
 

 
Departamento de Informática 

 

Sistemas y Servicios Informáticos para Internet 

 

Testing Service Level Agreements 
in Service-based Applications 

 

Pruebas de Acuerdos de Nivel de Servicio 
en Aplicaciones Basadas en Servicios 

 

PhD Dissertation 

 

 

Marcos Palacios Gutiérrez 

 

Mayo, 2014 



 

  



 

 

 

 

 

 

Don Pablo Javier Tuya González, profesor y catedrático del 
Área de Lenguajes y Sistemas Informáticos de la Universidad de 
Oviedo, 

 

 

HACE CONSTAR QUE 

 

 

Don Marcos Palacios Gutiérrez, Ingeniero en Informática por la 
Universidad de Oviedo, ha realizado bajo mi supervisión el trabajo 
de investigación titulado: 

 

 

Testing Service Level Agreements in Service-based Applications 

 

 

Una vez revisado, autorizo el comienzo de los trámites para su 
presentación como Tesis Doctoral al tribunal que ha de juzgarlo. 

 

 

 

 

 

Fdo. Dr. Pablo Javier Tuya González 

Área de Lenguajes y Sistemas Informáticos 

Universidad de Oviedo 

Gijón, Mayo 2014 

  



 

 

 

 

 

 

Supervisor 

Dr. Pablo Javier Tuya González, Universidad de Oviedo, Spain. 

Internal Adviser 

Dr. José García Fanjul, Universidad de Oviedo, Spain. 

External Adviser 

Dr. George Spanoudakis, City University London, UK. 

External Examiners 

Dr. Ernesto Damiani, University of Milan, Italy. 

Dr. Massimiliano Di Penta, University of Sannio, Italy. 

  



 

 



vi 

 

Acknowledgments 

Here it comes, the last step of writing the thesis. Actually, I have expected this 

moment for a long time. The pleasant moment in which I really realize that the work is 

done and this period of my life is getting closer to the end. Now I could spend some 

minutes thinking and thanking all those people I care about, those that have somehow 

been part of this thesis and to whom I owe my sincerest gratitude. I hope not to forget 

anyone. 

First and foremost I will ever be heartily thankful to my supervisor Javier Tuya. 

Thanks Javier for your guidance, your advices and for bringing light when I could only 

see darkness. Thanks for your patience and your essential reviews. 

In the same way, thanks Fanjul for being adviser as well as friend. Thanks for 

having encouraged and supported me in the difficult situations we had to deal with. 

Thanks for enjoying (and always paying) the meals with me after each achieved goal 

and after each successful publication. I do not have to say that this thesis would not 

have been possible without you and Javier. 

I would also thank George Spanoudakis for having warmly welcomed me in his 

office at City University London. Thanks George for giving me the opportunity to work 

with you and improve my research. Of course, I would like to express my gratitude to 

all the people I met in London. Thanks Luca for being my guardian angel there and 

enjoying that unforgettable stay in Hawaii. Thanks Rafa, Icamaan, Ricardo, María, 

Manoel, Kalsey and the rest of friends for making me feel like at home there. I will ever 

miss you! 

During this research period I have been surrounded by great people that have 

definitely helped and supported me. My special thanks to my mates in the office (Dae, 

Rubén, María as well as those that, in any moment, worked in a nearby desk) and my 

colleagues of the Software Engineering Research Group at the University of Oviedo. 

Thanks Claudio for the hundreds of coffees you offered. 



vii 

Finally and more importantly, I must thank my family and friends for being 

always wherever and whenever I needed them. Thanks mum, dad and brother for loving 

me as I am, with my virtues and defects. Thanks Andrea for always encouraging me and 

for all the time we have shared together. Thanks Mino, Ces, Isa and Noe for supporting 

me and always being willing to help me. My last thanks to all the people that asked me 

at some time “How is your thesis going?” even when they do not probably understand 

what I was working about. 

Thank you so much! 

 



viii 

 

Agradecimientos 

Llega el último paso de la escritura de la tesis. He estado esperando este momento 

desde hace mucho tiempo. Ese agradable momento en el que de verdad soy consciente 

que el trabajo se ha acabado y que este período de mi vida toca a su fin. Ahora es 

cuando puedo dedicar unos minutos a pensar en todas aquellas personas que me 

importan, aquellas que de una forma u otra han sido parte de esta tesis y, por tanto, 

aquellas a las que debo mi más sincero agradecimiento. Espero no olvidarme de nadie. 

