(∀lvx ∈ LVAx, where x 6= i and x 6= j).
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An example of this approach to describe the automata semantics
as STS is shown in Fig. 3.6. In this example an automata network,
which contains two automata is represented by a STS. The automa-
ton A contains one variable a, three states, three transitions and one
interaction i with the automaton B. The automaton B contains one
variable b, one state, one transition and one interaction i with the
automaton A. The corresponding STS contains six states in which the
location of each automaton and the values of the variables a and b are
located. For example the first state of the STS is (init, false, p0, false).

a := T

i1!

automaton A

a := F

a := F

b := ¬ b

p0

i1?

automaton B

b := F

init

l1

l2

STS corresponding to A and B

(init, false, p0, false)

(l1, true, p0, false)

(l2, true, p0, true)

(init, false, p0, true)

(l1, true, p0, true)

(l2, true, p0, false)

Figure 3.6: Example of representing an interactive automata network
as a STS

3.4 Formal specifications

The first step of the methodology is to formalize the control system
specifications. Specification is usually carried out by two actors in
collaboration: the process engineer, who has the knowledge about the
industrial process to be controlled, and the control engineer, who can
design the control strategy to fulfill the requirements established by
the process engineer. Traditionally in any field of engineering, spec-
ification is a major problem. Requirements specification are usually
incomplete, ambiguous and even contradictory. Finding a solution to
this problem is very challenging, as an expressive formal specification
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language is needed and it has to be easy to understand and natural
for process and control engineers.

In industrial control systems development, this problem remains
unsolved. In addition, control and process engineers are not familiar
with complex formal specification languages used by the verification
tools, e.g. LTL or CTL. Previous works have presented some solutions
for the formalization of requirements in automation, e.g. Campos et al.
(2008). However, nowadays there is not a unified standard for control
system specification.

In this methodology, we provide a similar approach than the one
provided in Campos et al. (2008) for the formalization of the require-
ments specification, which is based on patterns. Patterns are simple
templates with well-defined semantics, where the control and process
engineer can easily write the specifications using a simple and nat-
ural language. Then these pseudo-formalized requirements can be
automatically translated to the specification formalism used by the
verification tools (typically temporal logic). Obviously, this solution
does not solve the specification challenge for industrial control sys-
tems, but it provides a simple solution to formalize the requirements
so the methodology can be applied. Comparing the patterns included
in this methodology with those presented in Campos et al. (2008),
more complex patterns were needed. Discussions with our PLC pro-
gram developers at CERN allowed us to provide the list of patterns
that cover all the current needs for verification of their PLC programs.
Completeness is guaranteed this way.

According to our experience, control and process engineers usu-
ally provide ambiguous requirements, even for simple examples. For
example:

“If A is true, then B has to be true.”

This requirement is obviously ambiguous. It is needed to specify
in which moment of the PLC execution this property has to hold. In
most of the cases, PLC developers want to verify that a property holds
at the end of the PLC cycle. This is the critical moment as the output
variables are assigned to the real peripheries at this point. Assuming
this, the unambiguous requirement is:

“If A is true at the end of the PLC cycle, then B is always true
at the end of the same PLC cycle.”
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This requirement is formal enough to be expressed as a CTL for-
mula. One possible formalization is the following:

AG
((

EoC ∧ A
)
→ B

)
In these formalizations, EoC means “end of PLC cycle” and is

true only at the end of PLC cycles. Another typical example of an
ambiguous requirement:

“If there is a rising edge on A and B is true, then C is true.”

This pattern is ambiguous, as there are multiple possible interpre-
tations of “there is a rising edge”. This has to be reformalized in order
to have an unambiguous meaning:

“If in Cycle N : A is false and B is true, and
in Cycle N + 1: A is true and B is true,
then C is always true (in Cycle N + 1).”

As in previous example, this requirement is formal enough to be
expressed as an LTL formula. One possible formalization is the fol-
lowing:

G
((

EoC ∧ ¬A ∧ B ∧ X(¬EoC U (EoC ∧ A ∧ B))
)

→ X(¬EoC U (EoC ∧ C))
)

In the formal models produced by this methodology, EoC is a
symbol that represents the end of the PLC cycle. The details about
this mechanism will be described in Section 3.5.

3.4.1 Patterns

The list of patterns that have been currently implemented in the
methodology, can be classified in four families: Patterns for safety
properties involving one PLC cycle, Patterns for safety properties in-
volving several PLC cycles, Patterns for liveness properties and Pat-
terns for time-related properties. Here both LTL and CTL are used
for formalization.
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3.4.1.1 Patterns for safety properties involving one PLC cy-
cle

Pattern TL1 (General truth under condition) If [2] is
true (at the end of the PLC cycle), [1] is always true (at the
end of the PLC cycle).

or
[1] is always true (at the end of the PLC cycle), if

[2] is true (at the end of the PLC cycle).
The corresponding temporal logic formula is:

AG
((

EoC ∧ [2]
)
→ [1]

)
Pattern TL2 (Impossibility under condition) If [2] is
true (at the end of the PLC cycle), [1] is impossible (at the
end of the PLC cycle).

or
[1] is impossible (at the end of the PLC cycle), if

[2] is true (at the end of the PLC cycle).
The corresponding temporal logic formula is:

AG
((

EoC ∧ [2]
)
→ ¬[1]

)
Pattern TL3 (General truth) [1] is always true (at the end
of every PLC cycle).

The corresponding temporal logic formula is:

AG
(

EoC → [1]
)

Pattern TL4 (State change during a cycle) If [2] is true
(at the beginning of the PLC cycle), [1] is always true (at the
end of the same PLC cycle).

The corresponding temporal logic formula is:

AG
((

SoC ∧ [2]
)
→ A

(
¬EoC U [1]

))
where SoC means “Start of PLC cycle” and is true only at the

begging of PLC cycles.
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3.4.1.2 Patterns for safety properties involving several PLC
cycles

Pattern TL5 (General truth on rising edge) If [1] has a
rising edge (at the end of the PLC cycle), [2] is always true
(at the end of the PLC cycle).

The meaning of this pattern is the following: If [1] is false at the
end of cycle N and [1] is true at the end of cycle N+1, then [2] is true
at the end of cycle N+1.

The corresponding temporal logic formula is:

G
((

EoC ∧ ¬[1] ∧ X
(
¬EoC U

(
EoC ∧ [1]

)))
→ X

(
¬EoC U

(
EoC ∧ [2]

)))
Pattern TL6 (General truth on rising edge under condition)
If [1] has a rising edge and [3] is true (at the end of
the PLC cycle), then [2] is always true (at the end of the
PLC cycle).

The meaning of this pattern is the following: If [1] is false at the
end of cycle N and [1] and [3] is true at the end of cycle N+1, then [2]
is true at the end of cycle N+1.

The corresponding temporal logic formula is:

G
((

EoC ∧ ¬[1] ∧ X
(
¬EoC U

(
EoC ∧ [1] ∧ [3]

)))
→ X

(
¬EoC U

(
EoC ∧ [2]

)))
Pattern TL7 (State change between cycles) If [1] is
true at the end of cycle N and [2] is true at the end of cy-
cle N+1, then [3] is always true at the end of cycle N+1.

The corresponding temporal logic formula is:

G
((

EoC ∧ [1] ∧ X
(
¬EoC U

(
EoC ∧ [2]

)))
→ X

(
¬EoC U

(
EoC ∧ [3]

)))
Pattern TL8 (State change between cycles (emulating sequence))
If [1] is true at the end of cycle N, then [2] is true at
the end of cycle N, and also if [3] is true at the end of cycle
N+1, then [4] is always true at the end of cycle N+1.

The corresponding temporal logic formula is:

G
((

EoC ∧ [1] ∧ X
(
¬EoC U

(
EoC ∧ [3]

)))
→ [2] ∧ X

(
¬EoC U

(
EoC ∧ [4]

)))
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3.4.1.3 Patterns for liveness properties

Pattern TL9 (Liveness) If [1] is true (at the end of the
PLC cycle), then [2] will definitely be true sometime (at the
end of a PLC cycle).

The corresponding temporal logic formula is:

AG
(

EoC ∧ [1]→ AF
(
EoC ∧ [2]

))
3.4.1.4 Patterns for time-related properties

When verifying time-related properties with explicit time in it, a
“monitor” or observer automata is added to the model, as CTL and
LTL do not provide the required expressiveness. In this case, a mon-
itor consists in an automaton added to the global model of the PLC
program with the same behavior as a TON timer but independent of
the rest of the program logic. With this monitor the formal property
is simplified to a safety as it is shown in the Pattern TL10. The out-
put of this monitor is compared to the variable or group of variables
which is part of the property to be verified (referenced as [3] in the
pattern) and affected by the timer and by the program logic. All the
details about time and timers modeling and verification of time-related
properties can be found in Section 3.9.

Pattern TL10 (TON-like property) If there is a rising edge on
[1] and it remains true then after [2] seconds, [3]

will be true (at the end of the PLC cycle).
TON monitor on [1] with PT=[2] and the corresponding temporal

logic formula is:

AG
((

EoC ∧MonitorQ
)
→ [3]

)
Pattern TL11 ((11) TP-like property) If there is a rising edge
on [1], then for the next [2] seconds, [3] will be
true (at the end of the PLC cycles).

TP monitor on [1] with PT=[2] and the corresponding temporal
logic formula is:

AG
((

EoC ∧MonitorQ
)
→ [3]

)
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3.5 PLC hardware modeling

In order to apply formal verification to PLC software, the PLC ex-
ecution platform has to be modeled. In Fig. 3.2, the first block of
the methodology called “PLC world” contains the “PLC knowledge”
needed to build the IM. A simple modeling approach is proposed in
this methodology for the PLC hardware.

Assumption 1. Currently, only centralized PLC control systems
consisting in one single PLC are considered. Modeling distributed
systems will require to find an appropriate level of abstraction to
minimize the state explosion problem.
A simple model is proposed, consisting in modeling the scan cycle:

input reading, execution of the logic, and writing the variables in the
outputs. This knowledge provides the skeleton of the complete model.

Assumption 2. Other hardware devices, such as input and output
cards, communication interfaces, field buses or any kind of com-
munication with the SCADA, are not modeled. This implies that
failures coming from the PLC hardware will not be detected by us-
ing this approach (however it is not the goal of the methodology).
The PLC hardware information, which gives the skeleton of the

models, is shown in the example of Fig. 3.7. This example shows
the four main characteristics introduced in the models from the PLC
hardware:

− The cyclic execution of the IM, representing the PLC scan cycle.

− The initialization of the variables of the IM in the first location
of the model (init). In this location, the example shows a special
case of input variables: the parameters. Parameters are input
variables that are constant during the execution, as they are
hard-coded into the PLC application.

− In the first transition of the model, from init to l1, random values
are assigned to all the input variables of the system, representing
the first step of the scan cycle: reading the input values from the
periphery and writing this values in the Input Image Memory.

− The rest of the model represents the execution of PLC code and
the final location of the model end (i.e. EoC ). This final location
represents the moment when the values are written from the
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Output Image Memory to the output periphery. This location
will be used in the properties to be verified as it was described
in Section 3.4.

initialization

xa := F
[¬(ia > 0)]

xb := F
[¬(ib > 0)]

xb := T
[ib > 0]

c := c+ 1

xa := T
[ia > 0]

init

l1

l2

l3

end

of inputs

PLC program

parameters

Figure 3.7: Example of IM

It is obvious that identifying automatically the input variables from
the system is critical for the methodology. Even if it may look a simple
task it is quite complex. When a real-life PLC program is modeled,
different kind of input can be found. The next paragraph describes
the different kind of inputs, how to identify them and how they are
modeled in this methodology.

3.5.1 PLC inputs

In a centralized or decentralized control system (i.e. one single PLC),
four kind of inputs can be found:

1. The input variables connected to the process through a local
input card: these variables are mapped in the IIM and can be
easily identified. For example in Siemens PLCs, the I0.0 is a
variable from the IIM connected to a digital sensor. Its value
can be modified at the beginning of every PLC cycle.
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2. The input variables connected to the process through a de-
centralized periphery: when using field buses like Profibus or
Profinet the values of these inputs can be mapped in the IIM,
but sometimes they are mapped in different variables: for exam-
ple in Siemens PLCs they can be mapped in a DataBlock (DB)
variable or in a Memory (M) variable. In this case, its value can
also be modified at the beginning of every PLC cycle.

3. The input variables coming from the SCADA: these variables are
the orders coming from the the operator of the system. These
orders are not mapped in the IIM, for example in Siemens PLCs
they can be mapped in a DataBlock (DB) variable. Their value
can be modified at any moment in every PLC cycle, but it de-
pends on the implementation of the communication protocol be-
tween the PLC and the SCADA.

4. Parameters: they can be considered as a special case of input
variables. A parameter has a constant initial value and this value
does not change in the whole execution of the PLC program.

The main problem now is how to identify these four input vari-
ables and how to model them. In general, any input variable coming
from the SCADA or from the process can be identified as no value
is assigned to these variables in the PLC program. Parameters are
assigned once with a constant value and never modified again. How-
ever, based in our experience, it may happen that in real-life PLC
programs other variables, not only input variables are never assigned.
So if this happens, the generated models will be obviously wrong. For
that reason, before identifying the input variables of the system, we
recommend to perform a static analysis and ensure that this situation
will not happen.

As it was mentioned before, any input variable coming from the
process is modeled assigning them a random value in the first transi-
tion of the IM. In the case of input variables coming from the SCADA,
these values can be modified in the PLC program at any time of the
PLC program execution, as it depends of the communication protocol
between the SCADA and PLC. As we do not consider concurrency
problems, any input variable coming from the SCADA is modeled as-
signing them a random value in the first transition of the IM as well.
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Parameters are initialized in the initial location of the model and its
value remains constant along the execution of the model.

3.5.2 Safety and Standard PLCs

For the methodology, the difference in terms of modeling strategy
between safety and standard PLCs has been analyzed. If time-related
properties are not required, there is no difference from the modeling
point of view. But if required, a small difference in the model is
produced. Modeling the timing aspects of PLCs is described in the
Section 3.9. In a safety PLC, the PLC cycle time is fixed and constant
due to the safety constrains, however in a standard PLC it is variable.
As it is described in Section 3.9, when a time related property is
required, a 16-bits variable modeling time is created. This variable
will be incremented with the PLC cycle time at the end of the PLC
cycle. Therefore, models from Safety PLCs will increment this variable
with a constant value of time and standard PLCs will increment the
time variable with a random value between some bounds.

3.5.3 Interrupts and restarts in PLCs

As it was described in Section 2.2, PLC programs are composed of the
main program and it may contain interrupts and restarts (which are
a particular case of interrupts), for example, OB35 in Siemens PLCs.
These interrupts can occur at any time. The main program is inter-
rupted and the routine associated to the interrupt is executed. When
the execution of this routine finishes, the main program continues the
execution from the same point where it was interrupted. This behav-
ior of the PLC scheduler is not modeled in the methodology, therefore
currently concurrency problems cannot be detected. For that reason,
concurrency problems should be checked before, by applying static
analysis techniques and checking that the main program, the inter-
rupts and restarts routines do not modify the same variables of the
PLC programs.

Once the program does not contain these kind of problems, model
checking can be applied. The PLC program, the interrupts and
restarts routines are then modeled. The following modeling strategy
is applied:



3.6. PLC code – IM transformation 83

1. For each interrupt or restart routine, an automaton will be cre-
ated.

2. The model of the PLC scheduler consists in the main program
being executed at every cycle. At the end of the main program
automaton, two extra transitions and one location are created
per interrupt or restart routine. These transition contain a syn-
chronization i, to synchronize the main program automaton with
the interrupt or restart automaton.

3. These interactive transitions are non-deterministically executed,
simulating a random execution of the PLC interrupt.

Fig. 3.8 shows a model example of a Siemens PLC program . The
original PLC program is composed of the main program (OB1) and
a cyclic interrupt (OB35). The corresponding model contains two
automata, modeling the behavior of both routines. In addition, two
Interactive transition are added in order to synchronize OB1 with
OB35. But these transitions will be executed depending on a random
value assigned to the variable ic.

3.6 PLC code – IM transformation

Once the specification is formalized and the skeleton of the models
is defined, the PLC code is automatically translated to the IM. This
section describes the most relevant transformation rules from PLC
code to the IM. As it was mentioned in Section 2.2, five languages are
defined by the IEC 61131 (2013). Here the transformation from ST
and SFC languages are presented, as they are the two most relevant
and used PLC languages at CERN. These transformation rules can be
extended for the rest of PLC languages defined by the standard. It
has to be noticed that although not all of the PLC vendors follow the
IEC 61131-3 standard 100%, sometimes there are only a few syntactic
differences, it does not imply any difference for the modeling strategy.
Along this Section, when examples of PLC code are shown to illustrate
the transformation rules, they correspond to Siemens PLC code as it is
the main brand used at CERN. The section is divided in the following
subsections:
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initialization of inputs

xa := F
[¬(ia > 0)]

xb := F
[¬(ib > 0)]

xb := T
[ib > 0]

c := c+ 1

xa := T
[ia > 0]

init

l1

l2

l3

l4

ic := random

PLC

parameters

l5

end

iOB35!

iOB35 ret?

OB1

init

l1

end

iOB35?

ya := T

iOB35 ret!

Interrupt

Sync.

Interrupt

Sync.

[ic = T ]
[ic = F ]

OB35

program

Figure 3.8: Example of IM with one PLC interrupt

− General transformation rules from PLC code into IM (Sec-
tion 3.6.1).

− Transformation rules from ST code into IM (Section 3.6.2).

− Transformation rules from SFC code into IM (Section 3.6.3).

Before the rules, the data type mapping between the PLC code
and the different modeling languages has to be introduced. Table
3.1 presents the mapping between the most common data types used
in PLC, the data types used in IM and the data types used in the
verification tools (nuXmv, UPPAAL and BIP).

3.6.1 General PLC – IM transformation

The transformation rules are presented hierarchically from high level
to low level rules. Actually the first rule, which is included here, is the
link with PLC hardware modeling strategy.
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Table 3.1: Data type mapping

PLC IM nuXmv BIP2 UPPAAL

bool Boolean Boolean char bool

int signed Integer (16
bit)

signed word[16] int int

uint unsigned Integer
(16 bit)

unsigned word[16] int int[0,65535]

dint signed Integer (32
bit)

signed word[32] int int1

udint unsigned Integer
(32 bit)

unsigned word[32] int int

real signed Real (32
bit)

signed word[32] int int

char unsigned Char (8
bit)

unsigned word[8] char int[0,255]

time signed Time (32
bit)

signed word[32] int int

date signed Date (16
bit)

signed word[16] int int

byte 8 x Boolean

word 16 x Boolean

dword 32 x Boolean

1 The int in UPPAAL is 16 bit long, thus some information is missing
for this particular mapping. (The default range of int in UPPAAL
is int[-32768, 32767]).



86 Chapter 3. Approach

Rule PLC1 (Multiple concurrent code blocks) As it was men-
tioned in Section 3.5, PLC programs are composed of the main pro-
gram (i.e. OB1 in Siemens PLCs), which is executed cyclically, and
the interrupt handlers.

Assumption 3. Interrupting blocks and the interrupted blocks
should use disjoint set of variables. This is a reasonable assumption,
since it can be validated by existing static analysis techniques.

According to our experience, different OBs usually use different
variables. Furthermore, high level of concurrency is rare in PLC
programs.

Having this assumption, instead of modeling the interrupts in a pre-
emptive manner, we model them with non-preemptive semantics: the
model of the PLC scheduler consists in the main program being exe-
cuted at every cycle, whereas one or several interrupts can be executed
non-deterministically at the end of the PLC cycle. An example of this
rule was presented in Fig. 3.8.

Rule PLC2 (FC) This rule translates functions into IM. An OB can
be considered as a special FC that is invoked by the operating system,
thus this rule also applies to OBs.

Assumption 4. Recursion is not allowed, i.e. no FC or FB can di-
rectly or indirectly generate a call to itself. This assumption is
consistent with the IEC 61131 (2013) standard. However, Siemens
PLCs allows the use of recursion with some restrictions even if it is
not recommended. Recursion can be statically detected by building
the call graph of a program and checking whether it contains cycles.
Thus we can assume that variables of a function are stored at most
once on each L Stack stack.
For each function Func, we create an automaton AFunc. The loca-

tions, transitions and initial location of this automaton are generated
using the rules presented below. For each variable defined in Func
we create a corresponding variable in AFunc. If the return type of
the function is different from void, a special output variable called
RET VAL is also added to the automaton. AFunc contains at least the
initial location init, the final location end and the transition tend from
end to init.

Fig. 3.9 shows an example of the transformation of a FC into the
IM. This rule is general for any PLC language.
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Variables
init

end

FC1

a1 : BOOL
a2 : BOOL

FUNCTION FC1 : INT

PLC Code

Variables
a1 : BOOL
a2 : BOOL
RET VAL : INT

PLC Code

Figure 3.9: FC – IM transformation

Rule PLC3 (FB instance) This rule translates FB instances into
IM. Assumption 4 also applies here.

For each instance inst of each function block FBlock, we create an
automaton AFBlock ,inst . The locations, transitions and initial location
of this automaton are generated using the rules presented below. For
each variable in FBlock we create a corresponding variable in all the
corresponding AFBlock ,inst automata. Each automaton contains at least
the initial location init, the final location end and the transition tend
from end to init.

Fig. 3.10 shows an example of the transformation of a FB instance
into the IM. This rule is general for any PLC language.

Variables

init

end

DB1

a1 : BOOL
a2 : BOOL

FUNCTION BLOCK FB1

PLC Code

PLC Code

DATA BLOCK DB1 FB1

Variables
a1 : BOOL
a2 : BOOL

Figure 3.10: FB instance – IM transformation
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Rule PLC4 (Variables) This rule maps program variables to vari-
ables in the IM model.

Assumption 5. All variables, except system inputs, that do not
have uniquely defined initial values on the PLC platform (e.g. tem-
porary variables, output variables of FCs) are written before they
are read. This means that we do not have to model such variables
as non-deterministic variables in the IM model, which allows us to
limit the state space growth of the generated model.

For each variable v in the program block, there is exactly one cor-
responding variable FV (v) in the corresponding automaton. If the
variable represents a system input (i.e. variables representing signals
coming from the field), it is assigned non-deterministically at the be-
ginning of each PLC cycle. How to identify input variables is explained
in the Section 3.5.

Rule PLC5 (FC or FB call) This rule translates FC or FB calls
into the IM.

Assumption 6. All the input variables are assigned in the caller,
and all the output variables are assigned in the callee in order to
avoid the accessing of uninitialized variables that could contain un-
predictable values. This means that we do not have to model them
as non-deterministic variables and the state space will not be incre-
mented drastically.

For every function (block) call 〈[r :=]Func(p1 := Expr1, p2 :=
Expr2, . . . )〉 in a code block represented by automaton Acaller, we add
the following elements. (Func can be a function or an instance of a
function block, represented by automaton Acallee. If Func is a function
block or a void function, the “r :=” part is omitted.)

− A new location lwait is added to Acaller. It represents the state
when the caller block is waiting for the end of the function call.
(For every function call, we add a separate lwait location.)

− A transition t1 is added to Acaller, which has no guard and goes
from the corresponding location marked as FS(stmt) to lwait. It
assigns the function call parameters to the corresponding vari-
ables in Acallee. (It assigns Expr1 to FV (p1), etc.)

− A transition t2 is added to Acaller, which has no guard and goes
from lwait to the location end of the corresponding automaton
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FS(n(stmt)). It assigns RET VAL of the callee to the corre-
sponding variable (variable FV (r)) in Acaller, if RET VAL exists.
It also assigns the corresponding values to the output variables.

− A synchronization i1 is added to the automata network, connect-
ing transition t1 with the first transition of Acallee.

− A synchronization i2 is added to the automata network, connect-
ing the end→ init transition of Acallee with transition t2.

Fig. 3.11 shows an example of the transformation of a FB instance
into the IM. This rule is general for any PLC language.

lwait . . .

caller automaton called automaton

init

end

i1!

i2!

i1?

i2?

t1

t2

FS(stmt)

FS(n(stmt))

Figure 3.11: FC call – IM transformation

Rule PLC6 (Building blocks) PLC code often uses functions or
function blocks provided by the system. The source code of these
blocks is not available, it has to be created manually. One widely used
group of these system blocks are timers. Modeling the timing aspects
of timers is a challenging task and it highly increases the state space of
the models. Section 3.9 describes the details of corresponding models
for the different PLC timers.

3.6.2 ST – IM transformation

This section is dedicated to the specific transformation rules from the
ST language into the IM.

Rule ST1 (ST statement) A statement is the smallest standalone
element of an ST program. It can contain other components (e.g.
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expressions). There are different kinds of statements like conditional
branches, loops, variable assignments. In this section we define the
representation of a single code block consisting of these statements in
our IM.

For each statement stmt , let n(stmt) be the next statement after
stmt . As we model cyclic PLC programs, the last statement in the
ST code is followed by the first one. Furthermore, for a statement list
sl let first(sl) be the first statement of the list. The Assumption 3 is
also applied here. For each ST statement stmt in the program block,
there is at least one corresponding location marked as FS(stmt) in
automaton A.

Rule ST2 (Variable assignment) This rule translates ST variable
assignments into the IM.

Assumption 7. For each “variable access” the variable to be ac-
cessed can be determined in transformation time. This means that
pointers are not supported. However, we support various single and
compound variables (arrays and user defined structures). Typically,
this is not a restriction as the usage of pointers is not recommended
in PLC programs.

For each variable assignment stmt = 〈vi := Expr〉, we add a transi-
tion to automaton A which goes from FS(stmt) to FS(n(stmt)) which
has no guard and no synchronization, and it assigns Expr to the
variable FV (vi) and does not modify the other variables. (Formally:
t = (FS(stmt),TRUE, 〈FV (vi) := Expr〉,NONE, FS(n(stmt))).)

Listing 3.1 shows an example of ST code with a simple variable as-
signment and Fig. 3.12 shows the corresponding automaton fragment.

1 FUNCTION FC150

2 VAR_INPUT

3 ...

4 END_VAR

5 VAR

6 v1 : BOOL;

7 END_VAR

8 BEGIN

9 v1 := Expr;

10 END_FUNCTION_BLOCK

Listing 3.1: Variable
assignment in ST code

t1
/v1 := Expr

FS(stmt)

FS(n(stmt))

Figure 3.12: Corresponding
automaton fragment for
variable assignment
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Rule ST3 (Conditional statement) For each conditional state-
ment stmt = 〈IF c THEN sl1 ELSE sl2 END IF〉, we add two transi-
tions (t1 and t2) to automaton A:

− The transition t1 goes from FS(stmt) to FS(first(sl1)), it has
no assignments and no synchronizations, and it has a guard c.
(Formally: t1 = (FS(stmt), c, aidentity,NONE, FS(first(sl1))))

− The transition t2 goes from FS(stmt) to FS(first(sl2)),
it has no assignments and no synchronizations,
and it has a guard NOT c. (Formally: t2 =
(FS(stmt),NOT c, aidentity,NONE, FS(first(sl2))))

Listing 3.2 shows an example of ST code with a simple conditional
statement and Fig. 3.13 shows the corresponding automaton fragment.
The statement lists sl1 and sl2 are modeled according to the rule 1.

1 FUNCTION FB_A

2 VAR_TEMP

3 c : BOOL;

4 END_VAR

5 BEGIN

6 IF c THEN

7 sl1;

8 ELSE

9 sl2;

10 END_IF;

11 END_FUNCTION

Listing 3.2: Conditional
statement in ST code

t2
[¬c]

FS(stmt)

FS(first(sl2))FS(first(sl1))

t1
[c]

Figure 3.13: Corresponding
automaton fragment for for
conditional statement

Listing 3.3 shows a small example of Siemens ST program, com-
posed of the main program (OB1), a function block (FB B) and a
instance of this function block. The corresponding IM is shown in
Fig. 3.14.

1 ORGANIZATION_BLOCK OB1

2 VAR_TEMP

3 a2 : BOOL;

4 a3 : BOOL;

5 END_VAR

6 BEGIN
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7 IF a2 THEN

8 FB_B.DB1(b1:=NOT a2);

9 END_IF;

10 a2 := NOT I0.0;

11 a3 := DB1.b2;

12 END_FUNCTION_BLOCK

13

14 FUNCTION_BLOCK FB_B

15 VAR_INPUT

16 b1 : BOOL;

17 END_VAR

18 VAR_OUTPUT

19 b2 : BOOL;

20 END_VAR

21 BEGIN

22 b2 := NOT b1;

23 END_FUNCTION_BLOCK

24

25 DATA_BLOCK DB1 FB_B

26 BEGIN

27 END_DATA_BLOCK

Listing 3.3: Example of ST code

DB1.b1 := ¬a2

[a2]

init

l1

I0 0 := random

end

iDB1!

iDB1 ret?

mainBlock: OB1

init

l1

end

b2 := ¬b1

iDB1?

l2 ret

l3

l4

l2

[¬a2]

a2 := ¬I0 0

a3 := DB1.b2

Variables
a1 : BOOL
a2 : BOOL
I0 0 : BOOL

iDB1 ret!

Variables
b1 : BOOL
b2 : BOOL

DB1: FB B

Figure 3.14: Example of transformation from a FC call into the IM
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3.6.3 SFC – IM transformation

This section is dedicated to a high-level overview of the specific SFC–
IM transformation rules.

Assumption 8. There is no parallel branch in the FSM, thus at most
one step can be active at the same time. Also steps do not contain
any actions. This allows to simplify the discussion.
Each call of a FB implemented in SFC will initiate one transition

in the FSM (or zero, if there is no allowed transitions) under our
assumptions, multiple transitions cannot be fired by one call.

Rule SFC1 (SFC block) This rule adds to the IM the needed extra
information for SFC blocks.

Each automaton A representing an SFC is extended with a tran-
sition t = (l1, g, amt identity ,NONE, end), where g is true iff no other
l1 → end transitions are enabled. The transition does not change the
values of the variables. It represents that if no SFC transitions are
allowed, the current state of the FSM will not be modified.

Rule SFC2 (SFC steps) For each step “STEP stepName:
END STEP” we create a Boolean variable stepName.x in A.
These variables represent the current state of the FSM.

Rule SFC3 (SFC initial step) For the initial step “INI-
TIAL STEP initStepName: END STEP” besides of creating a
Boolean variable initStepName.x in A, we add also a location l1 and
a transition t1 from init to l1 without any condition.

We also add a new transition t = (l1, g, amt ,NONE, end). The
guard g is stepName1 = false ∧ stepName2 = false ∧ . . . . The assign-
ment is amt = 〈initStepName.x := true〉. It means if no steps are
active, then the initial step should be active.

Rule SFC4 (SFC transitions)
Assumption 9. Based on our experiments with the SFC editor of
Siemens we assume that transitions are defined in ascending order
of priority.

For each transition “TRANSITION tName FROM step1 TO step2
CONDITION := C END TRANSITION” we create a transition t =
(l1, g, amt ,NONE, end) in A. The guard g of t is a Boolean expression
that is only true if (1) C is true, (2) step1.x is true, (3) all the guards
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of automaton transitions representing higher priority SFC transitions
are false. The assignment is amt = 〈step1.x := false; step2.x := true〉.

An example automaton representing the SFC shown in Listing 3.4.
Its graphical form (Screenshot from SIMATIC tool by Siemens) in
Fig. 3.15. Finally, Fig. 3.16 shows the corresponding IM for this ex-
ample.

1 FUNCTION_BLOCK FB101

2 VAR_INPUT

3 FillCond : BOOL := FALSE;

4 RunCond : BOOL := FALSE;

5 StopCond : BOOL := FALSE;

6 END_VAR

7

8 INITIAL_STEP Stop: END_STEP

9 STEP Fill: END_STEP

10 STEP Run: END_STEP

11

12 TRANSITION S_F

13 FROM Stop TO Fill CONDITION := FillCond

14 END_TRANSITION

15

16 TRANSITION F_R

17 FROM Fill TO Run CONDITION := RunCond

18 END_TRANSITION

19

20 TRANSITION R_S

21 FROM Run TO Stop CONDITION := StopCond

22 END_TRANSITION

23 END_FUNCTION_BLOCK

Listing 3.4: Example of the textual representation of SFC code

3.7 Reduction techniques

Once the IM is built and the requirements are formalized, the next step
of the methodology is to apply automatic reduction and abstraction
techniques to reduce the state space of the IM. For industrial size PLC
programs, this step is extremely important as formal verification will
not be possible without these reduction techniques.

Some verification tools provide some automatic reduction and ab-
straction techniques. If these tools are integrated in the methodology,
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Figure 3.15: Example SFC (Screenshot from SIMATIC tool by
Siemens)

init

l1

end

[g0]

Stop.x:=T

[g1]

Stop.x:=F

[g2]

Fill.x:=F

[g3]

Run.x:=F

g0 ≡ Stop.x = F ∧ Fill.x = F ∧ Run.x = F
g1 ≡ FillCond ∧ Stop.x = T
g2 ≡ RunCond ∧ Fill.x = T ∧ ¬g1

g3 ≡ StopCond ∧ Run.x = T ∧ ¬g1 ∧ ¬g2

Fill.x:=T Run.x:=T Stop.x:=T

[g4]

g4 ≡ ¬g0 ∧ ¬g1 ∧ ¬g2 ∧ ¬g3

Figure 3.16: IM representation of the SFC example
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the methodology will benefit from the reduction techniques. Some au-
thors have proposed reduction techniques applied to a specific input
model of a verification tool. In some cases, these reductions cannot be
applied to other formalism, because these reduction use the specifici-
ties of the modeling language (e.g. Gourcuff et al. (2008) with NuSMV
models built from PLC programs).

In this methodology, these reductions are applied to the IM as it is
meant to be independent from the verification tools and all the verifi-
cation tools that are integrated in the methodology can benefit from
these techniques. Most of these reduction techniques are general for
any CFG, not just for the CFGs of PLC programs. Both alternatives
(apply reduction to the IM or the input models of the verification
tools) are valid in our approach as it can be seen in Fig. 3.17.

As it was mentioned in Section 3.4, the requirements to be verified
are often complex, containing multiple temporal logic operators and
involving a large number of variables, which limits the set of possible
reduction techniques.

In this methodology, the reduction and abstraction techniques that
have been implemented can be classified in two groups:

1. Property preserving reduction techniques: These algorithms aim
at preserving only those behaviors of the system that are rele-
vant from the specification point of view. By using property
preserving techniques, the meaning of the model is not modified
with regard to our assumptions, thus these reductions do not
induce any false results that would make the verification much
more difficult.

2. Non-preserving abstractions, where the resulting model “loose”
some information regarding the original model.

The correctness of the transformation when applying the tech-
niques from the first group is easier to prove, as the reduced model
and the original are equivalent for a specific property. However, in
some particular cases non-preserving abstractions are applied in this
methodology, for example, Section 3.9 presents the modeling strategy
for timers. In this case, non-preserving abstractions were applied.

Before describing the reduction techniques, it has to be noticed
that in a PLC, the requirements usually are checked only at the be-
ginning and at the end of the PLC cycles, but not in the intermediate
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states, as the transient values are not written to the physical outputs
of the PLC. As a consequence, the order of the variable assignments
is not important, as long as the result at the end of the PLC cycle
will be the same. Thus, we know that the requirements are only to
be checked at specific locations of the CFG. As it was mentioned in
Section 3.6.2, concurrency problems are not considered (assumption
3, described in the previous section).

Internal model External models

intermediate
model

nuXmv model

BIP model

reductions
abstractions /

reductions
abstractions /

reductions
abstractions /

Figure 3.17: Applicability approaches for the reduction techniques

This section presents the four reduction and abstraction techniques
implemented in this methodology. The first three techniques are prop-
erty preserving reduction techniques and the last one is not:

− First, a new heuristic cone of influence reduction algorithm
adapted for models representing CFGs is presented in Sec-
tion 3.7.1.

− Secondly, a heuristic rule-based reduction techniques to support
the cone of influence algorithm is presented in Section 3.7.2.

− Then, a mode selection method which allows the developer to
fine-tune the verification by setting the operational mode to be
verified in Section 3.7.3.
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− Finally, a method called variable abstraction is described in Sec-
tion 3.7.4. This method allows to verify large PLC programs,
when the previous reduction are insufficient but only verifica-
tion of safety properties is possible.

The first three reduction techniques have been published in our
paper Darvas et al. (2014).

3.7.1 Cone of influence

Cone of influence (COI), described in Clarke et al. (1999), is one of the
most powerful property preserving reduction techniques. It consists
in identifying which part of the model is relevant for the evaluation
of the given requirement. The unnecessary parts of the model can be
removed without affecting the result.

3.7.1.1 Motivation for applying COI at the IM level

Some model checkers, such as NuSMV has a built-in COI implemen-
tation that can reduce the verification time drastically. Some experi-
ments applied with our models with the NuSMV model checker, show a
bad verification performance even when the COI algorithm could the-
oretically reduce the model size to trivial. By analyzing the NuSMV’s
COI implementation, we found out that this reduction technique could
be much more powerful if it was applied to IM directly, where the
structure of the CFG is known, before it is transformed to a general
state-transition system. In addition, the rest of the verification tools
can benefit from this reduction technique if it is applied to the IM.

In higher level models there is usually more knowledge about the
modeled system, therefore the reductions are generally more efficient
if they are applied to a higher abstraction level. In this case, the COI
algorithm can benefit from the structure information present in the
intermediate model, but missing from the generated NuSMV model.
Therefore, a new heuristic cone of influence algorithm has been de-
veloped, which outperforms the COI method built in NuSMV for our
models and highly improves the verification performance of our mod-
els. To explain the idea behind our approach, first an overview of the
COI implementation of NuSMV is given. Then, the new heuristic is
introduced and compared with the NuSMV’s COI.
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initialization

xa := F
[¬(ia > 0)]

xb := F
[¬(ib > 0)]

xb := T
[ib > 0]

c := c+ 1

xa := T
[ia > 0]

init

l1

l2

l3

end

of inputs

Figure 3.18: Example for control flow graph representation of an ST
code in NuSMV

The input language of NuSMV represents a Mealy machine, whose
states comprise the set of possible valuations of every defined state
variable Cavada et al. (2014, 2011). In order to create a NuSMV
model corresponding to a control flow graph, a natural way of mod-
eling is to express every variable with a dedicated state variable, and
to represent the current location in the CFG with an additional state
variable (called loc in the methodology). This variable loc encodes the
structure of the CFG along with the guard expressions on its transi-
tions. All the details about the transformation from IM to nuXmv
models are described in Section 3.8. The example on Fig. 3.18 shows
an extract from a simple ST code, the corresponding CFG and its
NuSMV representation.

The COI algorithm of NuSMV has no public documentation. How-
ever, as this tool is released under the LGPL license, it is possible to
analyze its source code.

At the creation of the NuSMV’s internal COI model, the depen-
dencies of each variable are computed (function coiInit). A variable
v depends on every variable v′ used for the computation of v (e.g. if
the next state of v is defined with a case block in the NuSMV model,
all the variables and values will be in the set of dependencies.) Then,
a transitive closure is computed for all the variables occurring in the
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formula to be evaluated. If a variable x is necessary for some rea-
son, all the variables presented in the assignment block of x will be
necessary too. Therefore, it is trivial that according to the NuSMV
implementation, the variable loc is necessary for a variable v, if it is
assigned at least once in the CFG, because this assignment is guarded
by a location of the CFG. As loc is necessary, all the variables in
its next-state relation definition will be necessary too, which means
all variables taking place in guards are necessary. Thus, none of the
variables used in guards can be eliminated by the COI of NuSMV.

3.7.1.2 COI algorithm for the IM

It has been observed that it would be possible to reduce the mod-
els by removing conditional branches that do not affect the variables
in the requirement. In the example shown in Fig. 3.18, none of the
conditional branches is necessary if only variable c is used in the re-
quirement, therefore the variables ia and ib could be eliminated as
well.

Guards can affect the control flow, therefore it is not possible to
eliminate all the guards. Here the heuristic is proposed, which provides
good results when applying it to the IM. The idea is that there are
states (locations) in the CFG that are “unconditional”, i.e. all possible
executions go through them.
This COI variant consists of three steps (formally: see Algorithm 1):

1. Identification of unconditional states.

2. Identification of variables influencing the evaluation of the given
requirement.

3. Elimination of non-necessary variables.

In the following part of this section, these three steps are introduced.

Identification of Unconditional States. The first step of our COI
reduction is to identify the set L of unconditional states. To ensure the
correctness of the algorithm, it is necessary that L does not include
conditional states.

To identify the unconditional states, we defined a measure for the
states. A trace is a list of states (init, l1, l2, . . . , ln, end), where init
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Algorithm 1: ConeOfInfluence

input : M : network of automata, Q: requirement
output: true, iff COI modified the model

L ← UnconditionalStates(M);
D ← NecessaryVariables(M,L, Q);
Removal of all variables in V \D, with their guards and
assignments;
return V \D 6= ∅;

is the initial state of the automaton, end is the end state of the au-
tomaton, and there is a transition between each (li, li+1) state pairs.
Let F (l) be the fraction of possible traces3 going through a state l. It
is known that all the traces go trough the initial state init, therefore
F (init) = 1. For the rest of the states, F can be calculated based on
the incoming transitions.

Let IT (l) ∈ 2T depict the set of incoming transitions to state l, and
mark the set of outgoing transitions from state l as OT (l) ∈ 2T . Let
IL(t) ∈ L be the source state of transition t. With this notation, the
formal definition of F (l) is the following:

F (l) :=

{
1 if l = init,∑

t∈IT (l)
F (IL(t))
|OT (IL(t))| otherwise

. (3.1)

After calculating F for each state, it is easy to compute the set of
unconditional states: L = {l ∈ L : F (l) = 1}.

Notice, that the intermediate model can contain loops (beside the
main loop representing the PLC cycle) due to loops in the input model.
In this case, we handle all states in the loop as conditional states
(without computing F for them).

Identification of Necessary Variables. The goal of the second
step is to collect automatically all the variables necessary to evaluate
the given requirement (see Algorithm 2). Let D be the set of necessary
variables. It is trivial that every variable in the requirement should be

3Here we do not consider cycles inside the CFG beside of the cycle correspond-
ing to the main cycle.
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in D. After that, for each variable assignments that modify a variable
in D, the variables in the assignment will also be added to the set D.
Furthermore, the guard dependencies should also be added to D, i.e.
all the variables that can affect the execution of the analyzed variable
assignment. If the set of D grew, all the assignments should be checked
again.

In the following, we define a function AT : T → 2V , which gives all
the variables that can affect the execution of variable assignments on
transition t.

First, a supporting function AL : L → 2V is defined which gives
all the variables necessary to determine if state l will be active or not
during an execution. This function can benefit from the previously
explored unconditional states L, as it is known that no variable is
necessary to decide if they can be activated during an execution. Thus,
for every state l ∈ L, the function AL(l) is the following:

AL(l) :=

{
∅ if l ∈ L⋃
t∈IT (l)AT (t) if l /∈ L . (3.2)

It means that for the unconditional states, the set of affecting vari-
ables is empty, as a consequence of their definition. If a state is not
unconditional, the set of variables affecting that this state is active
or not is the set of variables affecting the firing of all its incoming
transitions.
For every transition t ∈ T , the function AT (t) is the following:

AT (t) := ALL (IL (t)) ∪
⋃

t′∈OT (IL(t))

{variables in guard of t′}. (3.3)

It means that the firing of transition t is affected by the variables
that influences its source state (IL(t)) and by the variables in the
guard of t. Furthermore, it is also influenced by the variables used in
the guard of transitions that can be in conflict with t, i.e. the guard
variables of t′ ∈ OT (IL(t)).

Elimination of Non-necessary Variables. In the second step,
the set D of necessary variables is determined. In the last step, all the
variables not in D should be deleted. Also, to ensure the syntactical
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Algorithm 2: NecessaryVariables

input : M : network of automata, L : set of unconditional
states,
Q: requirement

output: D : set of necessary variables

D ← {variables in Q};
repeat

foreach variable assignment 〈v := Expr〉 on transition t do
if v ∈ D then

// adding assignment and guard dependencies

D ← D ∪ {variables in Expr} ∪ AT (t);

until D is not changed ;
return D;

correctness, all the guards and variable assignments containing vari-
ables v /∈ D should be deleted. They do not affect the evaluation of
the requirement, otherwise they should be in set D.

Difference between our COI and the COI of NuSMV. The
main difference between our COI and the COI implementation of
NuSMV is in the handling of conditional branches. If there is a condi-
tional branch in the CFG, but the variables in the requirement are not
affected by this choice, there is no need for the variables in its guard.
This difference can be observed in Fig. 3.19, which shows the CFG in-
troduced in Fig. 3.18, after applying the different COIs, and assuming
that only variable c is used in the requirement (e.g. EFc < 0). The
COI of NuSMV can identify that the variables xa and xb are not used
to compute c, therefore they will be removed. But the variables ia
and ib are used in guards, thus they are kept (see Fig. 3.19(a)).

Our COI algorithm can detect that because xa and xb are deleted,
the ia and ib variables can be deleted too, because those guards do not
affect c, i.e. no matter which computation path is executed between
locations l1 and l3, the assignment of variable c will be the same (see
Fig. 3.19(b)). The resulting IM after applying our COI algorithm is
shown in Fig. 3.19(c).
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initialization

��
��xa := F

[¬(ia > 0)]

���
�

xb := F
[¬(ib > 0)]

���
�

xb := T
[ib > 0]

c := c+ 1

��
��xa := T

[ia > 0]

init

l1

l2

l3

end

of inputs

(a) CFG after NuSMV’s
COI

initialization

��
��xa := F

���
��

[¬(ia > 0)]

��
��xb := F

���
��

[¬(ib > 0)]
���

�
xb := T
���[ib > 0]

c := c+ 1

��
��xa := T

���[ia > 0]

init

l1

l2

l3

end

of inputs

(b) CFG after our COI

initialization

c := c+ 1

init

l1

l2

l3

end

of inputs

(c) CFG after our
COI (without the
eliminated parts)

Figure 3.19: Example comparing our and the NuSMV’s cone of influ-
ence algorithm from Darvas et al. (2014)

3.7.2 Rule-based reductions

The COI applied to the IM only eliminates variables, the connected
variable assignments and guards, without modifying the structure of
the CFG. Therefore, the resulting model of the COI often contains
empty transitions, unnecessary states, etc. For these situations, rule-
based reductions have been implemented that make the model smaller
and easier to verify.

This kind of CFG reductions are not new, they are used for example
in numerous compilers to simplify the machine code and to improve
the performance. More details can be found in Cooper and Torczon
(2012).

The rule-based reductions applied to the IM can be classified as
follows:

− Model simplifications. The aim of these reductions is to
simplify the intermediate model without reducing its potential
state space (thus without eliminating states or variables). This
group includes elimination of unnecessary variable assignments
or transitions, and simplification of logical expressions. These re-
ductions do not reduce the model themselves, we created them
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to support the other reduction techniques. For example, if the
model contains an empty conditional branch (due to for exam-
ple another reduction), it can be removed without changing the
meaning of the model. This rule is illustrated in Fig. 3.20(a).

− Model reductions. These methods can reduce the potential
state space by eliminating states and variables. This group in-
cludes heuristics to merge transitions or states, to eliminate vari-
ables that have always the same constant value, etc. For exam-
ple, if a transition has no guard, no synchronization, and no
variable assignment (which can be a side effect of the COI re-
duction), then the two states on the end of the transition can be
merged and the transition can be deleted. This rule is illustrated
in Fig. 3.20(b).

− Domain-specific reductions. These reductions are benefited
by the PLC domain knowledge using the assumption introduced
at the beginning of Section 3.7, that variables are only checked at
the end of the PLC cycle. Two main domain-specific reductions
are developed:

– Transition merging. Two consecutive transitions can be
merged if they represent a sequence in the CFG and their
variable assignments are not in conflict, i.e. their order
does not affect each other’s value. Formally, va := Ea and
vb := Eb are not in conflict if va /∈ Vars(Eb), vb /∈ Vars(Ea),
and va 6= vb, where Vars(E) means all variables used in
expression E. This can easily be extended to two set of
variable assignments, thus it can be reapplied to merged
transitions. Fig. 3.20(c) illustrates this reduction rule.

– Variable merging. Two variables can be merged if they
always have the same value at the end of the PLC cy-
cles. While creating two variables for the same purpose
can be considered as a bad programming practice, it is a
common pattern in the source code of our systems. This
feature is used to improve code readability by assigning a
meaningful name to a bit of an input array (for example
PFailSafePosition instead of ParReg01[8]).
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/—

[C]

l

/—

[¬C]

l′

l

/—

[true]

l′

(a) Empty conditional branch elimi-
nation

l

/—
[true]

l′

l

(b) Empty transition elimi-
nation

l

/v1 := Expr1;

l′′

l′

/v2 := Expr2;

l

l′′

/v1 := Expr1;
v2 := Expr2;

(c) Variable assignment merging rule

Figure 3.20: Example reduction rules from Darvas et al. (2014)

It has to be noted that not all the previously mentioned reduction
techniques are property preserving in themselves. For instance, if two
variables v and w are merged, thus w will be deleted, the properties
containing w are not possible to evaluate. For this reason, we generate
a mapping throughout the reductions that contains all the variable
substitutions. Based on this mapping, the necessary aliases can be
generated for the NuSMV model. For example, an alias w can be
added to the model having always the same value as v, as it is known
that they always contain the same value at the end of the PLC cycles.
Aliases do not modify the size of the state space or the complexity of
the model checking.

As discussed at the beginning of Section 3.7.2, the COI algorithm
can enable the rule-based reductions. Therefore, after applying the
COI algorithm, all the reduction techniques introduced in this section
will be applied, which can enable other reductions or other possible
variable removal for the COI algorithm. Therefore we implemented
the reductions in an iterative manner. First, the COI is executed.
Then, all the possible reductions are applied. If the COI or one of the
rule-based reductions was able to reduce the model, all the reductions
are executed again. This iterative workflow is described formally in



3.7. Reduction techniques 107

Algorithm 3. (The function Reduce(r,M) applies reduction r on the
model M and returns true, iff the reduction modified the model.)

A simple example is shown here illustrating our reduction work-
flow. If our COI is applied to the Fig. 3.18 CFG example, then
Fig. 3.19(c) CFG will be obtained. If the reductions presented on
Fig. 3.20(a) and Fig. 3.20(b) are applied on it, the result will be the
simple Fig. 3.21 CFG.

Algorithm 3: Reductions

input : M : model, Q:
requirement

bool changed ;
repeat

changed←
ConeOfInfluence(M, Q);
foreach
r ∈ {rule-based reductions} do

changed←
Reduce(r,M) ∨ changed;

until changed = false;

initialization

c := c+ 1

init

l3

end

of inputs

Figure 3.21: Example
CFG after our COI
and the reductions
from Darvas et al.
(2014)

3.7.3 Mode selection

Good practices and standards in PLC program development (e.g. IEC
61499 (2013)) suggest to have a library of Function Blocks, which are
the basic building modules of the control systems. These modules can
be reused in different PLC programs. For example, at CERN, the
UNICOS framework provides a library of objects where the elements
from the instrumentation can be represented. In the PLC code, these
objects are Function Blocks and they are generic so can be adapted
for the specific uses by setting some parameters. Parameters are input
variables that are constant during the execution, as they are hard-
coded into the PLC application.

A significant part of our real requirements have assumptions on
the parameters, like:

“if parameter p1 is true, then it is always true that ...”.
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For these requirements, general models can be used and the pa-
rameter configuration can be included in the temporal logic formula,
or by adding invariants to the model. However, better performance
can be achieved if the configuration is encoded in the model itself by
replacing the parameter with its constant value. This way, the de-
velopers can select the operational mode of the object on which the
verification should be performed, i.e. they can fine-tune the verifica-
tion to their needs. This method is applied only once, before all the
other reductions.
The advantages of this method are the following:

− There is no need to create a variable for the fixed parameter as
it is substituted with a constant.

− The rule-based reductions can simplify the expressions. For ex-
ample, if there is a guard [p1∧p2∧p3] in the CFG and p1 is fixed
to false, the guard will be always false and can be replaced by a
constant false.

− The simplification of the expressions can help the cone of in-
fluence reduction to remove the unnecessary variables, e.g. if
p2 and p3 are only used in the guard [p1 ∧ p2 ∧ p3], and p1 is
fixed to false, the variables p2 and p3 can be removed. Using the
COI in NuSMV or if the fixed parameter is expressed through
invariants, this reduction cannot be done.