En primer lugar y especialmente siempre estaré agradecido de corazón a mi 

director Javier Tuya. Gracias Javier por tu dirección, tus consejos y por enseñarme el 

camino hacia la luz cuando yo sólo podía ver oscuridad. Gracias por tu paciencia y tus 

innumerables revisiones. 

De la misma forma, gracias Fanjul por ser mi tutor y mi consejero además de mi 

amigo. Gracias por haberme animado y apoyado en las situaciones difíciles que hemos 

tenido que afrontar. Gracias por haber compartido (y siempre pagado) las comidas tras 

cada reto cumplido y tras cada artículo brillantemente publicado. No tengo ni que decir 

que sin ti y sin Javier esta tesis no hubiese sido posible. 

Me gustaría también dar las gracias a George Spanoudakis por su cálida acogida 

en su oficina en la City University London. Gracias George por darme la oportunidad de 

trabajar contigo y mejorar mi investigación. Por supuesto, también me gustaría dar las 

gracias a toda la gente que conocí en Londres. Gracias Luca por si mi ángel de la guarda 

y por compartir aquel inolvidable viaje a Hawaii. Gracias Rafa, Icamaan, Ricardo, 

María, Manoel, Kalsey y demás amigos por hacerme sentir como en casa. ¡Siempre os 

echaré de menos! 

Durante todo este tiempo he estado rodeado de gente increíble que me han 

ayudado y apoyado. Mi especial agradecimiento a los compañeros de laboratorio (Dae, 

Rubén, María así como también a todo aquel que, en algún momento, estuvo trabajando 

en el ordenador de al lado) y a mis colegas del Grupo de Investigación en Ingeniería del 



ix 

Software de la Universidad de Oviedo. Gracias Claudio por los cientos de café que 

siempre ofreciste. 

Finalmente y con mayor importancia, tengo que agradecer a mi familia y amigos 

el haber estado siempre donde y cuando los necesité. Gracias a mi madre, mi padre y mi 

hermano por quererme como soy, con mis virtudes y mis defectos. Gracias Andrea por 

apoyarme siempre y por todo este tiempo juntos. Gracias Mino, Ces, Isa y Noe por 

apoyarme y estar siempre dispuestos a ayudarme. Mi último agradecimiento a toda 

aquella gente que en algún momento me preguntó “¿Cómo va la tesis?”, incluso 

cuando probablemente ni siquiera entendían en lo que yo estaba trabajando. 

¡Muchas gracias a todos! 

 



 

 

 



xi 

 

Abstract 

In the scope of Service Based Applications (SBAs), a Service Level Agreement 

(SLA) is a contract or document that contains the conditions that must be fulfilled 

during the provision and consumption of the services. Our research hypothesis states 

that a cost-effective set of test cases can be systematically obtained by means of 

analyzing the information contained in the SLA, which is specified using the WS-

Agreement standard language. The execution of such test cases would contribute to 

prevent, minimize or mitigate the negative consequences derived from the violations of 

the SLA. 

In this PhD we address the testing of SLA-aware Service Based Applications by 

means of devising SLATF (SLA Testing Framework). SLATF allows identifying a set 

of test requirements from the information contained in the SLA and, later, deriving the 

test suites to exercise such requirements. In SLATF we have also proposed a four-

valued logic in order to unequivocally evaluate the SLA and its guarantee terms. 

The identification of test requirements and derivation of test cases in SLATF are 

performed within two different approaches. On the one hand, we consider the individual 

guarantee terms of the SLA in order to design the tests. In this case, we use 

combinatorial testing techniques to combine the test requirements and obtain a reduced 

number of test cases. On the other hand, we also take the logical relationships between 

the guarantee terms into account. In this second case, we devise a coverage based 

criterion in order to derive the test cases. 

Both testing approaches presented in this dissertation have been automated in the 

SLACT (SLA Combinatorial Testing) tool and evaluated in an eHealth service-based 

scenario. 