Now the complete reduction workflow can be summarized. After
the transformation of the source code into the intermediate model,
the given parameters are fixed to the required values. Then the cone
of influence reduction and the rule-based reductions are performed
iteratively (as seen in Fig. 3.22). It is important to note, that since
every reduction rule deletes something from the model upon firing,
they cannot “reduce” the model infinite times, thus the iteration cycle
will stop in finite time.

3.7.4 Iterative variable abstraction

The effectiveness of the previous reduction techniques highly depends
on the property specification. In some cases, these reductions can
be very effective but in some others they are not sufficient for the
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Mode
selection

Cone of
influence

Rule-based
reductions

if there were any modification in the last iteration

Figure 3.22: Overview of the reduction workflow

verification tools, for example when the reduced model contains still a
lot of variables or the data types of these variables are not just Boolean.
In these cases, the state space of the reduced model is still too large
to be verified by any tool, for example in most of the verification cases
of complete UNICOS PLC programs (Chapter 4 presents one of these
programs).

For that reason, a new method called variable abstraction is in-
cluded in the methodology. Using this technique, abstract models
are created by replacing some of the variables by non-deterministic
values, transforming these variables in “input variables”, which were
described in Section 3.5. As these new input variables do not depend
on any other variables, the COI algorithm will be able to eliminate
more variables from the model automatically.

The resulting model, after this abstraction, is an over-
approximation of the original model, which contains less variables than
the original model and it represents a bigger range of possible behav-
iors of a system. This means that the abstract model has some states
(combination of variable values) that do not belong to the original
model and therefore to the real PLC program.

Before describing the method, a few basic concepts are discussed.
This technique is currently limited to the following safety properties:
AG(α → β). This is because the requirements for the verification
of complete UNICOS PLC program are currently safety properties.
By restricting the possibilities in the property specification, a more
aggressive abstraction technique can be applied and we increase the
chances of getting a verification result from the model checker. This
is the reason of including this restriction.

In this technique, abstract models are created using the variable
dependency graph of the original model (which corresponds with the
PLC program).

Consider an abstract model AM ′
n and a safety property p (AG(α→

β)). When applying model checking, if p holds on AM ′
n, it implies that
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p also holds in the original model OM ′ as a bigger range of possible
behaviors is explored. If p does not hold on AM ′

n, a counterexample
c is generated. To determine if p holds on OM ′, it is needed to an-
alyze if c is a real or a spurious counterexample. If it is a spurious
counterexample, AM ′

n needs to be refined.
Fig. 3.23 represents this idea. The violet shading represents all

the possible models where p holds. In other words, it represent all
the possible behaviors where the property p is respected. Note that
AM ′

n is an over-approximation of OM ′. AM ′
n has a state space size

smaller than OM ′ (as it contains less variables) but it represents a
bigger range of possible behaviors.

In Fig. 3.23(a), p holds in AM ′
n and therefore it holds in OM ′.

In Fig. 3.23(b) and Fig. 3.23(c), p does not hold in AM ′
n and it is

not possible to determine if p holds on OM ′ without analyzing the
counterexample.

OM ′

AM ′
n

AG(α → β)

(a) AG(α → β) is true in AM ′
n

OM ′

AM ′
n

AG(α → β)

(b) AG(α → β) is false in AM ′
n and

true in OM ′′

OM ′

AM ′
n

AG(α → β)

(c) AG(α → β) is false in AM ′
n and

false in OM ′

Figure 3.23: Verification cases for AG(α → β) in abstract models

In order to determine if this counterexample is real or spurious,
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one possibility is to transform this counterexample in a reachability
property (EF(γ&θ)). Regarding the verification of a reachability prop-
erty r in an abstract model AM ′′

n , the logic is different. If r does not
hold in AM ′′

n , then r does not hold in the original model (OM ′′). But
if r holds on AM ′′

n , we cannot determine if r holds on OM ′′ or not.
Fig. 3.24 describes this idea. In this case, the black dot represent

the state where the property r holds.
In Fig. 3.24(a), r does not hold on AM ′′

n and therefore it does not
hold in OM ′′. In Fig. 3.24(b) and Fig. 3.24(c), r holds in AM ′′

n and it
is not possible to determine if r holds on OM ′′.

OM ′′

AM ′′
n

EF(γ&θ)

(a) EF(γ&θ) is false in AM ′′
n and

false in OM ′′

OM ′′

AM ′′
n

EF(γ&θ)

(b) EF(γ&θ) is true in AM ′′
n and true

in OM ′′

OM ′′

AM ′′
n

EF(γ&θ)

(c) EF(γ&θ) is true in AM ′′
n and

false in OM ′′

Figure 3.24: Verification cases for EF(γ&θ) in abstract models

These concepts are applied in the variable abstraction technique.
The variable dependency graph is provided by the COI algorithm

(defined in 3.7.1) and it gives all the necessary variables D for a given
requirement. Fig. 3.25 shows an example of the variable dependency
graph in a model from a real-life PLC program. The gray variables
are part of the requirement, the red edges represent assignment depen-
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dencies and the blue edges represent conditional dependencies. Two
different variables connected by an edge are in a distance equals to 1.
The concept of distance between variables is used to build the abstract
models.

3.7.4.1 General description of the variable abstraction tech-
nique

This technique is represented in Fig. 3.26 and as well as the previous
reduction techniques, it is applied to the IM.

The basic idea of the algorithm is the following: The safety prop-
erty (p) is verified in an abstract model (AM ′

n), where n corresponds
to the number of iterations of the algorithm. If p holds on AM ′

n, the
algorithm is over and we can conclude that p holds on the original
model (OM ′). If p does not hold on AM ′

n, a counterexample (c) is
provided by the model checker but we need to determine if c is a spu-
rious counterexample due to the abstraction or it is real. To do so, two
steps are performed: first a new safety property (q) is checked on AM ′

n

with the goal of obtaining more information about the state space of
AM ′

n where p holds. Then, if no extra information is provided, c is
transformed into a reachability property (r) to prove or discard that
c is real. If c is real, it means that p does not hold on OM ′. If c is
spurious, an invariant is added to AM ′

n or a new abstraction of AM ′
n

(a more refined model) is created if the number of potential invariants
(m) is not worthwhile to be analyzed. Then the process is repeated.

The algorithm can be divided then in five steps (see Fig. 3.27),
regarding the five decision points of the flow diagram (the initial one
is not considered, as it is the input to this algorithm: a time out is
obtained when verifying p on the original model OM ′):

1. Checking the original safety property (p) on an abstract model
(AM ′

n).

2. Checking the safety property (q) on the same abstract model
(AM ′

n).

3. Checking the reachability property (r) on the original model
(OM ′′).
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Figure 3.25: Variable dependency graph example
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OM ′

p : AG(α → β)

TRUETO

FALSE
δ′ := δ′ + 1 : AM ′

n

FALSE

AM ′
n

q : AG(α → ¬β)

OM ′′

r : EF(γ&θ)

Does p hold

in AM ′
n?

Does p hold

in OM ′?

Does q hold

in AM ′
n?

TRUE

TO

TRUE

FALSE

FALSE
Does r hold

in OM ′′?
TRUE

TO

r : EF(γ&θ)

δ′′ := δ′′ + 1 : AM ′′
n

Does r hold

in AM ′′
n?

[2] [2]

[3]

[1]

[2]

[1]

FALSE TRUE

TO

m ≤ 10FALSE

AM ′
n + Invar.
¬(γ&θ)

TO

End

p : AG(α → β)

δ′ := 0

δ′′ := 0

Figure 3.26: Variable Abstraction Flow Diagram. Verification results:
[1] p holds on OM ′; [2] p does not hold on OM ′; [3] no answer.
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4. Checking the reachability property (r) on an abstract model
(AM ′′

n).

5. Extracting an invariant from the counterexample obtained in
step 2 if m is ≤ 10.

The following paragraphs describe the details of the five steps of
this technique.

3.7.4.2 Checking the original safety property (p) on an ab-
stract model (AM ′

n)

The algorithm starts by checking the safety property p (i.e. AG(α →
β)) on the original model OM ′. OM ′ is the result of applying the
property preserving reductions (described earlier in this section) to
the generated model from the PLC code. In addition, two parameters
(δ′ and δ′′) are initialized to 0.

δ′ represents the distance between variables in the variable depen-
dency graph for OM ′. δ′′ represents the distance between variables in
the variable dependency graph for OM ′′.

OM ′ is the resulting model of applying the property preserving
reduction techniques for the original safety property p. OM ′′ is the
resulting model of applying the property preserving reduction tech-
niques for the reachability property r.

Abstract models (AM ′
n and AM ′′

n) are created automatically using
δ′ and δ′′ respectively.

TO (Time Out) is a parameter set at the beginning of this tech-
nique, which represents the maximum amount of time given to the
model checker to provide an answer (true or false) for the verification.

In the first iteration, if the model checker cannot provide an answer
when verifying p on OM ′ and the TO is reached, an abstract model
is automatically generated using δ′ = 1, i.e. AM ′

1. Then the model
checker verifies if p holds on AM ′

1. Three possible answer can be
provided by the model checker:

1. True: p holds onAM ′
n, therefore the algorithm is over and we can

conclude that p holds on OM ′ (as it was described in Fig. 3.23).

2. TO: the algorithm is over and we cannot prove whether p holds
or not on OM ′ (this situation should never happen on the first
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OM ′

p : AG(α → β)

TRUETO

FALSE
δ′ := δ′ + 1 : AM ′

n

FALSE

AM ′
n

q : AG(α → ¬β)

OM ′′

r : EF(γ&θ)

Does p hold

in AM ′
n?
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in OM ′?
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n?

TRUE

TO
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in OM ′′?
TRUE

TO

r : EF(γ&θ)

δ′′ := δ′′ + 1 : AM ′′
n

Does r hold

in AM ′′
n?

[2] [2]

[3]

[1]

[2]

[1]

FALSE TRUE

TO

m ≤ 10FALSE

AM ′
n + Invar.
¬(γ&θ)

1

2

3

4

5

0

TO

FALSE

End

p : AG(α → β)

δ′ := 0

δ′′ := 0

Figure 3.27: Variable Abstraction Flow Diagram. Verification results:
[1] p holds on OM ′; [2] p does not hold on OM ′; [3] no answer.
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iterations of the algorithm, e.g. AM ′
1 and AM ′

2, as they usually
have a much small state space size when compared to OM ′).
This is the limitation of the methodology, it is not possible to
determine if the generated counterexamples from previous ab-
stractions (AMn−1, AMn−2, ... AM1) were real or spurious.

3. False: p does not hold on AM ′
n, and the algorithm moves to the

step 2 in order to prove that the provided counterexample (c) is
real or spurious (as it was described in Fig. 3.23).

The abstract models are built applying the following logic: Having
OM ′ and p (AG(α→ β)), a set of variables from OM ′ are converted to
“input variables”. The idea here is that all variables with a distance (d)
equals to δ′ from the variable β are transformed to “input variables”.
α is also transformed to an “input variable”, if the distance of α with
respect of β is d ≥ δ′ .

The initial value of δ′ is 0 and incremented to 1 in the first it-
eration (n = 1). This means that in the first iteration the resulting
abstract model (AM ′

1) is the most abstract model possible. In the
following iterations, depending on the decisions of the steps 3 and 5,
δ′ is increased (δ′ := δ′ + 1) or is not modified.

The algorithm 4 summarizes the proposed heuristic.

Algorithm 4: ModelAbstraction

input : D′g: dependency graph of the OM ′, p: requirement, δ′:
distance

output: AM ′
n: abstract model

V ← AbstractedV ariables;
Identify the variables to be abstracted V : d = δ′ from β. α is
also included in V (if α is a distance d ≥ δ′);
Removal of all the assignments of the abstracted variables V ;
Replace all the abstracted variables V , by non-deterministic
values;
return AM ′

n;
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3.7.4.3 Checking the safety property (q) on the same ab-
stract model (AM ′

n)

This step is included in the algorithm to extract more information
about the verification of p on AM ′

n before analyzing the counterexam-
ple c. The idea is to check the property q: AG(α→ ¬β), on the same
abstract model (AM ′

n) as p. q only differs from p on the negation of
β.

Verifying the property q on AM ′
n has a similar complexity as veri-

fying p on AM ′
n, because the model is the same and the property has

the same temporal operator (AG) and the same variables. Therefore
a TO should never happen in this step if it did not happen with p in
the previous step. However this possibility is also considered on the
algorithm. Therefore three possible answers can be provided by the
model checker:

1. True: q holds on AM ′
n and the algorithm is over. We can con-

clude that p does not hold on OM ′ and the provided counterex-
ample in the previous step (c) is real.

2. False: q does not hold on AM ′
n and the algorithm moves to the

step 3 in order to prove that the provided counterexample (c) is
real or spurious by transforming c in a reachability problem.

3. TO: no further information is provided and the algorithms moves
to the step 3 in order to prove that the provided counterexample
(c) is real or spurious by transforming c in a reachability problem.

Fig. 3.28 describes graphically the different verification cases that
may occur in this step. Again, the violet shading represents all the
possible models or state spaces where the properties q or p hold.

In 3.28(a), q holds in AM ′
n and therefore p does not hold on AM ′

n

and we can conclude that p does not hold on OM ′. The counterex-
ample c, provided in step 1, is real.

In 3.28(b), 3.28(c) and 3.28(d) q does not hold in AM ′
n and it is not

possible to determine if p holds on AM ′
n and OM ′ without analyzing

the counterexample.
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OM ′

AM ′
n

AG(α → ¬β)

OM ′

AM ′
n

AG(α → β)

(a) AG(α → ¬β) is true in AM ′
n, therefore AG(α → β) is false in

AM ′
n and OM ′

OM ′

AM ′
n

AG(α → ¬β)

OM ′

AM ′
n

AG(α → β)

(b) AG(α → ¬β) is false in AM ′
n and AG(α → β) is true in AM ′

n

and OM ′

OM ′

AM ′
n

AG(α → ¬β)

OM ′

AM ′
n

AG(α → β)

(c) AG(α → ¬β) is false in AM ′
n and AG(α → β) is false in AM ′

n

and OM ′

OM ′

AM ′
n

AG(α → ¬β)

OM ′

AM ′
n

AG(α → β)

(d) AG(α → ¬β) is false in AM ′
n and AG(α → β) is false in AM ′

n

but true in OM ′

Figure 3.28: Relationship between the verification cases for AG(α →
¬β) and AG(α → β) in abstract models
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3.7.4.4 Checking the reachability property (r) on the origi-
nal model (OM ′′)

The third step of the algorithm consists in extracting a reachability
property r from the counterexample c. In addition, using the property
preserving reduction techniques with this property, a new “original
model” OM ′′ is generated. Note that OM ′′ and OM ′ may be different
as the properties p and r contain different variables and therefore the
reduction techniques, such as, COI will eliminate different variables
from the model.

Initially r is verified on OM ′′ and three possible answers can be
provided by the model checker:

1. True: r holds on OM ′′, which means that c is real and therefore
p does not hold on OM ′.

2. False: r does not hold on OM ′′, which means that c is spurious
and the algorithm moves to the step 5.

3. TO: an answer cannot be provided and the algorithm moves to
the step 4.

It has to be noticed that the counterexample c can be complex
(it contains the variable values in any location of the IM). However,
as it was mentioned in Section 3.5, in PLC programs the relevant
values are at the end of the PLC cycle. This assumption reduces the
counterexample, as we need the value of the variables at the location
end of the IM.

For the reachability property, it is only needed the “input vari-
ables”, as they are the ones that add more possible behaviors to the
AM . For example, if a generated counterexample contains the “input
variables” γ and ζ, only these variables are part of the reachability
property, i.e. EF(γ&ζ).

In addition, even more complex counterexamples can be produced:
counterexamples containing variable values from different PLC cycles.
In this situation, several reachability property can be extracted. For
example, if the counterexample has three cycles, three reachability
properties checking the values of the variables at the end of each PLC
cycle and two reachability properties checking the transitions between
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the cycles could be extracted. If only one of the properties are not
satisfied, this means the counterexample is spurious.

Potentially in step 5 of the algorithm, spurious counterexample can
be added as invariants to AM ′

n and the process is repeated. However,
to the best of the author’s knowledge, most of the model checkers only
allow to add invariants without temporal operators (e.g. NuSMV),
therefore the two reachability properties checking the transitions be-
tween the cycles cannot be extracted.

The strategy in this situation is that only one reachability property
r is extracted, corresponding to the values of the transformed “input
variables” at the end of the first PLC cycle. If when verifying r on
OM ′′ the result is false and in step 5 an invariant is added, in the next
iterations of the algorithm new counterexamples will be generated and
the same strategy is applied.

3.7.4.5 Checking the reachability property (r) on an ab-
stract model (AM ′′

n)

When a TO is reached in the previous step, the property r is verified
in an abstract model AM ′′

n . The strategy of producing abstract models
here is the same as in the step 1 (algorithm 4), but now the inputs are
D′′g (dependency graph of the OM ′′), r and δ′′ and the output AM ′′

n .
In the first iteration, AM ′′

1 is automatically generated using a δ′′

= 1. Three possible answers can be provided by the model checker:

1. False: r does not hold on AM ′′
n and therefore it does not hold

on OM ′′ (as it was described in Fig. 3.24), which means that c
is spurious and the algorithm moves to the step 5.

2. True: r holds on AM ′′
n but we cannot determine if it holds on

OM ′′ (as it was described in Fig. 3.24). In this case, a new
abstract model AM ′′

n is created by incrementing δ′′ (δ′′ = δ′′ +
1), and the process is repeated.

3. TO: an answer cannot be provided and the algorithm moves to
the step 1 and a new iteration of the algorithm is executed with
a new abstract model AM ′

n (δ′ := δ′ + 1).
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3.7.4.6 Extracting an invariant from the counterexample
obtained in step 2 if m is ≤ 10

When the previous steps have determined that the counterexample c
is spurious, this step takes the decision of adding a new invariant to
the same abstract model AM ′

n or moving to a new abstraction AM ′
n+1

by incrementing δ′.
The strategy in this step is based on the relationship between the

abstract models and the maximum number of possible invariants for
all the abstract models (AM ′

1, AM ′
2, ..., AM ′

n), where AM ′
n correspond

to the original model OM ′.
Fig. 3.29 shows four examples corresponding with three different

PLC programs of the relationships between the abstract models and
the maximum number of invariants to be extracted if variable abstrac-
tion is applied. In all of the PLC programs we have verified, we found
the same pattern as it can be observed in this figure. In most of them,
for δ′ ≤ 2, the number of invariants is reasonable to be extracted but
from δ′ > 2 is more optimal to move to a new abstract model as it
contains more information and the computational problem is likely
smaller.

The mapping between the abstract models and the maximum num-
ber of possible invariants is automatically generated when the variable
dependency graph is created. Therefore, the strategy is the following:
for each AM ′

n with a maximum number of possible invariants m ≤ 10
(in our experiments it usually corresponds with δ′ ≤ 2) and the reach-
ability property verification result is false, an invariant is added to the
same AM ′

n. If m > 10, then no invariant is added and the algorithm
moves to a new iteration with a new AM ′

n + 1 by incrementing δ′ (δ′

:= δ′ + 1).
For example, if the reachability property is EF(γ&ζ), the extracted

invariant is the following:

INVAR: ¬
(
γ&ζ

)
3.7.4.7 Example of applicability

To help the understanding of this method, the following paragraphs
present the verification a very simple PLC program using this tech-
nique (obviously the model of this PLC program does not need ab-
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(a) QSDN UNICOS PLC program
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(c) PCO UNICOS object model

Figure 3.29: Relationship between the abstract models and the max-
imum number of possible invariants for the variable abstraction tech-
nique
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straction to be verified, but it is useful to understand the different
steps of this technique). The PLC code of this example is shown in
Listing 3.5. It consists of a simple function with six Boolean variables
and it uses two input variables from the IIM. The requirement to be
checked is the following:

“If b is true at the end of the PLC cycle, then a is always true
at the end of the same PLC cycle.”

The formalized requirement p using the patterns is:

AG
((

EoC ∧ b
)
→ a

)
EoC is the variable which is TRUE when the active location of the
IM is end and FALSE when is any other location.

1 FUNCTION Test1

2 VAR

3 a : BOOL;

4 b : BOOL;

5

6 w : BOOL;

7 x : BOOL;

8 y : BOOL;

9 z : BOOL;

10

11 END_VAR

12 BEGIN

13 z := I0.0 AND I0.1;

14 b := z;

15 w := I0.1 AND NOT I0.0;

16 y := z AND NOT w;

17 x := b AND I0.0;

18 a := x AND y;

19 END_FUNCTION

Listing 3.5: Example of ST code

The corresponding IM for this PLC program is represented in
Fig. 3.30.

Step 1: the variable dependency graph for this PLC program is
represented in Fig. 3.31.
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init

l1

I0.0 := random

end

Test1

l5

l6

x := b&¬I0.0

a := x&y

Variables

a : BOOL
I0.1 : BOOL
I0.0 : BOOL

I0.1 := random

l2

z := I0.0&I0.1

l3

b := z

l4

w := I0.1&¬I0.0

y := z&¬w

x : BOOL
w : BOOL
b : BOOL

z : BOOL
y : BOOL

Figure 3.30: Example of IM

012

b

BOOLz

BOOL

a

BOOL

y

BOOL

x

BOOL

w

BOOL

I0.0

BOOL

I0.1

BOOL

Figure 3.31: Variable dependency graph of the original model corre-
sponding to the PLC program example
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Following this algorithm, the resulting variable dependency graph
for the proposed PLC program example is represented in Fig. 3.32.

In the first iteration AM ′
1 is generated using δ := 1. The variables

x and y are at distance 1 from a, and therefore they are converted to
input variables. The variable b is not at distance 1 from b, therefore
it is also converted to an input variable.

01

a

BOOL

y

BOOL

x

BOOL

b

BOOL

Figure 3.32: Variable dependency graph of the abstract model corre-
sponding to the PLC program example

Due to this abstraction based on the variable dependency graph,
the IM of the new AM is presented in Fig. 3.33. It can be observed
that the variables w, z, I0.0 and I0.1 are eliminated and the variables
converted to input variables are y and z and a.

The verification result for p is false, and the generated counterex-
ample c is shown in Table 3.2.

Table 3.2: Counterexample for p on AM ′
1

Variable End of
Cycle1

a FALSE

b TRUE

x FALSE

y FALSE

Step 2: the safety property q is the following:
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init

l1

((((
((((

(
I0.0 := random

end

Test1

l5

l6

x := b&¬I0.0

a := x&y

Variables

a : BOOL
((((

(((I0.1 : BOOL
((((

(((I0.0 : BOOL

((((
((((

(
I0.1 := random

l2

(((
((((

(
z := I0.0&I0.1

l3

b := z

l4

(((
((((

((
w := I0.1&¬I0.0

y := z&¬w

x : BOOL
((((

((
w : BOOL
b : BOOL

((((
((

z : BOOL
y : BOOL

(a) Original IM

init

l1

b := random

end

Test1

a := x&y

Variables
a : BOOL

x := random

x : BOOL
b : BOOL

y : BOOL

y := random

(b) Abstract IM

Figure 3.33: Abstraction strategy applied to the example
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AG
((

EoC ∧ b
)
→ ¬a

)
EoC is the variable which is TRUE when the location of the IM is end
and FALSE when is a any other location.

In this case, the verification result is false again and we cannot
determine yet if c is real or spurious. Therefore the algorithm moves
to the step 3.

Step 3: the reachability property r generated from c is:

EF
(

EoC ∧ b ∧ ¬x ∧ ¬y
)

When verifying r in the new OM ′′, the result is false, which means
that c is spurious and the algorithm moves to the step 5.

Step 5: as the number of potential invariants for AM ′
1 is 8, an in-

variant is added to the same abstract model (AM ′
1). The extracted

invariant is the following:

INVAR: ¬
(
b ∧ ¬x ∧ ¬y

)
Step 1: p is verified again on AM ′

1 but containing the new invariant.
The verification result is false and the new counterexample c is shown
in Table 3.3.

Table 3.3: Counterexample for p on AM ′
1 + 1 invariant

Variable End of
Cycle1

a FALSE

b TRUE

x TRUE

y FALSE
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Step 2: the safety property q is verified again on AM ′
1 + invariant.

In this case, the verification result is false again and we cannot deter-
mine yet if c is real or spurious. Therefore the algorithm moves to the
step 3.

Step 3: the reachability property r generated from c is:

EF
(

EoC ∧ b ∧ x ∧ ¬y
)

When verifying r in the new OM ′′, the result is false, which means
that c is spurious and the algorithm moves to the step 5.

Step 5: as the number of potential invariants for AM ′
1 is 8, a second

invariant is added to the same abstract model (AM ′
1). The extracted

invariant is the following:

INVAR: ¬
(
b ∧ x ∧ ¬y

)
Step 1: p is verified again on AM ′

1 but also containing the second
invariant. The verification result is false and the new counterexample
c is shown in Table 3.4.

Table 3.4: Counterexample for p on AM ′
1 + 2 invariants

Variable End of
Cycle1

a FALSE

b TRUE

x FALSE

y TRUE

Step 2: the safety property q is verified again on AM ′
1 + 2 invari-

ants. In this case, the verification result is false again and we cannot
determine yet if c is real or spurious. Therefore the algorithm moves
to the step 3.
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Step 3: the reachability property r generated from c is:

EF
(

EoC ∧ b ∧ ¬x ∧ y
)

When verifying r in the new OM ′′, the result is false, which means
that c is spurious and the algorithm moves to the step 5.

Step 5: as the number of potential invariants for AM ′
1 is 8, a third

invariant is added to the same abstract model (AM ′
1). The extracted

invariant is the following:

INVAR: ¬
(
b ∧ ¬x ∧ y

)
Step 1: p is verified again on AM ′

1 but also containing the third
invariant. The verification result is true, the algorithm is over and we
can conclude that p holds on OM ′.

3.8 IM– verification tools transformation

This section describes the transformation from the IM to the modeling
languages used as inputs by the verification tools. Currently, three
tools have been integrated in the methodology: nuXmv, UPPAAL
and BIP. This section is divided in 3 parts explaining the rules for
each tool:

− Transformation rules from IM code to nuXmv.

− Transformation rules from IM code to UPPAAL.

− Transformation rules from IM code to BIP.

3.8.1 IM–nuXmv transformation

The following paragraphs contain a brief introduction of the nuXmv
modeling language and the transformation rules to produce nuXmv
code from the IM.
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3.8.1.1 nuXmv models

NuSMV is a symbolic model checker developed by FBK-IRST,
Carnegie Mellon University, University of Genova and University of
Trento4. In 2014, a new version of this verification tool called nuXmv
has been released.

The input language of nuXmv describes the input model as a Fi-
nite State Machine (FSM) that range from completely synchronous
to completely asynchronous. It uses BDD-based and SAT-based tech-
niques as model checking techniques. It provides some heuristics to
handle the state explosion problem and for the analysis of specification
it supports CTL and LTL formalisms.

The definition of a model consists of variable declarations and the
transition rules between states. It provides the following set of finite
data types: boolean, scalars and fixed arrays. Static data types can
also be constructed. There are two possible definition syntaxes for
the transition rules: with the TRANS keyword, (from state; to state)
pairs can be declared, with the ASSIGN keyword, the next states of
each variable can be declared. If no next state is defined for a variable,
then it will non-deterministically get a value from its range.

Consider a small example of a FMS with two states: ready and
busy. When the FSM is in ready and there is a request, it will move
to busy. If there is not request, it stays in ready. If the FSM is in the
state busy, it can move to ready or stay in busy non-deterministically.

Fig. 3.34 shows the graphical representation of the FSM and List-
ing 3.6 shows the corresponding nuXmv code. In NuSMV, The FSM
is represented by a MODULE. two variables are defined: request and
state. request is a boolean variable and state can have to values: ready
and busy. In the ASSIGN section, the value in the state is set. As
the next value of the request variable is not defined, it will have a
non-deterministic value for each state.

4http://nusmv.fbk.eu/
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[request]

ready

busy

FSM

[¬request]

Figure 3.34: Graphical represen-
tation as a FSM

1 MODULE main

2 VAR

3 request : boolean;

4 state : {ready, busy};

5 ASSIGN

6 init(state) := ready;

7 next(state) := case

8 state = ready & request =

TRUE : busy;

9 state = ready & request =

FALSE : ready;

10 TRUE : {ready, busy};

11 esac;

Listing 3.6: NuSMV code
example

All the details about the modeling language of nuXmv can be found
in Cavada et al. (2011). Note that there exists small differences be-
tween the NuSMV and nuXmv input language, for example two new
data types are introduced: real and integer. However, our models
remains the same for both model checkers.

3.8.1.2 Rules

These are the most relevant IM– nuXmv transformation rules, imple-
mented in the methodology:

Rule nuXmv1 For the automata network N , a new module main is
created. This will contain all the automaton instances. It contains
also a variable interaction, whose domain is the set of possible syn-
chronizations in the automata network (I = {i1, i2, . . . }) and the value
NONE. This variable and the main module are passed as parameters
to every module instance to be able to access them. The corresponding
nuXmv code fragment can be seen on Listing 3.7.

1 MODULE main

2 VAR

3 interaction : {NONE, i1, i2, ...};

Listing 3.7: Representation of automata network a in nuXmv
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Rule nuXmv2 For every automaton a, a new module a is created in
the nuXmv model with one single instance inst a. This module will
contain a variable loc which stores the current location of the automa-
ton. The domain of this variable is the set of possible locations in
automaton a (i.e., L = {l0, l1, . . . }). The default value of the vari-
able loc will be the initial location l0. The corresponding nuXmv code
fragment can be seen on Listing 3.8.

1 MODULE a(main, interaction)

2 VAR

3 loc : {l0, l1, l2, ...};

4 ...

5 ASSIGN

6 init(loc) := l0;

7 ...

8 MODULE main

9 VAR

10 inst_a : a(self, interaction);

Listing 3.8: Representation of automaton a in nuXmv

Rule nuXmv3 For every variable v in automaton a, a new variable
v is created in the nuXmv model a. Each variable will have a next-
value assignment statement in the assignment block of the module (See
Listing 3.9). If a variable is not modified by an assignment explicitly,
it will keep its value.

1 next(v) := case

2 ...

3 TRUE : v;

4 esac;

Listing 3.9: Next-value assignment statement

Rule nuXmv4 For every transition t = (l1, g, amt, i, l2) in automa-
ton a, a new assignment rule is added for the corresponding loc vari-
able. It will express that if the current location is l1, the next location
will be l2, if guard g is true and interaction i is enabled. If there is no
interaction or guard connected to transition t, the corresponding con-
dition can be omitted. This transformation can be seen on Fig. 3.35
and Listing 3.10.
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If the transition t contains variable assignment v := Expr for vari-
able v, the next-value assignment corresponding to v is extended too,
as it can be seen on Fig. 3.36 and Listing 3.11.

[g]

i1!

l1

l2

Figure 3.35: Automaton
fragment for a transition

1 next(loc) := case

2 ...

3 loc = l1 & g & interation

= i1 : l2;

4 ...

5 esac;

Listing 3.10: Corresponding
nuXmv code

[g]
i1!

l1

l2

v := Expr

Figure 3.36: Automaton
fragment for a variable as-
signment

1 next(v) := case

2 ...

3 loc = l1 & g &

interaction = i1 :

Expr;

4 ...

5 TRUE : v;

6 esac;

Listing 3.11: Corresponding
nuXmv code

Rule nuXmv5 For each synchronization i1 connecting transition t1
which goes from location l1 to l2 in automaton a, and transition t2
which goes from location l1 to l2 in automaton b, an invariant is added
to the model, as it can be seen on Fig. 3.37 and Listing 3.12.

[g1]
i1!

l1

l2

a

[g2]
i1?

l1

l2

b

Figure 3.37: Automaton frag-
ment for an interaction

1 INVAR (interaction = i1 <->

(inst_a.loc = s1 &

inst_b.loc = s2 & g1 &

g2));

Listing 3.12: Corresponding
nuXmv code

Listing 3.13 shows an example of a small ST code, the correspond-
ing IM is shown in Fig. 3.38 and the nuXmv code in Listing 3.14. The
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ST code contains a single function block which implements a counter
without any function calls. The corresponding IM has a single au-
tomaton with no interactions. The nuXmv model generated from IM
contains two modules: the module main for the network, and the
module counter for the single automaton.

1 FUNCTION_BLOCK counter

2 VAR_INPUT

3 enabled : BOOL;

4 reset : BOOL;

5 END_VAR

6 VAR_OUTPUT

7 cntr : INT := 0;

8 END_VAR

9 BEGIN

10 IF enabled THEN

11 cntr := cntr+1;

12 END_IF;

13 IF reset THEN

14 cntr := 0;

15 END_IF;

16 END_FUNCTION_BLOCK

Listing 3.13: PLC ST code

cntr := cntr + 1

[enabled]

init

l1

enabled := random

end

counter

l3

l4

l2

[¬enabled]

Variables
enabled : BOOL
reset : BOOL
cntr : BOOL

reset := random

[reset]
[¬reset]

cntr := 0

Figure 3.38: IM
1 MODULE COUNTER(interaction, main)

2 VAR

3 loc : {l0, end, l1, l2, l3, l4};

4 ENABLED : boolean;

5 RESET : boolean;

6 CNTR : signed word[16];

7 ASSIGN

8 init(loc) := l0;

9 next(loc) := case

10 loc = end : l0;

11 loc = l0 : l1;

12 loc = l1 & (ENABLED) : l2;

13 loc = l1 & (!(ENABLED)) : l3;

14 loc = l2 : l3;

15 loc = l3 & (RESET) : l4;

16 loc = l3 & (!(RESET)) : end;

17 loc = l4 : end;

18 TRUE: loc;

19 esac;

20 next(ENABLED) := case

21 loc = l0 : {TRUE, FALSE};

22 TRUE : ENABLED;

23 esac;

24 next(RESET) := case

25 loc = l0 : {TRUE, FALSE};

26 TRUE : RESET;

27 esac;

28 init(CNTR) := 0sd16_0;

29 next(CNTR) := case
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30 loc = l2 : (CNTR + 0sd16_1);

31 loc = l4 : 0sd16_0;

32 TRUE : CNTR;

33 esac;

34 MODULE main

35 VAR

36 interaction : {NONE};

37 inst_counter : COUNTER(interaction, self);

Listing 3.14: nuXmv code

Another example of nuXmv Code, which is generated automati-
cally from PLC code that contains two blocks is shown in Listing 3.15.
The original PLC code contains the main program (OB1) and an in-
stance of FB.

1 MODULE module_MAINBLOCK(interaction, main)

2 VAR

3 loc : {l0, end, l1, l2, l3, l4, l2_ret};

4 A1 : boolean;

5 A2 : boolean;

6 A3 : boolean;

7 ASSIGN

8 init(loc) := l0;

9 next(loc) := case

10 loc = end : l0;

11 loc = l0 : l1;

12 loc = l1 & (A2) : l2;

13 loc = l1 & (!(A2)) : l3;

14 loc = l2 & ((interaction = interactionFB_B1)) : l2_ret;

15 loc = l2_ret & ((interaction = interactionFB_B_ret2)) : l3;

16 loc = l3 : l4;

17 loc = l4 : end;

18 TRUE: loc;

19 esac;

20 next(A1) := case

21 loc = l0 : {TRUE, FALSE};

22 TRUE : A1;

23 esac;

24 init(A2) := FALSE;

25 next(A2) := case

26 loc = l3 : !(A2);

27 TRUE : A2;

28 esac;

29 init(A3) := FALSE;

30 next(A3) := case

31 loc = l4 : DB1.B2;

32 TRUE : A3;

33 esac;

34

35 MODULE module_DB1(interaction, main)

36 VAR

37 loc : {l0, end, l1};

38 B1 : boolean;

39 B2 : boolean;

40 ASSIGN
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41 init(loc) := l0;

42 next(loc) := case

43 loc = end & ((interaction = interactionFB_B_ret2)) : l0;

44 loc = l0 & ((interaction = interactionFB_B1)) : l1;

45 loc = l1 : end;

46 TRUE: loc;

47 esac;

48 init(B1) := FALSE;

49 next(B1) := case

50 main.MAINBLOCK.loc = l2 & ((interaction = interactionFB_B1)) : !(MAINBLOCK.

A2);

51 TRUE : B1;

52 esac;

53 init(B2) := FALSE;

54 next(B2) := case

55 loc = l1 : !(B1);

56 TRUE : B2;

57 esac;

58

59 MODULE main

60 VAR

61 interaction : {NONE , interactionFB_B1, interactionFB_B_ret2};

62 MAINBLOCK : module_MAINBLOCK(interaction, self);

63 DB1 : module_DB1(interaction, self);

64 INVAR

65 ((

66 (interaction = interactionFB_B1) <->

67 (MAINBLOCK.loc = l2 &

68 DB1.loc = l0)

69 ) & (

70 (interaction = interactionFB_B_ret2) <->

71 (DB1.loc = end &

72 MAINBLOCK.loc = l2_ret)

73 ));

74 DEFINE

75 PLC_START := (MAINBLOCK.loc = l1);

76 PLC_END := (MAINBLOCK.loc = end);

Listing 3.15: nuXmv model example

3.8.2 IM–UPPAAL transformation

The following paragraphs contain a brief introduction of the UPPAAL
modeling language and the transformation rules to produce UPPAAL
code from the IM.

3.8.2.1 UPPAAL models

UPPAAL is a toolbox for verification of real-time systems developed by
Uppsala University and Aalborg University. It provides an integrated
tool environment for modeling, validation and verification of real-time
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systems modeled as networks of timed automata, extended with data
types.

The input language of UPPAAL is based on the theory of timed
automata, including extra features like bounded integer variables and
urgency. The internal representation of the models is based on CDDs
(Clock Difference Diagrams). For the property specification it sup-
ports the TCTL (timed computation tree logic) formalism.

A timed automaton is a FSM extended with clock variables. All
the clocks progress synchronously. In UPPAAL, a system is modeled
as a network of several such timed automata in parallel.

Consider a similar small example, as the one presented for nuXmv,
consisting in a FMS with two states: ready and busy. When the FSM
is in ready and there is a request, it will move to busy. If there is
not request, it stays in ready. If the FSM is in the state busy, it will
remain there for five units of time (representing seconds) and then it
will move to ready.

Fig. 3.39 shows the graphical representation of the FSM and the
Listing 3.16 its representation in UPPAAL. In UPPAAL, the FSM is
represented by a template inside the network of automata (nta). In
the declaration section, two elements are defined: a Boolean variable
request and a clock x.

Figure 3.39: Screenshot of the UPPAAL model
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1 <?xml version="1.0" encoding="utf-8"?><!DOCTYPE nta PUBLIC ’-//Uppaal Team

//DTD Flat System 1.1//EN’ ’http://www.it.uu.se/research/group/darts/

uppaal/flat-1_1.dtd’>

2 <nta>

3 <declaration>

4 bool request;

5 clock x;

6 </declaration>

7 <template><name>test</name>

8 <location id="id0"><name x="56" y="72">ready</name></location>

9 <location id="id1"><name>busy</name><label kind="invariant">x &lt;= 5</

label></location>

10 <init ref="id0"/>

11 <transition><source ref="id1"/><target ref="id0"/>

12 <label kind="guard">x == 5</label>

13 </transition>

14 <transition><source ref="id0"/><target ref="id0"/>

15 <label kind="guard">!(request)</label>

16 <label kind="assignment">request = true</label>

17 </transition>

18 <transition><source ref="id0"/><target ref="id1"/>

19 <label kind="guard">request</label>

20 <label kind="assignment">x = 0, request = false</label>

21 </transition>

22 </template>

23 <system>

24 mainBlock = test();

25 system mainBlock;

26 </system>

27 </nta>

Listing 3.16: UPPAAL code example

All details about UPPAAL can be found in Amnell et al. (2001)
and Behrmann et al. (2004).

3.8.2.2 Rules

These are the most relevant IM– UPPAAL transformation rules, im-
plemented in the methodology:

Rule UPPAAL1 For the automata network N , a new network of
timed automata (nta) is created. This nta is composed of the fol-
lowing sections: the template section, which contains the automaton
definitions; the declaration section, which contains all the variables of
the model (accessible from any part of the model) and the channels
(chan) for the synchronizations; finally the section system, which con-
tains the instances of all the templates. An example of an UPPAAL
code fragment can be seen on Listing 3.17.
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1 <?xml version="1.0" encoding="utf-8"?><!DOCTYPE nta PUBLIC ’

-//Uppaal Team//DTD Flat

2 System 1.1//EN’ ’http://www.it.uu.se/research/group/darts/

uppaal/flat-1_1.dtd’>

3 <nta>

4 <declaration>

5 ...

6 </declaration>

7 <template>

8 ...

9 </template>

10 ...

11 <system>

12 mainBlock = TEMPLATE_mainBlock();

13 DB1 = TEMPLATE_DB1();

14 system mainBlock, a;

15 </system>

16 </nta>

Listing 3.17: Representation of automata network in UPPAAL

Rule UPPAAL2 For every automaton a, a template a is created
in the UPPAAL model with one single instance inst a in the system
section. For each location in automaton a (i.e., L = {l0, l1, . . . }), a
location element is created in this template. The default location will
be the initial location l0. An example of an UPPAAL code fragment
can be seen on Listing 3.18.

1 <template>

2 <name>a</name>

3 <location id="l0"><name>initial</name></location>

4 <location id="l2"><name>end</name></location>

5 <location id="l1"><name>l1</name></location>

6 <init ref="l0" />

7 ...

8 </template>

9 ...

10 <system>

11 inst_a = a();

12 </system>

Listing 3.18: Representation of automaton a in UPPAAL
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Rule UPPAAL3 For every variable v in automaton a, a new vari-
able v is created in the UPPAAL model in the declaration section as
this variable can be accessed globally at the IM model. An example
of an UPPAAL code fragment can be seen on Listing 3.19.

1 <declaration>

2 bool v;

3 </declaration>

Listing 3.19: Variables of automaton a in UPPAAL

Rule UPPAAL4 For every transition t = (l1, g, amt, i, l2) in au-
tomaton a, a new transition element is added to the correspond-
ing template. This transition is composed of the following elements:
source, representing the initial location of the transition; target, rep-
resenting the final location of the transition; label kind=”guard”, rep-
resenting the guard g if exists; label kind=”assignment”, representing
the assignment amt if exists; label kind=”synchronization”, represent-
ing the synchronization i if exists. Fig. 3.40 shows a basic transition in
IM, and Listing 3.40 shows its representation in UPPAAL. The vari-
able assignment is shown in Fig. 3.41 and the corresponding UPPAAL
code in Listing 3.21.

[g]

i1!

l1

l2

Figure 3.40: Automaton
fragment for a transition

1 <transition>

2 <source ref="l1"/>

3 <target ref="l2"/>

4 <label kind="guard">g</

label>

5 <label kind="

synchronization">i1

!</label>

6 </transition>

Listing 3.20: Corresponding
UPPAAL code
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[g]
i1!

l1

l2

v := Expr

Figure 3.41: Automaton
fragment for a variable
assignment

1 <transition>

2 <source ref="l1"/>

3 <target ref="l2"/>

4 <label kind="guard">g</

label>

5 <label kind="

synchronization">i1

!</label>

6 <label kind="assignment">

v=Expr</label>

7 </transition>

Listing 3.21: Corresponding
UPPAAL code

Rule UPPAAL5 For each synchronization i1 connecting transition
t1 which goes from location l1 to l2 in automaton a and transition t2
which goes from location l1 to l2 in automaton b, a
label kind=“synchronization” is added. The symbol ! and ? indicate
which transition is the caller transition and which is the callee respec-
tively. The corresponding IM is shown on Fig. 3.42 and the UPPAAL
code in Listing 3.42.
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[g1]
i1!

l1

l2

a

[g2]
i1?

l1

l2

b

Figure 3.42:
Automaton fragments
for a synchronization

1 // for automaton a
2 ...

3 <transition>

4 <source ref="a_l1"/>

5 <target ref="a_l2"/>

6 <label kind="guard">g1

</label>

7 <label kind="synchronization

">i1!</label>

8 </transition>

9 ...

10 // for automaton b
11 ...

12 <transition>

13 <source ref="b_l1"/>

14 <target ref="b_l2"/>

15 <label kind="guard">g2</

label>

16 <label kind="synchronization

">i1?</label>

17 </transition>

Listing 3.22: Corresponding
UPPAAL code

Listing 3.23 shows an example of a small ST code and Fig. 3.43
its corresponding IM. The corresponding UPPAAL code is shown in
Listing 3.24. The ST code contains a single function block that im-
plements a counter without any function calls. The corresponding IM
have a single automaton with no interactions. The UPPAAL model
generated from IM contains two modules: the module main for the
network, and the module counter for the single automaton.
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1 FUNCTION_BLOCK counter

2 VAR_INPUT

3 enabled : BOOL;

4 reset : BOOL;

5 END_VAR

6 VAR_OUTPUT

7 cntr : INT := 0;

8 END_VAR

9 BEGIN

10 IF enabled THEN

11 cntr := cntr+1;

12 END_IF;

13 IF reset THEN

14 cntr := 0;

15 END_IF;

16 END_FUNCTION_BLOCK

Listing 3.23: PLC ST code

cntr := cntr + 1

[enabled]

init

l1

enabled := random

end

counter

l3

l4

l2

[¬enabled]

Variables
enabled : BOOL
reset : BOOL
cntr : BOOL

reset := random

[reset]
[¬reset]

cntr := 0

Figure 3.43: IM
1 <?xml version="1.0" encoding="utf-8"?><!DOCTYPE nta PUBLIC ’-//Uppaal Team

//DTD Flat

2 System 1.1//EN’ ’http://www.it.uu.se/research/group/darts/uppaal/flat-1_1.

dtd’>

3 <nta>

4 <declaration>

5 bool enabled;

6 bool reset;

7 bool cntr;

8 </declaration>

9 <template>

10 <name>COUNTER</name>

11 <location id="init"><name>init</name></location>

12 <location id="end"><name>end</name></location>

13 <location id="l1"><name>l1</name></location>

14 <location id="l2"><name>l2</name></location>

15 <location id="l3"><name>l3</name></location>

16 <location id="l4"><name>l4</name></location>

17 <init ref="init" />

18 <transition>

19 <source ref="init"/>

20 <target ref="l1"/>

21 <label kind="assignment">

22 enabled = random_1

23 </label>

24 <label kind="select">

25 random_1 : int[0,1]

26 </label>

27 <label kind="assignment">

28 reset = random_2

29 </label>

30 <label kind="select">

31 random_2 : int[0,1]

32 </label>

33 </transition>

34 <transition>

35 <source ref="l1"/>
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36 <target ref="l2"/>

37 <label kind="guard">

38 enabled

39 </label>

40 </transition>

41 <transition>

42 <source ref="l2"/>

43 <target ref="l3"/>

44 <label kind="assignment">

45 cntr = cntr + 1

46 </label>

47 </transition>

48 <transition>

49 <source ref="l1"/>

50 <target ref="l3"/>

51 <label kind="guard">

52 !(enabled)

53 </label>

54 </transition>

55 <transition>

56 <source ref="l3"/>

57 <target ref="l4"/>

58 <label kind="guard">

59 reset

60 </label>

61 </transition>

62 <transition>

63 <source ref="l4"/>

64 <target ref="end"/>

65 <label kind="assignment">

66 cntr = 0

67 </label>

68 </transition>

69 <transition>

70 <source ref="l3"/>

71 <target ref="end"/>

72 <label kind="guard">

73 !(reset)

74 </label>

75 </transition>

76 <transition>

77 <source ref="end"/>

78 <target ref="init"/>

79 </transition>

80 </template>

81 <system>

82 mainBlock = COUNTER();

83 </system>

84 </nta>

Listing 3.24: Corresponding UPPAAL model

Another example of UPPAAL code, generated automatically from
PLC code with two blocks is shown in Listing 3.25. The original PLC
code contains the main program (OB1) and an instance of FB.
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1 <?xml version="1.0" encoding="utf-8"?><!DOCTYPE nta PUBLIC ’-//Uppaal Team

//DTD Flat

2 System 1.1//EN’ ’http://www.it.uu.se/research/group/darts/uppaal/flat-1_1.

dtd’>

3 <nta>

4 <declaration>

5 chan interactionFB_B1;

6 chan interactionFB_B_ret2;

7 // Global variables
8 // Local variables
9 // For automaton mainBlock

10 bool mainBlock_A1;

11 bool mainBlock_A2 = FALSE;

12 bool mainBlock_A3 = FALSE;

13 // For automaton DB1
14 bool DB1_B1 = FALSE;

15 bool DB1_B2 = FALSE;

16 </declaration>

17 <template>

18 <name>TEMPLATE_mainBlock</name>

19 <location id="MAINBLOCK_init"><name>initial</name></location>

20 <location id="MAINBLOCK_end"><name>end</name></location>

21 <location id="MAINBLOCK_l1"><name>l1</name></location>

22 <location id="MAINBLOCK_l2"><name>l2</name></location>

23 <location id="MAINBLOCK_l3"><name>l3</name></location>

24 <location id="MAINBLOCK_l4"><name>l4</name></location>

25 <location id="MAINBLOCK_l2_ret"><name>l2_ret</name></location>

26 <init ref="MAINBLOCK_init" />

27 <transition>

28 <source ref="MAINBLOCK_end"/>

29 <target ref="MAINBLOCK_init"/>

30 </transition>

31 <transition>

32 <source ref="MAINBLOCK_init"/>

33 <target ref="MAINBLOCK_l1"/>

34 <label kind="assignment">

35 mainBlock_A1 = random_1

36 </label>

37 <label kind="select">

38 random_1 : int[0,1]

39 </label>

40 </transition>

41 <transition>

42 <source ref="MAINBLOCK_l1"/>

43 <target ref="MAINBLOCK_l2"/>

44 <label kind="guard">mainBlock_A2</label>

45 </transition>

46 <transition>

47 <source ref="MAINBLOCK_l1"/>

48 <target ref="MAINBLOCK_l3"/>

49 <label kind="guard">!(mainBlock_A2)</label>

50 </transition>

51 <transition>

52 <source ref="MAINBLOCK_l2"/>

53 <target ref="MAINBLOCK_l2_ret"/>

54 <label kind="assignment">

55 DB1_B1 = !(mainBlock_A2)
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56 </label>

57 <label kind="synchronization">interactionFB_B1!</label>

58 </transition>

59 <transition>

60 <source ref="MAINBLOCK_l2_ret"/>

61 <target ref="MAINBLOCK_l3"/>

62 <label kind="synchronization">interactionFB_B_ret2?</label>

63 </transition>

64 <transition>

65 <source ref="MAINBLOCK_l3"/>

66 <target ref="MAINBLOCK_l4"/>

67 <label kind="assignment">

68 mainBlock_A2 = !(mainBlock_A2)

69 </label>

70 </transition>

71 <transition>

72 <source ref="MAINBLOCK_l4"/>

73 <target ref="MAINBLOCK_end"/>

74 <label kind="assignment">

75 mainBlock_A3 = DB1_B2

76 </label>

77 </transition>

78 </template>

79 <template>

80 <name>TEMPLATE_DB1</name>

81 <location id="DB1_init"><name>initial</name></location>

82 <location id="DB1_end"><name>end</name></location>

83 <location id="DB1_l1"><name>s4</name></location>

84 <init ref="DB1_init" />

85 <transition>

86 <source ref="DB1_end"/>

87 <target ref="DB1_init"/>

88 <label kind="synchronization">interactionFB_B_ret2!</label>

89 </transition>

90 <transition>

91 <source ref="DB1_init"/>

92 <target ref="DB1_l1"/>

93 <label kind="synchronization">interactionFB_B1?</label>

94 </transition>

95 <transition>

96 <source ref="DB1_l1"/>

97 <target ref="DB1_end"/>

98 <label kind="assignment">

99 DB1_B2 = !(DB1_B1)

100 </label>

101 </transition>

102 </template>

103 <system>

104 mainBlock = TEMPLATE_mainBlock();

105 DB1 = TEMPLATE_DB1();

106 system mainBlock, DB1;

107 </system>

108 </nta>

Listing 3.25: Synchronization of two automaton in UPPAAL
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3.8.3 IM–BIP transformation

The following paragraphs contain a brief introduction of the BIP mod-
eling language and the transformation rules to produce BIP code from
the IM.