  



xii 

 

Resumen 

En el ámbito de las Aplicaciones Basadas en Servicios (SBAs – Service Based 

Applications), un Acuerdo de Nivel de Servicio (SLA – Service Level Agreement) es 

un contrato o documento que contiene las condiciones a cumplir por los servicios 

constituyentes de la aplicación. Nuestra hipótesis de investigación indica que un 

conjunto de casos de prueba puede obtenerse de forma sistemática mediante el análisis 

de la información contenida en el SLA, el cual va a estar especificado utilizando el 

lenguaje estándar WS-Agreement. La ejecución de dichos casos de prueba contribuiría a 

evitar, minimizar o mitigar las consecuencias derivadas de las violaciones del SLA. 

En esta tesis doctoral contribuimos a la prueba de las aplicaciones basadas en 

servicios que tienen asociadas un SLA mediante la elaboración de SLATF (SLA Test 

Framework). SLATF permite identificar un conjunto de requisitos de prueba a partir de 

la información contenida en el SLA para, posteriormente, derivar los conjuntos de casos 

de prueba que ejercitan dichos requisitos. En SLATF también se propone un lógica 

cuatri-valuada para evaluar de una forma inequívoca el SLA y sus términos de garantía. 

La identificación de los requisitos de prueba y la derivación de los casos de 

prueba en SLATF se lleva a cabo usando dos enfoques diferentes. Por una parte se tiene 

en cuenta cada término de garantía del SLA para diseñar las pruebas. En este caso 

usamos técnicas estándar de pruebas combinatorias con el fin de combinar los requisitos 

de prueba y obtener un número reducido de casos de prueba. Por otra parte se tienen en 

cuenta las relaciones lógicas entre los términos del SLA. Para ello definimos un criterio 

de pruebas basado en cobertura para derivar los casos de prueba. 

Ambas propuestas han sido automatizadas en la herramienta SLACT (SLA 

Combinatorial Testing) y evaluadas en un escenario de tele-asistencia médica basado en 

servicios. 



 

 

 

  



 

 

Contents 

Acknowledgments ..................................................................................................... vi 

Agradecimientos ...................................................................................................... viii 

Abstract ...................................................................................................................... xi 

Resumen ................................................................................................................... xii 

1 Introduction ......................................................................................................... 23 

1.1 Research context .................................................................................................... 24 
1.2 Research hypothesis ............................................................................................... 24 
1.3 Research aims and objectives ................................................................................. 25 
1.4 Research outcomes ................................................................................................ 26 

1.4.1 Contributions ........................................................................................... 26 
1.4.2 Publications ordered by year, type and objective .................................. 27 
1.4.3 Publications in chronological order ......................................................... 28 
1.4.4 Research visits ......................................................................................... 33 
1.4.5 Developed tools ...................................................................................... 34 

1.5 International thesis ................................................................................................. 34 
1.6 Structure of this dissertation .................................................................................. 35 
1.7 The picture of this dissertation ............................................................................... 36 

2 Background ......................................................................................................... 37 

2.1 Introduction ............................................................................................................ 38 
2.2 Software Testing ..................................................................................................... 38 
2.3 Service Oriented Architectures ............................................................................... 41 
2.4 Service Level Agreements ....................................................................................... 42 
2.5 Related Works ........................................................................................................ 46 

2.5.1 SOA Testing ............................................................................................. 46 
2.5.2 SLA-based Testing ................................................................................... 47 

2.6 Summary ................................................................................................................. 50 

3 SLA Testing Framework ..................................................................................... 52 

3.1 Introduction ............................................................................................................ 53 
3.2 SLA Testing Framework (SLATF) ............................................................................. 53 

3.2.1 SLA Evaluation in a nutshell .................................................................... 56 
3.2.2 Identification of test requirements ......................................................... 56 
3.2.3 Generation of test cases ......................................................................... 61 



 

3.2.4 Execution of test cases ............................................................................ 64 
3.3 Summary ................................................................................................................. 65 

4 SLA Evaluation .................................................................................................... 66 

4.1 Introduction ............................................................................................................ 67 
4.2 Evaluation of Guarantee Terms .............................................................................. 70 
4.3 Evaluation of Compositor elements ....................................................................... 74 

4.3.1 All Compositor ......................................................................................... 74 
4.3.2 OneOrMore Compositor ......................................................................... 77 
4.3.3 ExactlyOne Compositor ........................................................................... 79 

4.4 Recursive Evaluation ............................................................................................... 81 
4.5 Summary ................................................................................................................. 82 

5 Guarantee Term Testing Level ........................................................................... 83 

5.1 Introduction ............................................................................................................ 84 
5.2 Identification of Primitive Test Requirements ........................................................ 85 

5.2.1 General Case ........................................................................................... 86 
5.2.2 Particular Cases ....................................................................................... 89 
5.2.3 Categorization of Primitive Test Requirements ...................................... 92 

5.3 Combination of Test Requirements ........................................................................ 94 
5.3.1 Derivation of Combined TRs using Combinatorial Testing ...................... 96 
5.3.2 Combinatorial Strategy ........................................................................... 96 
5.3.3 Definition of testability constraints ......................................................... 98 

5.4 Derivation of test cases ........................................................................................ 102 
5.5 Summary ............................................................................................................... 103 

6 Compositor Testing Level ................................................................................ 104 

6.1 Introduction .......................................................................................................... 105 
6.2 SLACDC Test Criterion ........................................................................................... 106 

6.2.1 Identification of Primitive Test Requirements ...................................... 106 
6.2.2 Four-valued MCDC Test Criterion ......................................................... 107 
6.2.3 Generation of Combined Test Requirements ....................................... 110 
6.2.4 Removing non-Feasible Test Requirements .......................................... 117 
6.2.5 Derivation of Test Cases ........................................................................ 126 

6.3 Summary ............................................................................................................... 126 

7 Automation ........................................................................................................ 128 

7.1 Introduction .......................................................................................................... 129 
7.2 SLACT .................................................................................................................... 129 

7.2.1 Architecture........................................................................................... 130 
7.2.2 Syntax supported by SLACT ................................................................... 131 
7.2.3 How SLACT works .................................................................................. 132 

7.3 SLACDC Tool Support ............................................................................................ 143 
7.4 Summary ............................................................................................................... 144 

8 Case Study ........................................................................................................ 146 

8.1 Introduction .......................................................................................................... 147 
8.2 eHealth Service Based Application ....................................................................... 147 



 

8.2.1 Description ............................................................................................ 147 
8.2.2 SLA details ............................................................................................. 148 

8.3 Guarantee Term Testing Level .............................................................................. 150 
8.3.1 Construction of the Classification Tree ................................................. 150 
8.3.2 Derivation of Combined Test Requirements ......................................... 154 
8.3.3 Generation of Test Cases ...................................................................... 166 

8.4 Compositor Testing Level ..................................................................................... 182 
8.4.1 Identification of Primitive Test Requirements ...................................... 182 
8.4.2 Derivation of Combined Test Requirements ......................................... 182 
8.4.3 Generation of Test Cases ...................................................................... 185 

8.5 Summary ............................................................................................................... 199 

9 Conclusions ...................................................................................................... 201 

9.1 Synthesis and Results ........................................................................................... 202 
9.2 Discussion, limitations and extensions ................................................................. 203 

10 Conclusiones .................................................................................................... 206 

10.1 Resumen y resultados ........................................................................................... 207 
10.2 Discusión, limitaciones y trabajo futuro ............................................................... 208 

Institutional Acknowledgments ............................................................................. 211 

Appendix 1: eHealth SLA ....................................................................................... 212 

Acronyms ................................................................................................................ 222 

Bibliography ............................................................................................................ 223 

 

 

 

  



 

 

List of Figures 

Figure 1.1: Summary of publications grouped by topic and year. .............................................. 27 

Figure 1.2: Word Cloud of this dissertation. ............................................................................... 36 

Figure 2.1: SOA Architecture: roles and operations. .................................................................. 42 

Figure 2.2: Web Service Protocol Stack (adapted from IBM Software Group [118]). ................ 44 

Figure 2.3: WS-Agreement structure. ......................................................................................... 45 

Figure 2.4: The role of testing, of monitoring and their interaction (Adapted from [21]). ........ 48 

Figure 3.1: SLATF architecture. ................................................................................................... 54 

Figure 3.2: SLATF Testing Framework. ........................................................................................ 54 

Figure 3.3: Primitive and Combined Test Requirements. ........................................................... 58 

Figure 3.4: Guarantee Term Testing Level Test Requirements. .................................................. 59 