3.8.3.1 BIP models

BIP is a component-based framework for rigorous system design aim-
ing at correctness-by-construction for essential properties of the de-
signed system. To this end, the implementation of the system is ob-
tained by automatic code generation preceded, where necessary, by a
series of transformations from a high-level model formally analyzed to
validate the required properties.

A BIP model consists of the following three layers:

1. The Behavior of the atomic components, modeled by LTS (La-
beled Transition Systems) extended with data. Each transi-
tion is labeled by a port name. Furthermore transitions can be
guarded by boolean conditions and trigger updates of the local
data.

2. The Interaction model is a set of interactions, i.e. sets of ports,
which defines allowed synchronizations between ports of different
atomic components.

3. The Priority model is a strict partial order on interactions, which
allows to restrict non-determinism when multiple allowed inter-
actions are possible simultaneously.

Figure 3.44 shows a system composed of two atomic components
and a binary connector, which imposes a strong synchronization be-
tween their respective transitions begin and work. Thus, the left com-
ponent can only “begin work” when the right component is in the On
mode. The three transitions end, on and off can only happen indi-
vidually, i.e. without any synchronization. Furthermore, the priority
on < end imposes that, when both transitions are possible (in the
state (Work,Off)) the transition end will be chosen (if the system has
received an instruction to switch off while working, the on instructions
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Work

Ready

endbegin

begin

end

On

Off

offon

work on

off

Priority: on < end

work

Figure 3.44: BIP model with two components

should be suppressed until the current job is done). Detailed presen-
tation of the BIP model and semantics can be found in Bliudze and
Sifakis (2007).

3.8.3.2 Rules

Before starting with the definition of the transformation rules from
IM to BIP, it is necessary to mention an important difference. BIP
language does not support global variables. Therefore this requires a
modeling strategy for the situation when one automaton is accessing
(reading or writing) variables from a different automaton or global
variables at the IM level. These are the most relevant IM– BIP trans-
formation rules, implemented in the methodology:

Rule BIP1 For the automata network N , a new package
PLCProgram is created. This will contain all the automaton defi-
nitions (atomic component or atom). The package contains the defi-
nition of the needed ports and connectors. Table 3.1 shows the data
type mapping between the IM and BIP. This mapping imposes the def-
inition of the required ports and connectors. The following port types
are created: (1) the voidPort port type is used by the connector for
the synchronization between atoms and for triggering the transitions
of the automaton. Basically voidPort is used for every transition that
does not contain any assignment amt with variables from a different
automaton or global variables (data transfer); (2) the intDataPort and
charDataPort ports are used when an assignment in the automaton a
contains variables from a different automaton or global variable (see
rules BIP3 and BIP6), according with the corresponding data type
(see Table 3.1).

The following connector types are created: (1) the SynchroAtoms
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connector is used for the synchronization between atoms and it uses
the voidPort ; (2) the Singleton connector is used for triggering sin-
gle transitions with no synchronization and it also uses the voidPort ;
(3) the IntDataTransferAtoms and the CharDataTransferAtoms are
used when an assignment in the automaton a contains variables from
a different automaton or global variable (see rules BIP3 and BIP6),
according with the corresponding data type (see Table 3.1). They use
the intDataPort and charDataPort port types.

As global variables are not supported in BIP but they are at the
IM, two special atoms called intGlobalVariable and charGlobalVariable
are created. They contain one single place INIT and two ports: p1
for reading the value of the variable and p2 for writing this value.
In addition a compound will be created containing all the atom and
connector instances. The corresponding BIP code fragment can be
seen on Fig. 3.26.

1 package PLCProgram

2 port type voidPort()

3 port type intDataPort(int data)

4 port type charDataPort(char data)

5 ...

6 atom type intGlobalVariable()

7 data int Value

8 export port intDataPort p1(Value)

9 export port intDataPort p2(Value)

10 place l0

11 initial to l0

12 on p1 from l0 to l0 do{}

13 on p2 from l0 to l0 do{}

14 end

15

16 atom type charGlobalVariable()

17 data int Value

18 export port charDataPort p1(Value)

19 export port charDataPort p2(Value)

20 place l0

21 initial to l0

22 on p1 from l0 to l0 do{}

23 on p2 from l0 to l0 do{}

24 end

25

26 connector type SynchroAtoms(voidPort a, voidPort b)

27 define a b
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28 end

29

30 connector type IntDataTransferAtoms(intDataPort a,

intDataPort b)

31 define a b

32 on a b down {b.data = a.data;}

33 end

34

35 connector type CharDataTransferAtoms(charDataPort a,

charDataPort b)

36 define a b

37 on a b down {b.data = a.data;}

38 end

39

40

41 connector type Singleton(voidPort a)

42 define a

43 end

44

45 compound type PLCProgram()

46 ...

Listing 3.26: Representation of automata network in BIP

Rule BIP2 For every automaton a, a new atom a is created in the
BIP model with one single instance or component inst a. The num-
ber of places is the set of possible locations in the automaton a (i.e.,
L = {l0, l1, . . . }). However if a transition t in the automaton contains
a variable assignment amt that contains variables from a different au-
tomaton, extra places, ports and connectors have to be created (See
rule BIP6). The default place will be the initial location l0. An ex-
ample of the the corresponding BIP code fragment can be seen on
Listing 3.27.

1 /* DEFINITION OF THE AUTOMATON */

2 atom type a()

3

4 /* VARIABLES */

5 data int B1

6 data int B2

7

8 /* PORTS */

9 export port VoidPort p1()

10 export port VoidPort p2()
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11 export port VoidPort p3()

12 export port intDataPort t1(B1)

13 export port intDataPort t2(B2)

14

15 /* STATES */

16 place l0, l1, l2, l3, l4

17

18 /* INITIAL STATE*/

19 initial to l0 do {

20 /* VARIABLE INITIALIZATIONS */

21 B1 = 0; // Default value
22 B2 = 0; // Default value
23 }

24

25 /* TRANSITIONS */

26 on p2 from l0 to l1

27 on t1 from l1 to l2

28 on p3 from l2 to l3 do {B2 = !((B1 == 1));}

29 on t2 from l3 to l4

30 on p1 from l4 to l0

31 end

32 ...

33 component a inst_a(param1)

Listing 3.27: Representation of automaton a in BIP

Rule BIP3 For every variable v in an automaton a, a local variable
v is created in the BIP atom a. If a variable v1 is used in the au-
tomaton a but it belongs to another automaton, an extra variable v1
is created in the atom a. In addition, for every variable v1 from an
automaton a that is accessed (read or written) by any other automa-
ton (global variable), a new instance of the atom intGlobalVariable or
charGlobalVariable is created, depending of the data type of v (the
mapping between PLC data types and BIP data types was shown in
Table 3.1). For every input variable, a random value will be assigned
to the variable. This can be done using C language as BIP framework
supports it. If the BIP language is used for this purpose, abstractions
and restrictions on the assignments have to be applied as currently
BIP does not support random values. A example is shown in List-
ing. 3.28. In the atom a the variables B1 and B2 are coming from a
different atom. In addition, B1Var and B2Var (instances of intGlob-
alVariable) are created representing global variables, and the variable
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A1 represents an input variable in the atom a, therefore it is initialized
to random at the beginning of the PLC cycle.

1 ...

2 atom type intGlobalVariable()

3 data int Value

4 export port intDataPort r(Value)

5 export port intDataPort w(Value)

6 place l0

7 initial to l0

8 on r from l0 to l0 do{}

9 on w from l0 to l0 do{}

10 end

11

12 /* DEFINITION OF THE AUTOMATON */

13 atom type a()

14

15 /* Input VARIABLES */

16 data int A1

17

18 /* VARIABLES From different atom*/

19 data int B2

20

21 /* PORTS */

22 export port VoidPort p1()

23 export port VoidPort p2()

24 export port VoidPort p3()

25 export port intDataPort t1(B1)

26 export port intDataPort t2(B2)

27

28 /* STATES */

29 place l0, l1, l2, l3, l4

30

31 /* INITIAL STATE*/

32 initial to l0

33

34 /* TRANSITIONS */

35 on p1 from l0 to l1 do {

36 A1 = (rand() % 2);}

37

38 on t1 from l1 to l2

39

40 on p3 from l2 to l3 do {

41 B2 = !A1 & B1;}

42

43 on t2 from l3 to l4
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44

45 on t2 from l4 to l0

46 end

47 ...

48 component intGlobalVariable B1Var()

49 component intGlobalVariable B2Var()

Listing 3.28: Representation of automaton a in BIP

Rule BIP4 For every transition t = (l1, g, amt, i, l2) in automaton
a, a new voidPort port and a transition labeled by a port name is
added to the atom a. It will express that if the current location is
l1, the next location will be l2, if guard g is true and synchronization
i1 is enabled. If there is no synchronization or guard connected to
transition t, the corresponding condition can be omitted. If t does
not contain a synchronization i1 a Singleton connector instance is
created. If t contains a synchronization i1 a SynchroAtoms connector
instance is created. If the transition t contains a variable assignment
amt containing variables from a different automaton, extra transitions
have to be created (See rule BIP6). Fig. 3.45 shows a basic transition
in IM and the corresponding BIP code in Listing 3.29. The variable
assignment is shown in Fig. 3.46 and the corresponding BIP code on
Listing. 3.30.

[g]

i1!

l1

l2

Figure 3.45: Automaton
fragment for a transition

1 ...

2 export port VoidPort p1()

3 ...

4 on p1

5 from l1 to l2 provided (g ==

1)

6 ...

7 connector VoidPortConnector i1(a

.p1, b.p1)

Listing 3.29: Corresponding BIP
code
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[g]
i1!

l1

l2

v := Expr

Figure 3.46: Automaton
fragment for a variable as-
signment

1 ...

2 export port VoidPort p1()

3 ...

4 on p1

5 from l1 to l2 provided (g ==

1) do {v = Expr;}

6 ...

7 connector VoidPortConnector i1(a

.p1, b.p1)

Listing 3.30: Corresponding BIP
code

Rule BIP5 For each synchronization i1 connecting a transition t1
which goes from location l1 to l2 in automaton a and a transition t2
which goes from location l1 to l2 in automaton b, a SynchroAtoms
connector instance has to be created. The corresponding IM is shown
Fig. 3.47 and the corresponding BIP code fragment can be seen on
Fig. 3.31.

[g1]
i1!

l1

l2

a

[g2]
i1?

l1

l2

b

Figure 3.47: Automaton
fragments for a synchroniza-
tion

1 connector VoidPortConnector

interaction1(a.p1, b.p2)

Listing 3.31: Corresponding
BIP code

Rule BIP6 For each amt in t that contains variables from different
automaton, extra places, transition and ports are created. For each
Boolean or Unsigned Char variable from different automaton or global
variable from an amt in a transition t, an instance of charDataPort
port type is created. For the rest of variables from a different automa-
ton or global variable from an amt in a transition t, an instance of
intDataPort port type is created. If a Boolean or Unsigned Char vari-
able from a different automaton or global variable is read a transition
labeled by a charDataPort and an extra place are created just before
of the assignment. If a Boolean or Unsigned Char variable from a
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different automaton or global variable is written, a transition labeled
by a charDataPort and an extra place are created just after the as-
signment. If a non Boolean or Unsigned Char variable from a different
automaton or global variable is read, a transition labeled by a intDat-
aPort and an extra place are created just before the assignment. If
a non Boolean or Unsigned Char variable from a different automaton
or global variable is written, a transition labeled by a intDataPort
and an extra place are created just after the assignment. An example
of a BIP code fragment containing variable assignments is shown on
Listing. 3.34.

Listing 3.32 shows an example of a small ST code and Fig. 3.32 its
corresponding IM. The corresponding BIP code is shown in 3.33. The
ST code contains a single function block implementing a counter with-
out any function calls. The corresponding IM has a single automaton
with no interactions. The BIP model generated from IM contains two
modules: the module main for the network and the module counter
for the single automaton.

1 FUNCTION_BLOCK counter

2 VAR_INPUT

3 enabled : BOOL;

4 reset : BOOL;

5 END_VAR

6 VAR_OUTPUT

7 cntr : INT := 0;

8 END_VAR

9 BEGIN

10 IF enabled THEN

11 cntr := cntr+1;

12 END_IF;

13 IF reset THEN

14 cntr := 0;

15 END_IF;

16 END_FUNCTION_BLOCK

Listing 3.32: PLC ST code

cntr := cntr + 1

[enabled]

init

l1

enabled := random

end

counter

l3

l4

l2

[¬enabled]

Variables
enabled : BOOL
reset : BOOL
cntr : BOOL

reset := random

[reset]
[¬reset]

cntr := 0

Figure 3.48: IM
1 @cpp(include="stdio.h")

2 package PLCProgram

3 /* PORT TYPE DEFINITION */

4 port type VoidPort()

5 atom type counter()

6 /* VARIABLES */

7 data int enabled

8 data int reset

9 data int cntr

10 /* PORTS */
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11 export port VoidPort p1()

12 export port VoidPort p2()

13 export port VoidPort p3()

14 export port VoidPort p4()

15 export port VoidPort p5()

16 export port VoidPort p6()

17 export port VoidPort p7()

18 export port VoidPort p8()

19 /* STATES */

20 place init, end, l1, l2, l3, l4

21 /* INITIAL STATE*/

22 initial to init do {}

23

24 /* TRANSITIONS */

25 on p1 from init to l1 do {

26 enabled = (rand() % 2);

27 reset = (rand() % 2);}

28 on p2 from l1 to l2 provided ((enabled == 1))

29 on p3 from l2 to l3 do {

30 cntr = cntr +1;}

31 on p4 from l1 to l3 provided ((enabled == 0))

32 on p5 from l3 to l4 provided ((reset == 1))

33 on p6 from l4 to end do {

34 cntr = 0;}

35 on p7 from l3 to end provided ((reset == 0))

36 on p8 from end to init

37 end

38

39 /* CONNECTOR TYPE DEFINITION */

40 connector type Singleton(voidPort p)

41 define p

42 end

43

44 /* COMPOUND */

45 compound type PlcCompound()

46 /* INSTANCES */

47 component MAINBLOCK counter()

48

49 /* CONNECTORS */

50 connector Singleton c1(MAINBLOCK.p1)

51 connector Singleton c2(MAINBLOCK.p2)

52 connector Singleton c3(MAINBLOCK.p3)

53 connector Singleton c4(MAINBLOCK.p4)

54 connector Singleton c5(MAINBLOCK.p5)

55 connector Singleton c6(MAINBLOCK.p6)

56 connector Singleton c7(MAINBLOCK.p7)

57 connector Singleton c8(MAINBLOCK.p8)

58 end

59 end

Listing 3.33: Corresponding BIP model

Another example of BIP Code, generated automatically from PLC
code with two blocks is shown in Listing 3.34. The original PLC code
contains the main program (OB1) and an instance of FB.
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1 @cpp(include="stdio.h")

2 package PLCProgram

3 /* PORT TYPE DEFINITION */

4 port type VoidPort()

5 port type intDataPort(int data)

6

7 atom type intGlobalVariable()

8 data int Value

9 export port intDataPort r(Value)

10 export port intDataPort w(Value)

11 place l0

12 initial to l0

13 on r from l0 to l0 do{}

14 on w from l0 to l0 do{}

15 end

16

17 /* AUTOMATA*/

18 /* DEFINITION OF THE AUTOMATON */

19 atom type MAINBLOCK_MAINBLOCK()

20

21 /* VARIABLES */

22 data int A1

23 data int A2

24 data int A3

25

26 /* VARIABLES From different atom*/

27 data int B1

28 data int B2

29

30 /* PORTS */

31 export port VoidPort p1()

32 export port VoidPort p2()

33 export port VoidPort p3()

34 export port VoidPort p4()

35 export port VoidPort p5()

36 export port VoidPort p6()

37 export port VoidPort p7()

38 export port VoidPort p8()

39

40 export port intDataPort t1(B1)

41 export port intDataPort t2(B2)

42

43 /* STATES */

44 place INITIAL, END, l1, l2, l3, l4, l5, l6, l7

45

46 /* INITIAL STATE*/

47 initial to INITIAL do {

48 /* VARIABLE INITIALIZATIONS */

49 A2 = 0; // Default value
50 A3 = 0; // Default value
51 }

52

53 /* TRANSITIONS */

54 on p1 from INITIAL to l1 do {

55 A1 = (rand() % 2);

56 }

57
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58 on p2 from l1 to l2 provided (A2 == 1)

59

60 on p3 from l1 to l5 provided (!((A2 == 1))

61

62 on p4

63 from l2 to l3 do {

64 B1 = !((A2 == 1));}

65

66 on t1 from l3 to l4

67

68 on p5 from l4 to l5

69

70 on p6 from l5 to l6 do {

71 A2 = !A2;}

72

73 on t2 from l6 to l7

74

75 on p7 from l6 to END do {

76 A3 = B2;}

77

78 on p8 from END to INITIAL

79

80 end

81

82 /* DEFINITION OF THE AUTOMATON */

83 atom type DB1_FB1()

84

85 /* VARIABLES */

86 data int B1

87 data int B2

88

89 /* PORTS */

90 export port VoidPort p9()

91 export port VoidPort p10()

92 export port VoidPort p11()

93

94 export port intDataPort t3(B1)

95 export port intDataPort t4(B2)

96

97 /* STATES */

98 place INITIAL, END, l1, l2, l3

99

100 /* INITIAL STATE*/

101 initial to INITIAL do {

102 /* VARIABLE INITIALIZATIONS */

103 B1 = 0; // Default value
104 B2 = 0; // Default value
105 }

106

107 /* TRANSITIONS */

108 on p10 from INITIAL to l1

109

110 on t3 from l1 to l2

111

112 on p11 from l2 to l1 do {

113 B2 = !((B1 == 1));}

114

115 on t4 from l1 to END
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116

117 on p9 from END to INITIAL

118

119 end

120

121

122 /* CONNECTOR TYPE DEFINITION */

123 connector type SynchroAtoms(voidPort a, voidPort b)

124 define a b

125 end

126

127 connector type IntDataTransferAtoms(intDataPort a, intDataPort b)

128 define a b

129 on a b down {b.data = a.data;}

130 end

131

132 connector type Singleton(voidPort a)

133 define a

134 end

135

136 /* COMPOUND */

137 compound type PlcCompound()

138 /* INSTANCES */

139 component MAINBLOCK_MAINBLOCK MAINBLOCK()

140 component DB1_FB1 DB1()

141 component intGlobalVariable B1Var()

142 component intGlobalVariable B2Var()

143

144 /* CONNECTORS */

145 connector VoidPortConnector interaction1(MAINBLOCK.p5, DB1.p10)

146 connector VoidPortConnector interaction2(DB1.p9, MAINBLOCK.p6)

147 connector IntDataTransferAtoms transfer1(MAINBLOCK.t1, B1Var.w)

148 connector IntDataTransferAtoms transfer2(B2Var.r, MAINBLOCK.t2)

149 connector IntDataTransferAtoms transfer4(B1Var.r, DB1.t4)

150 connector IntDataTransferAtoms transfer3(DB1.t3, B2Var.w)

151 connector Singleton c1(MAINBLOCK.p1)

152 connector Singleton c2(MAINBLOCK.p2)

153 connector Singleton c3(MAINBLOCK.p3)

154 connector Singleton c4(MAINBLOCK.p4)

155 connector Singleton c5(MAINBLOCK.p7)

156 connector Singleton c6(MAINBLOCK.p8)

157 connector Singleton c7(DB1.p11)

158 end

159

160 end

Listing 3.34: BIP example

3.9 Modeling timing aspects of PLCs

This section presents how the timing aspects of PLCs are integrated
in the proposed methodology. The modeling strategy for timers and
time in PLCs has been published in Fernández Adiego et al. (2014a).
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Timing operations are widely use in PLC control systems. This section
is focused in the modeling strategy for the three most commonly used
timers in PLC programs: TON, TOFF and TP timers.

A subset of the PLC timers were presented in detail in Section
2.2.4. Fig. 3.49 summarizes their behaviors to help understanding the
proposed modeling strategies.

In this methodology, a PLC timer is represented by a separated
automaton synchronized with the main program. Moreover, modeling
PLC timers also implies to model the TIME data type. However, as it
was mentioned previously, timed models usually contain a huge state
space, which cannot be handled by model checkers. Based on this ob-
servation, two different approaches are proposed for the methodology:

1. The first is a realistic timer representation, which is close to the
reality, enabling precise modeling and verification.

2. The second approach proposes an abstract time representation,
which is less accurate, but drastically reduces the state space of
the model.

Both approaches are described hereafter focusing on the time and
timer representation (for TON, TOFF and TP timers) and the prop-
erty specification. In addition, the proof that the abstract approach
simulates the realistic one is presented, thus guaranteeing that any
property verified on the abstract approach also holds in the realistic
one, even if it is much simpler.

3.9.1 Realistic approach

This first approach presents a realistic model of the PLC timers and
the time handling. This approach allows to specify properties with
explicit time in it. Having this realistic representation of the timer
implies that time needs also to be modeled realistically.

3.9.1.1 Time representation

Three main characteristics are considered to model time for this ap-
proach:
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Figure 3.49: Timer diagrams
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1. Time is modeled as a finite variable: it represents with high
fidelity the TIME data type in a PLC. However, instead of hav-
ing a signed 32-bits integer variable (like in Siemens PLCs), a
16-bits variable is used to represent this data type. This range
reduction is possible as the behavior of a PLC is cyclic and the
cycle time, the delays of the timers, and the delays in the require-
ments are much smaller than the range of this 16 bit variable.
The accuracy of this variable is 1 ms, as it is in real PLCs.
Because of this time representation, overflow of time has to be
considered when the timer is modeled, and also when the re-
quirement to be checked is expressed (e.g. the current time can
be smaller for a later event, see Fig. 3.50).

2. Time is incremented by adding the cycle time: In this
representation, time is not incremented by individual units of
time. It is instead incremented by the duration of the last PLC
cycle at the end of it. This assumption obviously simplifies the
global model and there is not any loss of accuracy when compar-
ing with the real implementation in a PLC, considering that the
timers are called at most once in each PLC cycle, which holds
for our real cases.

3. Cycle time is chosen non-deterministically: in order to
represent standard PLC with a varying cycle time, a random
value is generated at the end of each cycle to represent this. The
selected random values are between 5 ms and 100 ms, which is
a valid assumption based on the PLC systems at CERN.

3.9.1.2 TON timer representation

Given this finite time representation, the behavior of the TON timer is
represented in ST code as it is shown in Listing 3.35. In this code, the
input variables are IN and PT, and the output variables are Q and
ET. The variable ctime represents the current time and it is modeled
as previously explained. In addition, two variables are added: running
and start, where running is a Boolean variable representing when the
timer is working after a rising edge on IN and start contains the value
of ctime when IN has a rising edge.
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Figure 3.50: Consequences of finite time representation

1 FUNCTION_BLOCK TON

2 VAR_INPUT

3 PT : TIME;

4 IN : BOOL;

5 END_VAR

6 VAR_OUTPUT

7 Q : BOOL := FALSE;

8 ET : TIME; // elapsed time
9 END_VAR

10 VAR

11 running : BOOL;

12 start : TIME;

13 END_VAR

14 BEGIN

15 IF IN = FALSE THEN

16 Q := FALSE;

17 ET := 0;

18 running := FALSE; // t1
19 ELSIF running = FALSE THEN

20 start := CTIME;

21 running := TRUE; // t2
22 ELSIF CTIME - (start + PT) >= 0 THEN

23 Q := TRUE;

24 ET := PT; // t3
25 ELSE

26 IF NOT Q THEN

27 ET := CTIME - start;

28 END_IF; // t4
29 END_IF;

Listing 3.35: ST code of TON
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By applying the extended methodology, the corresponding automa-
ton of the TON ST code was produced. The equivalent state machine
is shown in Fig. 3.51. (Note that the assignments of ET are omitted
from the state machine to simplify the figure.) This state machine
contains three states corresponding to the three original states of the
TON: NR (not running; running=false, Q=false), R (running; run-
ning=true, Q=false) and TO (timeout; running=true, Q=true). The
transitions in the state machine (labeled as t1, t2, t3, t4) correspond to
the conditional statements in the ST code.

[¬in] [¬in]

[in ∧ P]

[in]

[in ∧ ¬P] [in ∧ P]

/ start:=CTIME

running=false
Q=false

running=true
Q=true

running=true
Q=false

[in ∧ ¬P]

P ≡ (CTIME− (start+ PT ) ≥ 0)

[¬in] NR

R TO
t2

t1

t1
t1

t3

t3

t4

t4

Figure 3.51: State machine of the realistic TON representation

At most one transition can happen in this state machine for every
call of the timer. Therefore, the timer cannot go from state NR to state
TO with one function call, which is valid if we assume that delays are
always greater than zero (PT > 0). According to the specification of
the Siemens TON implementation (Siemens (1998b)), the parameter
PT should be positive.

The potential state space (PSS) size of this timer representation
is 3.38 · 1016 and its reachable state space (RSS) is 5.91 · 1015 without
counting the variable ctime (as it is a global variable used by all the
timers).

3.9.1.3 TOFF timer representation

The same strategy is applied to the TOFF timer. The corresponding
ST code is shown in Listing 3.35. The input and output variables are
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the same than for the TON. In this case, running is a Boolean variable
representing when the timer is working after a falling edge on IN and
start contains the value of ctime when IN has a falling edge.

1 FUNCTION_BLOCK TOFF

2 VAR_INPUT

3 PT : TIME;

4 IN : BOOL;

5 END_VAR

6 VAR_OUTPUT

7 Q : BOOL := FALSE;

8 ET : TIME; // elapsed time
9 END_VAR

10 VAR

11 running : BOOL;

12 start : TIME;

13 END_VAR

14 BEGIN

15 IF IN = TRUE THEN

16 Q := TRUE;

17 ET := 0;

18 running := FALSE; // t1
19 ELSIF running = FALSE THEN

20 start := CTIME;

21 running := TRUE; // t2
22 ELSIF CTIME - (start + PT) >= 0 THEN

23 Q := FALSE;

24 ET := PT; // t3
25 ELSE

26 IF Q THEN

27 ET := CTIME - start;

28 END_IF; // t4
29 END_IF;

Listing 3.36: ST code of TOFF

As well as for the TON, by applying the extended methodology,
the corresponding automaton of the TOFF ST code was produced and
the equivalent state machine is shown in Fig. 3.52. This state machine
contains the same states and transitions as the previous timer.

3.9.1.4 TP timer representation

The same strategy is applied to the TP timer. The corresponding ST
code is shown in Listing 3.37. The input and output variables are the
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[in] [in]

[¬in ∧ P]

[in]

[¬in ∧ ¬P] [¬in]

/ start:=CTIME

running=false
Q=true

running=false
Q=false

running=true
Q=true

P ≡ (CTIME− (start+ PT ) ≥ 0)

[¬in]

NR

R TO
t2

t1

t1
t1

t3

t3
t4

Figure 3.52: State machine of the realistic TOFF representation

same than for the previous timer as well.

1 FUNCTION_BLOCK TP

2 VAR_INPUT

3 PT : TIME;

4 IN : BOOL;

5 END_VAR

6 VAR_OUTPUT

7 Q : BOOL := FALSE;

8 ET : TIME;

9 END_VAR

10 VAR

11 running : BOOL;

12 start : TIME;

13 END_VAR

14 BEGIN

15 IF Q = FALSE AND running = FALSE THEN

16 IF IN THEN

17 start := CT;

18 running := TRUE;

19 Q := TRUE; // t1
20 END_IF;

21 ELSIF Q = TRUE AND running = TRUE THEN

22 IF IN AND (CTIME - (start + PT) >= 0) THEN

23 running := TRUE;

24 Q := FALSE; // t2
25 ELSIF NOT IN AND (CTIME - (start + PT) >= 0) THEN
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26 running := FALSE;

27 Q := FALSE; // t3
28 END_IF;

29 ELSIF Q = FALSE AND running = FALSE THEN

30 IF NOT IN THEN

31 running := FALSE;

32 Q := FALSE; // t4
33 END_IF;

34 END_IF;

35 END_FUNCTION_BLOCK

Listing 3.37: ST code of TP

As well as for the previous timers, by applying the extended
methodology, the corresponding automaton of the TP ST code was
produced and the equivalent state machine is shown in Fig. 3.53. This
state machine contains the same states and transitions as the previous
timers.

[¬in ∧ P] [¬in]

[in ∧ P]

[in]

[¬P] [in]

/ start:=CTIME

running=false
Q=false

running=true
Q=true

running=true
Q=false

P ≡ (CTIME− (start+ PT ) ≥ 0)

[¬in] NR

R TOt2

t1

t3

t4

Figure 3.53: State machine of the realistic TP representation

3.9.1.5 Property specification

Using the methodology and the developed tool, input models for
nuXmv are automatically generated. The experimental results pre-
sented here are produced using this model checker. The goal is to
verify properties with explicit time in them, like:
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“if C1 is true, after tm time C2 will be true, if C1 remained true.”

Where C1 and C2 are Boolean expressions, C1 contains input vari-
ables and parameters and C2 contains output variables.

CTL and LTL do not provide this expressiveness, for this reason
a monitor or observer automata is added to the model. The goal of
the monitor is to check C1, and if it is true for at least tm time, the
monitor output value Mout is set to true.

By using such monitor, the requirement is simplified as:

“if Mout is true, then C2 should be true.”

This requirement can be formalized easily in CTL:

AG
(

Mout→ C2

)
An example for this monitor usage can be seen in Fig. 3.54. As

the computed values are assigned to the real outputs of the PLC only
at the end of the PLC cycle, the requirements should be checked only
at this point. The general CTL expression extended with it is the
following:

AG
(

EoC ∧
(
Mout→ C2

))
Where EoC is true, iff the execution is at the end of a PLC scan

cycle.
The behavior of this monitor is similar to the TON timer, but

it is independent of the rest of the program logic, therefore Mout
will be true after tm time, if C1 is true and it can be used to verify
if outn holds the property. Notice that it is not enough to save a
“timestamp” tC1 when C1 is true, and formalize the requirement as
AG((ctime ≥ tC1 + tm) → C2), because the ctime variable is a finite
integer, thus it can overflow, as it is illustrated by Fig. 3.50.

This technique for specification can be used with any timer mod-
els. Chapter 4 will provide some experimental results regarding this
modeling approach.

3.9.2 Abstract approach

The models created by applying the realistic approach have a big state
space even if only one TON is modeled. If this approach is applied
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Figure 3.54: Verification configuration for OnOff model extended with
monitor

to large models, probably verification would not be even possible. For
that reason, a second approach is proposed, which is based on a data
abstraction of the first approach.

3.9.2.1 Time representation

In this case, time is not represented explicitly in the model, the vari-
able ctime representing the current time is not maintained. Therefore
properties with explicit time cannot be validated.

3.9.2.2 TON timer representation

This timer representation approach consists in a non-deterministic
model produced as an abstraction of the realistic approach. The cor-
responding state machine is presented in Figure 3.55.

Similarly to the realistic model, this model has three possible in-
ternal state: NR (not running), R (running) and TO (timed out).
If the input IN is true, the TON will start to run (goes to state
R). After that, the TON can stay in the state R or go to TO non-
deterministically, which means, we do not know when the timer will
stop. However, by adding a fairness constraint to the model, it is en-
sured that the timer cannot stay in state R for infinite time. Only one
transition can be fired in one PLC cycle, i.e., the timer cannot go from



3.9. Modeling timing aspects of PLCs 171

state NR to state TO with one call. This corresponds to the previously
introduced PT > 0 constraint. Figure 3.56 shows the timing diagram
of the abstract approach compared with the realistic one. The size of
the PSS and RSS for this model is 6 comprising the Boolean input
variable, reducing significantly the size of the realistic approach but
introducing some limitations of the property specification.

NR

R TO

[¬in]
[¬in]

[in]

[in]

[in] [in]

[¬in]

Q=false

Q=false Q=true

<∞

Figure 3.55: State machine of the abstract TON representation

This representation can result false positives, meaning that veri-
fication tools can give spurious counterexample that cannot occur in
reality. However false negatives can never occur, therefore if a property
holds in the abstract model, it holds in the real system.

3.9.2.3 TOFF timer representation

Following the same strategy, the TOFF abstract model is represented
in Fig. 3.57.

3.9.2.4 TP timer representation

Following the same strategy, the TP abstract model is represented in
Fig. 3.58.
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Figure 3.56: Timing diagram of TON modeled using different ap-
proaches

3.9.2.5 Property specification

Obviously, this abstract model implies certain limitations in the spec-
ification properties. Explicit delay times cannot be expressed in the
requirement, but safety or liveness properties can be expressed, for
example:

“if a is sometime true and remains true forever, eventually b will
be true”.

Where a and b are variables affected by timers in the PLC program.
Chapter 4 will provide some experimental results using these mod-

els.

3.9.3 Refinement between the two approaches

We can verify that the realistic approach indeed refines the abstract
approach. Using this proof, we are able to guarantee that requirements
verified on the abstract model – where verification is easier – also hold
on the realistic model – where automatic verification would be harder
and more time consuming. However, the false result on the abstract
model does not imply false result on the realistic model. Using more
abstract models for verification purposes and lifting results to realistic
models is a well known technique (Clarke et al. (1999); Loiseaux et al.
(1995)) and we apply it to the PLC domain. Specifically to PLC timer
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Figure 3.57: State machine of the abstract TOFF representation

models where we perform a proof in a similar fashion as the refinement
proofs described in Blech and Grégoire (2011).

For example, for the TON model, the proof is done by first es-
tablishing a simulation relation S between realistic (Fig. 3.51) and
abstract automaton (Fig. 3.55) that relates the states of the different
automata with each other such that only the following holds:

S(NRrealistic,NRabstract)
S(Rrealistic, Rabstract)

S(TO realistic,TOabstract)

Furthermore, the simulation relation ensures that Q has the same
value in all states. In order to finish the proof, we show that:

− The initial states are in the simulation relation: NRrealistic and
NRabstract are in the simulation relation and the value of Q is the
same, false.

− Each pair of realistic and abstract model state transitions with
a corresponding condition – regarding the value of in – from
possible states in the simulation relation S lead to a pair of
states for which S holds again. Most cases are trivial except: the
transition of the [in]-guarded transition in the abstract model
in the (TO realistic,TOabstract) state pair has two corresponding
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Figure 3.58: State machine of the abstract TP representation

transitions in the realistic model since we do not regard the
value of P in the abstract model.

Due to the fairness constraint in the abstract model, its state can-
not be Rabstract for infinite time. However, this is also true for the
corresponding NRrealistic state of the realistic model if it is called suf-
ficiently often5, because the delay time PT is finite.

Based on the definition of the simulation relation, safety properties
making use of the atomic elements – like conditions on the used vari-
ables Q and in – that are preserved in S are also preserved between
abstract and realistic model. However, the abstract model can impose
false positives, i.e. the given abstract counterexamples can never occur
in the in the real system.

3.10 Process modeling

The previous sections were dedicated to describe the rules for building
the formal models. However there is a missing part of the system,
that was not considered: the controlled process. Process information

5It is not defined in the standard or in the manual, but our implementation
works properly, if the elapsed time between two calls is less than the maximal
value of the TIME data type, which is about 30 s represented on 16 bits or 24
days represented on 32 bits. Usually, the timers are called in every PLC cycle,
thus this is not a limitation. This is also needed for the timers to work properly.
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is important but building the process model is a very challenging and
time consuming task (as extracting the information from the process
is done manually). In addition, building a complete model of the
controlled process increases significantly the state space of models.

Other authors (e.g. Machado (2006), Machado et al. (2003a),
Machado et al. (2003b), Machado and Eurico (2013)) studied the use
of process information to verify PLC programs. Their results show
that some properties can only be verified using the process information
and if this information is not included, false positives are produced,
i.e. the verification tool will report a bug that can never occur in the
real system.

Considering the following PLC code 3.38. It shows an example
where the process information is necessary.

1 FUNCTION_BLOCK Valve

2 VAR_INPUT

3 AuOnR: BOOL := FALSE;

4 AuOffR: BOOL := FALSE;

5 HFOn: BOOL := FALSE;

6 HFOff: BOOL := FALSE;

7 END_VAR

8 VAR_OUTPUT

9 Status : BOOL;

10 Open: BOOL;

11 Close: BOOL;

12 END_VAR

13 BEGIN

14 IF AuOnR AND NOT AuOffR THEN

15 Open := TRUE;

16 END_IF;

17 IF AuOffR AND NOT AuOnR THEN

18 Close := TRUE;

19 END_IF;

20 IF Open AND HFON AND NOT HFOff THEN

21 Status := TRUE;

22 ELSIF Close AND HFOff AND NOT HFON THEN

23 Status := FALSE;

24 END_IF;

25 END_FUNCTION_BLOCK

Listing 3.38: ST code example

This PLC program consists in a single FB representing the behav-
ior of a digital valve. It has 4 inputs and 3 outputs variables.
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− AuOnR is an input variable that represents an order to open the
valve.

− AuOffR is a input variable that represents an order to close the
valve.

− HFOn is a input variable that represents the feedback from the
valve, indicating that the valve is open.

− HFOff is a input variable that represents the feedback from the
valve, indicating that the valve is close.

− Status is a output variable that represents the status of this
digital valve (information sent to the SCADA).

− Open is a output variable that represents the order to open the
digital valve (information sent to the process).

− Close is a output variable that represents the order to close the
digital valve (information sent to the process).

In this case, the requirement is the following:

“If Open is TRUE and HFOn is TRUE, Status will be true at
the end of the PLC cycle.”

The corresponding CTL formula is:

AG
((

EoC ∧ Open ∧ HFOn
)
→ Status

)
In this trivial example is obvious that the verification result by

using nuXmv is FALSE, due to HFOff. The relevant information ex-
tracted from the counterexample is presented in Table 3.5.

However, if the hardware of the valve is correct, the input variables
HFOn and HFOff can never be equal to true at the same time, as it
means that the valve is open and close at the same moment. This
information can be added to the methodology as an invariant:

INVAR: ¬
(
HFOn ∧ HFOff

)
After adding the invariant, model checking is applied again and the

result of the verification is TRUE. It shows that without some infor-
mation from the controlled process, some properties cannot be proved
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Table 3.5: Variables values from the counterexample at the end of the
PLC cycle

Variable End of
Cycle1

AuOffR FALSE

AuOnR TRUE

HFOff TRUE

HFOn TRUE

Close FALSE

Open TRUE

Status FALSE

that they are TRUE so false positives are produced (the model checker
gives as a result a spurious counterexample for the property). How-
ever, it also implies that by adding wrong invariants, we can hide bugs
in the PLC program and produce false negatives in the verification,
which is much more dangerous.

In general in this methodology, the formal model of the controlled
process is not included, due to the complexity of building these models
and because it can potentially increment the state space of the models.
However, invariants with the process information can be manually
added to the methodology when needed.

3.11 Verification and counterexample

analysis

Once the input models for the verification tools are automatically gen-
erated and reduced, formal verification can be applied and the analysis
of the results can be performed. This step of the methodology has been
published in Fernández Adiego et al. (2014c).
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3.11.1 Counterexample analysis

The counterexample produced by the model checkers when a property
is not satisfied, provides the relevant information to identify the source
of the problem in the PLC program.

The model checker generates detailed counterexamples, containing
the value of each variable after each transition in the model (corre-
sponding to the execution of an instruction in the PLC code). How-
ever, these counterexamples are usually too long. In some of our ex-
periments, the counterexample produced by nuXmv contains around
37 500 lines. This information is too detailed for human analysis. How-
ever, it can be automatically reduced, as it is enough to know the value
of the input and output variables at the end of each PLC cycle, thus
the variable valuations of the intermediate states can be removed.
By removing the unnecessary states and the temporary variables, the
counterexample for the same requirement can be reduced to approxi-
mately 100 lines. This information can be given to the PLC program
developer for human analysis.

The counterexample can also be used to demonstrate the problem
in a real environment. Using the nuXmv’s counterexample, a demon-
strator PLC code can be easily generated by adding a module that
simulates the variables from the counterexample and checks the ex-
pected result. By doing so, it can be proved that the counterexample
is not caused by a mistake during the model generation or due to bad
reductions.

Listing 3.39 shows an extract from the generated counterexample
of a real PLC program and Listing 3.40 the corresponding part of the
PLC demonstrator source code.

Furthermore, the PLC demonstrator can help us to reduce the
counterexample. Usually, most of the input variables do not have any
effect on the evaluated requirement. Those variables can be fixed to
constant values thus helping to focus on the input value changes that
causes the violation of the requirement.
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1 -> State: 1.17 <-

2 inst.HLD = FALSE

3 inst.MANREG01[8] = TRUE

4 inst.MANREG01[9] = FALSE

5 inst.MANREG01[10] = FALSE

6 inst.MANREG01[11] = FALSE

7 inst.AUAUMOR = FALSE

8 inst.AUIHMMO = FALSE

9 inst.AUIHFOMO = FALSE

10 ...

Listing 3.39:
Counterexample fragment

1 onoff1.HLD := FALSE;

2 onoff1.ManReg01 :=

3 2#0000000000000001;

4 onoff1.AuAuMoR := FALSE;

5 onoff1.AuIhMMo := FALSE;

6 onoff1.AuIhFoMo := FALSE;

7 ...

8 CPC_FB_ONOFF.onoff1();

9 // Check:
10 b := onoff1.AuMoSt;

Listing 3.40: Corresponding
ST code demonstrator

In the current example, by using the counterexample and the re-
duced PLC demonstrator, we were able to identify the source of the
problem. It turned out that from Forced mode the logic cannot switch
to Auto mode. It can only be done by the operator. The correspond-
ing part of the implementation can be seen in Fig. 3.41 6. The code
shows the transition from Forced mode to Auto mode, which does not
take into account the AuAuMoR input. This behavior is correct and
intentional, in this case the source of the problem is not the PLC code,
the specification contains a mistake.

1 IF (MMoSt_aux AND (E_MAuMoR OR E_AuAuMoR)) OR

2 (FoMoSt_aux AND E_MAuMoR) OR

3 (SoftLDSt_aux AND E_MAuMoR) OR

4 (MMoSt_aux AND AuIhMMo) OR

5 (FoMoSt_aux AND AuIhFoMo) OR

6 NOT (AuMoSt_aux OR MMoSt_aux OR

7 FoMoSt_aux OR SoftLDSt_aux) THEN

8 (∗ Setting mode to Auto ∗)
9 AuMoSt_aux := TRUE;

10 MMoSt_aux := FALSE;

11 FoMoSt_aux := FALSE;

12 SoftLDSt_aux := FALSE;

13 END_IF;

Listing 3.41: Extract of the source code causing the violation of the

6In the source code, the variables starting with “E ” indicate the rising edges
of the corresponding inputs. AuMoSt aux is true if the current mode is Auto. The
meaning of variables MMoSt aux, FoMoSt aux, and SoftLDSt aux are similar, for
the other modes.
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requirement

In the bottom part of Fig. 3.59, it can be observed that the PLC
demonstrator generation is integrated in the methodology.

PLC code
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Figure 3.59: Integration of the proposed methodology on the PLC
program development process.

Many safety and liveness requirements have been verified using this
methodology and the number of discrepancies between the specifica-
tion and PLC program were significant even if testing was previously
applied. In all these cases, three possible situations were identified as
the source of the problem: a bug in the implementation, a mistake in
the specification or an incomplete specification.
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3.12 Methodology CASE tool

This methodology has been implemented in a CASE tool using EMF
(Eclipse Modeling Framework described in Steinberg et al. (2009)) and
Xtext technologies (Eysholdt and Behrens (2010)). The grammar of
the PLC languages is implemented as a Xtext grammar. The IM is
implemented as an EMF metamodel as it can be seen in Fig. 3.60. The
transformation rules from the PLC languages to the IM, the reduction
techniques and the transformation rules from IM to nuXmv, UPPAAL
and BIP have been implemented using Xtend (Xtend website (2014))
and Java. The Xtext framework provides a parser, an over linker, an
interpreter, an editor, and many other features to help the developer
(Xtext website (2014)).
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Figure 3.60: EMF implementation

The tool provides a graphical interface, where the user can create
a verification project. The user has to provide the PLC code and the
properties to verify, and the tool returns the verification result (TRUE
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and FALSE) and a report with all the details of the counterexample
analysis. Figures 3.61, 3.62, 3.63 and 3.64 show some screenshots of
the tool.

Figure 3.61: CASE tool editor for the PLC code

Figure 3.62: CASE tool property description

3.13 Summary of the chapter

This chapter presented the contribution of this thesis: a general ap-
proach to apply formal verification to PLC programs. Each step of
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Figure 3.63: CASE tool property formalization by using patterns

Figure 3.64: CASE tool verification report

the methodology has been described in a separate section as well as
the syntax and semantics of the IM. These methodology hides any
complexity related to formal methods from control engineers. For
that purpose, the methodology provides a solution for the following
challenges:

1. Requirements specification.

2. PLC hardware modeling.

3. PLC code – formal models transformation.
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4. Time and timers modeling.

5. Process modeling.

6. Counterexample analysis.

In addition, a brief discussion about the CASE tool that supports
this methodology is presented.



Chapter 4

Case studies and
measurements

4.1 Introduction

This chapter presents the experimental results of applying the pro-
posed methodology to real-life PLC programs. The selected systems
have been developed and deployed at CERN using the UNICOS frame-
work and Siemens S7 PLCs. The verification results presented in this
chapter, are obtained using nuXmv as it is currently the verification
tool which give us better results from the verification point of view.
The measurements were performed on a PC with Intel R© CoreTM i5-
3230M 2.60 GHz CPU, 8 GB RAM, on Windows 7 x64.

This chapter is divided in 3 main parts:

1. Section 4.2 introduces the UNICOS framework describing the
control system architecture obtained when applying it.

2. Section 4.3 describes the experimental results of applying the
methodology to a PLC program corresponding to one single
UNICOS object. This PLC code consists of one main FB and
some additional FCs and timers.

3. Finally, Section 4.4 presents the experimental results of a com-
plete PLC program of the LHC cryogenics control system. This
PLC program contains hundreds of FBs, FCs and DBs.

185
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4.2 UNICOS framework

UNICOS is an object-based control system framework developed at
CERN and based on the IEC 61512 (2009) standard. This frame-
work provides a methodology, a library of objects and a set of code
generation tools to produce control programs.

UNICOS was born more than a decade ago to provide a solution for
the LHC cryogenics control system. The first reference about a control
system developed with UNICOS can be found in Casas-Cubillos et al.
(2002) and the first reference about the framework itself in Gayet and
Barillère (2005). Since that first development, the framework has been
enriched, becoming a more general and flexible framework. The last
updates can be found in Blanco Viñuela et al. (2011).

When developing a control system using the UNICOS framework,
control and process engineers design and describe the control strategy
in a high level specification and the automatic generation tools pro-
duce the control code for the control layer and the configuration of the
supervision layer. In addition, the necessary code for the communica-
tion between these layers is also automatically generated.

The framework produces control programs for different control de-
vices, i.e. PLCs or industrial PCs. Regarding the type of process and
the control devices used, UNICOS can be divided in different packages
as it is show in Fig. 4.1.

Figure 4.1: Different UNICOS packages

Here we focus on the CPC (Continuous Process Control) pack-
age, which produces control systems based on PLCs at the control
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layer (currently Siemens and Schneider PLCs) and on the WinCC OA
SCADA (from Siemens) at the supervision layer. This package pro-
duces mainly control systems for continuous processes. The common
architecture of the control systems developed with UNICOS CPC is
shown in Fig. 4.2. Details about the PLC code generated by the UNI-
COS CPC package are presented in the following paragraphs.

Figure 4.2: UNICOS CPC control system architecture

By using the UNICOS CPC package, the control engineer designs
a model of the process units (e.g. sensors, actuators, subsystems,
etc.). On this model, every element from the process instrumentation
is represented by the UNICOS CPC objects (also called UNICOS CPC
baseline objects). These objects are based on the UNICOS metamodel
described in Copy et al. (2011) and classified in families. There are 4
UNICOS CPC object families:

1. I/O object family: they represent the inputs and output signals
connecting the PLC inputs and outputs with sensors and actua-
tors. For example, a temperature sensor (which is connected to
the digital input card of the PLC) is represented by a “Digital-
Input” object.

2. Field object family: they represent instrumentation equipment
such as valves, pumps, motors, heaters, etc. Usually these de-
vices are connected to the real PLC inputs and outputs through
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several input or output objects (e.g. a digital valve may receive
one signal to open the valve, one signal to close it and it may
send two feedback signals to the PLC indicating if the valve is
open or close). For example, a digital pump is represented by a
“OnOff” object.

3. Control object family: they represent a group of instrumentation
equipments or a subsystem operated independently from the rest
of the process. The corresponding object in this case is called
“ProcessControl” object. This object behaves as a master, send-
ing orders to the Field objects that are part of the corresponding
subsystem. This family also includes the objects that represent
the PID controllers, the alarms and interlocks of the system.

4. Interface object family: they represent information communi-
cated between the SCADA and the control layer. Typically pa-
rameters or status are part of this family. One example is the
“AnalogParameter” object, which represents the analog parame-
ters sent from the SCADA to the control layer (e.g. thresholds).

In the CPC package, each UNICOS CPC object has its correspond-
ing PLC code, containing the behavior of the object. This PLC code
consists in one FB (sometimes including some additional FCs).

The PLC code of a complete control system, developed with UNI-
COS CPC, consists in a common software architecture where the ob-
ject instances are interconnected and the specific logic to control the
process according with the high level specification is included.

Fig. 4.3 shows an example of this mapping between the process
instrumentation and the UNICOS objects. In this high level model,
each element on the process side (sensors, actuators, signals, subsys-
tems, alarms, etc.) correspond to one UNICOS object and they are
interconnected.

The PLC code is automatically generated from this high level
model, according with a set of rules included in the generation tool
(See Fernández Adiego et al. (2011)). The code contains the instance
of the UNICOS CPC objects, the interconnection between them and
functions containing the specific logic of the application (according
with the specification).
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Figure 4.3: Mapping between the process instrumentation and the
UNICOS objects example

Fig. 4.4 shows the static representation of the PLC code architec-
ture for Siemens S7 PLCs. It shows the main program (i.e OB1), a
cyclic interrupt (i.e. OB35), an event interrupt (i.e. OB82) and a
restart subroutine (i.e. OB100). All the baseline object FBs (the ones
starting by “CPC FB ”, e.g. CPC FB DI ) are called from the main
program as well as the specific logic of the control system. The PLC
languages used in UNICOS CPC for Siemens PLCs are SCL (Struc-
tured Control Language) and Graph, which is similar to GRAFCET
(Graphe Fonctionnel de Croissant Étape Transition). They are the
Siemens implementation of ST and SFC from the IEC 61131 (2013)
standard.

This framework has been used in many industrial installations, for
example, the LHC cryogenics, cooling, HVAC (Heating, Ventilating,
and Air Conditioning) and the LHC vacuum systems. It has become
a standard in the control system development at CERN.

The following paragraphs present the verification case studies of
UNICOS PLC programs.
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Figure 4.4: UNICOS PLC code architecture
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4.3 UNICOS baseline object case study

The proposed methodology has been applied to verify the UNICOS
CPC objects. The size and complexity in terms of coding logic of
these objects varies from the simplest objects, such as the DigitalInput
and the DigitalParameter objects to the most complex, such as the
Controller.

The selected object to present the experimental results in this
chapter is the so-called OnOff object. The OnOff object size and
complexity are representative of the UNICOS CPC objects and many
requirements (complex safety properties, liveness properties are time-
related properties) were provided by the UNICOS developers. In most
of the cases, verification of these properties was possible by applying
the property preserving reduction techniques proposed in this thesis.

This section presents a detailed description of the experimental
results and it is divided in the following subsections:

− Description and some metrics about the OnOff PLC implemen-
tation (Section 4.3.1).

− Experimental results regarding model generation (Section 4.3.2).

− Experimental results regarding verification of complex properties
(Section 4.3.3).

− Experimental results regarding verification of time properties
(Section 4.3.4).

− Example of a counterexample analysis (Section 4.3.5).

Part of these experimental results were published in
Fernández Adiego et al. (2014c).

4.3.1 Object description and specification

This object represents a physical equipment driven by digital signals,
e.g. an on-off valve, heater or motor. The corresponding PLC code,
used for the experimental results, consists on one FB and some ad-
ditional FCs written in SCL. Some key metrics about this object are
shown in Table 4.1. The complete OnOff PLC code can be found in
the Appendix A.1.
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Table 4.1: Case Study metrics

Metric OnOff PLC code

Lines of code ≈ 820
Program blocks 1 main FB, 2 timers and 3 FCs
Statements 418
Function calls 21
Input variables 29 (20 BOOL, 3 WORD,

2 ARRAY of 16 BOOL and 4 TIME)
Output variables 31 (27 BOOL, 2 WORD

and 2 ARRAY of 16 BOOL)
Internal variables 82 (73 BOOL, 1 TIME, 2 TP timer instances,

1 TON timer instance, 1 REAL and 4 INT)
PLC data types BOOL, INT, REAL, WORD,

TIME, STRUCT and ARRAY
Timers 3 instances

Fig. 4.5 shows the OnOff signal interface. More details about
the OnOff object and about UNICOS in general can be found in the
UNICOS documentation website (UNICOS CPC Team (2013)).

4.3.2 Experimental results regarding model gen-
eration

As it was described in the methodology, the first step is the formaliza-
tion of the requirements. This first step has an important impact on
the generation of the models, as the performance of reduction tech-
niques such as COI highly depends on the property requirements.
About fifty requirements have been verified on the OnOff object,
finding many discrepancies between the specification and the PLC
program. As well as for the OnOff object, the methodology has also
been successfully applied to rest of the UNICOS CPC baseline objects.

In this section, two verification cases are presented to illustrate how
this methodology is applied to the OnOff object. Both requirements
are connected to the so-called Mode manager.

The Mode manager specification describes the different operating
modes in which the OnOff can be operated. This object can operate
in one of the following five modes:
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Figure 4.5: OnOff signals interface
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− Auto: the object is driven by the control logic of a higher object
of the hierarchy (e.g. a PCO (Process Control Object) from the
control object family).

− Manual : the object is driven by the operator from the supervi-
sion and it can change to Auto mode with a control logic request.

− Forced : the object is driven by the operator from the supervision
but it can only change to Auto mode with an operator request.

− Software Local Drive: the object is driven locally by a local
software such a local touch panel.

− Hardware Local Drive: the object is driven locally by the process
field.

The transitions between the operating modes are performed by
“mode requests”, coming from the implemented logic, the operator or
a local device. To perform an operation mode change, a rising edge
is necessary on the corresponding mode request input. For example,
one of these inputs is AuAuMoR, which stands for “Auto mode request
initiated by the logic”. Similarly, there is a MAuMoR input which stands
for “Auto mode request initiated by the operator”. Fig. 4.6 shows the
state machine that specifies the behavior of the mode manager for the
three main modes. In the figure, “RE(x )” stands for rising edge on
input x.

The PLC code corresponding to the mode manager is 4.1. However,
it is affected by more variables from the rest of the PLC program.

1 (∗ MODE MANAGER ∗)
2 IF NOT (HLD AND PHLD) THEN

3

4 (∗ Forced Mode ∗)
5 IF (AuMoSt_aux OR MMoSt_aux OR SoftLDSt_aux) AND

6 E_MFoMoR AND NOT(AuIhFoMo) THEN

7 AuMoSt_aux := FALSE;

8 MMoSt_aux := FALSE;

9 FoMoSt_aux := TRUE;

10 SoftLDSt_aux := FALSE;

11 END_IF;

12

13 (∗ Manual Mode ∗)
14 IF (AuMoSt_aux OR FoMoSt_aux OR SoftLDSt_aux) AND

15 E_MMMoR AND NOT(AuIhMMo) THEN

16 AuMoSt_aux := FALSE;
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Figure 4.6: State machine of the OnOff mode manager from the UNI-
COS specifications

17 MMoSt_aux := TRUE;

18 FoMoSt_aux := FALSE;

19 SoftLDSt_aux := FALSE;

20 END_IF;

21

22 (∗ Auto Mode ∗)
23 IF (MMoSt_aux AND (E_MAuMoR OR E_AuAuMoR )) OR (FoMoSt_aux AND E_MAuMoR)

OR (SoftLDSt_aux AND E_MAuMoR) OR (MMoSt_aux AND AuIhMMo) OR (

FoMoSt_aux AND AuIhFoMo) OR (SoftLDSt_aux AND AuIhFoMo) OR NOT(

AuMoSt_aux OR MMoSt_aux OR FoMoSt_aux OR SoftLDSt_aux) THEN

24 AuMoSt_aux := TRUE;

25 MMoSt_aux := FALSE;

26 FoMoSt_aux := FALSE;

27 SoftLDSt_aux := FALSE;

28 END_IF;

29

30 (∗ Software Local Mode ∗)
31 IF (AuMoSt_aux OR MMoSt_aux) AND E_MSoftLDR AND NOT AuIhFoMo THEN

32 AuMoSt_aux := FALSE;

33 MMoSt_aux := FALSE;

34 FoMoSt_aux := FALSE;

35 SoftLDSt_aux:= TRUE;

36 END_IF;

37

38 (∗ Status setting ∗)
39 LDSt := FALSE;

40 AuMoSt := AuMoSt_aux;

41 MMoSt := MMoSt_aux;

42 FoMoSt := FoMoSt_aux;

43 SoftLDSt := SoftLDSt_aux;

44 ELSE

45 (∗ Local Drive Mode ∗)
46 AuMoSt := FALSE;

47 MMoSt := FALSE;

48 FoMoSt := FALSE;
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49 LDSt := TRUE;

50 SoftLDSt:= FALSE;

51 END_IF;

Listing 4.1: OnOff mode manager program

4.3.2.1 First requirement

The first requirement, that is derived from the specification of the
object, is shown in Fig. 4.6, is the following:

“If there is a rising edge on the AuAuMoR (Auto mode request
initiated by the logic) input, the mode will be changed to Auto.”

This requirement is ambiguous, thus some refinement is needed in
order to be able to be formalized and verified:

“If the current mode is Auto, Manual or Forced mode and there
is a rising edge on the AuAuMoR (Auto mode request initiated
by the logic) input, but there are no other mode change requests,
the mode will be Auto at the end of the cycle.”

The corresponding pattern for this requirement is the pattern TL7,
defined in Section 3.4:

If [1] is true at the end of cycle N and [2] is true
at the end of cycle N+1, then [3] is always true at the
end of cycle N+1.

and this is the corresponding LTL formula:

G
((

EoC ∧ [1] ∧ X
(
¬EoC U

(
EoC ∧ [2]

)))
→ X

(
¬EoC U

(
EoC ∧ [3]

)))
with the corresponding PLC variables:

[1]: not AuAuMoR and (AuMoSt or MMoSt or FoMoSt)
[2]: AuAuMoR and (not MAuMoR and not MMMoR and not
HLD and not MSoftLDR and not MFoMoR)
[3]: AuAuMoR
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Where EoC means “end of PLC cycle” and is true only at the end
of PLC cycles.

The resulting LTL formula is the following:

G
((

EoC ∧
(
¬AuAuMoR ∧

(
AuMoSt ∨MMoSt ∨ FoMoSt

)
∧
(
¬MAuMoR ∧ ¬MMMoR ∧ ¬HLD

∧¬MSoftLDR ∧ ¬MFoMoR
))

∧ X
(
¬EoC U

(
EoC ∧ AuAuMoR

∧
(
AuMoSt ∨MMoSt ∨ FoMoSt

)
∧
(
¬MAuMoR ∧ ¬MMMoR∧

¬HLD ∧ ¬MSoftLDR ∧ ¬MFoMoR
)))

→ X
(
¬EoC U

(
EoC ∧ AuMoSt

)))
Note that in the PLC code MAuMoR corresponds to ManReg01[8],

MMMoR corresponds to ManReg01[9], MSoftLDR corresponds to
ManReg01[10] and MFoMoR corresponds to ManReg01[11]. Man-
Reg01 is an input variable which contains the manual requests from
the SCADA operator.

Once the requirement is formalized, the formal models are pro-
duced. Table 4.2 shows some key metrics regarding the size of the
models and the generation times for the case study. Three different
models are compared here:

− M1: a “non-reduced model” without any model reductions.

− M2: a “reduced model”, which is still general (not property spe-
cific) as COI has not been applied.

− M3: a model tailored to the current example requirement, which
is only suitable for the evaluation of a reduced set of requirements
(requirements which contain the same variables). COI has been
applied.

By using property preserving reduction techniques, the size of the
PSS size of the OnOff object can be reduced from 1.61 · 10218 to
3.65 · 1010, without affecting the verification result.

The run time of the model generation including the ST code pars-
ing, the reductions, and the generation of the nuXmv inputs does not



198 Chapter 4. Case studies and measurements

Table 4.2: Model generation metrics

IM metrics Models
No red. + General red. + COI
(M1) (M2) (M3)

Variables 259 118 33
Automata 9 1 1
locations 460 323 17
PSS 1.61 · 10218 4.57 · 1036 3.65 · 1010

Generation time 0.3 s 11.3 s 12.6 s

take more than 10–15 seconds, which is orders of magnitude lower
than the achieved reduction in the verification time.

The verification results for this requirement are presented in Sec-
tion 4.3.3.

4.3.2.2 Second requirement

The second experimental result corresponds with the following require-
ment:

“If the object is controlled locally (is in the so-called Hardware
Local mode) and there is no interlock, nor explicit output change
request valid in this mode, the output keeps its value”

The requirement is formalized using the pattern TL7 (the same as
the previous requirement), and it uses the following values:

If [1] is true at the end of cycle N and [2] is true
at the end of cycle N+1, then [3] is always true at the
end of cycle N+1.

with the corresponding PLC variables:

[1]: not OutOnOV and not TStopI and not FuStopI and not
StartI
[2]: HLD and not HOnR and not HOffR and not TStopI and not
FuStopI and not StartI
[3]: not OutOnOV
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Table 4.3: Model generation metrics

IM metrics Models
No red. + General red. + COI
(M1) (M2) (M3)

Variables 259 118 33
Automata 9 1 1
locations 460 323 17
PSS 1.61 · 10218 4.3 · 1036 4.3 · 1026

Generation time 0.2 s 0.4 s 0.6 s

The corresponding LTL formula is the following:

G
((

EoC ∧ ¬OutOnOV ∧ ¬TStopI ∧ ¬FuStopI ∧ ¬StartI∧
HLD ∧ X(¬EoC U(EoC ∧ HLD ∧ ¬HOnR ∧ ¬HOffR∧
¬TStopI ∧ ¬FuStopI ∧ ¬StartI))

)
→

X
(
¬EoC U(EoC ∧ ¬OutOnOV)

))
Table 4.3 shows the metrics for this second requirement. Before

the reductions, the PSS size of this baseline object is 1.6 · 10218. After
the general and requirement-dependent reductions, the PSS contains
4.3 ·1026 states of which 4.9 ·1014 are reachable. The generation of the
model including all the reductions takes 0.6 s.

4.3.3 Experimental results regarding verification
of complex properties

When talking about complex properties, we reference properties that
need several temporal operators to be formalized, for example, the
formulas presented in the previous subsection. These requirements
represent sequences of values from different PLC cycles and this was
one of the main goals when designing this methodology. The two
requirements presented before were verified using the nuXmv model
checker, integrated in the methodology.

nuXmv, as well as NuSMV, provides various parameters to fine-
tune the verification hence the run time highly depends on the used
parameters. Without any given parameters, nuXmv will explore the
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full state space before the evaluation of the requirement. However,
if this is not necessary for the verification, it can be disabled by the
-df parameter. The -dcx parameter disables the generation of the
counterexample that makes the verification time smaller, but we can-
not profit from the information given by the counterexample. The
-dynamic parameter enables the dynamic reordering of the variables,
which can drastically reduce the memory consumption of the tool.

Table 4.4 shows verification time results for the first requirement
on the OnOff object. As it is shown in the table, the verification of the
non-reduced model (M1) was not successful. The requirement can be
checked on the general reduced model, taking 160 s with counterex-
ample generation. However, much smaller verification times can be
achieved by using the reduced model specific to the given requirement
(M3). In this case, the verification and the counterexample genera-
tion took less than 1 second together. (The symbol “—” indicates an
execution longer than 24 hours). This table shows the difference of
verification performance when using the different nuXmv parameters.

For the introduced example requirement, the result of the model
checker is false, thus the requirement is not satisfied.

Table 4.4: Verification run time for the first requirement from
Fernández Adiego et al. (2014c)

Metric Non-reduced Reduced Specific
model (M1) model (M2) model (M3)

no parameters — — 8.398 s
-dynamic — ≈ 7 h 1.334 s
-dynamic -df — 160.8 s 0.547 s
-dynamic -df -dcx — 3.787 s 0.141 s

For the second requirement, as it is shown in Table 4.5, the evalu-
ation of the requirement takes 6.1 s using nuXmv without counterex-
ample generation, which showed that the requirement is not satisfied.
If the counterexample is generated too, the run time is 19.4 s.

In general, for the baseline objects the property preserving reduc-
tion techniques (COI, the general rule-based reductions and mode se-
lection) were enough to verify these objects. For this case study, the
variable abstraction technique was not applied. In Section 4.4, the
variable abstraction technique has been applied to verify safety prop-
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Table 4.5: Verification run time for the second requirement

Metric Non-reduced Reduced Specific
model (M1) model (M2) model (M2)

Verification — — 19.4 s
(-dynamic -df -dcx) (6.1 s without c.ex.)

erties on complete UNICOS PLC programs and the results are pre-
sented.

As it was mentioned before, more than fifty different requirements,
stated by the UNICOS developers, have been verified on the OnOff
baseline object. These experiments identified several faults in this
well-tested base object used all over the CERN control systems.

4.3.4 Experimental results regarding verification
of time properties

Verification of time related requirements on the OnOff are pre-
sented in this section. These results can be found in the publication
Fernández Adiego et al. (2014a). As it was described on Section 3.9,
two different approaches for modeling the timing aspects of PLCs are
included in the methodology. If the requirement contains explicit time
in it, the realistic approach is applied. If it does not, the abstract ap-
proach is applied. Experiments with both approaches are presented.

4.3.4.1 Realistic Approach

Having the following requirement:

“If there is a rising edge on C1, after tm units of time C2 will be
true, if C1 remained true”.

where, C1, tm and C2 corresponds with the signals shown in Fig. 4.7.
the selected pattern is the TL10 (TON-like property), where C1

and C2 corresponds to the following signals of the OnOff object:

C1 = HFOff and HFOn and not(Re OutOvSt aux) and
not(Fe OutOvSt aux);
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C2 = PosW;
tm is the monitor delay time. 3 different experiments are per-
formed for this requirement: 10 s, 9 s and 1 s.

In addition, the following parameters (mode selection) are set:

PPulse = FALSE;
POutOff = FALSE;
PHLD = FALSE;
PHFOff = TRUE;
PHFOn = TRUE;
PFsPosOn = TRUE;
PWDt = 10 s;

OnOff
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Figure 4.7: Verification configuration for OnOff model extended with
monitor

Table 4.6 presents different state spaces depending on which ab-
straction and reduction techniques are applied.

To be able to verify this property, the original model was shrink
from a PSS of 1.6 · 10218 states to a PSS of 1.1 · 1036 as can be seen in
Table 4.6. In order to do so, reductions, fixed parameters (focusing on
a specific scenario), and the COI technique (which eliminated 2 timers
out of 3) have been applied. As it was mentioned before, time values
were modeled as 16-bits variables instead of 32-bits.
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Table 4.6: State space of the OnOff model with realistic timer repre-
sentation from Fernández Adiego et al. (2014a)

Time Monitor Reductions PSS #Vars

32 bit – none 1.6 · 10218 255
16 bit – none 2.5 · 10160 255
16 bit – general 1.6 · 10134 185
16 bit + general 8.5 · 10139 189
16 bit + general, COI 1.1 · 1085 143
16 bit + gen., fix params, COI 1.1 · 1036 86

Table 4.7 presents verification results for the OnOff model after ap-
plying all the previously mentioned reduction techniques. The require-
ment has been checked with three different configurations in terms of
timer delay (tp) and monitor delay (tm). The first uses tp = tm = 10 s
values, which means the parameter tp of OnOff and the delay param-
eter tm of the monitor were both 10 s. In this case, the result is true,
which is given by nuXmv in 11.4 s. The other two configurations use
monitor delay times smaller than the parameter tp, therefore the out-
put is expected too early, thus the result should be false. As it can
be seen in Table 4.7, in both cases the verification time was around 5
to 20 s, but the generation of the counterexample (C.ex. gen. time)
took significantly more time. In the case when we used tm = 9 s, the
counterexample was longer (3 876 steps), and its generation time was
around 15 times bigger than when we used tm = 1 s. Notice that
these verification results can have a timing error not bigger than the
maximal cycle time, 100 ms in this case, because the current time is
incremented in quanta.

4.3.4.2 Abstract Approach

This approach has also been applied to the OnOff object from the
UNICOS library. Three experiments are presented in this section to
evaluate the abstract approach.

For Experiment 1 (see Table 4.9), the same reduction techniques
and the same fixed parameters as for the realistic approach have been
used. The PSS of the OnOff model became 5.5 · 1024 (instead of
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Table 4.7: Verification time on OnOff model with realistic time repre-
sentation from Fernández Adiego et al. (2014a)

Timer Monitor Run C.ex. C.ex.
delay (tp) delay (tm) Result time gen. time length

10 s 10 s true 11.4 s — —
10 s 9 s false 19.5 s 2513.2 s 3 876
2 s 1 s false 5.2 s 123.0 s 510

1.1·1036). Representing the requirement checked on the realistic model
is not possible in this approach as the time is not counted explicitly.
Instead, we can check the following liveness property (pattern TL):

“if C1 is sometime true and remains true forever, eventually C2

will be true”.

The equivalent LTL property is:

F
(

G
(
EoC → C1

)
→ F

(
C2

))
In this case, no monitor is needed and C1 and C2 corresponds to

the same signals as for the realistic approach:

C1 = HFOff and HFOn and not(Re OutOvSt aux) and
not(Fe OutOvSt aux);
C2 = PosW;

Two other experiments on the model with abstract time represen-
tation are presented (Exp. 2, 3). In these cases, no parameters were
fixed and all the three timers had effect on the requirement. The re-
quirement 2 was a simple safety requirement in CTL (AG(C3 → C4)),
while requirement 3 was a bit more complex: AG(C5 → AF (C6)).

The experiments (c.f. Table 4.9) show that these requirements can
be checked using the abstract time representation, even without fixing
any parameters. With the realistic time representation, the state space
would be too large to be verified using nuXmv.

Table 4.8 presents different state spaces depending on which re-
ductions techniques are applied and what requirement was verified.
Table 4.9 shows the measured run times.
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Table 4.8: State space of the OnOff model with abstract time repre-
sentation from Fernández Adiego et al. (2014a)

Reductions PSS #Vars

none 1.1 · 10131 243
general 4.7 · 10112 164
general, COI, fix params (Exp. 1) 5.5 · 1024 77
general, COI (Exp. 2, 3) 1.1 · 1040 126

Table 4.9: Verification time on OnOff model with abstract time rep-
resentation from Fernández Adiego et al. (2014a)

Exp. #Timers Result Run time C.ex.

(1) 1 true 6.1 s —
(2) 3 false 294.2 s 18.6 s
(3) 3 false 4 201.9 s 12 020.9 s

4.3.5 Counterexample analysis

An example of last step of the methodology is presented here, the
counterexample analysis. The selected counterexample corresponds
to the verification case presented previously (See Section 4.3.3). This
experiment was also published in Fernández Adiego et al. (2014c). The
requirement for the verification case is the following:

G
((

EoC ∧
(
¬AuAuMoR ∧

(
AuMoSt ∨MMoSt ∨ FoMoSt

)
∧
(
¬MAuMoR ∧ ¬MMMoR ∧ ¬HLD

∧¬MSoftLDR ∧ ¬MFoMoR
))

∧ X
(
¬EoC U

(
EoC ∧ AuAuMoR

∧
(
AuMoSt ∨MMoSt ∨ FoMoSt

)
∧
(
¬MAuMoR ∧ ¬MMMoR∧

¬HLD ∧ ¬MSoftLDR ∧ ¬MFoMoR
)))

→ X
(
¬EoC U

(
EoC ∧ AuMoSt

)))
The generated counterexample by nuXmv contains the value of

each variable after each transition in the model (corresponding to the
execution of one instruction in the PLC code). This detailed coun-
terexample contains about 5000 lines for the specific model (M3) and
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37 500 lines for the generic model (M2). These are too detailed for
human analysis. However, they can be reduced, as it is enough to
know the value of the input and output variables at the end of each
PLC cycle, thus the variable valuations of the intermediate states can
be discarded. By removing the unnecessary states and the tempo-
rary variables, the counterexample of the current requirement can be
reduced to approximately 100 lines.

The counterexample can also be used to demonstrate the prob-
lem in a real environment. Using the nuXmv’s counterexample, a
demonstrator PLC code can be easily generated by adding a module
simulating the variables from the counterexample and checking the
expected result. By doing so, it can be demonstrated that the coun-
terexample is not caused by a mistake during the model generation or
due to bad reductions. In this case study, the counterexample given
by nuXmv was confirmed in a real PLC, showing that the model and
the real system are equivalent for this specific requirement.

Listing 4.2 and Listing 4.3 show an extract from the generated
counterexample and the corresponding part of the PLC demonstrator
source code.

Furthermore, the PLC demonstrator can help the engineer to re-
duce the counterexample. Usually, most of the input variables do not
have any effect on the evaluated requirement. Those variables can
be fixed to constant values that can help focusing on the input value
changes that causes the violation of the requirement.

1 -> State: 1.17 <-

2 inst.HLD = FALSE

3 inst.ManReg01[8] = TRUE

4 inst.ManReg01[9] = FALSE

5 inst.ManReg01[10] = FALSE

6 inst.ManReg01[11] = FALSE

7 inst.AuAuMoR = FALSE

8 inst.AUIHMMO = FALSE

9 inst.AUIHFOMO = FALSE

10 ...

Listing 4.2: Extract from
the counterexample

1 onoff1.HLD := FALSE;

2 onoff1.ManReg01 :=

3 2#0000000000000001;

4 onoff1.AuAuMoR := FALSE;

5 onoff1.AuIhMMo := FALSE;

6 onoff1.AuIhFoMo := FALSE;

7 ...

8 CPC_FB_ONOFF.onoff1();

9 // Check:
10 b := onoff1.AuMoSt;

Listing 4.3: Extract from
the PLC demonstrator

In the current case, by using the counterexample and the reduced
PLC demonstrator we were able to identify the source of the problem.
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It turned out that from Forced mode the logic cannot switch to Auto
mode, it can only be done by the operator. The corresponding part
of the implementation can be seen in Listing 4.41. The highlighted
part shows the code implementing the transition from Forced mode to
Auto mode, which does not take into account the AuAuMoR input.
This behavior is correct and intentional, in this case the specification
contained a mistake.

1 IF (MMoSt_aux AND (E_MAuMoR OR E_AuAuMoR)) OR

2 (FoMoSt aux AND E MAuMoR) OR

3 (SoftLDSt_aux AND E_MAuMoR) OR

4 (MMoSt_aux AND AuIhMMo) OR

5 (FoMoSt_aux AND AuIhFoMo) OR

6 NOT (AuMoSt_aux OR MMoSt_aux OR

7 FoMoSt_aux OR SoftLDSt_aux) THEN

8 (∗ Setting mode to Auto ∗)
9 AuMoSt_aux := TRUE;

10 MMoSt_aux := FALSE;

11 FoMoSt_aux := FALSE;

12 SoftLDSt_aux := FALSE;

13 END_IF;

Listing 4.4: Extract of the source code causing the violation of the
requirement

1In the source code, the variables starting with “E ” indicate the rising edges of
the corresponding inputs. AuMoSt aux is true if the current mode is Auto. The
meaning of variables MMoSt aux, FoMoSt aux, and SoftLDSt aux are similar,
with the other modes.



208 Chapter 4. Case studies and measurements

4.4 Full UNICOS application case study

This section presents the experimental results obtained on one of LHC
cryogenics control system. The goal of this section is to complement
the experimental results presented in Section 4.3 for large PLC pro-
grams where the property preserving reduction techniques included in
the methodology are not enough to verify the program. In this sec-
tion, the variable abstraction technique is applied to verify the PLC
program. The section is divided in two main parts:

− Description of the QSDN control system (Section 4.4.1).

− Experimental results of safety properties (Section 4.4.2).

4.4.1 Process description and specification

The so-called QSDN2 application has been selected as a case study of
a complete PLC program. This application controls a subsystem of
the LHC cryogenics process.

Fig. 4.8 represents the QSDN subsystem consisting in two nitrogen
storage vessels. These vessels provide liquid nitrogen to the cryogenic
plants via two digital valves (xPV409). In addition, each vessel is filled
from a nitrogen truck and the internal pressure of vessels is regulated
by an electrical heater (xEH400). Each vessel has also a gas outlet
(xPV408) to provide warm gaseous nitrogen.

The size of QSDN PLC program is rather representative for
medium UNICOS control systems. It contains 110 functions and func-
tion blocks, and consists of approximately 17,500 lines of code. Before
reductions, these results in a huge generated model: the IM contains
302 automata, and the PSS size is 1031985 (see M1 in Table 4.10).

When verifying full UNICOS control systems, we assume that the
base objects from the UNICOS library are already verified, i.e. their
specification is satisfied. Therefore the goal is to check the application-
specific logic of the PLC program. This program is implemented using
ST and SFC languages (SCL and Graph for Siemens PLCs). This logic
is described in the UNICOS Functional Analysis, which is a semi-
formal textual specification. We extracted the requirements from this

2QSDN is a codename for Cryogenics Surface Liquid Nitrogen Storage System.
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Figure 4.8: QSDN process

specification regarding to specific logic. The extracted requirements
are safety properties to check the specific logic of this PLC program.

4.4.2 Experimental results regarding verification
of safety properties

This section presents the experimental results of three safety require-
ments, extracted from the Functional Analysis of the QSDN control
system. These requirements are typically similar to the following
structure:

“if α is TRUE, then β is TRUE”

The corresponding CTL formula for this example is:

AG
(
α→ β

)
Where the Greek letters mark Boolean expressions of variables.

The property preserving reduction techniques (i.e. COI, general rule-
based reduction and mode selection) remove all the unnecessary vari-
ables regarding the given property and the automata network is sim-
plified. The requirements presented in this section correspond to the
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so-called “dependent logic” of one of the actuator of the QSDN system:
the QSDN 4 1PV408, which corresponds to a on-off valve (modeled by
an OnOff object for the UNICOS model).

Listing 4.5 shows the relevant part of the QSDN PLC code related
to the three requirements. However, this piece of code is not enough to
prove that the requirements hold or not on this QSDN PLC program,
so information from the rest of the program is also needed.

1 (∗Position Management∗)
2 QSDN_4_1PV408.AuOnR:=

3 QSDN_4_DN1CT_SEQ_DB.ValvesOn.x OR

4 QSDN_4_DN1CT_SEQ_DB.Run.x OR

5 QSDN_4_DN1CT_SEQ_DB.OkSignalOff.x ;

6

7 QSDN_4_1PV408.AuOffR:= NOT QSDN_4_1PV408.AuOnR;

Listing 4.5: Excerpt of QSDN code relevant to the case study

4.4.2.1 First requirement

The first requirement to be checked is the following:

“If QSDN 4 DN1CT SEQ DB.Stop.x is true (at the end of a scan
cycle), QSDN 4 1PV408.AuOffR should be true also.”

The corresponding patterns is TL1 and the corresponding temporal
logic formula p is:

AG
((

EoC ∧ QSDN 4 DN1CT SEQ DB.Stop.x
)

→ QSDN 4 1PV408.AuOffR
)

Table 4.10 presents relevant metrics about the generated model.
The original state space is huge and the original model obviously can-
not be verified (see M1). After the COI reduction 3757 variables are
kept in the reduced model (see model M2 with a PSS size of 105048

states). Formal verification is still not possible. Therefore the variable
abstraction technique has to be applied.

Fig. 4.9 shows the variable dependency graph for the given require-
ment with the distance between variables. The gray variables are part
of the requirement (i.e. QSDN 4 1PV408.AuOffR and
QSDN 4 DN1CT SEQ DB.Stop.x). The red edges represent assignment
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dependencies (e.g. a := b will imply a “b → a” red edge). The blue
edges represent conditional dependencies (e.g. IF a THEN b := c will
imply a “b→ a” blue edge).

Table 4.10: Metrics of the models of QSDN

Metric Non-reduced Reduced
model (M1) model (M2)

PSS 1031985 105048

Variables 31,402 3757
Generation 4.2 s 15.3 s

Fig. 4.10 shows the relationship between the abstract models and
the maximum number of reachability properties to be checked if vari-
able abstraction is applied (or the maximum number of possible in-
variants).

Table 4.11 shows the verification results when applying the variable
abstraction technique. With this technique described in Section 3.7.4,
it is proved that the property is TRUE. The experiment is performed
with a TO of 30 s. The answer is given by the tool in 45.309 s (which
30 of these seconds corresponds to the TO obtained when checking
the reachability on the OM ′′ model).

To verify this requirement, six steps of the variable abstraction
technique are needed (according with the steps defined in the subsec-
tion 3.7.4):

− Step 1: p is verified on the first abstraction AM ′
1 and the result

is FALSE.

− Step 2: q is verified on AM ′
1 and the result is FALSE. q corre-

sponds with the following CTL property:

AG
((

EoC ∧ QSDN 4 DN1CT SEQ DB.Stop.x
)

→ ¬QSDN 4 1PV408.AuOffR
)

− Step 3: The extracted counterexample c is transformed in a
reachability property r and verified on OM ′′. After 30 s a TO
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Figure 4.9: Variable dependency graph for the given requirement of
QSDN
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imum number of reachability properties for the variable abstraction
technique m

is reached by nuXmv. r corresponds with the following CTL
property:

EF
(

EoC ∧ QSDN 4 DN1CT SEQ DB.Stop.x∧

QSDN 4 1PV408.AuOnR
)

− Step 4: The same reachability property is verified on AM ′′
1 (first

abstraction) and the result is TRUE. A new iteration is needed.

− Step 4: The same reachability property is verified on AM ′′
2

(second abstraction) and the result is FALSE. It means the first
counterexample is spurious.

− Step 5: the number of potential invariants for AM ′
1 is smaller

than 10 (see Fig. 4.10), then an invariant is added to AM ′
1.

− New iteration. Step 1: p is verified again on AM ′
1 with the new

invariant. The result is TRUE, proving that the property also
holds on the original model OM ′. This abstract model is shown
in the Listing B.2 in the Appendix B.
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Table 4.11: Verification time on QSDN model
Model PSS Model nuXmv Ver.

gen. run-time result

p on AM ′1 2.4 · 101 7.549 s 0.030 s FALSE
q on AM ′1 2.4 · 101 0 s 0.033 s FALSE
r on OM ′′ 7.8 · 104872 18.301 s TO —
r on AM ′′1 5.9 · 106 9.147 s 0.049 s TRUE
r on AM ′′2 4.28 · 1030 8.220 s 1.340 s FALSE
p on AM ′1 + invar. 2.4 · 101 0 s 0.053 TRUE

4.4.2.2 Second requirement

The second requirement extracted from the functional analysis is the
following:

“If QSDN 4 DN1CT SEQ DB.Run.x is true (at the end of a scan
cycle), QSDN 4 1PV408.AuOnR should be true also.”

The corresponding patterns is 3.4.1.1 and the corresponding temporal
logic formula is:

AG
((

EoC ∧ QSDN 4 DN1CT SEQ DB.Run.x
)

→ QSDN 4 1PV408.AuOnR
)

The model after the property preserving reduction techniques has
a PSS size of 105048 as the previous example. The Table 4.12 shows the
verification performance for each step when applying this technique.

− Step 1: p is verified on the first abstraction AM ′
1 and the result

is TRUE. This abstract model is shown in the Listing B.3 in the
Appendix B.

In this case, the answer is given by the tool in 7.544 s as the
property holds in first abstraction of this technique.

4.4.2.3 Third requirement

The third requirement extracted from the functional analysis is pre-
sented to show how the algorithm can prove that a property does not
hold. The requirement is the following:
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Table 4.12: Verification time on QSDN model
Model PSS Model nuXmv Ver.

gen. run-time result

p on AM ′1 4.8 · 101 7.521 s 0.023 s TRUE

“If QSDN 4 DN1CT SEQ DB.Run.x is true (at the end of a scan
cycle), QSDN 4 1PV408.AuOffR should be true also.”

The corresponding patterns is 3.4.1.1 and the corresponding tem-
poral logic formula is:

AG
((

EoC ∧ QSDN 4 DN1CT SEQ DB.Run.x
)

→ QSDN 4 1PV408.AuOffR
)

The model after COI has a PSS size of 105048 as well as the previous
examples. In this case, this technique can confirm that this property
does not hold and a counterexample was provided in 126.573 s. The
summary of all the steps performed to evaluate this property is the
following:

− Step 1: p is verified on the first abstraction AM ′
1 and the result

is FALSE.

− Step 2: q is verified on AM ′
1 and the result is FALSE. q corre-

sponds with the following CTL property:

AG
((

EoC ∧ QSDN 4 DN1CT SEQ DB.Run.x
)

→ ¬QSDN 4 1PV408.AuOffR
)

− Step 3: The extracted counterexample c is transformed in a
reachability property r and verified on OM ′′. After 30 s a TO
is reached by nuXmv. r corresponds with the following CTL
property:

EF
(

EoC ∧ QSDN 4 DN1CT SEQ DB.Run.x∧

QSDN 4 1PV408.AUOnR
)
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− Step 4: The same reachability property is verified on AM ′′
1 (first

abstraction) and the result is TRUE. A new iteration is needed.

− Step 4: The same reachability property is verified on AM ′′
2

(second abstraction) and the result is TRUE. A new iteration is
needed.

− Step 4: The same reachability property is verified on AM ′′
3

(third abstraction) and a TO is reached and no result is provided.

− New iteration. Step 1: p is verified on a new abstraction AM ′
2.

The result is FALSE and a new counterexample c is produced.

− Step 2: q is verified on AM ′
2 and the result is TRUE. These

results implies that p does not hold on AM ′
2 and on OM ′. The

counterexample c is real. This abstract model is shown in the
Listing B.4 in the Appendix B.

The Table 4.13 shows the verification performance for each step
when applying this technique.

Table 4.13: Verification time on QSDN model

Model PSS Model nuXmv Ver.
gen. run-time result

p on AM ′1 2.4 · 101 9.471 s 0.107 s FALSE

q on AM ′1 2.4 · 101 0 s 0.028 s FALSE

r on OM ′′ 7.8 · 104872 19.580 s TO —

r on AM ′′1 2.95 · 106 9.510 s 0.076 s TRUE

r on AM ′′2 1.34 · 1029 8.232 s 1.260 s TRUE

r on AM ′′3 5.11 · 1080 10.436 s TO —

p on AM ′2 4.8 · 101 7.825 s 0.026 s FALSE

q on AM ′2 4.8 · 101 0 s 0.022 s TRUE

As can be seen, our verification method can be used for isolated
verification of modules or for verification of complete PLC applica-
tions. Approximately 30 different requirement were extracted from
the QSDN functional analysis document.
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4.5 Summary of the chapter

This chapter presented the experimental results of applying the pro-
posed methodology to two real-life PLC programs developed at CERN
using the UNICOS framework.

The first PLC program corresponds with one of the UNICOS CPC
baseline objects, the so-called OnOff object. Complex properties,
including time properties and sequences were verified on the OnOff
program. The proposed property preserving reduction techniques have
been applied to be able to verify the object with successful results.

The second PLC program controls a subsystem of the LHC Cryo-
genics process at CERN. The significant size of this PLC program with
17,500 lines of code and a generated model with a PSS size of 1031985,
makes the verification very challenging. In this case, safety properties
were verified on this program and the “variable abstraction” technique
was applied.

The experimental results show that the methodology is useful and
PLC programs with a huge state space can be verified. Obviously,
there are still some limitation and the combination of the property
preserving reduction techniques and the variable abstraction may not
be enough in some other cases. Providing new abstraction techniques
is one of the future works for this project.

In addition, any complexity linked to formal verification or formal
methods is hidden from the user of the methodology. The next chapter
will give a deep analysis of these results, focusing in each steps of the
methodology.





Chapter 5

Evaluation and analysis

This chapter presents an analysis about the different steps of the
methodology and about the experimental results obtained when ap-
plying the designed methodology to CERN PLC programs.

5.1 Introduction

Different kind of requirements have been verified on UNICOS CPC
baseline objects using the proposed methodology of this thesis, in-
cluding complex properties (with several temporal logic operators),
safety and liveness properties and finally “time-related” properties.
The number of discrepancies that were found between the specifica-
tions and PLC programs was significant, even if testing was previously
applied to these objects.

In addition, the methodology has been applied to complete UNI-
COS CPC PLC programs. The PLC program used for the experimen-
tal results in this thesis contains approximately 17,500 lines of code. In
this case, a subset of safety properties (i.e. AG(α→ β)) were verified
on this PLC program.

The usability of the methodology was demonstrated, even for large
PLC programs. Any complexity related to formal methods was com-
pletely hidden from control engineers.

This chapter analyzes all the steps of the methodology regarding
three different aspects: completeness, usability and limitations. The
content of this chapter is divided in the following sections:

219
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− Section 5.2 analyzes the solution for requirement specification
provided by the methodology.

− Section 5.3 analyzes the modeling strategy for modeling the PLC
platform and the controlled process.

− Section 5.4 analyzes the transformation rules from the PLC code
to the IM.

− Section 5.5 analyzes the reduction techniques applied to the IM
that make possible formal verification.

− Section 5.6 analyzes the transformation from the IM to the mod-
eling language of the verification tools.

− Section 5.7 analyzes the verification results provided to the user
of these methodology.

− Section 5.8 analyzes briefly the correctness of the different model
transformations included in the methodology.

5.2 Evaluation of requirements formal-

ization

This methodology gives a solution for the formalization of require-
ments for control and process engineers. This solution is based on
patterns that rely on the experience of the PLC program developers
at the EN-ICE group from CERN 1.

These patterns, written in English, provide a natural language that
can be easily used by control and process engineers to express require-
ments without any need of knowledge about formal methods. The list
of patterns presented in Chapter 3 covers the current needs of PLC
developers for the EN-ICE group at CERN. It covers a quite large
range of properties, as it includes common safety and liveness prop-
erties but also properties involving several PLC cycles and also “time
properties”, therefore it should be also quite complete for other PLC
programs. But obviously, this list can be extended if a new type of
requirement is needed for verification purposes.

1EN-ICE web: http://www.cern.ch/enice/
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These patterns have a well-defined semantics and they can be auto-
matically translated to temporal logic (either CTL or LTL) for formal
verification purposes.

In terms of limitations, the expressiveness of the requirements is
limited by the expressiveness of the temporal logic formalisms im-
plemented in the verification tools included in our methodology. Cur-
rently, in the methodology, nuXmv provides the biggest range of prop-
erty specification expressiveness as it fully supports CTL and LTL.
UPPAAL is restricted to a subset of CTL and BIP to deadlock and
safety properties.

Another limitation on the specification phase is provoked by the
“variable abstraction” reduction technique, which only allows to verify
a subset of safety properties. This technique has a very aggressive ab-
straction strategy and is focused on one specific type of safety proper-
ties. This restriction is a consequence of the verification requirements
for full UNICOS PLC programs that are currently safety properties.
For that reason, this reduction is only applied when our property pre-
serving reduction techniques are not enough for verification. The vari-
able abstraction technique could be modified to accept ACTL prop-
erties instead of the current safety properties (i.e. AG(α → β)) if the
requirement specification expressiveness needs to be extended. How-
ever this would imply to have a less aggressive abstraction strategy
and it could imply a worse performance of this technique.

This proposal for requirement specification is useful and it can
help control and process engineers to find bugs in their programs.
However, this is not the final solution for requirement specification
in control software engineering. Using patterns does not guarantee
that the PLC program is complete and fully verified. This approach
only guaranties that PLC programs are compliant with the list of
requirements, which are created using these patterns. A future work in
this direction will have the goal of providing a complete, unambiguous
and still useful (easy to understand by non-formal methods experts)
formal specification for PLC control code.

In conclusion, we can summarize the specification approach of this
methodology emphasizing these three aspects:

− Specification by using patterns is complete for the current needs
of the UNICOS PLC developers at CERN, comprising safety,
liveness and “time-related” properties. More patterns can be
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added this list if required.

− The approach is useful as it provides a very simple natural lan-
guage to specify.

− The expressiveness limitations are given by the verification tools
included in the methodology and by the “variable abstraction”
reduction technique.

− The current approach is appropriate to find bugs in PLC pro-
grams, but it is not the final solution for control software speci-
fication.

5.3 Evaluation of PLC hardware and pro-

cess modeling

Formal verification of PLC programs implies building a global model
of the whole system. The whole system is composed, not only by the
control software but also the hardware of the control system and the
controlled process (e.g. water treatment, petroleum, ventilation sys-
tems, etc.) In this case, this global model should include information
about the PLC execution platform and about the controlled process.

Regarding the PLC execution platform, this methodology models
the scan cycle of a PLC providing the skeleton of the generated mod-
els. It also includes a strategy to identify PLC inputs when parsing
the PLC program, as it is a challenging task when these inputs are
parameters or they come from the supervision or from a decentralized
periphery. The methodology can generate models for both safety and
standard PLCs and both models only differ when verifying time prop-
erties with explicit time in it. Finally, the methodology also models
PLC interrupts and restarts but assuming that there are no concur-
rency problems on the PLC program.

This modeling strategy is a compromise between the two extreme
approaches for modeling the PLC execution platform. The first one
would be providing a very detailed model for the execution platform
where even distributed systems are modeled and concurrency prob-
lems can be detected by the verification tools, but producing very
heavy models with a huge state space. The second approach would be
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providing a very simple model with a small state space, but it would
provoke many false positives in the verification. If these models do not
represent properly the real process can cause false negatives as well.

In conclusion, we can summarize the PLC hardware modeling ap-
proach of this methodology emphasizing the following aspects:

− The methodology models interrupts and restart, however con-
currency problems should be checked before using a different
technique, for example the static analysis of the PLC code.

− It currently targets centralized PLC control systems, but not
distributed control systems. Modeling distributed systems obvi-
ously implies a higher complexity in terms of concurrency prob-
lems and a bigger size of the generated models.

− This modeling approach is completely hidden from the control
and process engineers and contains enough information for PLC
program verification purposes.

Regarding the controlled process, this methodology allows the con-
trol and process engineers to add invariants to the formal models, in-
cluding information about the process. However, it does not include
a complete model of the process because it would break one of the
main goals of this project: hiding the complexity related to formal
methods. Including a complete model of the controlled process would
imply to build it manually, as traditionally in industry there is no
formal specification of the controlled process.

Not adding any invariant to the formal model may produce false
positives (spurious counterexamples) in the verification phase. False
positives do not break the safety of the system, as the user gets a
report of an error in the model which does not exist in the real system.
However, adding a wrong invariant can hide a bug that may occur in
the real PLC program (false negative), which is a much bigger problem
than a false positive. Therefore adding invariants to the models is a
critical step of the methodology.

In conclusion, we can summarize the controlled process modeling
approach of this methodology emphasizing the following aspects:

− Adding invariants is a very simple and useful mechanism. The
user of the methodology can include invariants in the models in
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order to verify a property. It reduces the number of false posi-
tives and it can improve the verification performance (it depends
on the implementation of this mechanism in the model checker)
as it reduces the RSS.

− Adding a wrong invariant implies false negatives, which is a much
more dangerous situation than false positives for our goal of
finding bugs in PLC programs.

− This approach does not include a complete model of the con-
trolled process. This is because it would imply to create the
model manually, as typically in industry there is no formal spec-
ification of the process. Modeling manually the controlled pro-
cess is a challenging and time consuming task and it could hide
potential bugs in the real code due to models that do not repre-
sent properly the real processes.

5.4 Evaluation of the PLC program – IM

transformation

In this methodology, the transformation rules from the PLC code to
the modeling languages of the verification tools are split in two groups:
PLC - IM transformation rules, and IM- modeling languages of the
verification tools transformation rules.

The first group includes the transformation rules that allow trans-
lating ST and SFC programs into the IM, already presented in Section
3.6. These transformations are rule-based and they include several
assumptions that simplify the rules and improve the verification per-
formance. Even with these assumptions, the generated models are
reliable and they represent with high fidelity the real PLC program.
For example, the assumption 3, which assumes the non concurrency
of PLC blocks, includes some limitations from the verification point
of view as concurrency problems cannot be detected. Currently, the
assumptions included in the methodology are related to PLC inter-
rupts, recursion, variable access, function calls, pointers and no par-
allel branches in the SFC code.

These transformations have been implemented in our CASE tool.
This tool is based on EMF and Xtext and the transformations have
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been implemented in Java and Xtend. However the complete ST
and SFC grammars are not yet included. Currently, the implemented
grammars and set of rules cover a large set of the full grammars and
it is enough for parsing and translating the UNICOS CPC programs
to the IM. One example of the features that are not included is the
pointers (the use of pointers is not recommended, although it is not
forbidden). These rules and tool can be extended to support the full
grammar of ST and SFC languages.

In addition, other programming languages from the IEC 61131
(2013) standard (e.g. IL) can be added to the methodology. Adding
new languages to the methodology may imply new specific assump-
tions related to the new language. For example we could assume that
IL instructions are atomic and they cannot be interrupted, although
in reality an IL instruction can be compiled is several machine code
instructions, therefore an IL instruction can be interrupted.

In conclusion, we can summarize the PLC code - IM transformation
rules of this methodology emphasizing the following aspects:

− The proposed transformation rules are implemented in our
CASE tool and allow to translate automatically PLC code to
the IM without any interaction of the user.

− Currently the PLC grammars and transformation rules imple-
mented in our tool do not cover 100% of the ST and SFC gram-
mars defined by the IEC 61131 (2013) standard. However, they
support all the needed features of the UNICOS CPC PLC pro-
grams, which is a large subset of the grammars.

− A set of assumptions is included to simplify the transformation
rules and improve the verification performance but obtaining
reliable models. This assumptions imply some limitations from
the verification point of view.

− Currently the methodology includes the transformation rules for
ST and SFC languages. Other languages can be included, e.g.
IL language.

Time-related transformation rules are analyzed in detail in the fol-
lowing paragraphs as they are a particular case of the transformation
of PLC code to IM.
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5.4.1 Evaluation of the time-related transforma-
tion rules

This methodology provides two different approaches to model PLC
time and timers.

If the property contains explicit time in it, a realistic model of PLC
time and timers is provided. An example of this kind properties is:

“if a is true, after 5 seconds b will be true, if a remained true.”

If the property does not contain explicit time in it, an abstract
model of PLC time and timers is provided. An example of this kind
properties is:

“if a is sometime true and remains true forever, eventually b will
be true”.

The first approach represents with high fidelity the timer imple-
mentation on a real PLC (e.g. TON, TOFF and TP). This represen-
tation also implies to model time. The accuracy of the model is high
enough, using as unit of logic time 1 ms for timers (as in a real PLC).
In terms of specification, this approach allows to express properties
with explicit time by using CTL and a monitor. However the result-
ing state space size is very large. Even if some abstraction techniques
are applied, verification time can become very long and in some cases
model checkers may not be able to provide a verification result.

The second approach solves the problem of state space explosion
by proposing a simplified model of the first approach. The resulting
model has a non-deterministic nature, so the accuracy is reduced and it
can produce false positives. In terms of specification, it is not possible
to verify properties with explicit time, however it can verify properties
that guarantee that the timer gives a response (liveness property).

Table 5.1 summarizes the main differences of both approaches.
The first approach is thus needed when properties with explicit

time have to be verified although there is a higher chance of having
a state explosion problem. The second approach is suitable for timed
properties without explicit time, like certain before/after properties
(e.g. “the variable b has to be true at the end of the PLC cycle, af-
ter the variable a becomes false”), and for non-timed properties (for
example safety or liveness properties), where the variables linked to
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Table 5.1: Overview of the timer representation approaches from
Fernández Adiego et al. (2014a)

Realistic Abstract
Size of PSS huge (e.g. 5.91 · 1015 moderate (e.g. 6

for the TON model) for the TON model)
Requirement rich requirements requirements
expressivity with explicit time, without explicit time,

CTL/LTL + monitors CTL/LTL is enough
Constraints time incremented by no explicit time,

PLC cycle time false positives

the property are affected by a timer in the real system and this timer
cannot be eliminated by using reduction techniques, such as cone of in-
fluence. Although false positive results can occur using this approach,
false negative can never occur.

5.5 Evaluation of the reduction tech-

niques

In this methodology, the reduction techniques are applied to the IM
and then all the verification tools can profit from these reductions.

Two groups of reduction techniques are currently included in the
methodology: the so-called property preserving reduction techniques
and the variable abstraction technique.

The first group includes the following reductions: COI, general
rule-based reduction and mode selection. By using these reductions
the resulting and original models are equivalent for the given property.

The variable abstraction technique produces abstract models that
are an overaproximation of the original one. These models are pro-
duced based on the variable dependency graph of the variables in-
cluded in the property to be verified.

The rest of this section presents some measurements to evaluate
these reduction techniques.
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5.5.1 Property preserving reduction techniques

As it was mentioned in Section 3.7, the theoretical concepts of some
of the reduction techniques included in this group are already imple-
mented in many verification tools. A clear example is COI, which is
implemented for example in the nuXmv model checker.

However, these algorithms were not really effective on our models,
so this was the motivation for implementing them at the IM level,
which contains a higher level of information making our algorithms
more effective.

The rest of the reduction techniques included in this group are
domain specific and they benefit by the PLC domain knowledge.

The experimental results performed in PLC programs correspond-
ing to the UNICOS CPC baseline objects were very satisfactory, but
we experienced some limitations when verifying complete UNICOS
CPC programs. Sometimes the number of variables kept on the model
by COI to verify a specific property was very large and the state space
of the reduced model was still too large to perform formal verification.

An analysis of effectiveness of these techniques regarding the state
space and the run-time reduction is presented in this section. To
do so, some measurements are presented, showing how the different
reduction techniques can complement each other. The measurements
also compare our results with the nuXmv’s reduction techniques.

The measurements correspond with the experimental results ap-
plied to the UNICOS CPC object OnOff, presented in Section 4.3.

5.5.2 State space

In the case study presented in Section 4.3, the generated model of the
OnOff object has a PSS of 1.61 · 10218 states without any reductions.
Fig. 5.1 shows measurements about the size of the OnOff model PSS
without any reduction, using nuXmv’s COI and our COI. The mea-
surements are split is two groups: in the first group, on the left part
of the figure, the rule-based reductions are not applied. In the second
group, on the right part of the figure, the rule-based reductions are
applied. As can be seen, nuXmv’s COI can reduce the state space sig-
nificantly, however our implementation provides much better results.
In addition, applying the rule-based reductions improves significantly
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Figure 5.1: Measurements comparing the different COI solutions from
Darvas et al. (2014)

the performance of the reductions. For example, if the rule-based re-
ductions are enabled, the size of the PSS is 1.2 · 1087 with nuXmv’s
COI, and 4.3 · 1026 with our own COI implementation.

We can conclude that applying the COI to higher level models, i.e.
the IM, significantly improves the reduction performance. In addition,
we can observe that by using the rule-based reductions the effective-
ness of both COI algorithms (nuXmv and ours) is much higher. In
this experiment, formal verification of the given requirement would
not have been possible without the rule-based reductions.

5.5.3 Verification run-time

The difference between the COI implementations can also be observed
on the run-time of the verification. Two tables are presented to
compare the effectiveness of our COI implementation on the IM and
nuXmv’s COI. These tables show verification run-time measurements
and measurements about the internal BDD data structures of nuXmv
that represent the state space. In these cases, four different real-life
requirements were evaluated:

− Req. 1 is an LTL expression with form of G(αU β).

− Req. 2 and 3 are CTL safety expressions (AG(α)).

− Req. 4 is a complex LTL expression (G((α ∧ X(β U γ)) →
X(β U δ))) describing a real requirement coming from the UNI-
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COS developers (it represents a sequence of variable values from
different cycles).

In these requirements, the Greek letters represent Boolean logical ex-
pressions containing multiple (usually 1–5) variables.

Table 5.2 shows the measurements for the nuXmv’s COI algorithm
and Table 5.3 shows the measurements for our COI algorithm.