Figure 3.5: Compositor Testing Level Test Requirements. ......................................................... 60 

Figure 3.6: Relation Combined TR – Test Cases in the Guarantee Term Testing Level............... 62 

Figure 3.7: Relation Combined TR – Test Cases in the Compositor Testing Level. ..................... 63 

Figure 4.1: Dashboard with a two-way evaluation. .................................................................... 67 

Figure 4.2: SLA evaluation values. ............................................................................................... 71 

Figure 4.3: Evaluation of a Guarantee Term in WS-Agreement. ................................................. 73 

Figure 4.4: Example of recursive evaluation. .............................................................................. 81 

Figure 5.1: Relation Test Requirement – Evaluation Value. ........................................................ 86 

Figure 5.2: Test Requirements from a Guarantee Term. ............................................................ 87 

Figure 5.3: Particular Case 1: Guarantee Term without Qualifying Condition. .......................... 90 

Figure 5.4: Particular Case 2: the Qualifying Condition is an assertion over the service 

attributes. .................................................................................................................................... 91 

Figure 5.5: Structure of the Classification Tree. .......................................................................... 95 

Figure 5.6: Example of a Classification Tree from an SLA. .......................................................... 96 

Figure 5.7: Example of the application of each-choice testing. .................................................. 97 

Figure 5.8: Excerpt of SLA Guarantee Terms and identified classes. ........................................ 102 

Figure 6.1: Relation Primitive Test Requirements – Evaluation values..................................... 107 

Figure 6.2: Example of application of MCDC with two evaluation values. ............................... 108 

Figure 6.3: Example of application of SLACDC. ......................................................................... 109 



 

Figure 6.4: Example of application of Rule1: GTs without QC. ................................................. 118 

Figure 6.5: Example of application of Rule2: GTs with same Scope. ........................................ 120 

Figure 6.6: Example of application of Rule3: GTs with same QC. ............................................. 123 

Figure 6.7: Example of application of Rule4: GTs with mutually disjoint QCs. ......................... 125 

Figure 7.1: SLACT architecture. ................................................................................................. 130 

Figure 7.2: DSL supported by SLACT. ........................................................................................ 132 

Figure 7.3: Guarantee Terms and Particular Cases table. ......................................................... 133 

Figure 7.4: Implicit Constraints table. ....................................................................................... 137 

Figure 7.5: Explicit Constraints section. .................................................................................... 137 

Figure 7.6: Selection of the combinatorial strategy. ................................................................. 138 

Figure 7.7: Selection of multiple executions. ............................................................................ 139 

Figure 7.8: Selection of single execution. .................................................................................. 139 

Figure 7.9: Specification of the Test Suite. ................................................................................ 139 

Figure 7.10: Report of statistics about coverage. ..................................................................... 140 

Figure 7.11: Description of the Primitive Test Requirements. .................................................. 141 

Figure 7.12: SLACT User Interface (UI). ..................................................................................... 142 

Figure 7.13: Excerpt of the Combined TRs in the Compositor Testing Level. ........................... 144 

Figure 8.1: eHealth scenario. .................................................................................................... 148 

Figure 8.2: eHealth SLA. ............................................................................................................ 149 

Figure 8.3: Classification Tree (top levels). ............................................................................... 152 

Figure 8.4: All (1) Classification Tree. ........................................................................................ 152 

Figure 8.5: All (2) Classification Tree ......................................................................................... 152 

Figure 8.6: ExactlyOne (1) Classification Tree. .......................................................................... 153 

Figure 8.7: ExactlyOne (2) Classification Tree. .......................................................................... 153 

Figure 8.8: All (3) Classification Tree. ........................................................................................ 153 

Figure 8.9: Executions of the three combinatorial strategies. .................................................. 157 

Figure 8.10: Combined TRs output file. ..................................................................................... 157 

Figure 8.11: Classification tree of Combined TRs for each choice (I). ....................................... 158 

Figure 8.12: Classification tree of Combined TRs for each choice (II). ...................................... 158 

Figure 8.13: Classification tree of Combined TRs for pair-wise (I). ........................................... 160 

Figure 8.14: Classification tree of Combined TRs for pair-wise (II). .......................................... 161 

Figure 8.15: Classification tree of Combined TRs for Hybrid-wise (I). ...................................... 163 