Without our rule-based reductions (even if nuXmv’s COI is used),
none of the requirements could have been verified in a day, thus these
reductions are inevitable. These measurements show that by using our
COI implementation, the verification run-time can be reduced by 1–3
orders of magnitude compared to the COI of nuXmv. The same reduc-
tion can be observed in the number of allocated BDD nodes (#Node).
The reduction in the peak number of live BDD nodes (#PNode) is
smaller, but significant. This comparison shows the efficiency of the
proposed method.

Table 5.2: Requirement evaluation measurements with nuXmv COI
from Darvas et al. (2014)

no red. + rule-based red. + nuXmv COI

Req. nuXmv COI Runtime #PNode #Node

1 — 896 s 8.8 · 105 1.8 · 108

2 — 1,250 s 9.9 · 105 8.8 · 108

3 — 19,300 s 3.4 · 106 1.6 · 1010

4 — 649 s 9.0 · 105 5.5 · 108

5.5.4 Variable abstraction

The last reduction technique included in the methodology, the vari-
able abstraction technique, was designed to give an answer to verifica-
tion cases when the property preserving reduction techniques were not
enough. In our experiments, this situation appeared when verifying
full UNICOS PLC programs, such as the one presented in Section 4.4
with 17,500 lines of code and an IM of PSS size of 1031985 (without re-
ductions). The UNICOS developers provided a set of requirements for



5.5. Evaluation of the reduction techniques 231

Table 5.3: Requirement evaluation measurements with our COI from
Darvas et al. (2014)

no reduct.+ rule-based reduc. + our COI

Req. nuXmv COI Runtime #PNode #Node

1 — 2.5 s 2.2 · 105 1.1 · 106

2 — 19.0 s 4.6 · 105 1.4 · 107

3 — 1,440 s 1.3 · 106 1.6 · 109

4 — 2.3 s 2.2 · 105 9.2 · 105

these programs. These requirements were safety properties of the fol-
lowing nature: AG(α→ β), where the Greek letters represent Boolean
logical expressions containing multiple (usually up to 5) variables.

For that reason, this iterative abstraction technique was designed
with a very aggressive abstraction strategy tailored just for AG(α→ β)
properties. In addition, the algorithm heuristic is easy to automatize
and include in our CASE tool.

This technique produces abstract models based on the variable
dependency graph. In the PLC program presented in Section 4.4, after
applying the properties preserving reduction techniques for the three
different requirements, the resulting models have a PSS size around
105048.

For the first experiment, the algorithm demonstrated in 45.309 s
(including the model generation, the verification time and a timeout
of 30 s) that the property holds in the model after one iteration on
the algorithm, where one invariant was extracted.

For the second experiment, the algorithm demonstrated in 7.544
s (including the model generation and the verification time) that the
requirement holds in the model in the first abstraction.

For the third experiment, the algorithm demonstrated in 126.573 s
(including the model generation, the verification time, the counterex-
ample generation and two timeouts of 30 s) that the requirement does
not hold in the model using two iterations.

These experimental results show that this algorithm is useful to
verify properties in models with a huge PSS. However, this technique
has also some limitations:



232 Chapter 5. Evaluation and analysis

− The algorithm is restricted to safety properties like AG(α→ β).
This helps to provide an aggressive abstraction strategy.

− Extracting invariants is sometimes hopeless when the number
of potential invariants (m) is very high. For that reason, we
included the step 5 in the algorithm, which only extracts invari-
ants if for an abstract model AM ′

n corresponding with a δ′ = n,
the value of m ≤ 10 (usually this corresponds with δ′ ≤ 2, see
an example of the QSDN PLC program on Fig.5.2).

− One of the weakness of this method is the step 3, when verifying
the reachability property r on the original model OM ′′. If veri-
fying p on OM ′ ended in a timeout, there are a lot of chances of
getting also a timeout in this step because the size of the models
OM ′ and OM ′′ may be similar. Bounded model checking seems
to be a good alternative to check r on OM ′′, as bounded model
checking allows to check properties on a part of the state space.
nuXmv includes bounded model checking algorithms, however,
the experiments with our models were not successful and the
tool crashes with an error after small bounds and no answer
were obtained.

To conclude, we have demonstrated that this technique is useful
for large PLC programs where our property preserving reduction tech-
niques are not enough. But obviously, we can have models where a
timeout is obtained when verifying the safety properties p on an ab-
stract model AM ′

n in any of the iterations δ′ = n of the algorithm.
In this situation, no answer is provided and we cannot prove that the
counterexamples obtained in previous iterations (AM ′

n−1, AM ′
n−2, ...,

AM ′
1) are real or spurious.

5.6 Evaluation of the IM – verification

tools transformation

The intermediate step (IM) on the transformation process from the
PLC programs to the modeling languages of the verification tools gives
a lot of flexibility to the methodology and new verification tools can
be easily added and compared. Currently nuXmv, UPPAAL and BIP
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Figure 5.2: Relationship between the abstract models and the max-
imum number of reachability properties for the variable abstraction
technique

are included, and new tools are being investigated, e.g. mCRL2 2.
This tool has been developed at the Department of Mathematics and
Computer Science of the Technical University of Eindhoven, in collab-
oration with other institutes.

The selected automata-based formalism for the IM simplifies the
transformations from IM to the modeling languages of the verifica-
tion tools. The current verification tools that are integrated in the
methodology have state-based modeling languages. These formalism
are very close to the IM formalism, although special strategies have to
be applied for each verification, like for example, the synchronization
between two automata or modules in nuXmv or how to model global
variables in BIP.

Obviously, it is easier to integrate in the methodology state-based
modeling languages but different formalisms can be included, e.g.
mCRL2 has an action-based modeling language. In this case, trans-
formation rules are more complicated but once the strategy is defined
it can be equally automatized.

2http://www.mcrl2.org/
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5.7 Evaluation of the verification results

The experimental results confirmed that this methodology can be
applied to real PLC programs without any knowledge about formal
methods. UNICOS CPC baseline objects were verified and even ex-
periments with complete UNICOS PLC programs were performed.
These experiments reported many discrepancies between these PLC
programs and the specifications. But some other relevant conclusions
can be extracted in terms of verification performance. The methodol-
ogy is flexible and different verification tools can be added and com-
pared. Regarding the verification performance of nuXmv, UPPAAL
and BIP, we can extract the following conclusions:

− nuXmv provides the best performance in terms of verification
for our models.

− BIP provides an infrastructure for code generation that can be
applied for model-based testing and we did some experiments
in this direction (see Fernández Adiego et al. (2013b)). The
verification solution is very promising for our models as compo-
sitional verification algorithms are included, but the verification
tool (DFinder) does not support currently data transfer between
atoms, therefore it cannot be applied to our models. Future work
on this direction is planned.

− UPPAAL provides the best environment for model simulation.
However, when big models are automatically generated by our
tool, UPPAAL cannot even load and visualize the model. In
terms of verification performance, UPPAAL provides worse re-
sults than nuXmv for our models.

For that reason, for verification purposes most of the experiments
were performed using nuXmv.

Due to multiple model to model transformations, the question
whether the methodology itself contains errors arises. Section 5.8
presents a brief discussion on this topic.

However in this last step of the methodology, it can be demon-
strated that a bug found in the model also exists in the real PLC
code. When a counterexample is produced it can be used to produce
a PLC demonstrator and check if this counterexample produces the
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expected error in the real code. By doing this, errors in the model
to model transformation can be detected without proving mathemat-
ically these transformations, always assuming that the PLC compiler
and the verification tools do not contain bugs.

5.8 Correctness of our approach

Proving the correctness of all the model transformations is a chal-
lenging itself. This would require to prove all the model to model
transformations, i.e. the PLC code - IM transformations, the IM re-
ductions and the IM- input languages of every verification tools. But
also the correctness of the verification tool itself and the correctness
of the PLC compiler as they are all part of the methodology.

Proving the model transformations is possible and ideally this
methodology could be certified, however, the huge effort that this im-
plies was not a real option (not a priority at least) at the current stage
of this project. For that reason, we adopted a more practical approach
where we can prove that a bug, found by the verification tool on the
model, really exists in the real PLC program. The counterexample
provided by the verification tool can be used to prove its existence on
the real PLC code as described in Section 3.11. However, in the follow-
ing paragraphs the steps to guarantee mathematically the correctness
of this approach are sketched.

Possible sources of errors in our verification methodology may de-
tect false positives, i.e. may report errors that do not exist in the real
system. On the other hand, it may not detect all errors (false nega-
tives), i.e. state that a property that is intend to hold for a system
is verified although it does not hold in the real system. The latter
one is more dangerous since it potentially states the correctness of an
erroneous system.

To ensure correctness in our methodology, we have to investigate
the following potential sources of errors:

1. Formalization of properties : Errors can be made when translat-
ing an informal requirement into a logical formula suitable for
processing in verification tools.

2. Implementation of verification tools : The implementation of the
model checker may contain errors.
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3. Transformation of models : The translation from SFC and ST
code into the IM, the IM reductions as well as the translation
from the IM into nuXmv, BIP and UPPAAL models may contain
errors.

4. Interpretation of verification tool results : A counterexample may
be interpreted in a wrong way.

The error source (1) is addressed by thoroughly analyzing our
stated properties. We cannot guarantee the absence of errors in the
used verification tools in error source (2), however, the used model
checkers are well established and employed in a variety of projects.
Error source (4) can be avoided by formulating the properties in a
way that they yield simple yes/no answers as verification results.

Regarding the error source (3), it comprises the model transfor-
mations that we developed for this work. We sketch the steps to
guarantee correctness using mathematical sound proofs. An example
of proof can be found in Fernández Adiego et al. (2014a), which it was
conducted for proving the correctness of abstraction rules for timers.
The correctness proof requires the establishment of formal semantics
for the involved languages, i.e. operational semantics (cf. Plotkin
(2004) for the classical structured way) for all languages involved: the
model checker languages, the IM and the programming languages de-
fined by the IEC 61131 (2013) standard (cf. Blech and Biha (2011) for
IL and FBD). A simulation relation between the original and trans-
formed model can be established. States in one model are related with
semantical equivalent states in the transformed model. The simulation
relation must preserve the properties that we ultimately want to verify
(abstractions can alter the classes of properties that are preserved, cf.
Bozga et al. (2008)). The correctness proof comprises the verification
of a base case stating that the simulation holds for the initial states
of the original and transformed model, and a simulation step, stating
that if it holds for two states it will also hold for succeeding states.

5.9 Summary of the chapter

This chapter presented an analysis of the different steps of the pro-
posed methodology from the completeness, usability, and limitations
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point of view. The experimental results confirm the usability of the
proposed methodology on real life PLC programs In addition, the
complexity of applying formal methods is completely hidden from the
engineers.

This analysis gives also an idea of the future work to be done,
which is presented in detail in Chapter 6.





Chapter 6

Conclusions and future work

This final chapter includes the conclusions of this thesis, presenting
the list of contributions, limitations and benefits of this research. In
addition, a brief discussion about the future work of this project is
presented. This chapter is divided in three sections:

− Section 6.1 presents a discussion about the evolution of the the-
sis, from the initial requirements until the adopted solution to
satisfy them.

− Section 6.2 presents the contributions, the limitations and the
benefits of this research.

− Finally, Section 6.3 suggests the future research lines of this
project.

6.1 Discussion

This research project was set out to provide a solution to one of the
main challenges of PLC program developers and designers in the au-
tomation industry, a mechanism to guarantee that the PLC code is
compliant with the project specification.

This challenge is particularly important for Safety Instrumented
Systems, which are in charge of protecting people, environment and
installations, as stated in the IEC 61508 (2010) standard. But this is
obviously a desirable feature for any control system.

239
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Nowadays in industry, automated and manual testing of PLC pro-
grams are the most popular solutions adopted, but some well-known
drawbacks are inherent to these approaches.

This thesis provides a solution for applying automated formal ver-
ification to PLC programs. At the beginning of the project, two main
goals were set to ensure the applicability of this proposal in real-life
PLC programs:

1. Hiding any complexity related to formal verification and formal
methods from the automation engineers.

2. Being able to verify new and existing PLC programs. This re-
quires that the proposed solution should not modify the devel-
opment process of any PLC program.

Satisfying these requirements implied to adopt the solution pre-
sented in this PhD thesis: a general automated methodology for formal
verification of PLC programs. The term “general” stands for a flexible
methodology, in which different verification tools can be added to the
methodology. The term “automated” indicates that all the internal
steps do not require any human intervention.

Formal models for different verification tools are created automat-
ically out of the PLC code. The methodology is based on an inter-
mediate step, the so-called intermediate model (IM), used as a pivot
between all the PLC and formal modeling languages included in the
methodology. This approach potentially covers all PLC languages.
The current implementation supports ST and SFC and the support
for IL is under development.

All the steps of the methodology were presented in Chapter 3:
requirements formalization, automatic translation of PLC programs
to the IM, reduction of the IM, translation of the IM to the model-
ing languages of the verification tools and finally the counterexample
analysis.

The experimental results presented in Chapter 4 show the applica-
bility of this approach in real-life PLC programs. Many discrepancies
between the specification and the PLC programs were found during
these experiments, even if these programs were previously tested with
other techniques.

The practical and theoretical contributions of this methodology are
discussed in the following section.
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6.2 Contributions

This PhD thesis is not certainly the first attempt to apply formal
verification to PLC programs. Section 2.4 showed the related work
to this field. However, none of the approaches satisfied completely
our initial requirements, or strong limitations were necessary to apply
their solutions. The theoretical and practical contributions of this
thesis were enumerated in Section 1.3. Here, more details about these
contributions are presented according to the experimental results.

6.2.1 Methodology

The first contribution is the adopted methodology itself. The transfor-
mation from different PLC languages to different modeling languages
of the verification tools, passing through this intermediate step, al-
ready exists in other fields of application but is an innovative approach
on the industrial automation community, in particular for the PLC
environment. Regarding the requirement formalizations, an approach
based on patterns can be found before this document as presented in
Section 2.4, but in this case, new patterns are provided in this research
to cope with the real-life needs from the PLC program developers at
CERN. The counterexample analysis and the automatically generated
report, which is provided to the engineer when a bug is found, is a
practical contribution which is very helpful for control engineers. The
model checker usually provides a huge amount of information when a
bug is found in a real-life PLC program, but only the relevant infor-
mation is extracted and provided to the engineer in order to find the
source of the problem.

6.2.2 IM syntax and semantics

The definition of the syntax and semantics of the IM is the second
contribution. The goal was to provide a simple formalism where all the
features of PLC programs can be modeled with this formalism. After
the experimental results, no limitations due to the IM expressiveness
were found. The adopted assumptions to translate the PLC code to
IM were taken to simplify the transformation rules and to reduce the
state space but obtaining meaningful models. In addition, the IM
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formalism is close to the adopted formalism by several verification
tools, simplifying the transformation and therefore facilitating to add
new verification tools in order to check their verification performance
and simulation facilities for our models.

6.2.3 PLC code - IM transformation rules

The third contribution is the set of transformation rules from ST and
SFC languages to the IM. Although the full grammars are not sup-
ported yet, the most relevant transformations are presented which
fully cover the needs for the transformation of UNICOS CPC PLC
programs.

6.2.4 IM- input verification tools transformation
rules

Currently three verification tools are supported and compared in the
methodology. The transformation from IM to the nuXmv, UPPAAL
and BIP are the fourth contribution. The analysis of these three tools,
done in Chapter 5, shows that in terms of verification performance,
nuXmv provide the best results of the three tools for our models.

6.2.5 Reduction techniques

The reduction and abstraction techniques proposed in this thesis are
a fundamental part of the methodology as they allow to apply formal
verification to real-life PLC programs. They are the fifth contribution
of this thesis. Two groups of reduction techniques are proposed, the
property preserving reduction techniques and the variable abstraction
technique:

1. For the first group, some of the applied theoretical concepts were
previously defined, like Cone of Influence (COI). However, by us-
ing the PLC knowledge and applying the reductions to the IM
level, a better verification performance than other implementa-
tions was achieved. This thesis compares our property preserv-
ing reduction techniques with the COI algorithm implemented
in nuXmv.
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2. The variable abstraction technique is a novel technique which
allowed us to verify safety properties, like AG(α → β), on the
PLC programs where the first group of reductions was not ef-
fective by its own. It has some similarities with the CEGAR
technique but it differs in the following aspects: the heuristics of
this technique are easier to automatize in our methodology, the
abstract models are automatically created using the variable de-
pendency graph of the variables included in the requirement to
verify and as we target AG(α→ β) properties, a more aggressive
abstraction strategy can be applied.

6.2.6 Modeling the timing aspects of PLCs

The transformation of the timing aspects of PLC programs are part of
the set of rules to translate the PLC programs to the IM. This is a very
special and challenging aspect for which this thesis gives a solution.
This is the sixth contribution of this thesis. Actually two different
solutions are proposed depending on the nature of the requirement to
be verified. In the first option, time is modeled as a 16-bits variable.
Besides, PLC timers (i.e. TON, TOFF and TP) are modeled with
a realistic approach, very close to the reality which allows to verify
requirements with explicit time in it. The second option does not
model time and an abstract model of the timers is provided instead.
his approach allows only to check “before/after” timed properties, but
the verification performance is significantly better than the previous
approach as the state space is much smaller.

6.2.7 PLC behavior analysis

The last contribution of this thesis is the analysis of the internal be-
havior of PLCs, focusing in Siemens PLCs. This is not a theoretical
contribution of this thesis, however this analysis was a fundamental
step in the design of the modeling strategy and also in the defini-
tion of the semantics of the IM. One example of a large impact on
the modeling strategy was the analysis of the timing aspects of PLCs
programs, i.e. the TIME data type and PLC timers. When defin-
ing the syntax and semantics of the IM, one option was to provide a
timed automata-based formalism, similar to the UPPAAL modeling
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language (described in Amnell et al. (2001)), in order to be able to
model these timing aspects as some other authors did before. How-
ever, after analyzing the internal PLC behavior, the adopted strategy
was to use an automata-based formalism. This is a simpler formalism
than timed automata and the timing aspects of PLCs can be properly
modeled using this modeling strategy (as described in Section 3.9).

6.2.8 Applicability on CERN control systems

In addition to the contributions, this thesis presents the experiments
performed on real-life PLC programs. These systems, which were
developed at CERN, have significantly large PLC programs and bugs
were found on these systems. To the best of the author’s knowledge,
none of the previous works presented experimental results with PLC
programs of similar size using a completely automated procedure.

The current limitations of this methodology were presented in
Chapter 5. Some features, like the support of the full grammar of
ST and SFC, impose currently some small restrictions in the method-
ology. However, this kind of issues are not theoretical limitations and
can be solved with a relatively small effort, comparing with the fol-
lowing limitations.

The three main limitations of this methodology are: the state space
explosion of the models (common problem in the formal verification
domain), the verification of concurrency problems in PLCs and the
requirements specification.

The state space explosion problem is still the main limitation in this
methodology, as it is for any model checking application. In this ap-
proach, when property preserving reductions and the variable abstrac-
tion technique do not provide an answer, the limits of this approach
are met. Although the experiments show good results in real-life PLC
programs, there is obviously room for improvement and extensions in
the reduction techniques.

This approach assumes that no concurrency problems can occur
in PLC programs. However, concurrency problems may happen in
reality, so this approach suggests to check this kind of problems be-
fore applying formal verification of the programs. The reason of this
assumption is to simplify the transformation rules and improve the
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performance of the verification process. For instance, if a very realis-
tic model of the PLC interrupts were created (where an interrupt can
stop the main program at any time), the state space of the models
would be huge, thus preventing the use of formal verification. The
solution to this problem is very challenging. Instead of formal verifi-
cation, this approach currently suggests to apply different techniques
to check concurrency problem, for example, static analysis techniques.
To check this kind of properties using formal verification would prob-
ably require using different verification tools than the ones currently
included in the methodology. Another solution could be producing
more abstract models out of the PLC programs to deal with this kind
of analysis.

The last but not least big limitation of this approach is the re-
quirements specification. The approach currently provides patterns to
formalize the requirements. This is useful for finding bugs in the PLC
programs but it is not the final solution for requirements specification
in engineering. For example, with this approach the completeness
of the requirements is not guaranteed. The challenge of providing a
mechanism to produce complete, unambiguous and coherent control
systems requirements is still unsolved. In addition, the fact that con-
trol and process engineers are usually not familiar with formal methods
makes this task still more challenging.

6.3 Future work

The future research work is related to overcome the main drawbacks
described before. There are three main research topics among others:

1. Abstraction techniques.

2. Requirement specification.

3. Applying different formal verification algorithms to our models.

The first field is the reduction and abstraction techniques applied
to the methodology. New and improved reduction and abstraction
techniques (e.g. predicate abstraction) would be necessary to verify
any PLC program as an ultimate goal.
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The second field of research is the design of a specification mech-
anism for control systems. This mechanism has to provide a formal,
unambiguous and easy-to-understand language. Nowadays, it does
not exist a unified mechanism or language for requirement specifica-
tion in control systems as there are unified programming languages.
In a near future, unified “formal or pseudo-formal” specification mech-
anisms should be highly recommended by any of the automation stan-
dards in order to develop more robust and safe control systems. Hav-
ing a complete and unambiguous specification will open the door to
the “correctness by construction” approach in industrial automation
and it could complement the current approach proposed in this the-
sis, where formal verification can be applied at different levels of the
control system development process: at the specification and control
code levels, which would reduce the potential bugs of the systems to
the minimum.

Finally, a nice feature of this methodology is that different formal
verification techniques can be included and their results can be com-
pared. From this point of view, it would be very interesting to check
the benefits of the SAT-based techniques on our models. We started
to investigate these techniques and the development and results are
an ongoing work. Bounded model checking could also improve the
verification performance in some cases for our models. In particular,
in the variable abstraction technique, one of the current “bottleneck”
of this technique is the verification of reachability properties on very
large models, bounded model checking is suitable for the reachability
analysis. In addition, compositional formal verification seems to be
a very promising verification strategy for our models, specially when
verifying full UNICOS PLC programs. The BIP framework provides
a solution for compositional verification, although the verification tool
does not support yet data transfer between components.

As a final conclusion, I consider that the original requirements de-
fined at the beginning of this project were met during this research.
The relevance of the practical and theoretical contributions is demon-
strated in the experimental results of real-life PLC programs at CERN.
The automation and formal methods communities are getting closer
thanks to the contributions from this thesis and from other researchers.
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However, there is still a long way to have formal verification applied
extensively in the automation industry. This thesis has triggered new
research topics that hopefully will remove the gap once and for all
between these two scientific worlds.





Caṕıtulo 7

Conclusiones y trabajo
futuro

Este caṕıtulo final incluye las conclusiones de esta tesis, presentando
la lista de contribuciones, limitaciones y beneficios de esta investiga-
ción. Además, una breve discusión sobre el futuro de este proyecto es
presentado. Este caṕıtulo está dividido en tres secciones:

− La Sección 7.1 presenta una discusión sobre la evolución de la
tesis, desde los objectivos iniciales hasta la solución adoptada
para lograr dichos objectivos.

− La Sección 7.2 presenta las contribuciones, las limitaciones y los
beneficios de esta investigación.

− Finalmente, la Sección 7.3 sugiere las futuras ĺıneas de investi-
gación para este proyecto.

7.1 Discusión

Este proyecto de investigación fue diseñado para proporcionar una
solución a uno de los principales retos de los diseñadores y desarrolla-
dores de programas PLC en la industria de automatización, un meca-
nismo para garantizar que el código PLC respeta las especificationes
de diseño.

Este reto es particularmente importante para los sistemas de se-
guridad, encargados de la protección de personas, medioambiente e
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instalaciones, tal y como es indicado en el estándar IEC 61508 (2010).
Sin embargo, esto es un elemento deseado para cualquier sistema de
control.

Hoy en d́ıa en industria, testeo automático y manual de los pro-
gramas PLC son las soluciones adoptadas más populares, pero tienen
limitaciones bien conocidas.

Esta tesis propone una solución para el empleo de verificatión for-
mal de forma automática en programas PLC. Al principio de este
proyecto, dos objectivos principales fueron establecidos para garanti-
zar que esta estrategia sea útil para la verificación de programas PLC
reales:

1. Ocultar cualquier dificultad relacionada con tareas de verifica-
ción formal a los ingenierios de automatización.

2. Ser capaces de verificar nuevos programas PLC o programas ya
existentes. Esto requiere que la metodoloǵıa propuesta no de-
beŕıa modificar ningún proceso de desarrollo de programas PLC.

Lograr esos objetivos supuso adoptar la solución presentada en esta
tesis: una metodoloǵıa genérica y automatizada para aplicar verifica-
ción formal de programas PLC. El término “general” hace referencia
a una metodoloǵıa flexible, en la cual diferentes herramientas de ve-
rificación pueden ser incluidas en la metodoloǵıa. El término “auto-
matizada” indica que las etapas internas no necesitan de intervención
humana.

Los modelos formales para diferentes herramientas de verificación
son creados de manera automatica a partir del código PLC. La me-
todoloǵıa esta basada en una etapa intermedia, el llamado modelo
intermedio (IM por sus siglas en inglés: Intermediate Model) usado
como eje central entre todos los lenguages PLC y de las herramien-
tas de verificación incluidas en la metodoloǵıa. Esta estrategia puede
ser aplicada potencialmente a todos los programas PLC. El estado ac-
tual de la metodoloǵıa incluye los lenguages ST y SFC, el lenguage IL
está bajo desarrollo.

Todas las etapas de la metodoloǵıa son presentadas en el Caṕıtulo
3: formalización de los requerimientos, traducción automática de los
programas PLC al IM, reducción del IM, traducción del IM a los len-
guages de las herramientas de verificación y finalmente el análisis del
contraejemplo.
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Los resultados experimentales presentados en el caṕıtulo 4 mues-
tran que esta solución es válida para programas PLC reales. Muchas
discrepancias entre las especificaciones y los programas PLC fueron
encontradas durante estos experimentos, incluso si estos programas
fueron testeados con otras técnicas.

Las contribuciones prácticas y teóricas de esta metodoloǵıa son
analizadas en la próxima sección.

7.2 Contribuciones

Esta tesis doctoral no es el primer intento de aplicar verificación for-
mal con programas PLC. La Sección 2.4 analiza el estado del arte en
este campo de investigación. Sin embargo, ninguna de esas propuestas
cumpĺıa completamente con los requisitos iniciales de este proyecto, o
impońıan limitaciones muy grandes en su aplicación. Las contribucio-
nes teóricas y prácticas de esta tesis fueron enumeradas en la Sección
1.3. En esta sección, más detalles sobre dichas contribuciones son pre-
sentados en base a los resultados experimentales obtenidos.

7.2.1 Metodoloǵıa

La primera contribución es la propia metodoloǵıa. La transformación
de diferentes lenguages PLC a diferentes lenguages de modelado de
las herramientas de verificación, pasando por este paso intermedio, ya
existe en otros campos de aplicación pero es un enfoque innovador en
la comunidad de automación industrial, particularmente en el cam-
po de PLCs. En cuanto a la formalización de los requerimientos, un
enfoque basado en patrones puede ser encontrado antes de este docu-
mente tal y como es presentado en la Sección 2.4, pero en este caso
nuevos patrones son incluidos en esta investigación para enfrentarse a
las necesidades de los sistemas reales desarrollados por los ingenieros
de control del CERN. El análisis de los contraejemplos y los informes
generados, los cuales se proporcionan al ingeniero cuando un error es
encontrado, es una contribución práctica la cual es muy útil para los in-
genieros de control. Las herramientas de verificación (model checkers)
normalmente proporcionan una gran cantidad de información cuando
un error es encontrado en programas de PLC reales, pero solamente
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la información relevante es extráıda y proporcionada al ingeniero para
que pueda encontrar el origen del problema.

7.2.2 Sintaxis y semántica del IM

La definición de la sintaxis y de la semántica del IM es la segunda
contribución. El objetivo fue proporcionar un formalismo simple don-
de todos los aspectos de los programas PLC puedan ser modelados.
Después de los resultados experimentales, no se encontraron limita-
ciones debidas a la expresividad del IM. Las suposiciones adoptadas
para traducir el código PLC al IM ayudan a simplificar las reglas de
transformación y a reducir el espacio de estados pero consiguiendo
modelos adecuados al sistema real. Además, el formalismo del IM es
cercano a los formalismos adoptados por varias herramientas de veri-
ficación, lo cual simplifica la transformación y por lo tanto facilita la
posibilidad de añadir nuevas herramientas de verificación para com-
probar cuáles son sus rendimientos y posibilidades de simulación para
nuestros modelos.

7.2.3 Reglas de transformación código PLC - IM

La tercera contribución es el conjunto de reglas de transformación de
los lenguages ST y SFC al IM. Aunque las gramáticas completas no
han sido incluidas aún, las transformaciones más relevantes son pre-
sentadas. Estas reglas de transformación cubren todas las necesidades
para transformar programas UNICOS CPC desarrollados en el CERN.

7.2.4 Reglas de transformación IM- modelo para
las herramientas de verificación

Actualmente tres herramientas de verificación son incluidas y compa-
radas en la metodoloǵıa. La transfromación del IM a los lenguages de
modelado de nuXmv, UPPAAL y BIP es la cuarta contribución. El
análisis de estas tres herramientas, presentado en el Caṕıtulo 5, mues-
tra que en términos de rendimiento de los algoritmos de verificación,
nuXmv proporciona los mejores resultados de las tres herramientas
para nuestros modelos.
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7.2.5 Técnicas de reducción

Las técnicas de reducción y abstracción propuestas en esta tesis son
una parte fundamental de la metodoloǵıa ya que permiten aplicar ve-
rificación formal a prográmas PLC reales. Estas técnicas son la quinta
contribución de esta tesis. Dos grupos de técnicas de reducción son
propuestos, las técnicas de reducción que preservan las propiedades y
la técnica de abstracción de variables:

1. Para el primer grupo, algunos de los conceptos teóricos de estas
técnicas fueron previamente definidos por otros autores, como
por ejemplo “Cone of Influence” (COI). Sin embargo, al utili-
zar el conocimiento del funcionamiento de los PLCs y aplicando
estas técnicas en el IM, un mejor rendimiento en términos de ve-
rificación fue logrado para nuestros modelos. Esta tesis compara
nuestras técnicas de reducción que preservan las propiedas con
el algoritmo implementado en nuXmv.

2. La técnica de abstracción de variables es una técnica innova-
dora la cual permite verificar propiedades de seguridad, como
AG(α→ β), en aquellos programas PLC donde el primer grupo
de reducciones no es lo suficientemente efectivo. Tiene ciertas
similitudes con la técnica CEGAR pero difiere en los siguien-
tes aspectos: la heuŕıstica de esta técnica es más sencilla para
ser automatizada en nuestra metodoloǵıa, los modelos abstrac-
tos son creados automaticamente usando el árbol de variables
dependientes de las variables incluidas en la propiedad a verifi-
car y como el objetivo es verificar propiedades como AG(α→ β),
una estrategia de abstracción más agresiva puede ser aplicada.

7.2.6 Modelado de los aspectos temporales de los
PLCs

La transformación de los aspectos temporales de los programas PLC
forman parte del conjunto de reglas para traducir los programas PLC
al IM. Esta tesis proporciona una solución para este caso muy particu-
lar y complicado de la transformación de programas PLC al IM. Esta
es la sexta contribución de esta tesis. Actualmente dos soluciones di-
ferentes son propuestas dependiendo de la naturaleza de la propiedad
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que se va a verificar. En la primera opción, el tiempo es modelado co-
mo una variable de 16 bits. Además, los temporizadores TON, TOFF
y TP son modelados con un enfoque realista muy cercano a la realidad,
que permite verificar propiedades que incluyen tiempo expĺıcitamente.
La segunda opción por el contrario no modela el tiempo y un modelo
abstracto es creado para representar los temporizadores. Este enfoque
permite verificar solamenta propiedades temporales del tipo “antes/-
despues”, pero el rendimiento es significativamente mejor que en el
enfoque anterior ya que el espacio de estados es mucho menor.

7.2.7 Análisis del funcionamiento de un PLC

La última contribución de la tesis es el análisis del funcionamiento
interno de un PLC, en particular de Siemens PLCs. No se trata en
este caso de una contribución teórica de esta tesis, sin embargo este
análisis fue una etapa fundamental en el diseño de la estrategia de
modelado y tambien en la definición de la semántica del IM.

Un ejemplo del gran impacto en dicha estrategia fue el análisis de
los aspectos temporales en los programas PLC, es decir, del tipo de
dato TIME y de los temporizadores. Cuando se definió la sintaxis y
la semántica del IM, una opción era proporcionar un formalismo ba-
sado en automata temporizado, similar al lenguage de modelado de
UPPAAL (descrito en Amnell et al. (2001)), para poder modelar estos
aspectos temporales tal y como otros autores lo propusieron previa-
mente. Sin embargo, después de analizar el funcionamiento interno
del PLC, la estrategia adoptada fue usar un formalismo simplemente
basado en automata. Este formalismo es mas sencillo que el forma-
lismo basado en automata temporizado y los aspectos temporales de
los PLCs pueden ser modelados adecuadamente usando esta estrategia
(tal y como fue descrita en la Sección 3.9).

7.2.8 Aplicación en sistemas de control desarro-
llados en el CERN

Además de las contribuciones, esta tesis presenta los experimentos
realizados en programas PLC reales. Estos sistemas, los cuales han
sido desarrollados en el CERN, tienen programas PLC de un tama no
muy significativo y errores fueron encontrados en dichos sistemas. En
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ninguno de los trabajos encontrados que son previos a esta tesis, los
experimentos fueron realizados en programas de la entidad de los ex-
perimentos presentados en esta tesis de una manera completamente
automatizada.

Las actuales limitaciones de esta metodoloǵıa fueron presentadas
en el Caṕıtulo 5. Algunos aspectos, como incluir la gramática completa
de los lenguages ST y SFC, implica actualmente pequeñas restricciones
en la metodoloǵıa. Sin embargo, este tipo de problemas no son limi-
taciones teóricas y pueden ser resueltas con un esfuerzo relativamente
pequeño, comparado con las siguientes limitaciones.

Las tres principales limitaciones de este metodoloǵıa son: la explo-
sión de estados de los modelos (problema común en la comunidad de
verificación formal), la verificación de problemas de concurrencia en
los PLCs y la especificación de los requisitos.

El problema de explosión de estados es aún la principal limitación
en esta metodoloǵıa, tal y como ocurre en cualquier aplicación de mo-
del checking. En esta metodoloǵıa, cuando las técnicas de reducción
que preservan las propiedades y la técnica de abstracción de variables
no proporcionan ninguna respuesta, el usuario de la misma no obtiene
ningún resultado. Aunque los experimentos presentan buenos resulta-
dos en programas PLC reales, existe obviamente margen para mejoras
y extensiones en las técnicas de reducción.

Esta metodoloǵıa asume que no pueden ocurrir problemas de con-
currencia en los programas PLC. Sin embargo, esos problemas pueden
ocurrir en la realidad, por lo que la estrategia recomendada sugiere
analizar dichos problemas antes de aplicar verificación formal a los
programas. La razón de esta suposición es simplificar las reglas de
transformación y mejorar el rendimiendo del proceso de verificación.
Por ejemplo, si un modelo muy fiel a la implementación real del PLC
fuese creado (donde una interrupción puede parar el programa prin-
cipal en cualquier momento para ser ejecutado), el espacio de estados
de los modelos seŕıa enorme y por lo tanto no seŕıa posible aplicar
verificación formal a dichos modelos.

La solución a este problema no es trivial. En lugar de verificación
formal, esta metodoloǵıa propone actualmente aplicar diferentes técni-
cas para analizar los problemas de concurrencia, por ejemplo, técnicas
de análisis estático. Para chequear este tipo de propiedades usando
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verificación formal, probablemente seŕıa necesario usar diferentes he-
rramientas de verificación que las que son incluidas en la metodoloǵıa
hoy en d́ıa. Otra posible solución podŕıa ser la de producir modelos
mucho mas abstractos de los programas PLC para poder analizar este
tipo de propiedades.

La última pero no menos importante gran limitación de esta me-
todoloǵıa es la especificación de los requisitos funcionales que el pro-
grama debe cumplir. El enfoque actual proporciona patrones para for-
malizar los requisitos. Esta es una solución útil para encontrar errores
en los programas PLC pero no es la solución final para la especifica-
ción de requisitos en ingenieŕıa. Por ejemplo, con esta solución no se
puede garantizar que la especificación de los requisitos sea completa.
El objetivo de proporcionar un mecanismo para producir una espe-
cificación de requisitos completa, sin ambiguëdades y coherente para
sistemas de control no se ha conseguido aún. Además, el hecho que
los ingenieros de control y de proceso no están en la mayoŕıa de los
casos familiarizados con métodos formales hace esta tarea aún más
complicada.

7.3 Future work

El futuro trabajo de investigación está orientado a mejorar o resol-
ver las limitaciones descritas anteriormente. Se puede hablar de tres
campos de investigación principales:

1. Técnicas de abstracción.

2. Especificación de requisitos.

3. La aplicación de diferentes algoritmos de verificación.

El primer campo de investigación son las técnicas de reducción
y abstracción que pueden ser aplicadas a esta metodoloǵıa. Nuevas
y mejoradas técnicas de reducción y abstracción (por ejemplo “pre-
dicate abstraction”) son necesarias para que la metodoloǵıa pudiera
verificar cualquier programa PLC, ya que este es el objetivo final de
esta metodoloǵıa.

El segundo campo de investigación es el diseño de un mecanis-
mo de especificación para sistemas de control. Este mecanismo tiene
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que proporcionar un lenguage sin ambigüedades y fácil de utilizar.
Hoy en d́ıa, no existe un mecanismo o lenguage para la especifica-
ción de requisitos en sistemas de control tal y como existen lenguages
de programación estandarizados. En un futuro cercano, mecanismos
de especificación formales o pseudo-formales debeŕıan ser altamente
recomendados por los estándares de automática para desarrollar siste-
mas de control más seguros y robustos. Disponer de una especificación
completa y sin ambigüedades significaŕıa la posibilidad de emplear el
enfoque de “exactitud en la construcción (correctness by construc-
tion)” en la automatización industrial. Esto podŕıa complementar el
enfoque actual de esta tesis, donde verificación formal puede ser apli-
cada en los diferentes niveles del proceso de desarrollo de sistemas de
control: en la especificación y el código de control, lo cual reduciŕıa el
número de errores potenciales al mı́nimo.

Finalmente, un factor muy interesante de esta metodoloǵıa es que
permite incluir diferentes técnicas de verificación formal en ella y los
resultados pueden ser comparados. Desde este punto de vista, seŕıa
muy interesante incluir técnicas de verificación basadas en SAT pa-
ra nuestros modelos. Durante el desarrollo de esta tesis, empezamos a
estudiar estas técnicas y es un trabajo de investigación que va en proce-
so. “Bounded model checking” podŕıa tambien mejorar el redimiento
de la verificación de nuestro modelos. En concreto, en la técnica de
abstracción de variables, uno de los actuales cuellos de botella de esta
técnica es la verificación de propiedades de “reachability” en modelos
muy grandes, “bounded model checking” es una técnica adecuada pa-
ra este tipo de análisis. Además, “compositional formal verification”
es una estrategia de verificación muy prometedora para nuestros mo-
delos, especialmente para programs UNICOS CPC. La infrastructura
de BIP proporciona una solución para “compositional formal verifica-
tion”, aunque actualmente su herramienta de verificación no permite
la transferencia de datos entre componentes.

Como conclusión final, considero que la tesis da una respuesta a los
requisitos originales definidos al inicio de este proyecto. La relevancia
de las contribuciones tanto teóricas como prácticas ha sido demostrada
en los resultados experimentales usando programas PLC desarrollados
en el CERN. Las comunidades de automática y métodos formales están
cada vez más cerca gracias a las contribuciones de esta tesis y las
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contribuciones de otros investigadores en este mismo campo.
Sin embargo, existe aún un largo camino para disponer de verifica-

ción formal aplicada ampliamente en esta industria. El desarrollo de
esta tesis ha desencadenado nuevas ĺıneas de investigación que contri-
buirán a que el espacio que separa estos dos mundos sea eliminado de
una vez por todas.



Appendix A

PLC programs

The following piece of ST code corresponds to the Siemens implemen-
tation of the OnOff UNICOS CPC object.

1 //UNICOS
2 // Copyright CERN 2013 all rights reserved
3 (∗ ON/OFF OBJECT FUNCTION BLOCK

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)
4 FUNCTION_BLOCK CPC_FB_ONOFF

5 TITLE = ’CPC_FB_ONOFF’

6 //
7 // ONOFF Object
8 //
9 VERSION: ’6.5’

10 AUTHOR: ’EN/ICE’

11 NAME: ’OBJECT’

12 FAMILY: ’FO’

13

14 VAR_INPUT

15 HFOn: BOOL;

16 HFOff: BOOL;

17 HLD: BOOL;

18 IOError: BOOL;

19 IOSimu: BOOL;

20 AlB: BOOL;

21 Manreg01: WORD;

22 Manreg01b AT Manreg01: ARRAY [0..15] OF BOOL;

23 HOnR: BOOL;

24 HOffR: BOOL;

25 StartI: BOOL;

26 TStopI: BOOL;

27 FuStopI: BOOL;

28 Al: BOOL;

29 AuOnR: BOOL;

30 AuOffR: BOOL;

31 AuAuMoR: BOOL;

32 AuIhMMo: BOOL;

33 AuIhFoMo: BOOL;

34 AuAlAck: BOOL;
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35 IhAuMRW: BOOL;

36 AuRstart: BOOL;

37 POnOff: CPC_ONOFF_PARAM;

38 POnOffb AT POnOff: STRUCT

39 ParRegb: ARRAY [0..15] OF BOOL;

40 PPulseLeb: TIME;

41 PWDtb: TIME;

42 END_STRUCT;

43

44 END_VAR

45 VAR_OUTPUT

46 Stsreg01: WORD;

47 Stsreg01b AT Stsreg01: ARRAY [0..15] OF BOOL;

48 Stsreg02: WORD;

49 Stsreg02b AT Stsreg02: ARRAY [0..15] OF BOOL;

50 OutOnOV: BOOL;

51 OutOffOV: BOOL;

52 OnSt: BOOL;

53 OffSt: BOOL;

54 AuMoSt: BOOL;

55 MMoSt: BOOL;

56 LDSt: BOOL;

57 SoftLDSt: BOOL;

58 FoMoSt: BOOL;

59 AuOnRSt: BOOL;

60 AuOffRSt: BOOL;

61 MOnRSt: BOOL;

62 MOffRSt: BOOL;

63 HOnRSt: BOOL;

64 HOffRSt: BOOL;

65 IOErrorW: BOOL;

66 IOSimuW: BOOL;

67 AuMRW: BOOL;

68 AlUnAck: BOOL;

69 PosW: BOOL;

70 StartISt: BOOL;

71 TStopISt: BOOL;

72 FuStopISt: BOOL;

73 AlSt: BOOL;

74 AlBW: BOOL;

75 EnRstartSt: BOOL := TRUE;

76 RdyStartSt: BOOL;

77 END_VAR

78 VAR //Internal Variables
79 //Variables for Edge detection
80 E_MAuMoR: BOOL;

81 E_MMMoR: BOOL;

82 E_MFoMoR: BOOL;

83 E_MOnR: BOOL;

84 E_MOffR: BOOL;

85 E_MAlAckR: BOOL;

86 E_StartI: BOOL;

87 E_TStopI: BOOL;

88 E_FuStopI: BOOL;

89 E_Al: BOOL;

90 E_AuAuMoR: BOOL;

91 E_AuAlAck: BOOL;

92 E_MSoftLDR: BOOL;
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93 E_MEnRstartR: BOOL;

94 RE_AlUnAck: BOOL;

95 FE_AlUnAck: BOOL;

96 RE_PulseOn: BOOL;

97 FE_PulseOn: BOOL;

98 RE_PulseOff: BOOL;

99 RE_OutOVSt_aux: BOOL;

100 FE_OutOVSt_aux: BOOL;

101 FE_InterlockR: BOOL;

102

103 //Variables for old values
104 MAuMoR_old: BOOL;

105 MMMoR_old: BOOL;

106 MFoMoR_old: BOOL;

107 MOnR_old: BOOL;

108 MOffR_old: BOOL;

109 MAlAckR_old: BOOL;

110 AuAuMoR_old: BOOL;

111 AuAlAck_old: BOOL;

112 StartI_old: BOOL;

113 TStopI_old: BOOL;

114 FuStopI_old: BOOL;

115 Al_old: BOOL;

116 AlUnAck_old: BOOL;

117 MSoftLDR_old: BOOL;

118 MEnRstartR_old: BOOL;

119 RE_PulseOn_old: BOOL;

120 FE_PulseOn_old: BOOL;

121 RE_PulseOff_old: BOOL;

122 RE_OutOVSt_aux_old: BOOL;

123 FE_OutOVSt_aux_old: BOOL;

124 FE_InterlockR_old: BOOL;

125

126 //General internal variables
127 PFsPosOn: BOOL;

128 PFsPosOn2: BOOL;

129 PHFOn: BOOL;

130 PHFOff: BOOL;

131 PPulse: BOOL;

132 PPulseCste: BOOL;

133 PHLD: BOOL;

134 PHLDCmd: BOOL;

135 PAnim: BOOL;

136 POutOff: BOOL;

137 PEnRstart: BOOL;

138 PRstartFS: BOOL;

139 OutOnOVSt: BOOL;

140 OutOffOVSt: BOOL;

141 AuMoSt_aux: BOOL;

142 MMoSt_aux: BOOL;

143 FoMoSt_aux: BOOL;

144 SoftLDSt_aux: BOOL;

145 PulseOn: BOOL;

146 PulseOff: BOOL;

147 PosW_aux: BOOL;

148 OutOVSt_aux: BOOL;

149 fullNotAcknowledged: BOOL;

150 PulseOnR: BOOL;
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151 PulseOffR: BOOL;

152 InterlockR: BOOL;

153

154 //Variables for IEC Timers
155 Time_Warning: TIME;

156 Timer_PulseOn: TP;

157 Timer_PulseOff: TP;

158 Timer_Warning: TON;

159

160 //Variables for interlock Ststus delay handling
161 PulseWidth: REAL;

162 FSIinc: INT;

163 TSIinc: INT;

164 SIinc: INT;

165 Alinc: INT;

166 WTStopISt: BOOL;

167 WStartISt: BOOL;

168 WAlSt: BOOL;

169 WFuStopISt: BOOL;

170 END_VAR

171

172 BEGIN

173 (∗ INPUT MANAGER ∗)
174

175 E_MAuMoR := R_EDGE(new:=ManReg01b[8],old:=MAuMoR_old); (∗
Manual Auto Mode Request ∗)

176 E_MMMoR := R_EDGE(new:=ManReg01b[9],old:=MMMoR_old); (∗
Manual Manual Mode Request ∗)

177 E_MFoMoR := R_EDGE(new:=ManReg01b[10],old:=MFoMoR_old); (∗
Manual Forced Mode Request ∗)

178 E_MSoftLDR := R_EDGE(new:=ManReg01b[11],old:=MSoftLDR_old); (∗
Manual Software Local Drive Request ∗)

179 E_MOnR := R_EDGE(new:=ManReg01b[12],old:=MOnR_old); (∗
Manual On/Open Request ∗)

180 E_MOffR := R_EDGE(new:=ManReg01b[13],old:=MOffR_old); (∗
Manual Off/close Request ∗)

181 E_MEnRstartR := R_EDGE(new:=ManReg01b[1],old:=MEnRstartR_old); (∗
Manual Restart after full stop Request ∗)

182 E_MAlAckR := R_EDGE(new:=ManReg01b[7],old:=MAlAckR_old); (∗
Manual Alarm Ack. Request ∗)

183

184 PFsPosOn := POnOffb.ParRegb[8]; (∗ 1st
Parameter bit to define Fail safe position behaviour ∗)

185 PHFOn := POnOffb.ParRegb[9]; (∗
Hardware feedback On present∗)

186 PHFOff := POnOffb.ParRegb[10]; (∗
Hardware feedback Off present∗)

187 PPulse := POnOffb.ParRegb[11]; (∗
Object is pulsed pulse duration : POnOff.PulseLe∗)

188 PHLD := POnOffb.ParRegb[12]; (∗ Local
Drive mode Allowed ∗)

189 PHLDCmd := POnOffb.ParRegb[13]; (∗ Local
Drive Command allowed ∗)

190 PAnim := POnOffb.ParRegb[14]; (∗
Inverted Output∗)

191 POutOff := POnOffb.ParRegb[15];

192 PEnRstart := POnOffb.ParRegb[0]; (∗
Enable Restart after Full Stop ∗)
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193 PRstartFS := POnOffb.ParRegb[1]; (∗
Enable Restart when Full Stop still active ∗)

194 PFsPosOn2 := POnOffb.ParRegb[2]; (∗ 2nd
Parameter bit to define Fail safe position behaviour ∗)

195 PPulseCste := POnOffb.ParRegb[3]; (∗ Pulse Constant
duration irrespective of the feedback status ∗)

196

197 E_AuAuMoR := R_EDGE(new:=AuAuMoR,old:=AuAuMoR_old); (∗ Auto
Auto Mode Request ∗)

198 E_AuAlAck := R_EDGE(new:=AuAlAck,old:=AuAlAck_old); (∗ Auto
Alarm Ack. Request ∗)

199

200 E_StartI := R_EDGE(new:=StartI,old:=StartI_old);

201 E_TStopI := R_EDGE(new:=TStopI,old:=TStopI_old);

202 E_FuStopI := R_EDGE(new:=FuStopI,old:=FuStopI_old);

203 E_Al := R_EDGE(new:=Al,old:=Al_old);

204

205 StartISt := StartI; (∗ Start
Interlock present ∗)

206 TStopISt := TStopI; (∗
Temporary Stop Interlock present ∗)

207 FuStopISt := FuStopI; (∗ Full
Stop Interlock present ∗)

208

209 (∗ INTERLOCK & ACKNOWLEDGE ∗)
210

211 IF (E_MAlAckR OR E_AuAlAck) THEN

212 fullNotAcknowledged := FALSE;

213 AlUnAck := FALSE;

214 ELSIF (E_TStopI OR E_StartI OR E_FuStopI OR E_Al) THEN

215 AlUnAck := TRUE;

216 END_IF;

217

218 IF (PEnRstart AND (E_MEnRstartR OR AuRstart) AND NOT FuStopISt) OR (

PEnRstart AND PRstartFS AND (E_MEnRstartR OR AuRstart)) AND NOT

fullNotAcknowledged THEN

219 EnRstartSt := TRUE;

220 END_IF;

221

222 IF E_FuStopI THEN

223 fullNotAcknowledged := TRUE;

224 IF PEnRstart THEN

225 EnRstartSt := FALSE;

226 END_IF;

227 END_IF;

228

229 InterlockR := TStopISt OR FuStopISt OR FullNotAcknowledged OR NOT

EnRstartSt OR

230 (StartISt AND NOT POutOff AND NOT OutOnOV) OR

231 (StartISt AND POutOff AND ((PFsPosOn AND OutOVSt_aux) OR (

NOT PFsPosOn AND NOT OutOVSt_aux)));

232

233 FE_InterlockR := F_EDGE (new:=InterlockR,old:=FE_InterlockR_old);

234

235 (∗ MODE MANAGER ∗)
236

237 IF NOT (HLD AND PHLD) THEN

238
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239 (∗ Forced Mode ∗)
240 IF (AuMoSt_aux OR MMoSt_aux OR SoftLDSt_aux) AND

241 E_MFoMoR AND NOT(AuIhFoMo) THEN

242 AuMoSt_aux := FALSE;

243 MMoSt_aux := FALSE;

244 FoMoSt_aux := TRUE;

245 SoftLDSt_aux := FALSE;

246 END_IF;

247

248 (∗ Manual Mode ∗)
249 IF (AuMoSt_aux OR FoMoSt_aux OR SoftLDSt_aux) AND

250 E_MMMoR AND NOT(AuIhMMo) THEN

251 AuMoSt_aux := FALSE;

252 MMoSt_aux := TRUE;

253 FoMoSt_aux := FALSE;

254 SoftLDSt_aux := FALSE;

255 END_IF;

256

257 (∗ Auto Mode ∗)
258 IF (MMoSt_aux AND (E_MAuMoR OR E_AuAuMoR )) OR

259 (FoMoSt_aux AND E_MAuMoR) OR

260 (SoftLDSt_aux AND E_MAuMoR) OR

261 (MMoSt_aux AND AuIhMMo) OR

262 (FoMoSt_aux AND AuIhFoMo)OR

263 (SoftLDSt_aux AND AuIhFoMo) OR

264 NOT(AuMoSt_aux OR MMoSt_aux OR FoMoSt_aux OR SoftLDSt_aux)

THEN

265 AuMoSt_aux := TRUE;

266 MMoSt_aux := FALSE;

267 FoMoSt_aux := FALSE;

268 SoftLDSt_aux := FALSE;

269 END_IF;

270

271 (∗ Software Local Mode ∗)
272 IF (AuMoSt_aux OR MMoSt_aux) AND E_MSoftLDR AND NOT AuIhFoMo

THEN

273 AuMoSt_aux := FALSE;

274 MMoSt_aux := FALSE;

275 FoMoSt_aux := FALSE;

276 SoftLDSt_aux:= TRUE;

277 END_IF;

278

279 (∗ Status setting ∗)
280 LDSt := FALSE;

281 AuMoSt := AuMoSt_aux;

282 MMoSt := MMoSt_aux;

283 FoMoSt := FoMoSt_aux;

284 SoftLDSt := SoftLDSt_aux;

285 ELSE

286 (∗ Local Drive Mode ∗)
287 AuMoSt := FALSE;

288 MMoSt := FALSE;

289 FoMoSt := FALSE;

290 LDSt := TRUE;

291 SoftLDSt:= FALSE;

292 END_IF;

293

294 (∗ LIMIT MANAGER ∗)
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295

296 (∗ On/Open Evaluation ∗)
297 OnSt:= (HFOn AND PHFOn) OR (∗Feedback ON

present∗)
298 (NOT PHFOn AND PHFOff AND PAnim AND NOT HFOff) OR (∗Feedback

ON not present and PAnim = TRUE∗)
299 (NOT PHFOn AND NOT PHFOff AND OutOVSt_aux);

300

301

302

303 (∗ Off/Closed Evaluation ∗)
304 OffSt:=(HFOff AND PHFOff) OR (∗Feedback

OFF present∗)
305 (NOT PHFOff AND PHFOn AND PAnim AND NOT HFOn) OR (∗Feedback

OFF not present and PAnim = TRUE∗)
306 (NOT PHFOn AND NOT PHFOff AND NOT OutOVSt_aux);

307

308 (∗ REQUEST MANAGER ∗)
309

310 (∗ Auto On/Off Request∗)
311

312 IF AuOffR THEN

313 AuOnRSt := FALSE;

314 ELSIF AuOnR THEN

315 AuOnRSt := TRUE;

316 ELSIF fullNotAcknowledged OR FuStopISt OR NOT EnRstartSt THEN

317 AuOnRSt := PFsPosOn;

318 END_IF;

319 AuOffRSt:= NOT AuOnRSt;

320

321 (∗ Manual On/Off Request∗)
322

323 IF (((E_MOffR AND (MMoSt OR FoMoSt OR SoftLDSt))

324 OR (AuOffRSt AND AuMoSt)

325 OR (LDSt AND PHLDCmd AND HOffRSt)

326 OR (FE_PulseOn AND PPulse AND NOT POutOff) AND EnRstartSt)

327 OR (E_FuStopI AND NOT PFsPosOn)) THEN

328

329 MOnRSt := FALSE;

330

331 ELSIF (((E_MOnR AND (MMoSt OR FoMoSt OR SoftLDSt))

332 OR (AuOnRSt AND AuMoSt)

333 OR (LDSt AND PHLDCmd AND HOnRSt) AND EnRstartSt)

334 OR (E_FuStopI AND PFsPosOn)) THEN

335

336 MOnRSt := TRUE;

337 END_IF;

338

339 MOffRSt:= NOT MOnRSt;

340

341 (∗ Local Drive Request ∗)
342

343 IF HOffR THEN

344 HOnRSt := FALSE;

345 ELSE IF HOnR THEN

346 HOnRSt := TRUE;

347 END_IF;

348 END_IF;
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349 HOffRSt := NOT(HOnRSt);

350

351

352 (∗ PULSE REQUEST MANAGER∗)
353 IF PPulse THEN

354 IF InterlockR THEN

355 PulseOnR:= (PFsPosOn AND NOT PFsPosOn2) OR (PFsPosOn AND

PFsPosOn2);

356 PulseOffR:= (NOT PFsPosOn AND NOT PFsPosOn2) OR (PFsPosOn AND

PFsPosOn2);

357 ELSIF FE_InterlockR THEN (∗Clear PulseOnR/PulseOffR to be sure you
get a new pulse after InterlockR∗)

358 PulseOnR:= FALSE;

359 PulseOffR:= FALSE;

360 Timer_PulseOn (IN:=FALSE,PT:=T#0s);

361 Timer_PulseOff (IN:=FALSE,PT:=T#0s);

362 ELSIF (MOffRSt AND (MMoSt OR FoMoSt OR SoftLDSt)) OR (AuOffRSt AND

AuMoSt) OR (HOffR AND LDSt AND PHLDCmd) THEN //Off Request
363 PulseOnR:= FALSE;

364 PulseOffR:= TRUE;

365 ELSIF (MOnRSt AND (MMoSt OR FoMoSt OR SoftLDSt)) OR (AuOnRSt AND

AuMoSt) OR (HOnR AND LDSt AND PHLDCmd) THEN //On Request
366 PulseOnR:= TRUE;

367 PulseOffR:= FALSE;

368 ELSE

369 PulseOnR:= FALSE;

370 PulseOffR:= FALSE;

371 END_IF;

372

373

374 //Pulse functions
375 Timer_PulseOn (IN:= PulseOnR,PT:=POnOffb.PPulseLeb);

376 Timer_PulseOff (IN:=PulseOffR,PT:=POnOffb.PPulseLeb);

377

378 RE_PulseOn := R_EDGE(new:=PulseOn,old:=RE_PulseOn_old);

379 FE_PulseOn := F_EDGE(new:=PulseOn,old:=FE_PulseOn_old);

380 RE_PulseOff := R_EDGE(new:=PulseOff,old:=RE_PulseOff_old);

381

382 //The pulse functions have to be reset when changing from On to Off
383 IF RE_PulseOn THEN

384 Timer_PulseOff (IN:=FALSE,PT:=T#0s);

385 END_IF;

386

387 IF RE_PulseOff THEN

388 Timer_PulseOn (IN:=FALSE,PT:=T#0s);

389 END_IF;

390

391 IF PPulseCste THEN (∗ Pulse constant duration irrespective of feedback
status ∗)

392 PulseOn := Timer_PulseOn.Q AND NOT PulseOffR;

393 PulseOff := Timer_PulseOff.Q AND NOT PulseOnR;

394 ELSE

395 PulseOn := Timer_PulseOn.Q AND NOT PulseOffR AND (NOT PHFOn OR (

PHFOn AND NOT HFOn));

396 PulseOff := Timer_PulseOff.Q AND NOT PulseOnR AND (NOT PHFOff OR (

PHFOff AND NOT HFOff));

397 END_IF;

398 END_IF;
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399

400 (∗ Output On Request ∗)
401 OutOnOVSt := (PPulse AND PulseOn) OR

402 (NOT PPulse AND ((MOnRSt AND (MMoSt OR FoMoSt OR SoftLDSt

)) OR

403 (AuOnRSt AND AuMoSt) OR

404 (HOnRST AND LDSt AND PHLDCmd)));

405

406 (∗ Output Off Request ∗)
407 IF POutOff THEN

408 OutOffOVSt := (PulseOff AND PPulse) OR

409 (NOT(PPulse) AND ((MOffRSt AND (MMoSt OR FoMoSt OR

SoftLDSt)) OR (AuOffRSt AND AuMoSt) OR (HOffRST

AND LDSt AND PHLDCmd)));

410 END_IF;

411

412 (∗ Interlocks / FailSafe ∗)
413

414 IF POutOff THEN

415 IF InterlockR THEN

416 IF PPulse AND NOT PFsPosOn2 THEN

417 IF PFsPosOn THEN

418 OutOnOVSt := PulseOn;

419 OutOffOVSt := FALSE;

420 ELSE

421 OutOnOVSt := FALSE;

422 OutOffOVSt := PulseOff;

423 END_IF;

424 ELSE

425 OutOnOVSt := (PFsPosOn AND NOT PFsPosOn2) OR (PFsPosOn

AND PFsPosOn2);

426 OutOffOVSt:= (NOT PFsPosOn AND NOT PFsPosOn2) OR (

PFsPosOn AND PFsPosOn2);

427 END_IF;

428 END_IF;

429 ELSE

430 IF InterlockR THEN

431 OutOnOVSt:= PFsPosOn;

432 END_IF;

433 END_IF;

434

435 (∗ Ready to Start Status ∗)
436

437 RdyStartSt := NOT InterlockR;

438

439 (∗Alarms∗)
440

441 AlSt := Al;

442

443 (∗ SURVEILLANCE ∗)
444

445 (∗ I/O Warning ∗)
446 IOErrorW := IOError;

447 IOSimuW := IOSimu;

448

449 (∗ Auto<> Manual Warning ∗)
450 AuMRW := (MMoSt OR FoMoSt OR SoftLDSt) AND

451 ((AuOnRSt XOR MOnRSt) OR (AuOffRSt XOR MOffRSt)) AND NOT
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IhAuMRW;

452

453

454

455 (∗ OUTPUT MANAGER AND OUTPUT REGISTER ∗)
456 IF NOT POutOff THEN

457 IF PFsPosOn THEN

458 OutOnOV := NOT OutOnOVSt;

459 ELSE

460 OutOnOV := OutOnOVSt;

461 END_IF;

462 ELSE

463 OutOnOV := OutOnOVSt;

464 OutOffOV := OutOffOVSt;

465 END_IF;

466

467 (∗ Position warning ∗)
468

469 (∗ Set reset of the OutOnOVSt ∗)
470 IF OutOnOVSt OR (PPulse AND PulseOnR) THEN

471 OutOVSt_aux := TRUE;

472 END_IF;

473 IF (OutOffOVSt AND POutOff) OR (NOT OutOnOVSt AND NOT POutOff) OR (

PPulse AND PulseOffR) THEN

474 OutOVSt_aux := FALSE;

475 END_IF;

476

477 RE_OutOVSt_aux := R_EDGE(new:=OutOVSt_aux,old:=RE_OutOVSt_aux_old);

478 FE_OutOVSt_aux := F_EDGE(new:=OutOVSt_aux,old:=FE_OutOVSt_aux_old);

479

480 IF ((OutOVSt_aux AND ((PHFOn AND NOT OnSt) OR (PHFOff AND OffSt)))

481 OR (NOT OutOVSt_aux AND ((PHFOff AND NOT OffSt) OR (PHFON AND OnSt))

)

482 OR (OffSt AND OnSt))

483 AND (NOT PPulse OR (POutOff AND PPulse AND NOT OutOnOV AND NOT

OutOffOV))

484 THEN

485 PosW_aux:= TRUE;

486 END_IF;

487

488 IF NOT ((OutOVSt_aux AND ((PHFOn AND NOT OnSt) OR (PHFOff AND OffSt)))

489 OR (NOT OutOVSt_aux AND ((PHFOff AND NOT OffSt) OR (PHFON AND OnSt))

)

490 OR (OffSt AND OnSt))

491 OR RE_OutOVSt_aux

492 OR FE_OutOVSt_aux

493 OR (PPulse AND POutOff AND OutOnOV)

494 OR (PPulse AND POutOff AND OutOffOV)

495 THEN

496 PosW_aux := FALSE;

497 END_IF;

498

499 Timer_Warning(IN := PosW_aux,

500 PT := POnOffb.PWDtb);

501

502 PosW := Timer_Warning.Q;

503 Time_Warning := Timer_Warning.ET;

504
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505 (∗ Alarm Blocked Warning∗)
506

507 AlBW := AlB;

508

509 (∗ Maintain Interlock status 1.5s in Stsreg for PVSS ∗)
510

511 PulseWidth := 1500 (∗ msec∗) / DINT_TO_REAL(TIME_TO_DINT(T_CYCLE));

512

513

514 IF FuStopISt OR FSIinc > 0 THEN

515 FSIinc := FSIinc + 1;

516 WFuStopISt := TRUE;

517 END_IF;

518

519 IF FSIinc > PulseWidth OR (NOT FuStopISt AND FSIinc = 0) THEN

520 FSIinc := 0;

521 WFuStopISt := FuStopISt;

522 END_IF;

523

524 IF TStopISt OR TSIinc > 0 THEN

525 TSIinc := TSIinc + 1;

526 WTStopISt := TRUE;

527 END_IF;

528

529 IF TSIinc > PulseWidth OR (NOT TStopISt AND TSIinc = 0) THEN

530 TSIinc := 0;

531 WTStopISt := TStopISt;

532 END_IF;

533

534 IF StartISt OR SIinc > 0 THEN

535 SIinc := SIinc + 1;

536 WStartISt:= TRUE;

537 END_IF;

538

539 IF SIinc > PulseWidth OR (NOT StartISt AND SIinc = 0) THEN

540 SIinc := 0;

541 WStartISt := StartISt;

542 END_IF;

543

544 IF AlSt OR Alinc > 0 THEN

545 Alinc := Alinc + 1;

546 WAlSt := TRUE;

547 END_IF;

548

549 IF Alinc > PulseWidth OR (NOT AlSt AND Alinc = 0) THEN

550 Alinc := 0;

551 WAlSt := AlSt;

552 END_IF;

553

554

555 (∗ STATUS REGISTER ∗)
556

557 Stsreg01b[8] := OnSt; //StsReg01 Bit 00
558 Stsreg01b[9] := OffSt; //StsReg01 Bit 01
559 Stsreg01b[10] := AuMoSt; //StsReg01 Bit 02
560 Stsreg01b[11] := MMoSt; //StsReg01 Bit 03
561 Stsreg01b[12] := FoMoSt; //StsReg01 Bit 04
562 Stsreg01b[13] := LDSt; //StsReg01 Bit 05
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563 Stsreg01b[14] := IOErrorW; //StsReg01 Bit 06
564 Stsreg01b[15] := IOSimuW; //StsReg01 Bit 07
565 stsreg01b[0] := AuMRW; //StsReg01 Bit 08
566 Stsreg01b[1] := PosW; //StsReg01 Bit 09
567 Stsreg01b[2] := WStartISt; //StsReg01 Bit 10
568 Stsreg01b[3] := WTStopISt; //StsReg01 Bit 11
569 Stsreg01b[4] := AlUnAck; //StsReg01 Bit 12
570 Stsreg01b[5] := AuIhFoMo; //StsReg01 Bit 13
571 Stsreg01b[6] := WAlSt; //StsReg01 Bit 14
572 Stsreg01b[7] := AuIhMMo; //StsReg01 Bit 15
573

574 Stsreg02b[8] := OutOnOVSt; //StsReg02 Bit 00
575 Stsreg02b[9] := AuOnRSt; //StsReg02 Bit 01
576 Stsreg02b[10] := MOnRSt; //StsReg02 Bit 02
577 Stsreg02b[11] := AuOffRSt; //StsReg02 Bit 03
578 Stsreg02b[12] := MOffRSt; //StsReg02 Bit 04
579 Stsreg02b[13] := HOnRSt; //StsReg02 Bit 05
580 Stsreg02b[14] := HOffRSt; //StsReg02 Bit 06
581 Stsreg02b[15] := 0; //StsReg02 Bit 07
582 stsreg02b[0] := 0; //StsReg02 Bit 08
583 Stsreg02b[1] := 0; //StsReg02 Bit 09
584 Stsreg02b[2] := WFuStopISt ; //StsReg02 Bit 10
585 Stsreg02b[3] := EnRstartSt; //StsReg02 Bit 11
586 Stsreg02b[4] := SoftLDSt; //StsReg02 Bit 12
587 Stsreg02b[5] := AlBW; //StsReg02 Bit 13
588 Stsreg02b[6] := OutOffOVSt; //StsReg02 Bit 14
589 Stsreg02b[7] := 0; //StsReg02 Bit 15
590

591 (∗ Edges ∗)
592

593 DETECT_EDGE(new:=AlUnAck,old:=AlUnAck_old,re:=RE_AlUnAck,fe:=FE_AlUnAck);

594

595

596 END_FUNCTION_BLOCK

597

598

599 // Common functions for UNICOS applications + implementation of platform FBs.
600 //UNICOS Copyright CERN 2013 all rights reserved
601

602 (∗ DATA STRUCTURES ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)
603 TYPE CPC_DB_PA_STATUS

604 TITLE = ’CPC_DB_PA_STATUS’ AUTHOR : ’EN/ICE’

605 FAMILY : ’Base’

606 STRUCT

607 ReadBack : REAL; //position of the valve
608 ReadBack_status : BYTE; //status of readback
609 Pos_D : BYTE; //position discrete
610 Pos_D_Status : BYTE; //status of Pos D
611 CheckBack0 : BYTE; //checkback status 0
612 CheckBack1 : BYTE; //checkback status 1
613 CheckBack2 : BYTE; //checkback status 2
614 END_STRUCT; END_TYPE

615 TYPE CPC_DB_COMM

616 TITLE = ’CPC_DB_COMM’

617 //
618 // Type for the communication DB
619 //
620 AUTHOR : ’EN/ICE’
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621 NAME : ’DataType’

622 FAMILY : ’Base’

623 STRUCT

624 status_DB : INT;

625 status_DB_old : INT;

626 size : INT;

627 END_STRUCT

628 END_TYPE

629 TYPE CPC_ONOFF_PARAM

630 TITLE = ’CPC_ONOFF_PARAM’

631 //
632 // Parameters of ONOFF
633 //
634 AUTHOR : ’EN/ICE’

635 NAME : ’DataType’

636 FAMILY : ’Base’

637 STRUCT

638 ParReg : WORD;

639 PPulseLe : TIME;

640 PWDt : TIME;

641 END_STRUCT

642 END_TYPE

643 TYPE CPC_LOCAL_PARAM

644 TITLE = ’CPC_LOCAL_PARAM’

645 //
646 // Parameters of LOCAL
647 //
648 AUTHOR : ’EN/ICE’

649 NAME : ’DataType’

650 FAMILY : ’Base’

651 STRUCT

652 ParReg : WORD;

653 END_STRUCT

654 END_TYPE

655 TYPE CPC_ANALOGALARM_PARAM

656 TITLE = ’CPC_ANALOGALARM_PARAM’

657 //
658 // Parameters of Analog Alarm
659 //
660 AUTHOR : ’EN/ICE’

661 NAME : ’DataType’

662 FAMILY : ’Base’

663 STRUCT

664 ParReg : WORD;

665 END_STRUCT

666 END_TYPE

667 TYPE CPC_PCO_PARAM

668 TITLE = ’CPC_PCO_PARAM’

669 //
670 // Parameters of PCO
671 //
672 AUTHOR : ’EN/ICE’

673 NAME : ’DataType’

674 FAMILY : ’Base’

675 STRUCT

676 ParReg : WORD;

677 END_STRUCT

678 END_TYPE
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679 TYPE CPC_ANALOG_PARAM

680 TITLE = ’CPC_ANALOG_PARAM’

681 //
682 // Parameters of Analog and Anadig Objects
683 //
684 AUTHOR : ’EN/ICE’

685 NAME : ’DataType’

686 FAMILY : ’Base’

687 STRUCT

688 ParReg : WORD;

689 PMaxRan : REAL;

690 PMinRan : REAL;

691 PMStpInV : REAL;

692 PMStpDeV : REAL;

693 PMInSpd : REAL;

694 PMDeSpd : REAL;

695 PWDt : TIME;

696 PWDb : REAL;

697 END_STRUCT

698 END_TYPE

699 TYPE CPC_ANADIG_PWM_PARAM

700 TITLE = ’PARAM_PWM’

701 //
702 // Parameters of the Pulse Wave Modulation of Anadig objects
703 //
704 AUTHOR : ’EN/ICE’

705 NAME : ’DataType’

706 FAMILY : ’Base’

707 STRUCT

708 PTPeriod : TIME;

709 PTMin : TIME;

710 PInMax : REAL;

711 END_STRUCT

712 END_TYPE

713 TYPE CPC_PID_LIB_PARAM

714 TITLE = ’PARAM_PID_LIB’

715 //
716 // Parameters of the PID
717 //
718 AUTHOR : ’EN/ICE’

719 NAME : ’DataType’

720 FAMILY : ’Base’

721 STRUCT

722 Kc : REAL;

723 Ti : REAL;

724 Td : REAL;

725 Tds : REAL;

726 SPH : REAL;

727 SPL : REAL;

728 OutH : REAL;

729 OutL : REAL;

730 EKc : BOOL;

731 ETi : BOOL;

732 ETd : BOOL;

733 ETds : BOOL;

734 ESPH : BOOL;

735 ESPL : BOOL;

736 EOutH : BOOL;
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737 EOutL : BOOL;

738 END_STRUCT

739 END_TYPE

740 TYPE CPC_PID_PARAM

741 TITLE = ’PARAM_PID’

742 //
743 // Parameters of controller objects
744 //
745 AUTHOR : ’EN/ICE’

746 NAME : ’DataType’

747 FAMILY : ’Base’

748 STRUCT

749 PMinRan : REAL;

750 PMaxRan : REAL;

751 POutMinRan : REAL;

752 POutMaxRan : REAL;

753 MVFiltTime : TIME;

754 PIDCycle : TIME;

755 ScaMethod : INT;

756 RA : BOOL;

757 END_STRUCT

758 END_TYPE

759 TYPE CPC_RAMP_PARAM

760 TITLE = ’PARAM_RAMP’

761 //
762 // Ramp parameters for PID
763 //
764 AUTHOR : ’EN/ICE’

765 NAME : ’DataType’

766 FAMILY : ’Base’

767 STRUCT

768 InSpd : REAL;

769 DeSpd : REAL;

770 END_STRUCT

771 END_TYPE

772 TYPE CPC_IOERROR

773 TITLE = ’TYPE_ERR’

774 //
775 // Used for IOError in AI/DI/AO/DO
776 //
777 AUTHOR : ’EN/ICE’

778 NAME : ’DataType’

779 FAMILY : ’Base’

780 STRUCT

781 ADDR : REAL; //Channel Adress
782 Err : BOOL; //Error
783 END_STRUCT

784 END_TYPE

785

786 (∗ OTHER FUNCTIONS ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)
787

788 (∗Version DB∗)
789 DATA_BLOCK CPC_DB_VERSION

790 TITLE = ’DB_CPC_VERSION’ AUTHOR : ’UNICOS’

791 NAME : ’Version’

792 FAMILY : ’Version’

793 STRUCT

794 Baseline_version : REAL := 6.6; //Version of the baseline used
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795 END_STRUCT

796 BEGIN

797 END_DATA_BLOCK

798

799 (∗Rising Edge∗)
800 FUNCTION R_EDGE : BOOL

801 TITLE = ’R_EDGE’

802 //
803 // Detect a Rising Edge on a signal
804 //
805 AUTHOR : ’EN/ICE’

806 NAME : ’Function’

807 FAMILY : ’Base’

808 VAR_INPUT

809 new : BOOL;

810 END_VAR

811 VAR_IN_OUT

812 old : BOOL;

813 END_VAR

814 BEGIN

815

816 IF (new = 1 AND old = 0) THEN //Raising edge detected
817 R_EDGE := 1;

818 old := 1;

819 ELSE R_EDGE := 0;

820 old := new;

821 END_IF;

822 END_FUNCTION

823

824 (∗Falling Edge∗)
825 FUNCTION F_EDGE : BOOL

826 TITLE = ’F_EDGE’

827 //
828 // Detect a Falling Edge on a signal
829 //
830 AUTHOR : ’EN/ICE’

831 NAME : ’Function’

832 FAMILY : ’Base’

833 VAR_INPUT

834 new : BOOL;

835 END_VAR

836 VAR_IN_OUT

837 old : BOOL;

838 END_VAR

839 BEGIN

840

841 IF (new = 0 AND old = 1) THEN //Falling edge detected
842 F_EDGE := 1;

843 old := 0;

844 ELSE F_EDGE := 0;

845 old := new;

846 END_IF;

847 END_FUNCTION

848

849 (∗Rising and Falling Edge∗)
850 FUNCTION DETECT_EDGE : VOID

851 TITLE = ’DETECT_EDGE’

852 //
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853 // Detect a Rising and Falling Edge of a signal
854 //
855 AUTHOR : ’EN/ICE’

856 NAME : ’Function’

857 FAMILY : ’Base’

858 VAR_INPUT

859 new : BOOL;

860 END_VAR

861 VAR_IN_OUT

862 old : BOOL;

863 END_VAR

864 VAR_OUTPUT

865 re : BOOL;

866 fe : BOOL;

867 END_VAR

868

869 BEGIN

870 IF new <> old THEN

871 IF new = TRUE THEN // Raising edge
872 re := TRUE;

873 fe := FALSE;

874 ELSE // Falling edge
875 re := FALSE;

876 fe := TRUE;

877 END_IF;

878 old := new; // shift new to old
879

880 ELSE re := FALSE; // reset edge detection
881 fe := FALSE;

882 END_IF;

883 END_FUNCTION

884

885 // TIMERS
886 //# GLOBALVAR GLOBAL TIME : TIME;
887 //# GLOBALVAR T CYCLE : UINT;
888

889 // Pulse timer
890 FUNCTION_BLOCK TP

891 VAR_INPUT

892 PT : TIME;

893 IN : BOOL;

894 END_VAR

895 VAR_OUTPUT

896 Q : BOOL := FALSE;

897 ET : TIME;

898 END_VAR

899 VAR

900 running : BOOL;

901 Start : TIME;

902 END_VAR

903 BEGIN

904 IF Q = FALSE AND running = FALSE THEN

905 IF IN THEN

906 Start := CT;

907 running := TRUE;

908 Q := TRUE; // t1
909 END_IF;

910 ELSIF Q = TRUE AND running = TRUE THEN
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911 IF IN AND (CTIME - (start + PT) >= 0) THEN

912 running := TRUE;

913 Q := FALSE; // t2
914 ELSIF NOT IN AND (CTIME - (start + PT) >= 0) THEN

915 running := FALSE;

916 Q := FALSE; // t3
917 END_IF;

918 ELSIF Q = FALSE AND running = FALSE THEN

919 IF NOT IN THEN

920 running := FALSE;

921 Q := FALSE; // t4
922 END_IF;

923 END_IF;

924 END_FUNCTION_BLOCK

925

926

927 // On−delay timer
928 FUNCTION_BLOCK TON

929 VAR_INPUT

930 PT : TIME;

931 IN : BOOL;

932 END_VAR

933 VAR_OUTPUT

934 Q : BOOL := FALSE;

935 ET : TIME; // elapsed time
936 END_VAR

937 VAR

938 running : BOOL;

939 start : BOOL;

940 END_VAR

941 BEGIN

942 IF IN = FALSE THEN

943 Q := FALSE;

944 ET := 0;

945 running := FALSE; // t1
946 ELSIF running = FALSE THEN

947 start := CTIME;

948 running := TRUE; // t2
949 ELSIF CTIME - (start + PT) >= 0 THEN

950 Q := TRUE;

951 ET := PT; // t3
952 ELSE

953 IF NOT Q THEN

954 ET := CTIME - start;

955 END_IF; // t4
956 END_IF;

Listing A.1: OnOff PLC program
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nuXmv models

The following piece of NuSMV code corresponds to the automatically
generated model from the OnOff UNICOS CPC object (whithout ap-
plying any reductions).

1 -- V1.1

2 -- Generated model from OnOff.scl by bfernand

3

4 MODULE module_INSTANCE(interaction, main)

5 VAR

6 loc : {initial, end, l0, l1, l2, l3, l4, l5, l6, l7, l8, l9, l10, l11

, l12, l13, l14, l15, l16, l17, l18, l19, l20, l21, l22, l23, l24

, l25, l26, l27, l28, l29, l30, l31, l32, l33, l34, l35, l36, l37

, l38, l39, l40, l41, l42, l43, l44, l45, l46, l47, l48, l49, l50

, l51, l52, l53, l54, l55, l56, l57, l58, l59, l60, l61, l62, l63

, l64, l65, l66, l67, l68, l69, l70, l71, l72, l73, l74, l75, l76

, l77, l78, l79, l80, l81, l82, l83, l84, l85, l86, l87, l88, l89

, l90, l91, l92, l93, l94, l95, l96, l97, l98, l99, l100, l101,

l102, l103, l104, l105, l106, l107, l108, l109, l110, l111, l112,

l113, l114, l115, l116, l117, l118, l119, l120, l121, l122, l123

, l124, l125, l126, l127, l128, l129, l130, l131, l132, l133,

l134, l135, l136, l137, l138, l139, l140, l141, l142, l143, l144,

l145, l146, l147, l148, l149, l150, l151, l152, l153, l154, l155

, l156, l157, l158, l159, l160, l161, l162, l163, l164, l165,

l166, l167, l168, l169, l170, l171, l172, l173, l174, l175, l176,

l177, l178, l179, l180, l181, l182, l183, l184, l185, l186, l187

, l188, l189, l190, l191, l192, l193, l194, l195, l196, l197,

l198, l199, l200, l201, l202, l203, l204, l205, l206, l207, l208,

l209, l210, l211, l212, l213, l214, l215, l216, l217, l218, l219

, l220, l221, l222, l223, l224, l225, l226, l227, l228, l229,

l230, l231, l232, l233, l234, l235, l236, l237, l238, l239, l240,

l241, l242, l243, l244, l245, l246, l247, l248, l249, l250, l251

, l252, l253, l254, l255, l256, l257, l258, l259, l260, l261,

l262, l263, l264, l265, l266, l267, l268, l269, l270, l271, l272,

l273, l274, l275, l276, l277, l278, l279, l280, l281, l282, l283

, l284, l285, l286, l287, l288, l289, l290, l291, l292, l293,

l294, l295, l296, l297, l298, l299, l300, l301, l302, l303, l304,

l305, l306, l307, l308, l309, l310, l311, l312, l313, l314, l315

, l316, l317, l318, l319, l320, l321, l322, l323, l324, l325,

277
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l326, l327, l328, l329, l330, l331, l332, l333, l334, l335, l336,

l337, l338, l339, l340, l341, l342, l343, l344, l345, l346, l347

, l348, l349, l350, l351, l352, l353, l354, l355, l356, l357,

l358, l359, l360, l361, l362, l363, l364, l365, l366, l367, l368,

l369, l370, l371, l372, l373, l374, l375, l376, l377, l378, l379

, l380, l381, l382, l383, l384, l385, l386, l387, l388, l389,

l390, l391, l392, l393, l394, l395, l396, l397, l398, l399, l400,

l401, l402, l403, l404, l405, l406, l407, l408, l409, l410, l411

, l412, l413, l414, l415, l416, l417, l418, l419, l420, l421,

l422, l423, l424, l425, l426, l427, l428, l429, l430, l431, l432,

l433, l434, l435, l436, l437, l438, l439, l440, l441, l442, l443

, l444, l445, l446, l447, l448, l449, l450, l127_elsif_1,

l179_elsif_1, l179_elsif_2, l184_elsif_1, l194_elsif_1,

l194_elsif_2, l194_elsif_3};

7 HFON : boolean;

8 HFOFF : boolean;

9 HLD : boolean;

10 IOERROR : boolean;

11 IOSIMU : boolean;

12 ALB : boolean;

13 MANREG01_0__ : boolean;

14 MANREG01_1__ : boolean;

15 MANREG01_2__ : boolean;

16 MANREG01_3__ : boolean;

17 MANREG01_4__ : boolean;

18 MANREG01_5__ : boolean;

19 MANREG01_6__ : boolean;

20 MANREG01_7__ : boolean;

21 MANREG01_8__ : boolean;

22 MANREG01_9__ : boolean;

23 MANREG01_10__ : boolean;

24 MANREG01_11__ : boolean;

25 MANREG01_12__ : boolean;

26 MANREG01_13__ : boolean;

27 MANREG01_14__ : boolean;

28 MANREG01_15__ : boolean;

29 HONR : boolean;

30 HOFFR : boolean;

31 STARTI : boolean;

32 TSTOPI : boolean;

33 FUSTOPI : boolean;

34 AL : boolean;

35 AUONR : boolean;

36 AUOFFR : boolean;

37 AUAUMOR : boolean;

38 AUIHMMO : boolean;

39 AUIHFOMO : boolean;

40 AUALACK : boolean;

41 IHAUMRW : boolean;

42 AURSTART : boolean;

43 PONOFF.PARREG_0__ : boolean;

44 PONOFF.PARREG_1__ : boolean;

45 PONOFF.PARREG_2__ : boolean;

46 PONOFF.PARREG_3__ : boolean;

47 PONOFF.PARREG_4__ : boolean;

48 PONOFF.PARREG_5__ : boolean;

49 PONOFF.PARREG_6__ : boolean;

50 PONOFF.PARREG_7__ : boolean;
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51 PONOFF.PARREG_8__ : boolean;

52 PONOFF.PARREG_9__ : boolean;

53 PONOFF.PARREG_10__ : boolean;

54 PONOFF.PARREG_11__ : boolean;

55 PONOFF.PARREG_12__ : boolean;

56 PONOFF.PARREG_13__ : boolean;

57 PONOFF.PARREG_14__ : boolean;

58 PONOFF.PARREG_15__ : boolean;

59 PONOFF.PPULSELE : signed word[32];

60 PONOFF.PWDT : signed word[32];

61 STSREG01_0__ : boolean;

62 STSREG01_1__ : boolean;

63 STSREG01_2__ : boolean;

64 STSREG01_3__ : boolean;

65 STSREG01_4__ : boolean;

66 STSREG01_5__ : boolean;

67 STSREG01_6__ : boolean;

68 STSREG01_7__ : boolean;

69 STSREG01_8__ : boolean;

70 STSREG01_9__ : boolean;

71 STSREG01_10__ : boolean;

72 STSREG01_11__ : boolean;

73 STSREG01_12__ : boolean;

74 STSREG01_13__ : boolean;

75 STSREG01_14__ : boolean;

76 STSREG01_15__ : boolean;

77 STSREG02_0__ : boolean;

78 STSREG02_1__ : boolean;

79 STSREG02_2__ : boolean;

80 STSREG02_3__ : boolean;

81 STSREG02_4__ : boolean;

82 STSREG02_5__ : boolean;

83 STSREG02_6__ : boolean;

84 STSREG02_7__ : boolean;

85 STSREG02_8__ : boolean;

86 STSREG02_9__ : boolean;

87 STSREG02_10__ : boolean;

88 STSREG02_11__ : boolean;

89 STSREG02_12__ : boolean;

90 STSREG02_13__ : boolean;

91 STSREG02_14__ : boolean;

92 STSREG02_15__ : boolean;

93 OUTONOV : boolean;

94 OUTOFFOV : boolean;

95 ONST : boolean;

96 OFFST : boolean;

97 AUMOST : boolean;

98 MMOST : boolean;

99 LDST : boolean;

100 SOFTLDST : boolean;

101 FOMOST : boolean;

102 AUONRST : boolean;

103 AUOFFRST : boolean;

104 MONRST : boolean;

105 MOFFRST : boolean;

106 HONRST : boolean;

107 HOFFRST : boolean;

108 IOERRORW : boolean;
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109 IOSIMUW : boolean;

110 AUMRW : boolean;

111 ALUNACK : boolean;

112 POSW : boolean;

113 STARTIST : boolean;

114 TSTOPIST : boolean;

115 FUSTOPIST : boolean;

116 ALST : boolean;

117 ALBW : boolean;

118 ENRSTARTST : boolean;

119 RDYSTARTST : boolean;

120 E_MAUMOR : boolean;

121 E_MMMOR : boolean;

122 E_MFOMOR : boolean;

123 E_MONR : boolean;

124 E_MOFFR : boolean;

125 E_MALACKR : boolean;

126 E_STARTI : boolean;

127 E_TSTOPI : boolean;

128 E_FUSTOPI : boolean;

129 E_AL : boolean;

130 E_AUAUMOR : boolean;

131 E_AUALACK : boolean;

132 E_MSOFTLDR : boolean;

133 E_MENRSTARTR : boolean;

134 RE_ALUNACK : boolean;

135 FE_ALUNACK : boolean;

136 RE_PULSEON : boolean;

137 FE_PULSEON : boolean;

138 RE_PULSEOFF : boolean;

139 RE_OUTOVST_AUX : boolean;

140 FE_OUTOVST_AUX : boolean;

141 FE_INTERLOCKR : boolean;

142 MAUMOR_OLD : boolean;

143 MMMOR_OLD : boolean;

144 MFOMOR_OLD : boolean;

145 MONR_OLD : boolean;

146 MOFFR_OLD : boolean;

147 MALACKR_OLD : boolean;

148 AUAUMOR_OLD : boolean;

149 AUALACK_OLD : boolean;

150 STARTI_OLD : boolean;

151 TSTOPI_OLD : boolean;

152 FUSTOPI_OLD : boolean;

153 AL_OLD : boolean;

154 ALUNACK_OLD : boolean;

155 MSOFTLDR_OLD : boolean;

156 MENRSTARTR_OLD : boolean;

157 RE_PULSEON_OLD : boolean;

158 FE_PULSEON_OLD : boolean;

159 RE_PULSEOFF_OLD : boolean;

160 RE_OUTOVST_AUX_OLD : boolean;

161 FE_OUTOVST_AUX_OLD : boolean;

162 FE_INTERLOCKR_OLD : boolean;

163 PFSPOSON : boolean;

164 PFSPOSON2 : boolean;

165 PHFON : boolean;

166 PHFOFF : boolean;
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167 PPULSE : boolean;

168 PPULSECSTE : boolean;

169 PHLD : boolean;

170 PHLDCMD : boolean;

171 PANIM : boolean;

172 POUTOFF : boolean;

173 PENRSTART : boolean;

174 PRSTARTFS : boolean;

175 OUTONOVST : boolean;

176 OUTOFFOVST : boolean;

177 AUMOST_AUX : boolean;

178 MMOST_AUX : boolean;

179 FOMOST_AUX : boolean;

180 SOFTLDST_AUX : boolean;

181 PULSEON : boolean;

182 PULSEOFF : boolean;

183 POSW_AUX : boolean;

184 OUTOVST_AUX : boolean;

185 FULLNOTACKNOWLEDGED : boolean;

186 PULSEONR : boolean;

187 PULSEOFFR : boolean;

188 INTERLOCKR : boolean;

189 TIME_WARNING : signed word[32];

190 PULSEWIDTH : signed word[32];

191 FSIINC : signed word[16];

192 TSIINC : signed word[16];

193 SIINC : signed word[16];

194 ALINC : signed word[16];

195 WTSTOPIST : boolean;

196 WSTARTIST : boolean;

197 WALST : boolean;

198 WFUSTOPIST : boolean;

199 INLINED_R_EDGE_1__NEW : boolean;

200 INLINED_R_EDGE_1__OLD : boolean;

201 INLINED_R_EDGE_2__NEW : boolean;

202 INLINED_R_EDGE_2__OLD : boolean;

203 INLINED_R_EDGE_3__NEW : boolean;

204 INLINED_R_EDGE_3__OLD : boolean;

205 INLINED_R_EDGE_4__NEW : boolean;

206 INLINED_R_EDGE_4__OLD : boolean;

207 INLINED_R_EDGE_5__NEW : boolean;

208 INLINED_R_EDGE_5__OLD : boolean;

209 INLINED_R_EDGE_6__NEW : boolean;

210 INLINED_R_EDGE_6__OLD : boolean;

211 INLINED_R_EDGE_7__NEW : boolean;

212 INLINED_R_EDGE_7__OLD : boolean;

213 INLINED_R_EDGE_8__NEW : boolean;

214 INLINED_R_EDGE_8__OLD : boolean;

215 INLINED_R_EDGE_9__NEW : boolean;

216 INLINED_R_EDGE_9__OLD : boolean;

217 INLINED_R_EDGE_10__NEW : boolean;

218 INLINED_R_EDGE_10__OLD : boolean;

219 INLINED_R_EDGE_11__NEW : boolean;

220 INLINED_R_EDGE_11__OLD : boolean;

221 INLINED_R_EDGE_12__NEW : boolean;

222 INLINED_R_EDGE_12__OLD : boolean;

223 INLINED_R_EDGE_13__NEW : boolean;

224 INLINED_R_EDGE_13__OLD : boolean;
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225 INLINED_R_EDGE_14__NEW : boolean;

226 INLINED_R_EDGE_14__OLD : boolean;

227 INLINED_F_EDGE_15__NEW : boolean;

228 INLINED_F_EDGE_15__OLD : boolean;

229 INLINED_TIMER_PULSEON__PT : signed word[32];

230 INLINED_TIMER_PULSEON__IN : boolean;

231 INLINED_TIMER_PULSEON__Q : boolean;

232 INLINED_TIMER_PULSEON__ET : signed word[32];

233 INLINED_TIMER_PULSEON__OLD_IN : boolean;

234 INLINED_TIMER_PULSEON__DUE : signed word[32];

235 INLINED_TIMER_PULSEOFF__PT : signed word[32];

236 INLINED_TIMER_PULSEOFF__IN : boolean;

237 INLINED_TIMER_PULSEOFF__Q : boolean;

238 INLINED_TIMER_PULSEOFF__ET : signed word[32];

239 INLINED_TIMER_PULSEOFF__OLD_IN : boolean;

240 INLINED_TIMER_PULSEOFF__DUE : signed word[32];

241 INLINED_R_EDGE_20__NEW : boolean;

242 INLINED_R_EDGE_20__OLD : boolean;

243 INLINED_F_EDGE_21__NEW : boolean;

244 INLINED_F_EDGE_21__OLD : boolean;

245 INLINED_R_EDGE_22__NEW : boolean;

246 INLINED_R_EDGE_22__OLD : boolean;

247 INLINED_R_EDGE_25__NEW : boolean;

248 INLINED_R_EDGE_25__OLD : boolean;

249 INLINED_F_EDGE_26__NEW : boolean;

250 INLINED_F_EDGE_26__OLD : boolean;

251 INLINED_TIMER_WARNING__PT : signed word[32];

252 INLINED_TIMER_WARNING__IN : boolean;

253 INLINED_TIMER_WARNING__Q : boolean;

254 INLINED_TIMER_WARNING__ET : signed word[32];

255 INLINED_TIMER_WARNING__RUNNING : boolean;

256 INLINED_TIMER_WARNING__START : signed word[32];

257 INLINED_DETECT_EDGE_28__NEW : boolean;

258 INLINED_DETECT_EDGE_28__OLD : boolean;

259 INLINED_DETECT_EDGE_28__RE : boolean;

260 INLINED_DETECT_EDGE_28__FE : boolean;

261

262 ASSIGN

263 init(loc) := initial;

264 next(loc) := case

265 loc = end : initial;

266 loc = initial : l0;

267 loc = l0 : l1;

268 loc = l1 : l2;

269 loc = l2 & (((INLINED_R_EDGE_1__NEW = TRUE) & (INLINED_R_EDGE_1__OLD

= FALSE))) : l3;

270 loc = l2 & (!(((INLINED_R_EDGE_1__NEW = TRUE) & (

INLINED_R_EDGE_1__OLD = FALSE)))) : l5;

271 loc = l3 : l4;

272 loc = l4 : l7;

273 loc = l5 : l6;

274 loc = l6 : l7;

275 loc = l7 : l8;

276 loc = l8 : l9;

277 loc = l9 : l10;

278 loc = l10 & (((INLINED_R_EDGE_2__NEW = TRUE) & (

INLINED_R_EDGE_2__OLD = FALSE))) : l11;

279 loc = l10 & (!(((INLINED_R_EDGE_2__NEW = TRUE) & (
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INLINED_R_EDGE_2__OLD = FALSE)))) : l13;

280 loc = l11 : l12;

281 loc = l12 : l15;

282 loc = l13 : l14;

283 loc = l14 : l15;

284 loc = l15 : l16;

285 loc = l16 : l17;

286 loc = l17 : l18;

287 loc = l18 & (((INLINED_R_EDGE_3__NEW = TRUE) & (

INLINED_R_EDGE_3__OLD = FALSE))) : l19;

288 loc = l18 & (!(((INLINED_R_EDGE_3__NEW = TRUE) & (

INLINED_R_EDGE_3__OLD = FALSE)))) : l21;

289 loc = l19 : l20;

290 loc = l20 : l23;

291 loc = l21 : l22;

292 loc = l22 : l23;

293 loc = l23 : l24;

294 loc = l24 : l25;

295 loc = l25 : l26;

296 loc = l26 & (((INLINED_R_EDGE_4__NEW = TRUE) & (

INLINED_R_EDGE_4__OLD = FALSE))) : l27;

297 loc = l26 & (!(((INLINED_R_EDGE_4__NEW = TRUE) & (

INLINED_R_EDGE_4__OLD = FALSE)))) : l29;

298 loc = l27 : l28;

299 loc = l28 : l31;

300 loc = l29 : l30;

301 loc = l30 : l31;

302 loc = l31 : l32;

303 loc = l32 : l33;

304 loc = l33 : l34;

305 loc = l34 & (((INLINED_R_EDGE_5__NEW = TRUE) & (

INLINED_R_EDGE_5__OLD = FALSE))) : l35;

306 loc = l34 & (!(((INLINED_R_EDGE_5__NEW = TRUE) & (

INLINED_R_EDGE_5__OLD = FALSE)))) : l37;

307 loc = l35 : l36;

308 loc = l36 : l39;

309 loc = l37 : l38;

310 loc = l38 : l39;

311 loc = l39 : l40;

312 loc = l40 : l41;

313 loc = l41 : l42;

314 loc = l42 & (((INLINED_R_EDGE_6__NEW = TRUE) & (

INLINED_R_EDGE_6__OLD = FALSE))) : l43;

315 loc = l42 & (!(((INLINED_R_EDGE_6__NEW = TRUE) & (

INLINED_R_EDGE_6__OLD = FALSE)))) : l45;

316 loc = l43 : l44;

317 loc = l44 : l47;

318 loc = l45 : l46;

319 loc = l46 : l47;

320 loc = l47 : l48;

321 loc = l48 : l49;

322 loc = l49 : l50;

323 loc = l50 & (((INLINED_R_EDGE_7__NEW = TRUE) & (

INLINED_R_EDGE_7__OLD = FALSE))) : l51;

324 loc = l50 & (!(((INLINED_R_EDGE_7__NEW = TRUE) & (

INLINED_R_EDGE_7__OLD = FALSE)))) : l53;

325 loc = l51 : l52;

326 loc = l52 : l55;
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327 loc = l53 : l54;

328 loc = l54 : l55;

329 loc = l55 : l56;

330 loc = l56 : l57;

331 loc = l57 : l58;

332 loc = l58 & (((INLINED_R_EDGE_8__NEW = TRUE) & (

INLINED_R_EDGE_8__OLD = FALSE))) : l59;

333 loc = l58 & (!(((INLINED_R_EDGE_8__NEW = TRUE) & (

INLINED_R_EDGE_8__OLD = FALSE)))) : l61;

334 loc = l59 : l60;

335 loc = l60 : l63;

336 loc = l61 : l62;

337 loc = l62 : l63;

338 loc = l63 : l64;

339 loc = l64 : l65;

340 loc = l65 : l66;

341 loc = l66 : l67;

342 loc = l67 : l68;

343 loc = l68 : l69;

344 loc = l69 : l70;

345 loc = l70 : l71;

346 loc = l71 : l72;

347 loc = l72 : l73;

348 loc = l73 : l74;

349 loc = l74 : l75;

350 loc = l75 : l76;

351 loc = l76 : l77;

352 loc = l77 : l78;

353 loc = l78 & (((INLINED_R_EDGE_9__NEW = TRUE) & (

INLINED_R_EDGE_9__OLD = FALSE))) : l79;

354 loc = l78 & (!(((INLINED_R_EDGE_9__NEW = TRUE) & (

INLINED_R_EDGE_9__OLD = FALSE)))) : l81;

355 loc = l79 : l80;

356 loc = l80 : l83;

357 loc = l81 : l82;

358 loc = l82 : l83;

359 loc = l83 : l84;

360 loc = l84 : l85;

361 loc = l85 : l86;

362 loc = l86 & (((INLINED_R_EDGE_10__NEW = TRUE) & (

INLINED_R_EDGE_10__OLD = FALSE))) : l87;

363 loc = l86 & (!(((INLINED_R_EDGE_10__NEW = TRUE) & (

INLINED_R_EDGE_10__OLD = FALSE)))) : l89;

364 loc = l87 : l88;

365 loc = l88 : l91;

366 loc = l89 : l90;

367 loc = l90 : l91;

368 loc = l91 : l92;

369 loc = l92 : l93;

370 loc = l93 : l94;

371 loc = l94 & (((INLINED_R_EDGE_11__NEW = TRUE) & (

INLINED_R_EDGE_11__OLD = FALSE))) : l95;

372 loc = l94 & (!(((INLINED_R_EDGE_11__NEW = TRUE) & (

INLINED_R_EDGE_11__OLD = FALSE)))) : l97;

373 loc = l95 : l96;

374 loc = l96 : l99;

375 loc = l97 : l98;

376 loc = l98 : l99;
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377 loc = l99 : l100;

378 loc = l100 : l101;

379 loc = l101 : l102;

380 loc = l102 & (((INLINED_R_EDGE_12__NEW = TRUE) & (

INLINED_R_EDGE_12__OLD = FALSE))) : l103;

381 loc = l102 & (!(((INLINED_R_EDGE_12__NEW = TRUE) & (

INLINED_R_EDGE_12__OLD = FALSE)))) : l105;

382 loc = l103 : l104;

383 loc = l104 : l107;

384 loc = l105 : l106;

385 loc = l106 : l107;

386 loc = l107 : l108;

387 loc = l108 : l109;

388 loc = l109 : l110;

389 loc = l110 & (((INLINED_R_EDGE_13__NEW = TRUE) & (

INLINED_R_EDGE_13__OLD = FALSE))) : l111;

390 loc = l110 & (!(((INLINED_R_EDGE_13__NEW = TRUE) & (

INLINED_R_EDGE_13__OLD = FALSE)))) : l113;

391 loc = l111 : l112;

392 loc = l112 : l115;

393 loc = l113 : l114;

394 loc = l114 : l115;

395 loc = l115 : l116;

396 loc = l116 : l117;

397 loc = l117 : l118;

398 loc = l118 & (((INLINED_R_EDGE_14__NEW = TRUE) & (

INLINED_R_EDGE_14__OLD = FALSE))) : l119;

399 loc = l118 & (!(((INLINED_R_EDGE_14__NEW = TRUE) & (

INLINED_R_EDGE_14__OLD = FALSE)))) : l121;

400 loc = l119 : l120;

401 loc = l120 : l123;

402 loc = l121 : l122;

403 loc = l122 : l123;

404 loc = l123 : l124;

405 loc = l124 : l125;

406 loc = l125 : l126;

407 loc = l126 : l127;

408 loc = l127 & ((E_MALACKR | E_AUALACK)) : l128;

409 loc = l127 & (!((E_MALACKR | E_AUALACK))) : l127_elsif_1;

410 loc = l127_elsif_1 & ((((E_TSTOPI | E_STARTI) | E_FUSTOPI) | E_AL))

: l130;

411 loc = l127_elsif_1 & (!((((E_TSTOPI | E_STARTI) | E_FUSTOPI) | E_AL)

)) : l131;

412 loc = l128 : l129;

413 loc = l129 : l131;

414 loc = l130 : l131;

415 loc = l131 & ((((PENRSTART & (E_MENRSTARTR | AURSTART)) & !(

FUSTOPIST)) | (((PENRSTART & PRSTARTFS) & (E_MENRSTARTR |

AURSTART)) & !(FULLNOTACKNOWLEDGED)))) : l132;

416 loc = l131 & (!((((PENRSTART & (E_MENRSTARTR | AURSTART)) & !(

FUSTOPIST)) | (((PENRSTART & PRSTARTFS) & (E_MENRSTARTR |

AURSTART)) & !(FULLNOTACKNOWLEDGED))))) : l133;

417 loc = l132 : l133;

418 loc = l133 & (E_FUSTOPI) : l134;

419 loc = l133 & (!(E_FUSTOPI)) : l137;

420 loc = l134 : l135;

421 loc = l135 & (PENRSTART) : l136;

422 loc = l135 & (!(PENRSTART)) : l137;
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423 loc = l136 : l137;

424 loc = l137 : l138;

425 loc = l138 : l139;

426 loc = l139 : l140;

427 loc = l140 & (((INLINED_F_EDGE_15__NEW = FALSE) & (

INLINED_F_EDGE_15__OLD = TRUE))) : l141;