Figure 8.16: Classification tree of Combined TRs for Hybrid-wise (II). ..................................... 164 

Figure 8.17: Classes coverage results. ....................................................................................... 165 

Figure 8.18: eHealth UML sequence diagram. .......................................................................... 167 



 

Figure 8.19: CTR1 of each-choice strategy. ............................................................................... 168 

Figure 8.20: Invocation of both medical devices. ..................................................................... 178 

Figure 8.21: Invocation of doctors and medical devices. .......................................................... 180 

Figure 8.22: Combined Test Requirements of the All (1) Compositor. ..................................... 183 

Figure 8.23: Combined Test Requirements of the All (2) Compositor. ..................................... 184 

Figure 8.24: Combined Test Requirements of the ExactlyOne (1) Compositor. ....................... 184 

Figure 8.25: Combined Test Requirements of the ExactlyOne (2) Compositor. ....................... 184 

Figure 8.26: Combined Test Requirements of the All (3) Compositor. ..................................... 184 

Figure 8.27: Modified CTR28. .................................................................................................... 187 

Figure 8.28: Combined Test Requirements – Test Cases tree (I). ............................................. 188 

Figure 8.29: Combined Test Requirements – Test Cases tree (II). ............................................ 188 

 

 

  



 

 

List of Tables 

Table 1.1: Summary of publications grouped by place of publication. ....................................... 28 

Table 1.2: Information about the research visits. ....................................................................... 33 

Table 4.1: Truth table of an All compositor with three guarantee terms. .................................. 76 

Table 4.2: Truth table of an OneOrMore compositor with three guarantee terms ................... 78 

Table 4.3: Truth table of an ExactlyOne compositor with three guarantee terms. .................... 80 

Table 5.1: Primitive Test Requirements categorization. ............................................................. 92 

Table 6.1: Set of Combined TRs for an All compositor with three guarantee terms. ............... 112 

Table 6.2: Set of Combined TRs for an OneOrMore compositor with three guarantee terms. 114 

Table 6.3: Set of Combined TRs for an ExactlyOne compositor with three guarantee terms. . 115 

Table 8.1: Structure of the eHealth SLA. ................................................................................... 150 

Table 8.2: eHealth Classifications and Classes *. ...................................................................... 151 

Table 8.3: eHealth Implicit Constraints. .................................................................................... 154 

Table 8.4: eHealth Explicit Constraints. .................................................................................... 155 

Table 8.5: Number of times the classes are covered in: each choice. ...................................... 159 

Table 8.6: Number of times the classes are covered in: each choice (a) and pair-wise (b). ..... 162 

Table 8.7: Number of times the classes are covered in: each choice (a), pair-wise (b) and hybrid 

(c). .............................................................................................................................................. 164 

Table 8.8: Test Case 1 for the each-choice strategy. ................................................................ 168 

Table 8.9: Test Case 2 for the each-choice strategy. ................................................................ 169 

Table 8.10: Test Case 3 for the each-choice strategy. .............................................................. 170 

Table 8.11: Test Case 4 for the each-choice strategy. .............................................................. 171 

Table 8.12: Test Case 5 for the each-choice strategy. .............................................................. 172 

Table 8.13: Test Case 6 for the each-choice strategy. .............................................................. 173 

Table 8.14: Test Case 7 for the each-choice strategy. .............................................................. 174 

Table 8.15: Test Case 8 for the each-choice strategy. .............................................................. 175 

Table 8.16: Test Case 9 for the each-choice strategy. .............................................................. 176 

Table 8.17: Test Case 10 for the each-choice strategy. ............................................................ 177 

Table 8.18: Partial Test Case for the Combined TR3. ................................................................ 179 

Table 8.19: Partial Test Case for the Combined TR24. .............................................................. 179 



 

Table 8.20: Combined Test Requirements in the Compositor Testing Level. ........................... 183 

Table 8.21: Combined TRs exercised in each test case. ............................................................ 187 

Table 8.22: Test Case 1 in the Compositor Testing Level. ......................................................... 189 

Table 8.23: Test Case 2 in the Compositor Testing Level. ......................................................... 190 

Table 8.24: Test Case 3 in the Compositor Testing Level. ......................................................... 191 

Table 8.25: Test Case 4 in the Compositor Testing Level. ......................................................... 192 