428 loc = l140 & (!(((INLINED_F_EDGE_15__NEW = FALSE) & (

INLINED_F_EDGE_15__OLD = TRUE)))) : l143;

429 loc = l141 : l142;

430 loc = l142 : l145;

431 loc = l143 : l144;

432 loc = l144 : l145;

433 loc = l145 : l146;

434 loc = l146 & (!((HLD & PHLD))) : l147;

435 loc = l146 & (!(!((HLD & PHLD)))) : l172;

436 loc = l147 & (((((AUMOST_AUX | MMOST_AUX) | SOFTLDST_AUX) & E_MFOMOR

) & !(AUIHFOMO))) : l148;

437 loc = l147 & (!(((((AUMOST_AUX | MMOST_AUX) | SOFTLDST_AUX) &

E_MFOMOR) & !(AUIHFOMO)))) : l152;

438 loc = l148 : l149;

439 loc = l149 : l150;

440 loc = l150 : l151;

441 loc = l151 : l152;

442 loc = l152 & (((((AUMOST_AUX | FOMOST_AUX) | SOFTLDST_AUX) & E_MMMOR

) & !(AUIHMMO))) : l153;

443 loc = l152 & (!(((((AUMOST_AUX | FOMOST_AUX) | SOFTLDST_AUX) &

E_MMMOR) & !(AUIHMMO)))) : l157;

444 loc = l153 : l154;

445 loc = l154 : l155;

446 loc = l155 : l156;

447 loc = l156 : l157;

448 loc = l157 & ((((((((MMOST_AUX & (E_MAUMOR | E_AUAUMOR)) | (

FOMOST_AUX & E_MAUMOR)) | (SOFTLDST_AUX & E_MAUMOR)) | (

MMOST_AUX & AUIHMMO)) | (FOMOST_AUX & AUIHFOMO)) | (

SOFTLDST_AUX & AUIHFOMO)) | !((((AUMOST_AUX | MMOST_AUX) |

FOMOST_AUX) | SOFTLDST_AUX)))) : l158;

449 loc = l157 & (!((((((((MMOST_AUX & (E_MAUMOR | E_AUAUMOR)) | (

FOMOST_AUX & E_MAUMOR)) | (SOFTLDST_AUX & E_MAUMOR)) | (

MMOST_AUX & AUIHMMO)) | (FOMOST_AUX & AUIHFOMO)) | (

SOFTLDST_AUX & AUIHFOMO)) | !((((AUMOST_AUX | MMOST_AUX) |

FOMOST_AUX) | SOFTLDST_AUX))))) : l162;

450 loc = l158 : l159;

451 loc = l159 : l160;

452 loc = l160 : l161;

453 loc = l161 : l162;

454 loc = l162 & ((((AUMOST_AUX | MMOST_AUX) & E_MSOFTLDR) & !(AUIHFOMO)

)) : l163;

455 loc = l162 & (!((((AUMOST_AUX | MMOST_AUX) & E_MSOFTLDR) & !(

AUIHFOMO)))) : l167;

456 loc = l163 : l164;

457 loc = l164 : l165;

458 loc = l165 : l166;

459 loc = l166 : l167;

460 loc = l167 : l168;

461 loc = l168 : l169;

462 loc = l169 : l170;

463 loc = l170 : l171;

464 loc = l171 : l177;
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465 loc = l172 : l173;

466 loc = l173 : l174;

467 loc = l174 : l175;

468 loc = l175 : l176;

469 loc = l176 : l177;

470 loc = l177 : l178;

471 loc = l178 : l179;

472 loc = l179 & (AUOFFR) : l180;

473 loc = l179 & (!(AUOFFR)) : l179_elsif_1;

474 loc = l179_elsif_1 & (AUONR) : l181;

475 loc = l179_elsif_1 & (!(AUONR)) : l179_elsif_2;

476 loc = l179_elsif_2 & (((FULLNOTACKNOWLEDGED | FUSTOPIST) | !(

ENRSTARTST))) : l182;

477 loc = l179_elsif_2 & (!(((FULLNOTACKNOWLEDGED | FUSTOPIST) | !(

ENRSTARTST)))) : l183;

478 loc = l180 : l183;

479 loc = l181 : l183;

480 loc = l182 : l183;

481 loc = l183 : l184;

482 loc = l184 & ((((((E_MOFFR & ((MMOST | FOMOST) | SOFTLDST)) | (

AUOFFRST & AUMOST)) | ((LDST & PHLDCMD) & HOFFRST)) | (((

FE_PULSEON & PPULSE) & !(POUTOFF)) & ENRSTARTST)) | (E_FUSTOPI

& !(PFSPOSON)))) : l185;

483 loc = l184 & (!((((((E_MOFFR & ((MMOST | FOMOST) | SOFTLDST)) | (

AUOFFRST & AUMOST)) | ((LDST & PHLDCMD) & HOFFRST)) | (((

FE_PULSEON & PPULSE) & !(POUTOFF)) & ENRSTARTST)) | (E_FUSTOPI

& !(PFSPOSON))))) : l184_elsif_1;

484 loc = l184_elsif_1 & (((((E_MONR & ((MMOST | FOMOST) | SOFTLDST)) |

(AUONRST & AUMOST)) | (((LDST & PHLDCMD) & HONRST) & ENRSTARTST

)) | (E_FUSTOPI & PFSPOSON))) : l186;

485 loc = l184_elsif_1 & (!(((((E_MONR & ((MMOST | FOMOST) | SOFTLDST))

| (AUONRST & AUMOST)) | (((LDST & PHLDCMD) & HONRST) &

ENRSTARTST)) | (E_FUSTOPI & PFSPOSON)))) : l187;

486 loc = l185 : l187;

487 loc = l186 : l187;

488 loc = l187 : l188;

489 loc = l188 & (HOFFR) : l189;

490 loc = l188 & (!(HOFFR)) : l190;

491 loc = l189 : l192;

492 loc = l190 & (HONR) : l191;

493 loc = l190 & (!(HONR)) : l192;

494 loc = l191 : l192;

495 loc = l192 : l193;

496 loc = l193 & (PPULSE) : l194;

497 loc = l193 & (!(PPULSE)) : l310;

498 loc = l194 & (INTERLOCKR) : l195;

499 loc = l194 & (!(INTERLOCKR)) : l194_elsif_1;

500 loc = l194_elsif_1 & (FE_INTERLOCKR) : l197;

501 loc = l194_elsif_1 & (!(FE_INTERLOCKR)) : l194_elsif_2;

502 loc = l194_elsif_2 & ((((MOFFRST & ((MMOST | FOMOST) | SOFTLDST)) |

(AUOFFRST & AUMOST)) | ((HOFFR & LDST) & PHLDCMD))) : l223;

503 loc = l194_elsif_2 & (!((((MOFFRST & ((MMOST | FOMOST) | SOFTLDST))

| (AUOFFRST & AUMOST)) | ((HOFFR & LDST) & PHLDCMD)))) :

l194_elsif_3;

504 loc = l194_elsif_3 & ((((MONRST & ((MMOST | FOMOST) | SOFTLDST)) | (

AUONRST & AUMOST)) | ((HONR & LDST) & PHLDCMD))) : l225;

505 loc = l194_elsif_3 & (!((((MONRST & ((MMOST | FOMOST) | SOFTLDST)) |

(AUONRST & AUMOST)) | ((HONR & LDST) & PHLDCMD)))) : l227;
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506 loc = l195 : l196;

507 loc = l196 : l229;

508 loc = l197 : l198;

509 loc = l198 : l199;

510 loc = l199 : l200;

511 loc = l200 : l201;

512 loc = l201 & (((INLINED_TIMER_PULSEON__IN & !(

INLINED_TIMER_PULSEON__OLD_IN)) & !(INLINED_TIMER_PULSEON__Q)))

: l202;

513 loc = l201 & (!(((INLINED_TIMER_PULSEON__IN & !(

INLINED_TIMER_PULSEON__OLD_IN)) & !(INLINED_TIMER_PULSEON__Q)))

) : l203;

514 loc = l202 : l203;

515 loc = l203 & ((main.__GLOBAL_TIME <= INLINED_TIMER_PULSEON__DUE)) :

l204;

516 loc = l203 & (!((main.__GLOBAL_TIME <= INLINED_TIMER_PULSEON__DUE)))

: l206;

517 loc = l204 : l205;

518 loc = l205 : l210;

519 loc = l206 : l207;

520 loc = l207 & (INLINED_TIMER_PULSEON__IN) : l208;

521 loc = l207 & (!(INLINED_TIMER_PULSEON__IN)) : l209;

522 loc = l208 : l210;

523 loc = l209 : l210;

524 loc = l210 : l211;

525 loc = l211 : l212;

526 loc = l212 : l213;

527 loc = l213 & (((INLINED_TIMER_PULSEOFF__IN & !(

INLINED_TIMER_PULSEOFF__OLD_IN)) & !(INLINED_TIMER_PULSEOFF__Q)

)) : l214;

528 loc = l213 & (!(((INLINED_TIMER_PULSEOFF__IN & !(

INLINED_TIMER_PULSEOFF__OLD_IN)) & !(INLINED_TIMER_PULSEOFF__Q)

))) : l215;

529 loc = l214 : l215;

530 loc = l215 & ((main.__GLOBAL_TIME <= INLINED_TIMER_PULSEOFF__DUE)) :

l216;

531 loc = l215 & (!((main.__GLOBAL_TIME <= INLINED_TIMER_PULSEOFF__DUE))

) : l218;

532 loc = l216 : l217;

533 loc = l217 : l222;

534 loc = l218 : l219;

535 loc = l219 & (INLINED_TIMER_PULSEOFF__IN) : l220;

536 loc = l219 & (!(INLINED_TIMER_PULSEOFF__IN)) : l221;

537 loc = l220 : l222;

538 loc = l221 : l222;

539 loc = l222 : l229;

540 loc = l223 : l224;

541 loc = l224 : l229;

542 loc = l225 : l226;

543 loc = l226 : l229;

544 loc = l227 : l228;

545 loc = l228 : l229;

546 loc = l229 : l230;

547 loc = l230 : l231;

548 loc = l231 & (((INLINED_TIMER_PULSEON__IN & !(

INLINED_TIMER_PULSEON__OLD_IN)) & !(INLINED_TIMER_PULSEON__Q)))

: l232;

549 loc = l231 & (!(((INLINED_TIMER_PULSEON__IN & !(
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INLINED_TIMER_PULSEON__OLD_IN)) & !(INLINED_TIMER_PULSEON__Q)))

) : l233;

550 loc = l232 : l233;

551 loc = l233 & ((main.__GLOBAL_TIME <= INLINED_TIMER_PULSEON__DUE)) :

l234;

552 loc = l233 & (!((main.__GLOBAL_TIME <= INLINED_TIMER_PULSEON__DUE)))

: l236;

553 loc = l234 : l235;

554 loc = l235 : l240;

555 loc = l236 : l237;

556 loc = l237 & (INLINED_TIMER_PULSEON__IN) : l238;

557 loc = l237 & (!(INLINED_TIMER_PULSEON__IN)) : l239;

558 loc = l238 : l240;

559 loc = l239 : l240;

560 loc = l240 : l241;

561 loc = l241 : l242;

562 loc = l242 : l243;

563 loc = l243 : l244;

564 loc = l244 & (((INLINED_TIMER_PULSEOFF__IN & !(

INLINED_TIMER_PULSEOFF__OLD_IN)) & !(INLINED_TIMER_PULSEOFF__Q)

)) : l245;

565 loc = l244 & (!(((INLINED_TIMER_PULSEOFF__IN & !(

INLINED_TIMER_PULSEOFF__OLD_IN)) & !(INLINED_TIMER_PULSEOFF__Q)

))) : l246;

566 loc = l245 : l246;

567 loc = l246 & ((main.__GLOBAL_TIME <= INLINED_TIMER_PULSEOFF__DUE)) :

l247;

568 loc = l246 & (!((main.__GLOBAL_TIME <= INLINED_TIMER_PULSEOFF__DUE))

) : l249;

569 loc = l247 : l248;

570 loc = l248 : l253;

571 loc = l249 : l250;

572 loc = l250 & (INLINED_TIMER_PULSEOFF__IN) : l251;

573 loc = l250 & (!(INLINED_TIMER_PULSEOFF__IN)) : l252;

574 loc = l251 : l253;

575 loc = l252 : l253;

576 loc = l253 : l254;

577 loc = l254 : l255;

578 loc = l255 : l256;

579 loc = l256 : l257;

580 loc = l257 & (((INLINED_R_EDGE_20__NEW = TRUE) & (

INLINED_R_EDGE_20__OLD = FALSE))) : l258;

581 loc = l257 & (!(((INLINED_R_EDGE_20__NEW = TRUE) & (

INLINED_R_EDGE_20__OLD = FALSE)))) : l260;

582 loc = l258 : l259;

583 loc = l259 : l262;

584 loc = l260 : l261;

585 loc = l261 : l262;

586 loc = l262 : l263;

587 loc = l263 : l264;

588 loc = l264 : l265;

589 loc = l265 & (((INLINED_F_EDGE_21__NEW = FALSE) & (

INLINED_F_EDGE_21__OLD = TRUE))) : l266;

590 loc = l265 & (!(((INLINED_F_EDGE_21__NEW = FALSE) & (

INLINED_F_EDGE_21__OLD = TRUE)))) : l268;

591 loc = l266 : l267;

592 loc = l267 : l270;

593 loc = l268 : l269;



290 Appendix B. nuXmv models

594 loc = l269 : l270;

595 loc = l270 : l271;

596 loc = l271 : l272;

597 loc = l272 : l273;

598 loc = l273 & (((INLINED_R_EDGE_22__NEW = TRUE) & (

INLINED_R_EDGE_22__OLD = FALSE))) : l274;

599 loc = l273 & (!(((INLINED_R_EDGE_22__NEW = TRUE) & (

INLINED_R_EDGE_22__OLD = FALSE)))) : l276;

600 loc = l274 : l275;

601 loc = l275 : l278;

602 loc = l276 : l277;

603 loc = l277 : l278;

604 loc = l278 : l279;

605 loc = l279 & (RE_PULSEON) : l280;

606 loc = l279 & (!(RE_PULSEON)) : l292;

607 loc = l280 : l281;

608 loc = l281 : l282;

609 loc = l282 & (((INLINED_TIMER_PULSEOFF__IN & !(

INLINED_TIMER_PULSEOFF__OLD_IN)) & !(INLINED_TIMER_PULSEOFF__Q)

)) : l283;

610 loc = l282 & (!(((INLINED_TIMER_PULSEOFF__IN & !(

INLINED_TIMER_PULSEOFF__OLD_IN)) & !(INLINED_TIMER_PULSEOFF__Q)

))) : l284;

611 loc = l283 : l284;

612 loc = l284 & ((main.__GLOBAL_TIME <= INLINED_TIMER_PULSEOFF__DUE)) :

l285;

613 loc = l284 & (!((main.__GLOBAL_TIME <= INLINED_TIMER_PULSEOFF__DUE))

) : l287;

614 loc = l285 : l286;

615 loc = l286 : l291;

616 loc = l287 : l288;

617 loc = l288 & (INLINED_TIMER_PULSEOFF__IN) : l289;

618 loc = l288 & (!(INLINED_TIMER_PULSEOFF__IN)) : l290;

619 loc = l289 : l291;

620 loc = l290 : l291;

621 loc = l291 : l292;

622 loc = l292 & (RE_PULSEOFF) : l293;

623 loc = l292 & (!(RE_PULSEOFF)) : l305;

624 loc = l293 : l294;

625 loc = l294 : l295;

626 loc = l295 & (((INLINED_TIMER_PULSEON__IN & !(

INLINED_TIMER_PULSEON__OLD_IN)) & !(INLINED_TIMER_PULSEON__Q)))

: l296;

627 loc = l295 & (!(((INLINED_TIMER_PULSEON__IN & !(

INLINED_TIMER_PULSEON__OLD_IN)) & !(INLINED_TIMER_PULSEON__Q)))

) : l297;

628 loc = l296 : l297;

629 loc = l297 & ((main.__GLOBAL_TIME <= INLINED_TIMER_PULSEON__DUE)) :

l298;

630 loc = l297 & (!((main.__GLOBAL_TIME <= INLINED_TIMER_PULSEON__DUE)))

: l300;

631 loc = l298 : l299;

632 loc = l299 : l304;

633 loc = l300 : l301;

634 loc = l301 & (INLINED_TIMER_PULSEON__IN) : l302;

635 loc = l301 & (!(INLINED_TIMER_PULSEON__IN)) : l303;

636 loc = l302 : l304;

637 loc = l303 : l304;
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638 loc = l304 : l305;

639 loc = l305 & (PPULSECSTE) : l306;

640 loc = l305 & (!(PPULSECSTE)) : l308;

641 loc = l306 : l307;

642 loc = l307 : l310;

643 loc = l308 : l309;

644 loc = l309 : l310;

645 loc = l310 : l311;

646 loc = l311 & (POUTOFF) : l312;

647 loc = l311 & (!(POUTOFF)) : l313;

648 loc = l312 : l313;

649 loc = l313 & (POUTOFF) : l314;

650 loc = l313 & (!(POUTOFF)) : l323;

651 loc = l314 & (INTERLOCKR) : l315;

652 loc = l314 & (!(INTERLOCKR)) : l325;

653 loc = l315 & ((PPULSE & !(PFSPOSON2))) : l316;

654 loc = l315 & (!((PPULSE & !(PFSPOSON2)))) : l321;

655 loc = l316 & (PFSPOSON) : l317;

656 loc = l316 & (!(PFSPOSON)) : l319;

657 loc = l317 : l318;

658 loc = l318 : l325;

659 loc = l319 : l320;

660 loc = l320 : l325;

661 loc = l321 : l322;

662 loc = l322 : l325;

663 loc = l323 & (INTERLOCKR) : l324;

664 loc = l323 & (!(INTERLOCKR)) : l325;

665 loc = l324 : l325;

666 loc = l325 : l326;

667 loc = l326 : l327;

668 loc = l327 : l328;

669 loc = l328 : l329;

670 loc = l329 : l330;

671 loc = l330 & (!(POUTOFF)) : l331;

672 loc = l330 & (!(!(POUTOFF))) : l334;

673 loc = l331 & (PFSPOSON) : l332;

674 loc = l331 & (!(PFSPOSON)) : l333;

675 loc = l332 : l336;

676 loc = l333 : l336;

677 loc = l334 : l335;

678 loc = l335 : l336;

679 loc = l336 & ((OUTONOVST | (PPULSE & PULSEONR))) : l337;

680 loc = l336 & (!((OUTONOVST | (PPULSE & PULSEONR)))) : l338;

681 loc = l337 : l338;

682 loc = l338 & ((((OUTOFFOVST & POUTOFF) | (!(OUTONOVST) & !(POUTOFF))

) | (PPULSE & PULSEOFFR))) : l339;

683 loc = l338 & (!((((OUTOFFOVST & POUTOFF) | (!(OUTONOVST) & !(POUTOFF

))) | (PPULSE & PULSEOFFR)))) : l340;

684 loc = l339 : l340;

685 loc = l340 : l341;

686 loc = l341 : l342;

687 loc = l342 & (((INLINED_R_EDGE_25__NEW = TRUE) & (

INLINED_R_EDGE_25__OLD = FALSE))) : l343;

688 loc = l342 & (!(((INLINED_R_EDGE_25__NEW = TRUE) & (

INLINED_R_EDGE_25__OLD = FALSE)))) : l345;

689 loc = l343 : l344;

690 loc = l344 : l347;

691 loc = l345 : l346;
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692 loc = l346 : l347;

693 loc = l347 : l348;

694 loc = l348 : l349;

695 loc = l349 : l350;

696 loc = l350 & (((INLINED_F_EDGE_26__NEW = FALSE) & (

INLINED_F_EDGE_26__OLD = TRUE))) : l351;

697 loc = l350 & (!(((INLINED_F_EDGE_26__NEW = FALSE) & (

INLINED_F_EDGE_26__OLD = TRUE)))) : l353;

698 loc = l351 : l352;

699 loc = l352 : l355;

700 loc = l353 : l354;

701 loc = l354 : l355;

702 loc = l355 : l356;

703 loc = l356 & (((((OUTOVST_AUX & ((PHFON & !(ONST)) | (PHFOFF & OFFST

))) | (!(OUTOVST_AUX) & ((PHFOFF & !(OFFST)) | (PHFON & ONST)))

) | (OFFST & ONST)) & (!(PPULSE) | (((POUTOFF & PPULSE) & !(

OUTONOV)) & !(OUTOFFOV))))) : l357;

704 loc = l356 & (!(((((OUTOVST_AUX & ((PHFON & !(ONST)) | (PHFOFF &

OFFST))) | (!(OUTOVST_AUX) & ((PHFOFF & !(OFFST)) | (PHFON &

ONST)))) | (OFFST & ONST)) & (!(PPULSE) | (((POUTOFF & PPULSE)

& !(OUTONOV)) & !(OUTOFFOV)))))) : l358;

705 loc = l357 : l358;

706 loc = l358 & (((((!((((OUTOVST_AUX & ((PHFON & !(ONST)) | (PHFOFF &

OFFST))) | (!(OUTOVST_AUX) & ((PHFOFF & !(OFFST)) | (PHFON &

ONST)))) | (OFFST & ONST))) | RE_OUTOVST_AUX) | FE_OUTOVST_AUX)

| ((PPULSE & POUTOFF) & OUTONOV)) | ((PPULSE & POUTOFF) &

OUTOFFOV))) : l359;

707 loc = l358 & (!(((((!((((OUTOVST_AUX & ((PHFON & !(ONST)) | (PHFOFF

& OFFST))) | (!(OUTOVST_AUX) & ((PHFOFF & !(OFFST)) | (PHFON &

ONST)))) | (OFFST & ONST))) | RE_OUTOVST_AUX) | FE_OUTOVST_AUX)

| ((PPULSE & POUTOFF) & OUTONOV)) | ((PPULSE & POUTOFF) &

OUTOFFOV)))) : l360;

708 loc = l359 : l360;

709 loc = l360 : l361;

710 loc = l361 : l362;

711 loc = l362 & ((INLINED_TIMER_WARNING__IN = FALSE)) : l363;

712 loc = l362 & (!((INLINED_TIMER_WARNING__IN = FALSE))) : l366;

713 loc = l363 : l364;

714 loc = l364 : l365;

715 loc = l365 : l375;

716 loc = l366 & ((INLINED_TIMER_WARNING__RUNNING = FALSE)) : l367;

717 loc = l366 & (!((INLINED_TIMER_WARNING__RUNNING = FALSE))) : l370;

718 loc = l367 : l368;

719 loc = l368 : l369;

720 loc = l369 : l375;

721 loc = l370 & (!(((main.__GLOBAL_TIME - (INLINED_TIMER_WARNING__START

+ INLINED_TIMER_WARNING__PT)) >= 0sd32_0))) : l371;

722 loc = l370 & (!(!(((main.__GLOBAL_TIME - (

INLINED_TIMER_WARNING__START + INLINED_TIMER_WARNING__PT)) >= 0

sd32_0)))) : l373;

723 loc = l371 & (!(INLINED_TIMER_WARNING__Q)) : l372;

724 loc = l371 & (!(!(INLINED_TIMER_WARNING__Q))) : l375;

725 loc = l372 : l375;

726 loc = l373 : l374;

727 loc = l374 : l375;

728 loc = l375 : l376;

729 loc = l376 : l377;

730 loc = l377 : l378;
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731 loc = l378 : l379;

732 loc = l379 & ((FUSTOPIST | (FSIINC > 0sd16_0))) : l380;

733 loc = l379 & (!((FUSTOPIST | (FSIINC > 0sd16_0)))) : l382;

734 loc = l380 : l381;

735 loc = l381 : l382;

736 loc = l382 & (((extend(FSIINC, 16) > PULSEWIDTH) | (!(FUSTOPIST) & (

FSIINC = 0sd16_0)))) : l383;

737 loc = l382 & (!(((extend(FSIINC, 16) > PULSEWIDTH) | (!(FUSTOPIST) &

(FSIINC = 0sd16_0))))) : l385;

738 loc = l383 : l384;

739 loc = l384 : l385;

740 loc = l385 & ((TSTOPIST | (TSIINC > 0sd16_0))) : l386;

741 loc = l385 & (!((TSTOPIST | (TSIINC > 0sd16_0)))) : l388;

742 loc = l386 : l387;

743 loc = l387 : l388;

744 loc = l388 & (((extend(TSIINC, 16) > PULSEWIDTH) | (!(TSTOPIST) & (

TSIINC = 0sd16_0)))) : l389;

745 loc = l388 & (!(((extend(TSIINC, 16) > PULSEWIDTH) | (!(TSTOPIST) &

(TSIINC = 0sd16_0))))) : l391;

746 loc = l389 : l390;

747 loc = l390 : l391;

748 loc = l391 & ((STARTIST | (SIINC > 0sd16_0))) : l392;

749 loc = l391 & (!((STARTIST | (SIINC > 0sd16_0)))) : l394;

750 loc = l392 : l393;

751 loc = l393 : l394;

752 loc = l394 & (((extend(SIINC, 16) > PULSEWIDTH) | (!(STARTIST) & (

SIINC = 0sd16_0)))) : l395;

753 loc = l394 & (!(((extend(SIINC, 16) > PULSEWIDTH) | (!(STARTIST) & (

SIINC = 0sd16_0))))) : l397;

754 loc = l395 : l396;

755 loc = l396 : l397;

756 loc = l397 & ((ALST | (ALINC > 0sd16_0))) : l398;

757 loc = l397 & (!((ALST | (ALINC > 0sd16_0)))) : l400;

758 loc = l398 : l399;

759 loc = l399 : l400;

760 loc = l400 & (((extend(ALINC, 16) > PULSEWIDTH) | (!(ALST) & (ALINC

= 0sd16_0)))) : l401;

761 loc = l400 & (!(((extend(ALINC, 16) > PULSEWIDTH) | (!(ALST) & (

ALINC = 0sd16_0))))) : l403;

762 loc = l401 : l402;

763 loc = l402 : l403;

764 loc = l403 : l404;

765 loc = l404 : l405;

766 loc = l405 : l406;

767 loc = l406 : l407;

768 loc = l407 : l408;

769 loc = l408 : l409;

770 loc = l409 : l410;

771 loc = l410 : l411;

772 loc = l411 : l412;

773 loc = l412 : l413;

774 loc = l413 : l414;

775 loc = l414 : l415;

776 loc = l415 : l416;

777 loc = l416 : l417;

778 loc = l417 : l418;

779 loc = l418 : l419;

780 loc = l419 : l420;
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781 loc = l420 : l421;

782 loc = l421 : l422;

783 loc = l422 : l423;

784 loc = l423 : l424;

785 loc = l424 : l425;

786 loc = l425 : l426;

787 loc = l426 : l427;

788 loc = l427 : l428;

789 loc = l428 : l429;

790 loc = l429 : l430;

791 loc = l430 : l431;

792 loc = l431 : l432;

793 loc = l432 : l433;

794 loc = l433 : l434;

795 loc = l434 : l435;

796 loc = l435 : l436;

797 loc = l436 : l437;

798 loc = l437 : l438;

799 loc = l438 : l439;

800 loc = l439 & ((INLINED_DETECT_EDGE_28__NEW !=

INLINED_DETECT_EDGE_28__OLD)) : l440;

801 loc = l439 & (!((INLINED_DETECT_EDGE_28__NEW !=

INLINED_DETECT_EDGE_28__OLD))) : l446;

802 loc = l440 & ((INLINED_DETECT_EDGE_28__NEW = TRUE)) : l441;

803 loc = l440 & (!((INLINED_DETECT_EDGE_28__NEW = TRUE))) : l443;

804 loc = l441 : l442;

805 loc = l442 : l445;

806 loc = l443 : l444;

807 loc = l444 : l445;

808 loc = l445 : l448;

809 loc = l446 : l447;

810 loc = l447 : l448;

811 loc = l448 : l449;

812 loc = l449 : l450;

813 loc = l450 : end;

814 TRUE: loc;

815 esac;

816

817 next(HFON) := case

818 loc = initial : {TRUE, FALSE};

819 TRUE : HFON;

820 esac;

821 next(HFOFF) := case

822 loc = initial : {TRUE, FALSE};

823 TRUE : HFOFF;

824 esac;

825 next(HLD) := case

826 loc = initial : {TRUE, FALSE};

827 TRUE : HLD;

828 esac;

829 next(IOERROR) := case

830 loc = initial : {TRUE, FALSE};

831 TRUE : IOERROR;

832 esac;

833 next(IOSIMU) := case

834 loc = initial : {TRUE, FALSE};

835 TRUE : IOSIMU;

836 esac;
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837 next(ALB) := case

838 loc = initial : {TRUE, FALSE};

839 TRUE : ALB;

840 esac;

841 next(MANREG01_0__) := case

842 loc = initial : {TRUE, FALSE};

843 TRUE : MANREG01_0__;

844 esac;

845 next(MANREG01_1__) := case

846 loc = initial : {TRUE, FALSE};

847 TRUE : MANREG01_1__;

848 esac;

849 next(MANREG01_2__) := case

850 loc = initial : {TRUE, FALSE};

851 TRUE : MANREG01_2__;

852 esac;

853 next(MANREG01_3__) := case

854 loc = initial : {TRUE, FALSE};

855 TRUE : MANREG01_3__;

856 esac;

857 next(MANREG01_4__) := case

858 loc = initial : {TRUE, FALSE};

859 TRUE : MANREG01_4__;

860 esac;

861 next(MANREG01_5__) := case

862 loc = initial : {TRUE, FALSE};

863 TRUE : MANREG01_5__;

864 esac;

865 next(MANREG01_6__) := case

866 loc = initial : {TRUE, FALSE};

867 TRUE : MANREG01_6__;

868 esac;

869 next(MANREG01_7__) := case

870 loc = initial : {TRUE, FALSE};

871 TRUE : MANREG01_7__;

872 esac;

873 next(MANREG01_8__) := case

874 loc = initial : {TRUE, FALSE};

875 TRUE : MANREG01_8__;

876 esac;

877 next(MANREG01_9__) := case

878 loc = initial : {TRUE, FALSE};

879 TRUE : MANREG01_9__;

880 esac;

881 next(MANREG01_10__) := case

882 loc = initial : {TRUE, FALSE};

883 TRUE : MANREG01_10__;

884 esac;

885 next(MANREG01_11__) := case

886 loc = initial : {TRUE, FALSE};

887 TRUE : MANREG01_11__;

888 esac;

889 next(MANREG01_12__) := case

890 loc = initial : {TRUE, FALSE};

891 TRUE : MANREG01_12__;

892 esac;

893 next(MANREG01_13__) := case

894 loc = initial : {TRUE, FALSE};
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895 TRUE : MANREG01_13__;

896 esac;

897 next(MANREG01_14__) := case

898 loc = initial : {TRUE, FALSE};

899 TRUE : MANREG01_14__;

900 esac;

901 next(MANREG01_15__) := case

902 loc = initial : {TRUE, FALSE};

903 TRUE : MANREG01_15__;

904 esac;

905 next(HONR) := case

906 loc = initial : {TRUE, FALSE};

907 TRUE : HONR;

908 esac;

909 next(HOFFR) := case

910 loc = initial : {TRUE, FALSE};

911 TRUE : HOFFR;

912 esac;

913 next(STARTI) := case

914 loc = initial : {TRUE, FALSE};

915 TRUE : STARTI;

916 esac;

917 next(TSTOPI) := case

918 loc = initial : {TRUE, FALSE};

919 TRUE : TSTOPI;

920 esac;

921 next(FUSTOPI) := case

922 loc = initial : {TRUE, FALSE};

923 TRUE : FUSTOPI;

924 esac;

925 next(AL) := case

926 loc = initial : {TRUE, FALSE};

927 TRUE : AL;

928 esac;

929 next(AUONR) := case

930 loc = initial : {TRUE, FALSE};

931 TRUE : AUONR;

932 esac;

933 next(AUOFFR) := case

934 loc = initial : {TRUE, FALSE};

935 TRUE : AUOFFR;

936 esac;

937 next(AUAUMOR) := case

938 loc = initial : {TRUE, FALSE};

939 TRUE : AUAUMOR;

940 esac;

941 next(AUIHMMO) := case

942 loc = initial : {TRUE, FALSE};

943 TRUE : AUIHMMO;

944 esac;

945 next(AUIHFOMO) := case

946 loc = initial : {TRUE, FALSE};

947 TRUE : AUIHFOMO;

948 esac;

949 next(AUALACK) := case

950 loc = initial : {TRUE, FALSE};

951 TRUE : AUALACK;

952 esac;
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953 next(IHAUMRW) := case

954 loc = initial : {TRUE, FALSE};

955 TRUE : IHAUMRW;

956 esac;

957 next(AURSTART) := case

958 loc = initial : {TRUE, FALSE};

959 TRUE : AURSTART;

960 esac;

961 next(PONOFF.PARREG_0__) := case

962 loc = initial : {TRUE, FALSE};

963 TRUE : PONOFF.PARREG_0__;

964 esac;

965 next(PONOFF.PARREG_1__) := case

966 loc = initial : {TRUE, FALSE};

967 TRUE : PONOFF.PARREG_1__;

968 esac;

969 next(PONOFF.PARREG_2__) := case

970 loc = initial : {TRUE, FALSE};

971 TRUE : PONOFF.PARREG_2__;

972 esac;

973 next(PONOFF.PARREG_3__) := case

974 loc = initial : {TRUE, FALSE};

975 TRUE : PONOFF.PARREG_3__;

976 esac;

977 next(PONOFF.PARREG_4__) := case

978 loc = initial : {TRUE, FALSE};

979 TRUE : PONOFF.PARREG_4__;

980 esac;

981 next(PONOFF.PARREG_5__) := case

982 loc = initial : {TRUE, FALSE};

983 TRUE : PONOFF.PARREG_5__;

984 esac;

985 next(PONOFF.PARREG_6__) := case

986 loc = initial : {TRUE, FALSE};

987 TRUE : PONOFF.PARREG_6__;

988 esac;

989 next(PONOFF.PARREG_7__) := case

990 loc = initial : {TRUE, FALSE};

991 TRUE : PONOFF.PARREG_7__;

992 esac;

993 next(PONOFF.PARREG_8__) := case

994 loc = initial : {TRUE, FALSE};

995 TRUE : PONOFF.PARREG_8__;

996 esac;

997 next(PONOFF.PARREG_9__) := case

998 loc = initial : {TRUE, FALSE};

999 TRUE : PONOFF.PARREG_9__;

1000 esac;

1001 next(PONOFF.PARREG_10__) := case

1002 loc = initial : {TRUE, FALSE};

1003 TRUE : PONOFF.PARREG_10__;

1004 esac;

1005 next(PONOFF.PARREG_11__) := case

1006 loc = initial : {TRUE, FALSE};

1007 TRUE : PONOFF.PARREG_11__;

1008 esac;

1009 next(PONOFF.PARREG_12__) := case

1010 loc = initial : {TRUE, FALSE};
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1011 TRUE : PONOFF.PARREG_12__;

1012 esac;

1013 next(PONOFF.PARREG_13__) := case

1014 loc = initial : {TRUE, FALSE};

1015 TRUE : PONOFF.PARREG_13__;

1016 esac;

1017 next(PONOFF.PARREG_14__) := case

1018 loc = initial : {TRUE, FALSE};

1019 TRUE : PONOFF.PARREG_14__;

1020 esac;

1021 next(PONOFF.PARREG_15__) := case

1022 loc = initial : {TRUE, FALSE};

1023 TRUE : PONOFF.PARREG_15__;

1024 esac;

1025 next(PONOFF.PPULSELE) := case

1026 loc = initial : main.random_r53;

1027 TRUE : PONOFF.PPULSELE;

1028 esac;

1029 next(PONOFF.PWDT) := case

1030 loc = initial : main.random_r54;

1031 TRUE : PONOFF.PWDT;

1032 esac;

1033 init(STSREG01_0__) := FALSE;

1034 next(STSREG01_0__) := case

1035 loc = l411 : AUMRW;

1036 TRUE : STSREG01_0__;

1037 esac;

1038 init(STSREG01_1__) := FALSE;

1039 next(STSREG01_1__) := case

1040 loc = l412 : POSW;

1041 TRUE : STSREG01_1__;

1042 esac;

1043 init(STSREG01_2__) := FALSE;

1044 next(STSREG01_2__) := case

1045 loc = l413 : WSTARTIST;

1046 TRUE : STSREG01_2__;

1047 esac;

1048 init(STSREG01_3__) := FALSE;

1049 next(STSREG01_3__) := case

1050 loc = l414 : WTSTOPIST;

1051 TRUE : STSREG01_3__;

1052 esac;

1053 init(STSREG01_4__) := FALSE;

1054 next(STSREG01_4__) := case

1055 loc = l415 : ALUNACK;

1056 TRUE : STSREG01_4__;

1057 esac;

1058 init(STSREG01_5__) := FALSE;

1059 next(STSREG01_5__) := case

1060 loc = l416 : AUIHFOMO;

1061 TRUE : STSREG01_5__;

1062 esac;

1063 init(STSREG01_6__) := FALSE;

1064 next(STSREG01_6__) := case

1065 loc = l417 : WALST;

1066 TRUE : STSREG01_6__;

1067 esac;

1068 init(STSREG01_7__) := FALSE;
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1069 next(STSREG01_7__) := case

1070 loc = l418 : AUIHMMO;

1071 TRUE : STSREG01_7__;

1072 esac;

1073 init(STSREG01_8__) := FALSE;

1074 next(STSREG01_8__) := case

1075 loc = l403 : ONST;

1076 TRUE : STSREG01_8__;

1077 esac;

1078 init(STSREG01_9__) := FALSE;

1079 next(STSREG01_9__) := case

1080 loc = l404 : OFFST;

1081 TRUE : STSREG01_9__;

1082 esac;

1083 init(STSREG01_10__) := FALSE;

1084 next(STSREG01_10__) := case

1085 loc = l405 : AUMOST;

1086 TRUE : STSREG01_10__;

1087 esac;

1088 init(STSREG01_11__) := FALSE;

1089 next(STSREG01_11__) := case

1090 loc = l406 : MMOST;

1091 TRUE : STSREG01_11__;

1092 esac;

1093 init(STSREG01_12__) := FALSE;

1094 next(STSREG01_12__) := case

1095 loc = l407 : FOMOST;

1096 TRUE : STSREG01_12__;

1097 esac;

1098 init(STSREG01_13__) := FALSE;

1099 next(STSREG01_13__) := case

1100 loc = l408 : LDST;

1101 TRUE : STSREG01_13__;

1102 esac;

1103 init(STSREG01_14__) := FALSE;

1104 next(STSREG01_14__) := case

1105 loc = l409 : IOERRORW;

1106 TRUE : STSREG01_14__;

1107 esac;

1108 init(STSREG01_15__) := FALSE;

1109 next(STSREG01_15__) := case

1110 loc = l410 : IOSIMUW;

1111 TRUE : STSREG01_15__;

1112 esac;

1113 init(STSREG02_0__) := FALSE;

1114 next(STSREG02_0__) := case

1115 loc = l427 : FALSE;

1116 TRUE : STSREG02_0__;

1117 esac;

1118 init(STSREG02_1__) := FALSE;

1119 next(STSREG02_1__) := case

1120 loc = l428 : FALSE;

1121 TRUE : STSREG02_1__;

1122 esac;

1123 init(STSREG02_2__) := FALSE;

1124 next(STSREG02_2__) := case

1125 loc = l429 : WFUSTOPIST;

1126 TRUE : STSREG02_2__;
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1127 esac;

1128 init(STSREG02_3__) := FALSE;

1129 next(STSREG02_3__) := case

1130 loc = l430 : ENRSTARTST;

1131 TRUE : STSREG02_3__;

1132 esac;

1133 init(STSREG02_4__) := FALSE;

1134 next(STSREG02_4__) := case

1135 loc = l431 : SOFTLDST;

1136 TRUE : STSREG02_4__;

1137 esac;

1138 init(STSREG02_5__) := FALSE;

1139 next(STSREG02_5__) := case

1140 loc = l432 : ALBW;

1141 TRUE : STSREG02_5__;

1142 esac;

1143 init(STSREG02_6__) := FALSE;

1144 next(STSREG02_6__) := case

1145 loc = l433 : OUTOFFOVST;

1146 TRUE : STSREG02_6__;

1147 esac;

1148 init(STSREG02_7__) := FALSE;

1149 next(STSREG02_7__) := case

1150 loc = l434 : FALSE;

1151 TRUE : STSREG02_7__;

1152 esac;

1153 init(STSREG02_8__) := FALSE;

1154 next(STSREG02_8__) := case

1155 loc = l419 : OUTONOVST;

1156 TRUE : STSREG02_8__;

1157 esac;

1158 init(STSREG02_9__) := FALSE;

1159 next(STSREG02_9__) := case

1160 loc = l420 : AUONRST;

1161 TRUE : STSREG02_9__;

1162 esac;

1163 init(STSREG02_10__) := FALSE;

1164 next(STSREG02_10__) := case

1165 loc = l421 : MONRST;

1166 TRUE : STSREG02_10__;

1167 esac;

1168 init(STSREG02_11__) := FALSE;

1169 next(STSREG02_11__) := case

1170 loc = l422 : AUOFFRST;

1171 TRUE : STSREG02_11__;

1172 esac;

1173 init(STSREG02_12__) := FALSE;

1174 next(STSREG02_12__) := case

1175 loc = l423 : MOFFRST;

1176 TRUE : STSREG02_12__;

1177 esac;

1178 init(STSREG02_13__) := FALSE;

1179 next(STSREG02_13__) := case

1180 loc = l424 : HONRST;

1181 TRUE : STSREG02_13__;

1182 esac;

1183 init(STSREG02_14__) := FALSE;

1184 next(STSREG02_14__) := case
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1185 loc = l425 : HOFFRST;

1186 TRUE : STSREG02_14__;

1187 esac;

1188 init(STSREG02_15__) := FALSE;

1189 next(STSREG02_15__) := case

1190 loc = l426 : FALSE;

1191 TRUE : STSREG02_15__;

1192 esac;

1193 init(OUTONOV) := FALSE;

1194 next(OUTONOV) := case

1195 loc = l332 : !(OUTONOVST);

1196 loc = l333 : OUTONOVST;

1197 loc = l334 : OUTONOVST;

1198 TRUE : OUTONOV;

1199 esac;

1200 init(OUTOFFOV) := FALSE;

1201 next(OUTOFFOV) := case

1202 loc = l335 : OUTOFFOVST;

1203 TRUE : OUTOFFOV;

1204 esac;

1205 init(ONST) := FALSE;

1206 next(ONST) := case

1207 loc = l177 : (((HFON & PHFON) | (((!(PHFON) & PHFOFF) & PANIM) & !(

HFOFF))) | ((!(PHFON) & !(PHFOFF)) & OUTOVST_AUX));

1208 TRUE : ONST;

1209 esac;

1210 init(OFFST) := FALSE;

1211 next(OFFST) := case

1212 loc = l178 : (((HFOFF & PHFOFF) | (((!(PHFOFF) & PHFON) & PANIM) &

!(HFON))) | ((!(PHFON) & !(PHFOFF)) & !(OUTOVST_AUX)));

1213 TRUE : OFFST;

1214 esac;

1215 init(AUMOST) := FALSE;

1216 next(AUMOST) := case

1217 loc = l168 : AUMOST_AUX;

1218 loc = l172 : FALSE;

1219 TRUE : AUMOST;

1220 esac;

1221 init(MMOST) := FALSE;

1222 next(MMOST) := case

1223 loc = l169 : MMOST_AUX;

1224 loc = l173 : FALSE;

1225 TRUE : MMOST;

1226 esac;

1227 init(LDST) := FALSE;

1228 next(LDST) := case

1229 loc = l167 : FALSE;

1230 loc = l175 : TRUE;

1231 TRUE : LDST;

1232 esac;

1233 init(SOFTLDST) := FALSE;

1234 next(SOFTLDST) := case

1235 loc = l171 : SOFTLDST_AUX;

1236 loc = l176 : FALSE;

1237 TRUE : SOFTLDST;

1238 esac;

1239 init(FOMOST) := FALSE;

1240 next(FOMOST) := case
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1241 loc = l170 : FOMOST_AUX;

1242 loc = l174 : FALSE;

1243 TRUE : FOMOST;

1244 esac;

1245 init(AUONRST) := FALSE;

1246 next(AUONRST) := case

1247 loc = l180 : FALSE;

1248 loc = l181 : TRUE;

1249 loc = l182 : PFSPOSON;

1250 TRUE : AUONRST;

1251 esac;

1252 init(AUOFFRST) := FALSE;

1253 next(AUOFFRST) := case

1254 loc = l183 : !(AUONRST);

1255 TRUE : AUOFFRST;

1256 esac;

1257 init(MONRST) := FALSE;

1258 next(MONRST) := case

1259 loc = l185 : FALSE;

1260 loc = l186 : TRUE;

1261 TRUE : MONRST;

1262 esac;

1263 init(MOFFRST) := FALSE;

1264 next(MOFFRST) := case

1265 loc = l187 : !(MONRST);

1266 TRUE : MOFFRST;

1267 esac;

1268 init(HONRST) := FALSE;

1269 next(HONRST) := case

1270 loc = l189 : FALSE;

1271 loc = l191 : TRUE;

1272 TRUE : HONRST;

1273 esac;

1274 init(HOFFRST) := FALSE;

1275 next(HOFFRST) := case

1276 loc = l192 : !(HONRST);

1277 TRUE : HOFFRST;

1278 esac;

1279 init(IOERRORW) := FALSE;

1280 next(IOERRORW) := case

1281 loc = l327 : IOERROR;

1282 TRUE : IOERRORW;

1283 esac;

1284 init(IOSIMUW) := FALSE;

1285 next(IOSIMUW) := case

1286 loc = l328 : IOSIMU;

1287 TRUE : IOSIMUW;

1288 esac;

1289 init(AUMRW) := FALSE;

1290 next(AUMRW) := case

1291 loc = l329 : ((((MMOST | FOMOST) | SOFTLDST) & ((AUONRST xor MONRST)

| (AUOFFRST xor MOFFRST))) & !(IHAUMRW));

1292 TRUE : AUMRW;

1293 esac;

1294 init(ALUNACK) := FALSE;

1295 next(ALUNACK) := case

1296 loc = l129 : FALSE;

1297 loc = l130 : TRUE;
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1298 TRUE : ALUNACK;

1299 esac;

1300 init(POSW) := FALSE;

1301 next(POSW) := case

1302 loc = l375 : INLINED_TIMER_WARNING__Q;

1303 TRUE : POSW;

1304 esac;

1305 init(STARTIST) := FALSE;

1306 next(STARTIST) := case

1307 loc = l124 : STARTI;

1308 TRUE : STARTIST;

1309 esac;

1310 init(TSTOPIST) := FALSE;

1311 next(TSTOPIST) := case

1312 loc = l125 : TSTOPI;

1313 TRUE : TSTOPIST;

1314 esac;

1315 init(FUSTOPIST) := FALSE;

1316 next(FUSTOPIST) := case

1317 loc = l126 : FUSTOPI;

1318 TRUE : FUSTOPIST;

1319 esac;

1320 init(ALST) := FALSE;

1321 next(ALST) := case

1322 loc = l326 : AL;

1323 TRUE : ALST;

1324 esac;

1325 init(ALBW) := FALSE;

1326 next(ALBW) := case

1327 loc = l377 : ALB;

1328 TRUE : ALBW;

1329 esac;

1330 init(ENRSTARTST) := TRUE;

1331 next(ENRSTARTST) := case

1332 loc = l132 : TRUE;

1333 loc = l136 : FALSE;

1334 TRUE : ENRSTARTST;

1335 esac;

1336 init(RDYSTARTST) := FALSE;

1337 next(RDYSTARTST) := case

1338 loc = l325 : !(INTERLOCKR);

1339 TRUE : RDYSTARTST;

1340 esac;

1341 init(E_MAUMOR) := FALSE;

1342 next(E_MAUMOR) := case

1343 loc = l3 : TRUE;

1344 loc = l5 : FALSE;

1345 TRUE : E_MAUMOR;

1346 esac;

1347 init(E_MMMOR) := FALSE;

1348 next(E_MMMOR) := case

1349 loc = l11 : TRUE;

1350 loc = l13 : FALSE;

1351 TRUE : E_MMMOR;

1352 esac;

1353 init(E_MFOMOR) := FALSE;

1354 next(E_MFOMOR) := case

1355 loc = l19 : TRUE;
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1356 loc = l21 : FALSE;

1357 TRUE : E_MFOMOR;

1358 esac;

1359 init(E_MONR) := FALSE;

1360 next(E_MONR) := case

1361 loc = l35 : TRUE;

1362 loc = l37 : FALSE;

1363 TRUE : E_MONR;

1364 esac;

1365 init(E_MOFFR) := FALSE;

1366 next(E_MOFFR) := case

1367 loc = l43 : TRUE;

1368 loc = l45 : FALSE;

1369 TRUE : E_MOFFR;

1370 esac;

1371 init(E_MALACKR) := FALSE;

1372 next(E_MALACKR) := case

1373 loc = l59 : TRUE;

1374 loc = l61 : FALSE;

1375 TRUE : E_MALACKR;

1376 esac;

1377 init(E_STARTI) := FALSE;

1378 next(E_STARTI) := case

1379 loc = l95 : TRUE;

1380 loc = l97 : FALSE;

1381 TRUE : E_STARTI;

1382 esac;

1383 init(E_TSTOPI) := FALSE;

1384 next(E_TSTOPI) := case

1385 loc = l103 : TRUE;

1386 loc = l105 : FALSE;

1387 TRUE : E_TSTOPI;

1388 esac;

1389 init(E_FUSTOPI) := FALSE;

1390 next(E_FUSTOPI) := case

1391 loc = l111 : TRUE;

1392 loc = l113 : FALSE;

1393 TRUE : E_FUSTOPI;

1394 esac;

1395 init(E_AL) := FALSE;

1396 next(E_AL) := case

1397 loc = l119 : TRUE;

1398 loc = l121 : FALSE;

1399 TRUE : E_AL;

1400 esac;

1401 init(E_AUAUMOR) := FALSE;

1402 next(E_AUAUMOR) := case

1403 loc = l79 : TRUE;

1404 loc = l81 : FALSE;

1405 TRUE : E_AUAUMOR;

1406 esac;

1407 init(E_AUALACK) := FALSE;

1408 next(E_AUALACK) := case

1409 loc = l87 : TRUE;

1410 loc = l89 : FALSE;

1411 TRUE : E_AUALACK;

1412 esac;

1413 init(E_MSOFTLDR) := FALSE;
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1414 next(E_MSOFTLDR) := case

1415 loc = l27 : TRUE;

1416 loc = l29 : FALSE;

1417 TRUE : E_MSOFTLDR;

1418 esac;

1419 init(E_MENRSTARTR) := FALSE;

1420 next(E_MENRSTARTR) := case

1421 loc = l51 : TRUE;

1422 loc = l53 : FALSE;

1423 TRUE : E_MENRSTARTR;

1424 esac;

1425 init(RE_ALUNACK) := FALSE;

1426 next(RE_ALUNACK) := case

1427 loc = l449 : INLINED_DETECT_EDGE_28__RE;

1428 TRUE : RE_ALUNACK;

1429 esac;

1430 init(FE_ALUNACK) := FALSE;

1431 next(FE_ALUNACK) := case

1432 loc = l450 : INLINED_DETECT_EDGE_28__FE;

1433 TRUE : FE_ALUNACK;

1434 esac;

1435 init(RE_PULSEON) := FALSE;

1436 next(RE_PULSEON) := case

1437 loc = l258 : TRUE;

1438 loc = l260 : FALSE;

1439 TRUE : RE_PULSEON;

1440 esac;

1441 init(FE_PULSEON) := FALSE;

1442 next(FE_PULSEON) := case

1443 loc = l266 : TRUE;

1444 loc = l268 : FALSE;

1445 TRUE : FE_PULSEON;

1446 esac;

1447 init(RE_PULSEOFF) := FALSE;

1448 next(RE_PULSEOFF) := case

1449 loc = l274 : TRUE;

1450 loc = l276 : FALSE;

1451 TRUE : RE_PULSEOFF;

1452 esac;

1453 init(RE_OUTOVST_AUX) := FALSE;

1454 next(RE_OUTOVST_AUX) := case

1455 loc = l343 : TRUE;

1456 loc = l345 : FALSE;

1457 TRUE : RE_OUTOVST_AUX;

1458 esac;

1459 init(FE_OUTOVST_AUX) := FALSE;

1460 next(FE_OUTOVST_AUX) := case

1461 loc = l351 : TRUE;

1462 loc = l353 : FALSE;

1463 TRUE : FE_OUTOVST_AUX;

1464 esac;

1465 init(FE_INTERLOCKR) := FALSE;

1466 next(FE_INTERLOCKR) := case

1467 loc = l141 : TRUE;

1468 loc = l143 : FALSE;

1469 TRUE : FE_INTERLOCKR;

1470 esac;

1471 init(MAUMOR_OLD) := FALSE;
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1472 next(MAUMOR_OLD) := case

1473 loc = l7 : INLINED_R_EDGE_1__OLD;

1474 TRUE : MAUMOR_OLD;

1475 esac;

1476 init(MMMOR_OLD) := FALSE;

1477 next(MMMOR_OLD) := case

1478 loc = l15 : INLINED_R_EDGE_2__OLD;

1479 TRUE : MMMOR_OLD;

1480 esac;

1481 init(MFOMOR_OLD) := FALSE;

1482 next(MFOMOR_OLD) := case

1483 loc = l23 : INLINED_R_EDGE_3__OLD;

1484 TRUE : MFOMOR_OLD;

1485 esac;

1486 init(MONR_OLD) := FALSE;

1487 next(MONR_OLD) := case

1488 loc = l39 : INLINED_R_EDGE_5__OLD;

1489 TRUE : MONR_OLD;

1490 esac;

1491 init(MOFFR_OLD) := FALSE;

1492 next(MOFFR_OLD) := case

1493 loc = l47 : INLINED_R_EDGE_6__OLD;

1494 TRUE : MOFFR_OLD;

1495 esac;

1496 init(MALACKR_OLD) := FALSE;

1497 next(MALACKR_OLD) := case

1498 loc = l63 : INLINED_R_EDGE_8__OLD;

1499 TRUE : MALACKR_OLD;

1500 esac;

1501 init(AUAUMOR_OLD) := FALSE;

1502 next(AUAUMOR_OLD) := case

1503 loc = l83 : INLINED_R_EDGE_9__OLD;

1504 TRUE : AUAUMOR_OLD;

1505 esac;

1506 init(AUALACK_OLD) := FALSE;

1507 next(AUALACK_OLD) := case

1508 loc = l91 : INLINED_R_EDGE_10__OLD;

1509 TRUE : AUALACK_OLD;

1510 esac;

1511 init(STARTI_OLD) := FALSE;

1512 next(STARTI_OLD) := case

1513 loc = l99 : INLINED_R_EDGE_11__OLD;

1514 TRUE : STARTI_OLD;

1515 esac;

1516 init(TSTOPI_OLD) := FALSE;

1517 next(TSTOPI_OLD) := case

1518 loc = l107 : INLINED_R_EDGE_12__OLD;

1519 TRUE : TSTOPI_OLD;

1520 esac;

1521 init(FUSTOPI_OLD) := FALSE;

1522 next(FUSTOPI_OLD) := case

1523 loc = l115 : INLINED_R_EDGE_13__OLD;

1524 TRUE : FUSTOPI_OLD;

1525 esac;

1526 init(AL_OLD) := FALSE;

1527 next(AL_OLD) := case

1528 loc = l123 : INLINED_R_EDGE_14__OLD;

1529 TRUE : AL_OLD;
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1530 esac;

1531 init(ALUNACK_OLD) := FALSE;

1532 next(ALUNACK_OLD) := case

1533 loc = l448 : INLINED_DETECT_EDGE_28__OLD;

1534 TRUE : ALUNACK_OLD;

1535 esac;

1536 init(MSOFTLDR_OLD) := FALSE;

1537 next(MSOFTLDR_OLD) := case

1538 loc = l31 : INLINED_R_EDGE_4__OLD;

1539 TRUE : MSOFTLDR_OLD;

1540 esac;

1541 init(MENRSTARTR_OLD) := FALSE;

1542 next(MENRSTARTR_OLD) := case

1543 loc = l55 : INLINED_R_EDGE_7__OLD;

1544 TRUE : MENRSTARTR_OLD;

1545 esac;

1546 init(RE_PULSEON_OLD) := FALSE;

1547 next(RE_PULSEON_OLD) := case

1548 loc = l262 : INLINED_R_EDGE_20__OLD;

1549 TRUE : RE_PULSEON_OLD;

1550 esac;

1551 init(FE_PULSEON_OLD) := FALSE;

1552 next(FE_PULSEON_OLD) := case

1553 loc = l270 : INLINED_F_EDGE_21__OLD;

1554 TRUE : FE_PULSEON_OLD;

1555 esac;

1556 init(RE_PULSEOFF_OLD) := FALSE;

1557 next(RE_PULSEOFF_OLD) := case

1558 loc = l278 : INLINED_R_EDGE_22__OLD;

1559 TRUE : RE_PULSEOFF_OLD;

1560 esac;

1561 init(RE_OUTOVST_AUX_OLD) := FALSE;

1562 next(RE_OUTOVST_AUX_OLD) := case

1563 loc = l347 : INLINED_R_EDGE_25__OLD;

1564 TRUE : RE_OUTOVST_AUX_OLD;

1565 esac;

1566 init(FE_OUTOVST_AUX_OLD) := FALSE;

1567 next(FE_OUTOVST_AUX_OLD) := case

1568 loc = l355 : INLINED_F_EDGE_26__OLD;

1569 TRUE : FE_OUTOVST_AUX_OLD;

1570 esac;

1571 init(FE_INTERLOCKR_OLD) := FALSE;

1572 next(FE_INTERLOCKR_OLD) := case

1573 loc = l145 : INLINED_F_EDGE_15__OLD;

1574 TRUE : FE_INTERLOCKR_OLD;

1575 esac;

1576 init(PFSPOSON) := FALSE;

1577 next(PFSPOSON) := case

1578 loc = l64 : PONOFF.PARREG_8__;

1579 TRUE : PFSPOSON;

1580 esac;

1581 init(PFSPOSON2) := FALSE;

1582 next(PFSPOSON2) := case

1583 loc = l74 : PONOFF.PARREG_2__;

1584 TRUE : PFSPOSON2;

1585 esac;

1586 init(PHFON) := FALSE;

1587 next(PHFON) := case
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1588 loc = l65 : PONOFF.PARREG_9__;

1589 TRUE : PHFON;

1590 esac;

1591 init(PHFOFF) := FALSE;

1592 next(PHFOFF) := case

1593 loc = l66 : PONOFF.PARREG_10__;

1594 TRUE : PHFOFF;

1595 esac;

1596 init(PPULSE) := FALSE;

1597 next(PPULSE) := case

1598 loc = l67 : PONOFF.PARREG_11__;

1599 TRUE : PPULSE;

1600 esac;

1601 init(PPULSECSTE) := FALSE;

1602 next(PPULSECSTE) := case

1603 loc = l75 : PONOFF.PARREG_3__;

1604 TRUE : PPULSECSTE;

1605 esac;

1606 init(PHLD) := FALSE;

1607 next(PHLD) := case

1608 loc = l68 : PONOFF.PARREG_12__;

1609 TRUE : PHLD;

1610 esac;

1611 init(PHLDCMD) := FALSE;

1612 next(PHLDCMD) := case

1613 loc = l69 : PONOFF.PARREG_13__;

1614 TRUE : PHLDCMD;

1615 esac;

1616 init(PANIM) := FALSE;

1617 next(PANIM) := case

1618 loc = l70 : PONOFF.PARREG_14__;

1619 TRUE : PANIM;

1620 esac;

1621 init(POUTOFF) := FALSE;

1622 next(POUTOFF) := case

1623 loc = l71 : PONOFF.PARREG_15__;

1624 TRUE : POUTOFF;

1625 esac;

1626 init(PENRSTART) := FALSE;

1627 next(PENRSTART) := case

1628 loc = l72 : PONOFF.PARREG_0__;

1629 TRUE : PENRSTART;

1630 esac;

1631 init(PRSTARTFS) := FALSE;

1632 next(PRSTARTFS) := case

1633 loc = l73 : PONOFF.PARREG_1__;

1634 TRUE : PRSTARTFS;

1635 esac;

1636 init(OUTONOVST) := FALSE;

1637 next(OUTONOVST) := case

1638 loc = l310 : ((PPULSE & PULSEON) | (!(PPULSE) & (((MONRST & ((MMOST

| FOMOST) | SOFTLDST)) | (AUONRST & AUMOST)) | ((HONRST & LDST)

& PHLDCMD))));

1639 loc = l317 : PULSEON;

1640 loc = l319 : FALSE;

1641 loc = l321 : ((PFSPOSON & !(PFSPOSON2)) | (PFSPOSON & PFSPOSON2));

1642 loc = l324 : PFSPOSON;

1643 TRUE : OUTONOVST;
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1644 esac;

1645 init(OUTOFFOVST) := FALSE;

1646 next(OUTOFFOVST) := case

1647 loc = l312 : ((PULSEOFF & PPULSE) | (!(PPULSE) & (((MOFFRST & ((

MMOST | FOMOST) | SOFTLDST)) | (AUOFFRST & AUMOST)) | ((HOFFRST

& LDST) & PHLDCMD))));

1648 loc = l318 : FALSE;

1649 loc = l320 : PULSEOFF;

1650 loc = l322 : ((!(PFSPOSON) & !(PFSPOSON2)) | (PFSPOSON & PFSPOSON2))

;

1651 TRUE : OUTOFFOVST;

1652 esac;

1653 init(AUMOST_AUX) := FALSE;

1654 next(AUMOST_AUX) := case

1655 loc = l148 : FALSE;

1656 loc = l153 : FALSE;

1657 loc = l158 : TRUE;

1658 loc = l163 : FALSE;

1659 TRUE : AUMOST_AUX;

1660 esac;

1661 init(MMOST_AUX) := FALSE;

1662 next(MMOST_AUX) := case

1663 loc = l149 : FALSE;

1664 loc = l154 : TRUE;

1665 loc = l159 : FALSE;

1666 loc = l164 : FALSE;

1667 TRUE : MMOST_AUX;

1668 esac;

1669 init(FOMOST_AUX) := FALSE;

1670 next(FOMOST_AUX) := case

1671 loc = l150 : TRUE;

1672 loc = l155 : FALSE;

1673 loc = l160 : FALSE;

1674 loc = l165 : FALSE;

1675 TRUE : FOMOST_AUX;

1676 esac;

1677 init(SOFTLDST_AUX) := FALSE;

1678 next(SOFTLDST_AUX) := case

1679 loc = l151 : FALSE;

1680 loc = l156 : FALSE;

1681 loc = l161 : FALSE;

1682 loc = l166 : TRUE;

1683 TRUE : SOFTLDST_AUX;

1684 esac;

1685 init(PULSEON) := FALSE;

1686 next(PULSEON) := case

1687 loc = l306 : (INLINED_TIMER_PULSEON__Q & !(PULSEOFFR));

1688 loc = l308 : ((INLINED_TIMER_PULSEON__Q & !(PULSEOFFR)) & (!(PHFON)

| (PHFON & !(HFON))));

1689 TRUE : PULSEON;

1690 esac;

1691 init(PULSEOFF) := FALSE;

1692 next(PULSEOFF) := case

1693 loc = l307 : (INLINED_TIMER_PULSEOFF__Q & !(PULSEONR));

1694 loc = l309 : ((INLINED_TIMER_PULSEOFF__Q & !(PULSEONR)) & (!(PHFOFF)

| (PHFOFF & !(HFOFF))));

1695 TRUE : PULSEOFF;

1696 esac;
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1697 init(POSW_AUX) := FALSE;

1698 next(POSW_AUX) := case

1699 loc = l357 : TRUE;

1700 loc = l359 : FALSE;

1701 TRUE : POSW_AUX;

1702 esac;

1703 init(OUTOVST_AUX) := FALSE;

1704 next(OUTOVST_AUX) := case

1705 loc = l337 : TRUE;

1706 loc = l339 : FALSE;

1707 TRUE : OUTOVST_AUX;

1708 esac;

1709 init(FULLNOTACKNOWLEDGED) := FALSE;

1710 next(FULLNOTACKNOWLEDGED) := case

1711 loc = l128 : FALSE;

1712 loc = l134 : TRUE;

1713 TRUE : FULLNOTACKNOWLEDGED;

1714 esac;

1715 init(PULSEONR) := FALSE;

1716 next(PULSEONR) := case

1717 loc = l195 : ((PFSPOSON & !(PFSPOSON2)) | (PFSPOSON & PFSPOSON2));

1718 loc = l197 : FALSE;

1719 loc = l223 : FALSE;

1720 loc = l225 : TRUE;

1721 loc = l227 : FALSE;

1722 loc = l241 : INLINED_TIMER_PULSEON__IN;

1723 TRUE : PULSEONR;

1724 esac;

1725 init(PULSEOFFR) := FALSE;

1726 next(PULSEOFFR) := case

1727 loc = l196 : ((!(PFSPOSON) & !(PFSPOSON2)) | (PFSPOSON & PFSPOSON2))

;

1728 loc = l198 : FALSE;

1729 loc = l224 : TRUE;

1730 loc = l226 : FALSE;

1731 loc = l228 : FALSE;

1732 loc = l254 : INLINED_TIMER_PULSEOFF__IN;

1733 TRUE : PULSEOFFR;

1734 esac;

1735 init(INTERLOCKR) := FALSE;

1736 next(INTERLOCKR) := case

1737 loc = l137 : (((((TSTOPIST | FUSTOPIST) | FULLNOTACKNOWLEDGED) | !(

ENRSTARTST)) | ((STARTIST & !(POUTOFF)) & !(OUTONOV))) | ((

STARTIST & POUTOFF) & ((PFSPOSON & OUTOVST_AUX) | (!(PFSPOSON)

& !(OUTOVST_AUX)))));

1738 TRUE : INTERLOCKR;

1739 esac;

1740 init(TIME_WARNING) := 0sd32_0;

1741 next(TIME_WARNING) := case

1742 loc = l376 : INLINED_TIMER_WARNING__ET;

1743 TRUE : TIME_WARNING;

1744 esac;

1745 init(PULSEWIDTH) := 0sd32_0;

1746 next(PULSEWIDTH) := case

1747 loc = l378 : (0sd32_150000 * 0sd32_100) / (signed(extend(main.

T_CYCLE, 16)) * 0sd32_100);

1748 TRUE : PULSEWIDTH;

1749 esac;
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1750 init(FSIINC) := 0sd16_0;

1751 next(FSIINC) := case

1752 loc = l380 : (FSIINC + 0sd16_1);

1753 loc = l383 : 0sd16_0;

1754 TRUE : FSIINC;

1755 esac;

1756 init(TSIINC) := 0sd16_0;

1757 next(TSIINC) := case

1758 loc = l386 : (TSIINC + 0sd16_1);

1759 loc = l389 : 0sd16_0;

1760 TRUE : TSIINC;

1761 esac;

1762 init(SIINC) := 0sd16_0;

1763 next(SIINC) := case

1764 loc = l392 : (SIINC + 0sd16_1);

1765 loc = l395 : 0sd16_0;

1766 TRUE : SIINC;

1767 esac;

1768 init(ALINC) := 0sd16_0;

1769 next(ALINC) := case

1770 loc = l398 : (ALINC + 0sd16_1);

1771 loc = l401 : 0sd16_0;

1772 TRUE : ALINC;

1773 esac;

1774 init(WTSTOPIST) := FALSE;

1775 next(WTSTOPIST) := case

1776 loc = l387 : TRUE;

1777 loc = l390 : TSTOPIST;

1778 TRUE : WTSTOPIST;

1779 esac;

1780 init(WSTARTIST) := FALSE;

1781 next(WSTARTIST) := case

1782 loc = l393 : TRUE;

1783 loc = l396 : STARTIST;

1784 TRUE : WSTARTIST;

1785 esac;

1786 init(WALST) := FALSE;

1787 next(WALST) := case

1788 loc = l399 : TRUE;

1789 loc = l402 : ALST;

1790 TRUE : WALST;

1791 esac;

1792 init(WFUSTOPIST) := FALSE;

1793 next(WFUSTOPIST) := case

1794 loc = l381 : TRUE;

1795 loc = l384 : FUSTOPIST;

1796 TRUE : WFUSTOPIST;

1797 esac;

1798 init(INLINED_R_EDGE_1__NEW) := FALSE;

1799 next(INLINED_R_EDGE_1__NEW) := case

1800 loc = end : FALSE;

1801 loc = l1 : MANREG01_8__;

1802 TRUE : INLINED_R_EDGE_1__NEW;

1803 esac;

1804 init(INLINED_R_EDGE_1__OLD) := FALSE;

1805 next(INLINED_R_EDGE_1__OLD) := case

1806 loc = end : FALSE;

1807 loc = l0 : MAUMOR_OLD;
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1808 loc = l4 : TRUE;

1809 loc = l6 : INLINED_R_EDGE_1__NEW;

1810 TRUE : INLINED_R_EDGE_1__OLD;

1811 esac;

1812 init(INLINED_R_EDGE_2__NEW) := FALSE;

1813 next(INLINED_R_EDGE_2__NEW) := case

1814 loc = end : FALSE;

1815 loc = l9 : MANREG01_9__;

1816 TRUE : INLINED_R_EDGE_2__NEW;

1817 esac;

1818 init(INLINED_R_EDGE_2__OLD) := FALSE;

1819 next(INLINED_R_EDGE_2__OLD) := case

1820 loc = end : FALSE;

1821 loc = l8 : MMMOR_OLD;

1822 loc = l12 : TRUE;

1823 loc = l14 : INLINED_R_EDGE_2__NEW;

1824 TRUE : INLINED_R_EDGE_2__OLD;

1825 esac;

1826 init(INLINED_R_EDGE_3__NEW) := FALSE;

1827 next(INLINED_R_EDGE_3__NEW) := case

1828 loc = end : FALSE;

1829 loc = l17 : MANREG01_10__;

1830 TRUE : INLINED_R_EDGE_3__NEW;

1831 esac;

1832 init(INLINED_R_EDGE_3__OLD) := FALSE;

1833 next(INLINED_R_EDGE_3__OLD) := case

1834 loc = end : FALSE;

1835 loc = l16 : MFOMOR_OLD;

1836 loc = l20 : TRUE;

1837 loc = l22 : INLINED_R_EDGE_3__NEW;

1838 TRUE : INLINED_R_EDGE_3__OLD;

1839 esac;

1840 init(INLINED_R_EDGE_4__NEW) := FALSE;

1841 next(INLINED_R_EDGE_4__NEW) := case

1842 loc = end : FALSE;

1843 loc = l25 : MANREG01_11__;

1844 TRUE : INLINED_R_EDGE_4__NEW;

1845 esac;

1846 init(INLINED_R_EDGE_4__OLD) := FALSE;

1847 next(INLINED_R_EDGE_4__OLD) := case

1848 loc = end : FALSE;

1849 loc = l24 : MSOFTLDR_OLD;

1850 loc = l28 : TRUE;

1851 loc = l30 : INLINED_R_EDGE_4__NEW;

1852 TRUE : INLINED_R_EDGE_4__OLD;

1853 esac;

1854 init(INLINED_R_EDGE_5__NEW) := FALSE;

1855 next(INLINED_R_EDGE_5__NEW) := case

1856 loc = end : FALSE;

1857 loc = l33 : MANREG01_12__;

1858 TRUE : INLINED_R_EDGE_5__NEW;

1859 esac;

1860 init(INLINED_R_EDGE_5__OLD) := FALSE;

1861 next(INLINED_R_EDGE_5__OLD) := case

1862 loc = end : FALSE;

1863 loc = l32 : MONR_OLD;

1864 loc = l36 : TRUE;

1865 loc = l38 : INLINED_R_EDGE_5__NEW;
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1866 TRUE : INLINED_R_EDGE_5__OLD;

1867 esac;

1868 init(INLINED_R_EDGE_6__NEW) := FALSE;

1869 next(INLINED_R_EDGE_6__NEW) := case

1870 loc = end : FALSE;

1871 loc = l41 : MANREG01_13__;

1872 TRUE : INLINED_R_EDGE_6__NEW;

1873 esac;

1874 init(INLINED_R_EDGE_6__OLD) := FALSE;

1875 next(INLINED_R_EDGE_6__OLD) := case

1876 loc = end : FALSE;

1877 loc = l40 : MOFFR_OLD;

1878 loc = l44 : TRUE;

1879 loc = l46 : INLINED_R_EDGE_6__NEW;

1880 TRUE : INLINED_R_EDGE_6__OLD;

1881 esac;

1882 init(INLINED_R_EDGE_7__NEW) := FALSE;

1883 next(INLINED_R_EDGE_7__NEW) := case

1884 loc = end : FALSE;

1885 loc = l49 : MANREG01_1__;

1886 TRUE : INLINED_R_EDGE_7__NEW;

1887 esac;

1888 init(INLINED_R_EDGE_7__OLD) := FALSE;

1889 next(INLINED_R_EDGE_7__OLD) := case

1890 loc = end : FALSE;

1891 loc = l48 : MENRSTARTR_OLD;

1892 loc = l52 : TRUE;

1893 loc = l54 : INLINED_R_EDGE_7__NEW;

1894 TRUE : INLINED_R_EDGE_7__OLD;

1895 esac;

1896 init(INLINED_R_EDGE_8__NEW) := FALSE;

1897 next(INLINED_R_EDGE_8__NEW) := case

1898 loc = end : FALSE;

1899 loc = l57 : MANREG01_7__;

1900 TRUE : INLINED_R_EDGE_8__NEW;

1901 esac;

1902 init(INLINED_R_EDGE_8__OLD) := FALSE;

1903 next(INLINED_R_EDGE_8__OLD) := case

1904 loc = end : FALSE;

1905 loc = l56 : MALACKR_OLD;

1906 loc = l60 : TRUE;

1907 loc = l62 : INLINED_R_EDGE_8__NEW;

1908 TRUE : INLINED_R_EDGE_8__OLD;

1909 esac;

1910 init(INLINED_R_EDGE_9__NEW) := FALSE;

1911 next(INLINED_R_EDGE_9__NEW) := case

1912 loc = end : FALSE;

1913 loc = l77 : AUAUMOR;

1914 TRUE : INLINED_R_EDGE_9__NEW;

1915 esac;

1916 init(INLINED_R_EDGE_9__OLD) := FALSE;

1917 next(INLINED_R_EDGE_9__OLD) := case

1918 loc = end : FALSE;

1919 loc = l76 : AUAUMOR_OLD;

1920 loc = l80 : TRUE;

1921 loc = l82 : INLINED_R_EDGE_9__NEW;

1922 TRUE : INLINED_R_EDGE_9__OLD;

1923 esac;
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1924 init(INLINED_R_EDGE_10__NEW) := FALSE;

1925 next(INLINED_R_EDGE_10__NEW) := case

1926 loc = end : FALSE;

1927 loc = l85 : AUALACK;

1928 TRUE : INLINED_R_EDGE_10__NEW;

1929 esac;

1930 init(INLINED_R_EDGE_10__OLD) := FALSE;

1931 next(INLINED_R_EDGE_10__OLD) := case

1932 loc = end : FALSE;

1933 loc = l84 : AUALACK_OLD;

1934 loc = l88 : TRUE;

1935 loc = l90 : INLINED_R_EDGE_10__NEW;

1936 TRUE : INLINED_R_EDGE_10__OLD;

1937 esac;

1938 init(INLINED_R_EDGE_11__NEW) := FALSE;

1939 next(INLINED_R_EDGE_11__NEW) := case

1940 loc = end : FALSE;

1941 loc = l93 : STARTI;

1942 TRUE : INLINED_R_EDGE_11__NEW;

1943 esac;

1944 init(INLINED_R_EDGE_11__OLD) := FALSE;

1945 next(INLINED_R_EDGE_11__OLD) := case

1946 loc = end : FALSE;

1947 loc = l92 : STARTI_OLD;

1948 loc = l96 : TRUE;

1949 loc = l98 : INLINED_R_EDGE_11__NEW;

1950 TRUE : INLINED_R_EDGE_11__OLD;

1951 esac;

1952 init(INLINED_R_EDGE_12__NEW) := FALSE;

1953 next(INLINED_R_EDGE_12__NEW) := case

1954 loc = end : FALSE;

1955 loc = l101 : TSTOPI;

1956 TRUE : INLINED_R_EDGE_12__NEW;

1957 esac;

1958 init(INLINED_R_EDGE_12__OLD) := FALSE;

1959 next(INLINED_R_EDGE_12__OLD) := case

1960 loc = end : FALSE;

1961 loc = l100 : TSTOPI_OLD;

1962 loc = l104 : TRUE;

1963 loc = l106 : INLINED_R_EDGE_12__NEW;

1964 TRUE : INLINED_R_EDGE_12__OLD;

1965 esac;

1966 init(INLINED_R_EDGE_13__NEW) := FALSE;

1967 next(INLINED_R_EDGE_13__NEW) := case

1968 loc = end : FALSE;

1969 loc = l109 : FUSTOPI;

1970 TRUE : INLINED_R_EDGE_13__NEW;

1971 esac;

1972 init(INLINED_R_EDGE_13__OLD) := FALSE;

1973 next(INLINED_R_EDGE_13__OLD) := case

1974 loc = end : FALSE;

1975 loc = l108 : FUSTOPI_OLD;

1976 loc = l112 : TRUE;

1977 loc = l114 : INLINED_R_EDGE_13__NEW;

1978 TRUE : INLINED_R_EDGE_13__OLD;

1979 esac;

1980 init(INLINED_R_EDGE_14__NEW) := FALSE;

1981 next(INLINED_R_EDGE_14__NEW) := case
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1982 loc = end : FALSE;

1983 loc = l117 : AL;

1984 TRUE : INLINED_R_EDGE_14__NEW;

1985 esac;

1986 init(INLINED_R_EDGE_14__OLD) := FALSE;

1987 next(INLINED_R_EDGE_14__OLD) := case

1988 loc = end : FALSE;

1989 loc = l116 : AL_OLD;

1990 loc = l120 : TRUE;

1991 loc = l122 : INLINED_R_EDGE_14__NEW;

1992 TRUE : INLINED_R_EDGE_14__OLD;

1993 esac;

1994 init(INLINED_F_EDGE_15__NEW) := FALSE;

1995 next(INLINED_F_EDGE_15__NEW) := case

1996 loc = end : FALSE;

1997 loc = l139 : INTERLOCKR;

1998 TRUE : INLINED_F_EDGE_15__NEW;

1999 esac;

2000 init(INLINED_F_EDGE_15__OLD) := FALSE;

2001 next(INLINED_F_EDGE_15__OLD) := case

2002 loc = end : FALSE;

2003 loc = l138 : FE_INTERLOCKR_OLD;

2004 loc = l142 : FALSE;

2005 loc = l144 : INLINED_F_EDGE_15__NEW;

2006 TRUE : INLINED_F_EDGE_15__OLD;

2007 esac;

2008 init(INLINED_TIMER_PULSEON__PT) := 0sd32_0;

2009 next(INLINED_TIMER_PULSEON__PT) := case

2010 loc = end : 0sd32_0;

2011 loc = l199 : 0sd32_0;

2012 loc = l229 : PONOFF.PPULSELE;

2013 loc = l293 : 0sd32_0;

2014 TRUE : INLINED_TIMER_PULSEON__PT;

2015 esac;

2016 init(INLINED_TIMER_PULSEON__IN) := FALSE;

2017 next(INLINED_TIMER_PULSEON__IN) := case

2018 loc = end : FALSE;

2019 loc = l200 : FALSE;

2020 loc = l230 : PULSEONR;

2021 loc = l294 : FALSE;

2022 TRUE : INLINED_TIMER_PULSEON__IN;

2023 esac;

2024 init(INLINED_TIMER_PULSEON__Q) := FALSE;

2025 next(INLINED_TIMER_PULSEON__Q) := case

2026 loc = end : FALSE;

2027 loc = l204 : TRUE;

2028 loc = l206 : FALSE;

2029 loc = l234 : TRUE;

2030 loc = l236 : FALSE;

2031 loc = l298 : TRUE;

2032 loc = l300 : FALSE;

2033 TRUE : INLINED_TIMER_PULSEON__Q;

2034 esac;

2035 init(INLINED_TIMER_PULSEON__ET) := 0sd32_0;

2036 next(INLINED_TIMER_PULSEON__ET) := case

2037 loc = end : 0sd32_0;

2038 loc = l205 : (INLINED_TIMER_PULSEON__PT - (

INLINED_TIMER_PULSEON__DUE - main.__GLOBAL_TIME));
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2039 loc = l208 : INLINED_TIMER_PULSEON__PT;

2040 loc = l209 : 0sd32_0;

2041 loc = l235 : (INLINED_TIMER_PULSEON__PT - (

INLINED_TIMER_PULSEON__DUE - main.__GLOBAL_TIME));

2042 loc = l238 : INLINED_TIMER_PULSEON__PT;

2043 loc = l239 : 0sd32_0;

2044 loc = l299 : (INLINED_TIMER_PULSEON__PT - (

INLINED_TIMER_PULSEON__DUE - main.__GLOBAL_TIME));

2045 loc = l302 : INLINED_TIMER_PULSEON__PT;

2046 loc = l303 : 0sd32_0;

2047 TRUE : INLINED_TIMER_PULSEON__ET;

2048 esac;

2049 init(INLINED_TIMER_PULSEON__OLD_IN) := FALSE;

2050 next(INLINED_TIMER_PULSEON__OLD_IN) := case

2051 loc = end : FALSE;

2052 loc = l210 : INLINED_TIMER_PULSEON__IN;

2053 loc = l240 : INLINED_TIMER_PULSEON__IN;

2054 loc = l304 : INLINED_TIMER_PULSEON__IN;

2055 TRUE : INLINED_TIMER_PULSEON__OLD_IN;

2056 esac;

2057 init(INLINED_TIMER_PULSEON__DUE) := 0sd32_0;

2058 next(INLINED_TIMER_PULSEON__DUE) := case

2059 loc = end : 0sd32_0;

2060 loc = l202 : (main.__GLOBAL_TIME + INLINED_TIMER_PULSEON__PT);

2061 loc = l232 : (main.__GLOBAL_TIME + INLINED_TIMER_PULSEON__PT);

2062 loc = l296 : (main.__GLOBAL_TIME + INLINED_TIMER_PULSEON__PT);

2063 TRUE : INLINED_TIMER_PULSEON__DUE;

2064 esac;

2065 init(INLINED_TIMER_PULSEOFF__PT) := 0sd32_0;

2066 next(INLINED_TIMER_PULSEOFF__PT) := case

2067 loc = end : 0sd32_0;

2068 loc = l211 : 0sd32_0;

2069 loc = l242 : PONOFF.PPULSELE;

2070 loc = l280 : 0sd32_0;

2071 TRUE : INLINED_TIMER_PULSEOFF__PT;

2072 esac;

2073 init(INLINED_TIMER_PULSEOFF__IN) := FALSE;

2074 next(INLINED_TIMER_PULSEOFF__IN) := case

2075 loc = end : FALSE;

2076 loc = l212 : FALSE;

2077 loc = l243 : PULSEOFFR;

2078 loc = l281 : FALSE;

2079 TRUE : INLINED_TIMER_PULSEOFF__IN;

2080 esac;

2081 init(INLINED_TIMER_PULSEOFF__Q) := FALSE;

2082 next(INLINED_TIMER_PULSEOFF__Q) := case

2083 loc = end : FALSE;

2084 loc = l216 : TRUE;

2085 loc = l218 : FALSE;

2086 loc = l247 : TRUE;

2087 loc = l249 : FALSE;

2088 loc = l285 : TRUE;

2089 loc = l287 : FALSE;

2090 TRUE : INLINED_TIMER_PULSEOFF__Q;

2091 esac;

2092 init(INLINED_TIMER_PULSEOFF__ET) := 0sd32_0;

2093 next(INLINED_TIMER_PULSEOFF__ET) := case

2094 loc = end : 0sd32_0;
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2095 loc = l217 : (INLINED_TIMER_PULSEOFF__PT - (

INLINED_TIMER_PULSEOFF__DUE - main.__GLOBAL_TIME));

2096 loc = l220 : INLINED_TIMER_PULSEOFF__PT;

2097 loc = l221 : 0sd32_0;

2098 loc = l248 : (INLINED_TIMER_PULSEOFF__PT - (

INLINED_TIMER_PULSEOFF__DUE - main.__GLOBAL_TIME));

2099 loc = l251 : INLINED_TIMER_PULSEOFF__PT;

2100 loc = l252 : 0sd32_0;

2101 loc = l286 : (INLINED_TIMER_PULSEOFF__PT - (

INLINED_TIMER_PULSEOFF__DUE - main.__GLOBAL_TIME));

2102 loc = l289 : INLINED_TIMER_PULSEOFF__PT;

2103 loc = l290 : 0sd32_0;

2104 TRUE : INLINED_TIMER_PULSEOFF__ET;

2105 esac;

2106 init(INLINED_TIMER_PULSEOFF__OLD_IN) := FALSE;

2107 next(INLINED_TIMER_PULSEOFF__OLD_IN) := case

2108 loc = end : FALSE;

2109 loc = l222 : INLINED_TIMER_PULSEOFF__IN;

2110 loc = l253 : INLINED_TIMER_PULSEOFF__IN;

2111 loc = l291 : INLINED_TIMER_PULSEOFF__IN;

2112 TRUE : INLINED_TIMER_PULSEOFF__OLD_IN;

2113 esac;

2114 init(INLINED_TIMER_PULSEOFF__DUE) := 0sd32_0;

2115 next(INLINED_TIMER_PULSEOFF__DUE) := case

2116 loc = end : 0sd32_0;

2117 loc = l214 : (main.__GLOBAL_TIME + INLINED_TIMER_PULSEOFF__PT);

2118 loc = l245 : (main.__GLOBAL_TIME + INLINED_TIMER_PULSEOFF__PT);

2119 loc = l283 : (main.__GLOBAL_TIME + INLINED_TIMER_PULSEOFF__PT);

2120 TRUE : INLINED_TIMER_PULSEOFF__DUE;

2121 esac;

2122 init(INLINED_R_EDGE_20__NEW) := FALSE;

2123 next(INLINED_R_EDGE_20__NEW) := case

2124 loc = end : FALSE;

2125 loc = l256 : PULSEON;

2126 TRUE : INLINED_R_EDGE_20__NEW;

2127 esac;

2128 init(INLINED_R_EDGE_20__OLD) := FALSE;

2129 next(INLINED_R_EDGE_20__OLD) := case

2130 loc = end : FALSE;

2131 loc = l255 : RE_PULSEON_OLD;

2132 loc = l259 : TRUE;

2133 loc = l261 : INLINED_R_EDGE_20__NEW;

2134 TRUE : INLINED_R_EDGE_20__OLD;

2135 esac;

2136 init(INLINED_F_EDGE_21__NEW) := FALSE;

2137 next(INLINED_F_EDGE_21__NEW) := case

2138 loc = end : FALSE;

2139 loc = l264 : PULSEON;

2140 TRUE : INLINED_F_EDGE_21__NEW;

2141 esac;

2142 init(INLINED_F_EDGE_21__OLD) := FALSE;

2143 next(INLINED_F_EDGE_21__OLD) := case

2144 loc = end : FALSE;

2145 loc = l263 : FE_PULSEON_OLD;

2146 loc = l267 : FALSE;

2147 loc = l269 : INLINED_F_EDGE_21__NEW;

2148 TRUE : INLINED_F_EDGE_21__OLD;

2149 esac;
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2150 init(INLINED_R_EDGE_22__NEW) := FALSE;

2151 next(INLINED_R_EDGE_22__NEW) := case

2152 loc = end : FALSE;

2153 loc = l272 : PULSEOFF;

2154 TRUE : INLINED_R_EDGE_22__NEW;

2155 esac;

2156 init(INLINED_R_EDGE_22__OLD) := FALSE;

2157 next(INLINED_R_EDGE_22__OLD) := case

2158 loc = end : FALSE;

2159 loc = l271 : RE_PULSEOFF_OLD;

2160 loc = l275 : TRUE;

2161 loc = l277 : INLINED_R_EDGE_22__NEW;

2162 TRUE : INLINED_R_EDGE_22__OLD;

2163 esac;

2164 init(INLINED_R_EDGE_25__NEW) := FALSE;

2165 next(INLINED_R_EDGE_25__NEW) := case

2166 loc = end : FALSE;

2167 loc = l341 : OUTOVST_AUX;

2168 TRUE : INLINED_R_EDGE_25__NEW;

2169 esac;

2170 init(INLINED_R_EDGE_25__OLD) := FALSE;

2171 next(INLINED_R_EDGE_25__OLD) := case

2172 loc = end : FALSE;

2173 loc = l340 : RE_OUTOVST_AUX_OLD;

2174 loc = l344 : TRUE;

2175 loc = l346 : INLINED_R_EDGE_25__NEW;

2176 TRUE : INLINED_R_EDGE_25__OLD;

2177 esac;

2178 init(INLINED_F_EDGE_26__NEW) := FALSE;

2179 next(INLINED_F_EDGE_26__NEW) := case

2180 loc = end : FALSE;

2181 loc = l349 : OUTOVST_AUX;

2182 TRUE : INLINED_F_EDGE_26__NEW;

2183 esac;

2184 init(INLINED_F_EDGE_26__OLD) := FALSE;

2185 next(INLINED_F_EDGE_26__OLD) := case

2186 loc = end : FALSE;

2187 loc = l348 : FE_OUTOVST_AUX_OLD;

2188 loc = l352 : FALSE;

2189 loc = l354 : INLINED_F_EDGE_26__NEW;

2190 TRUE : INLINED_F_EDGE_26__OLD;

2191 esac;

2192 init(INLINED_TIMER_WARNING__PT) := 0sd32_0;

2193 next(INLINED_TIMER_WARNING__PT) := case

2194 loc = end : 0sd32_0;

2195 loc = l360 : PONOFF.PWDT;

2196 TRUE : INLINED_TIMER_WARNING__PT;

2197 esac;

2198 init(INLINED_TIMER_WARNING__IN) := FALSE;

2199 next(INLINED_TIMER_WARNING__IN) := case

2200 loc = end : FALSE;

2201 loc = l361 : POSW_AUX;

2202 TRUE : INLINED_TIMER_WARNING__IN;

2203 esac;

2204 init(INLINED_TIMER_WARNING__Q) := FALSE;

2205 next(INLINED_TIMER_WARNING__Q) := case

2206 loc = end : FALSE;

2207 loc = l363 : FALSE;
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2208 loc = l373 : TRUE;

2209 TRUE : INLINED_TIMER_WARNING__Q;

2210 esac;

2211 init(INLINED_TIMER_WARNING__ET) := 0sd32_0;

2212 next(INLINED_TIMER_WARNING__ET) := case

2213 loc = end : 0sd32_0;

2214 loc = l364 : 0sd32_0;

2215 loc = l369 : 0sd32_0;

2216 loc = l372 : (main.__GLOBAL_TIME - INLINED_TIMER_WARNING__START);

2217 loc = l374 : INLINED_TIMER_WARNING__PT;

2218 TRUE : INLINED_TIMER_WARNING__ET;

2219 esac;

2220 init(INLINED_TIMER_WARNING__RUNNING) := FALSE;

2221 next(INLINED_TIMER_WARNING__RUNNING) := case

2222 loc = end : FALSE;

2223 loc = l365 : FALSE;

2224 loc = l368 : TRUE;

2225 TRUE : INLINED_TIMER_WARNING__RUNNING;

2226 esac;

2227 init(INLINED_TIMER_WARNING__START) := 0sd32_0;

2228 next(INLINED_TIMER_WARNING__START) := case

2229 loc = end : 0sd32_0;

2230 loc = l367 : main.__GLOBAL_TIME;

2231 TRUE : INLINED_TIMER_WARNING__START;

2232 esac;

2233 init(INLINED_DETECT_EDGE_28__NEW) := FALSE;

2234 next(INLINED_DETECT_EDGE_28__NEW) := case

2235 loc = end : FALSE;

2236 loc = l438 : ALUNACK;

2237 TRUE : INLINED_DETECT_EDGE_28__NEW;

2238 esac;

2239 init(INLINED_DETECT_EDGE_28__OLD) := FALSE;

2240 next(INLINED_DETECT_EDGE_28__OLD) := case

2241 loc = end : FALSE;

2242 loc = l437 : ALUNACK_OLD;

2243 loc = l445 : INLINED_DETECT_EDGE_28__NEW;

2244 TRUE : INLINED_DETECT_EDGE_28__OLD;

2245 esac;

2246 init(INLINED_DETECT_EDGE_28__RE) := FALSE;

2247 next(INLINED_DETECT_EDGE_28__RE) := case

2248 loc = end : FALSE;

2249 loc = l436 : RE_ALUNACK;

2250 loc = l441 : TRUE;

2251 loc = l443 : FALSE;

2252 loc = l446 : FALSE;

2253 TRUE : INLINED_DETECT_EDGE_28__RE;

2254 esac;

2255 init(INLINED_DETECT_EDGE_28__FE) := FALSE;

2256 next(INLINED_DETECT_EDGE_28__FE) := case

2257 loc = end : FALSE;

2258 loc = l435 : FE_ALUNACK;

2259 loc = l442 : FALSE;

2260 loc = l444 : TRUE;

2261 loc = l447 : FALSE;

2262 TRUE : INLINED_DETECT_EDGE_28__FE;

2263 esac;

2264

2265 MODULE main
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2266 VAR

2267 interaction : {NONE };

2268 INSTANCE : module_INSTANCE(interaction, self);

2269 random_random_t_cycle : unsigned word[8];

2270 random_r53 : signed word[32];

2271 random_r54 : signed word[32];

2272 __GLOBAL_TIME : signed word[32];

2273 T_CYCLE : unsigned word[16];

2274 CPC_DB_VERSION.BASELINE_VERSION : signed word[32];

2275

2276 INVAR (

2277 (INSTANCE.loc != initial -> random_r53 = 0sd32_0) &

2278 (INSTANCE.loc != initial -> random_r54 = 0sd32_0)

2279 ); --

2280

2281 ASSIGN

2282 init(__GLOBAL_TIME) := 0sd32_0;

2283 next(__GLOBAL_TIME) := case

2284 INSTANCE.loc = initial : (__GLOBAL_TIME + signed(extend(T_CYCLE, 16))

);

2285 TRUE : __GLOBAL_TIME;

2286 esac;

2287 init(T_CYCLE) := 0ud16_0;

2288 next(T_CYCLE) := case

2289 INSTANCE.loc = end : (((extend(random_random_t_cycle,8))) mod 0

ud16_116 + 0ud16_5);

2290 TRUE : T_CYCLE;

2291 esac;

2292 init(CPC_DB_VERSION.BASELINE_VERSION) := 0sd32_660;

2293 next(CPC_DB_VERSION.BASELINE_VERSION) := case

2294 TRUE : CPC_DB_VERSION.BASELINE_VERSION;

2295 esac;

2296

2297 DEFINE

2298 PLC_START := (INSTANCE.loc = l0);

2299 PLC_END := (INSTANCE.loc = end);

Listing B.1: NuSMV model for the OnOff UNICOS object

The following piece of NuSMV code corresponds to the automat-
ically generated abstract model from the QSDN UNICOS CPC pro-
gram for the first requirement in Section 4.4.2. This abstract model
is enough to verify the following safety property p:

AG
((

EoC ∧ QSDN 4 DN1CT SEQ DB.Stop.x
)

→ QSDN 4 1PV408.AuOffR
)

1 -- V1.1

2 -- Generated model from QSDN.scl by bfernand

3

4 MODULE module_INSTANCE(interaction, main)

5 VAR
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6 loc : {initial, end, l1};

7 ASSIGN

8 init(loc) := initial;

9 next(loc) := case

10 loc = end : initial;

11 loc = initial : l1;

12 loc = l1 : end;

13 TRUE: loc;

14 esac;

15

16 MODULE main

17 VAR

18 interaction : {NONE };

19 INSTANCE : module_INSTANCE(interaction, self);

20 QSDN_4_DN1CT_SEQ_DB.STOP.X# : boolean;

21 QSDN_4_1PV408.AUONR : boolean;

22 QSDN_4_1PV408.AUOFFR : boolean;

23

24 ASSIGN

25 init(QSDN_4_DN1CT_SEQ_DB.STOP.X#) := FALSE;

26 next(QSDN_4_DN1CT_SEQ_DB.STOP.X#) := case

27 INSTANCE.loc = initial : {TRUE, FALSE};

28 TRUE : QSDN_4_DN1CT_SEQ_DB.STOP.X#;

29 esac;

30 init(QSDN_4_1PV408.AUONR) := FALSE;

31 next(QSDN_4_1PV408.AUONR) := case

32 INSTANCE.loc = initial : {TRUE, FALSE};

33 TRUE : QSDN_4_1PV408.AUONR;

34 esac;

35 init(QSDN_4_1PV408.AUOFFR) := FALSE;

36 next(QSDN_4_1PV408.AUOFFR) := case

37 INSTANCE.loc = l1 : !(QSDN_4_1PV408.AUONR);

38 TRUE : QSDN_4_1PV408.AUOFFR;

39 esac;

40

41 DEFINE

42 PLC_START := (INSTANCE.loc = l1);

43 PLC_END := (INSTANCE.loc = end);

44

45 INVAR

46 !(( QSDN_4_DN1CT_SEQ_DB.STOP.X# = TRUE ) & ( QSDN_4_1PV408.AUONR = TRUE )

);

47

48 CTLSPEC AG((PLC_END) -> (QSDN_4_DN1CT_SEQ_DB.STOP.X# -> QSDN_4_1PV408.

AUOFFR)) ;

Listing B.2: Abstract model AM ′
1, where p is verified

The following piece of NuSMV code corresponds to the automat-
ically generated abstract model from the QSDN UNICOS CPC pro-
gram for the second requirement in Section 4.4.2. This abstract model
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is enough to verify the following safety property p:

AG
((

EoC ∧ QSDN 4 DN1CT SEQ DB.Run.x
)

→ QSDN 4 1PV408.AuOnR
)

1 -- V1.1

2 -- Generated model from qsdn_deopt.scl by bfernand

3

4 MODULE module_INSTANCE(interaction, main)

5 VAR

6 loc : {initial, end, l1};

7

8 ASSIGN

9 init(loc) := initial;

10 next(loc) := case

11 loc = end : initial;

12 loc = initial : l1;

13 loc = l1 : end;

14 TRUE: loc;

15 esac;

16

17 MODULE main

18 VAR

19 interaction : {NONE };

20 INSTANCE : module_INSTANCE(interaction, self);

21 QSDN_4_DN1CT_SEQ_DB.VALVESON.X# : boolean;

22 QSDN_4_DN1CT_SEQ_DB.RUN.X# : boolean;

23 QSDN_4_DN1CT_SEQ_DB.OKSIGNALOFF.X# : boolean;

24 QSDN_4_1PV408.AUONR : boolean;

25

26 ASSIGN

27 init(QSDN_4_DN1CT_SEQ_DB.VALVESON.X#) := FALSE;

28 next(QSDN_4_DN1CT_SEQ_DB.VALVESON.X#) := case

29 INSTANCE.loc = initial : {TRUE, FALSE};

30 TRUE : QSDN_4_DN1CT_SEQ_DB.VALVESON.X#;

31 esac;

32 init(QSDN_4_DN1CT_SEQ_DB.RUN.X#) := FALSE;

33 next(QSDN_4_DN1CT_SEQ_DB.RUN.X#) := case

34 INSTANCE.loc = initial : {TRUE, FALSE};

35 TRUE : QSDN_4_DN1CT_SEQ_DB.RUN.X#;

36 esac;

37 init(QSDN_4_DN1CT_SEQ_DB.OKSIGNALOFF.X#) := FALSE;

38 next(QSDN_4_DN1CT_SEQ_DB.OKSIGNALOFF.X#) := case

39 INSTANCE.loc = initial : {TRUE, FALSE};

40 TRUE : QSDN_4_DN1CT_SEQ_DB.OKSIGNALOFF.X#;

41 esac;

42 init(QSDN_4_1PV408.AUONR) := FALSE;

43 next(QSDN_4_1PV408.AUONR) := case

44 INSTANCE.loc = l1 : ((QSDN_4_DN1CT_SEQ_DB.VALVESON.X# |

QSDN_4_DN1CT_SEQ_DB.RUN.X#) | QSDN_4_DN1CT_SEQ_DB.OKSIGNALOFF.X#);

45 TRUE : QSDN_4_1PV408.AUONR;

46 esac;

47

48 DEFINE

49 PLC_START := (INSTANCE.loc = l1);
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50 PLC_END := (INSTANCE.loc = end);

51

52 CTLSPEC AG((PLC_END) -> (QSDN_4_DN1CT_SEQ_DB.RUN.X# -> QSDN_4_1PV408.AUONR)

) ;

Listing B.3: Abstract model AM ′
1, where p is verified

The following piece of NuSMV code corresponds to the automat-
ically generated abstract model from the QSDN UNICOS CPC pro-
gram for the third requirement in Section 4.4.2. This abstract model
is enough to verify the following safety property p:

AG
((

EoC ∧ QSDN 4 DN1CT SEQ DB.Run.x
)

→ QSDN 4 1PV408.AuOffR
)

1 -- V1.1

2 -- Generated model from QSDN.scl by bfernand

3

4 MODULE module_INSTANCE(interaction, main)

5 VAR

6 loc : {initial, end, l1};

7

8 ASSIGN

9 init(loc) := initial;

10 next(loc) := case

11 loc = end : initial;

12 loc = initial : l1;

13 loc = l1 : end;

14 TRUE: loc;

15 esac;

16

17 MODULE main

18 VAR

19 interaction : {NONE };

20 INSTANCE : module_INSTANCE(interaction, self);

21 QSDN_4_DN1CT_SEQ_DB.VALVESON.X# : boolean;

22 QSDN_4_DN1CT_SEQ_DB.RUN.X# : boolean;

23 QSDN_4_DN1CT_SEQ_DB.OKSIGNALOFF.X# : boolean;

24 QSDN_4_1PV408.AUOFFR : boolean;

25

26

27 ASSIGN

28 init(QSDN_4_DN1CT_SEQ_DB.VALVESON.X#) := FALSE;

29 next(QSDN_4_DN1CT_SEQ_DB.VALVESON.X#) := case

30 INSTANCE.loc = initial : {TRUE, FALSE};

31 TRUE : QSDN_4_DN1CT_SEQ_DB.VALVESON.X#;

32 esac;

33 init(QSDN_4_DN1CT_SEQ_DB.RUN.X#) := FALSE;

34 next(QSDN_4_DN1CT_SEQ_DB.RUN.X#) := case

35 INSTANCE.loc = initial : {TRUE, FALSE};

36 TRUE : QSDN_4_DN1CT_SEQ_DB.RUN.X#;

37 esac;
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38 init(QSDN_4_DN1CT_SEQ_DB.OKSIGNALOFF.X#) := FALSE;

39 next(QSDN_4_DN1CT_SEQ_DB.OKSIGNALOFF.X#) := case

40 INSTANCE.loc = initial : {TRUE, FALSE};

41 TRUE : QSDN_4_DN1CT_SEQ_DB.OKSIGNALOFF.X#;

42 esac;

43 init(QSDN_4_1PV408.AUOFFR) := FALSE;

44 next(QSDN_4_1PV408.AUOFFR) := case

45 INSTANCE.loc = l1 : !(((QSDN_4_DN1CT_SEQ_DB.VALVESON.X# |

QSDN_4_DN1CT_SEQ_DB.RUN.X#) | QSDN_4_DN1CT_SEQ_DB.OKSIGNALOFF.X#));

46 TRUE : QSDN_4_1PV408.AUOFFR;

47 esac;

48

49 DEFINE

50 PLC_START := (INSTANCE.loc = l1);

51 PLC_END := (INSTANCE.loc = end);

52

53 CTLSPEC AG((PLC_END) -> (QSDN_4_DN1CT_SEQ_DB.RUN.X# -> ! QSDN_4_1PV408.

AUOFFR)) ;

54 -- Original property p: CTLSPEC AG((PLC_END) -> (QSDN_4_DN1CT_SEQ_DB.RUN.X#

-> QSDN_4_1PV408.AUOFFR)) ;

Listing B.4: Abstract model AM ′
2, where p is verified
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