Table 8.26: Test Case 5 in the Compositor Testing Level. ......................................................... 193 

Table 8.27: Test Case 6 in the Compositor Testing Level. ......................................................... 194 

Table 8.28: Test Case 7 in the Compositor Testing Level. ......................................................... 195 

Table 8.29: Test Case 8 in the Compositor Testing Level. ......................................................... 196 

Table 8.30: Test Case 9 in the Compositor Testing Level. ......................................................... 197 

Table 8.31: Test Case 10 in the Compositor Testing Level. ....................................................... 198 

Table 8.32: Test Case 11 in the Compositor Testing Level. ....................................................... 199 

 

  



 

 

 

 



23 

Chapter 1 
 

 Introduction 

 

 

The experimenter who does not know what he is 
looking for will not understand what he finds 

Claude Bernard, 1813-1878 
French physiologist 

 

 

 

 

 

 

 

his chapter introduces the scope of the research work and highlights the research 

hypothesis and objectives. It also presents the outcomes of this dissertation, 

including publications, research visits and developed tools. After that, it outlines the 

mandatory requirements for obtaining the qualification of International Doctor and their 

fulfillment. Finally, it summarizes the structure of the thesis. 

 

 

  

T 



Chapter 1: Introduction  24 

1.1 Research context 

The scope of this dissertation is the testing of software applications developed 

under the Service Oriented Architecture (SOA) paradigm. Over the last years SOA has 

been used to develop distributed applications by integrating available services over the 

web. Such services are autonomous and platform-independent entities that can be 

described, published, discovered and dynamically assembled for developing rapid, low-

cost, interoperable and evolvable distributed applications [109]. 

In the field of Service Based Applications (SBAs), Service Level Agreements 

(SLAs) are contracts or technical documents that contain the conditions that must be 

fulfilled by the involved stakeholders during the provision and consumption of the 

services. These agreements act as a guarantee where the set of terms that govern the 

executions of the constituent services of the SBA are specified. They also state the 

penalties to be applied upon the violation of such terms. It is therefore important for 

both stakeholders to avoid or mitigate the consequences derived from SLA violations. 

The SLAs are one of the cornerstones of this dissertation. The other one is 

software testing, which is the process of evaluating a program with the intent of finding 

faults [88]. Testing plays a key role in the development of software to evaluate whether 

the program meets its requirements, both functional and non-functional, and to gain 

confidence about the absence of bugs. Actually, it is acknowledged that software testing 

may consume up to a 50% of the total development time and budget of a software 

project [7][88]. Unfortunately, as stated by Edsger Wybe Dijkstra (Turing Award in 

1972), “Software testing can be used to show the presence of bugs, but never to show 

their absence”. This means that, due to the complexity of the software, it is impractical, 

often impossible, to detect all the faults of a program [7][88][32]. 

1.2 Research hypothesis 

This dissertation is aligned with the following research hypothesis: 

In the scope of Service Based Applications (SBAs), a Service Level Agreement 

(SLA) is a contract or technical document that contains the conditions that must be 

fulfilled during the provision and consumption of the services. We claim that a cost-



Chapter 1: Introduction  25 

effective set of test cases can be systematically obtained by means of analyzing the 

information specified in the SLA. The execution of such test cases would contribute to 

prevent or mitigate the negative consequences derived from the violations of the SLA. 

1.3 Research aims and objectives 

The main objective of this PhD is the definition of a framework to test Service 

Based Applications where the execution conditions of the services are specified in a 

Service Level Agreement. Within this framework, different techniques and tools should 

be devised in order to identify the situations that are of interest to be tested as well as 

guidelines to suitably generate the test cases. The proposed framework shall provide the 

tester a set of systematic steps to define the tests. 

The research objectives of this PhD are stated as follows: 

1. To devise the main activities, inputs and outputs that the testing framework is 

composed of. 

2. To define a concise way to evaluate the SLA and its internal elements. 

3. Grounded in this evaluation, to identify a set of test requirements from the 

specification of the SLA. 

4. To assure, as far as possible, that the identified test requirements and test cases 

are feasible concerning the SLA specification and the behaviour of the SBA. 

5. To propose guidelines to derive a set of test cases by combining the previously 

identified test requirements. 

6. To automate, as much as possible, the tasks involved in the generation of tests 

from the SLA. 

7. To evaluate the proposed approach in realistic scenarios. 



Chapter 1: Introduction  26 

1.4 Research outcomes 

In this section the contributions as well as the research outcomes of this PhD are 

outlined. 

1.4.1 Contributions 

The contributions of this dissertation are summarized as follows: 

 Definition of a framework that allows testing SLA-aware service based 

applications. This framework focuses on proactive software testing techniques in 

the sense that a set of test cases can be derived in order to exercise different test 

requirements identified from the specification of the SLA. This framework is 

based in a four-valued logic we have also devised to evaluate an SLA and its 

internal elements. Specifically, our work will be focused on SLAs specified 

using the WS-Agreement standard language [3]. 

 Design, development and automation of a criterion that allows testing the SBA 

using the specification of the individual SLA Guarantee Terms as the test basis. 

From this information, a set of test requirements are identified using the 

aforementioned logic and standard combinatorial testing techniques are applied 

in order to combine such requirements and generate the test cases. In addition to 

this, specific rules are identified in order to avoid the obtaining of non-feasible 

combinations of test requirements. The whole approach has been automated in 

SLACT (SLA Combinatorial Testing) tool. 

 Design, development and automation of a coverage-based criterion that allows 

generating a reduced set of tests from the logical relationships of the SLA 

guarantee terms. Our criterion is based on the MCDC criterion and defines 

specific rules in order to avoid the obtaining of non-feasible tests. We have also 

developed a prototype for the automatic generation of the new test requirements 

concerning the hierarchical structure of the SLA. 



Chapter 1: Introduction  27 

 Validation of both testing criteria. An eHealth scenario, proposed in the context 

of a FP7 European Project, has been used as case study in order to evaluate the 

feasibility of the work developed during this PhD. 

1.4.2 Publications ordered by year, type and objective 

A summary of the publications derived from this dissertation is presented in 

Figure 1.1. It classifies our contributions according to the year of publication 

(vertically) and the main objective of each contribution. A summary of the publications 

for year is presented at the bottom of the column. Furthermore, we have used different 

geometric shapes to represent the type of publication. A star represents a publication in 

a journal indexed in the Journal Citations Report® [117], a circle represents a 

publication in an international conference ranked in the ERA Conference Ranking 

Exercise (CORE) [41] and Microsoft Academic Research ranking [81]. A square 

represents a publication in a national conference or workshop. Finally, a hexagon 

represents a publication in other type of journals. 

 

Figure 1.1: Summary of publications grouped by topic and year. 



Chapter 1: Introduction  28 

Table 1.1 presents another view of our publications classified according to the 

place of publication. 

Category Publications Acronyms 

JCR Journals 4 

IST’11 

IEEE TSC’14 

IEEE LAT’14 

CSI’13 (Submitted) 

International Conferences 

(in CORE ranking) 
4 

ICSEA’09, ICSOC’11 

ICWS’12, WEBIST’12 

National Conferences 3 JSWEB’08, JISBD’11, JISBD’12 

National Workshops 1 PRIS’10 

Other journals 2 NOVATICA’09, UPGRADE’09 

Tool Demonstrations 1 JISBD’13 

Total 15  

Table 1.1: Summary of publications grouped by place of publication. 

1.4.3 Publications in chronological order 

A complete list of the publications derived from research work is presented below 

in chronological order. 

[2008]. During the first year, we performed an initial study about the research 

aligned with the testing of web service compositions, focusing on those compositions 

specified using the BPEL standard language. The results derived from this study were 

published in a national conference in the field of web services and SOA [95]. 

M. Palacios, J. García-Fanjul, J. Tuya, C. de la Riva. Estado del arte 

en la investigación de métodos y herramientas de pruebas para 

procesos de negocio BPEL. IV Jornadas Científico-Técnicas en 

Servicios Web y SOA (JSWEB-08), pág. 132–137, Sevilla (Spain), 

2008. 

[2009]. During this year, we completed the state of the art initiated the year 

[48][47] before and we started to focus our attention on a specific characteristic of the 

SOA paradigm such as the dynamic binding of the services. 

JSWEB’08 



Chapter 1: Introduction  29 

J. García-Fanjul, M. Palacios, J. Tuya, C. de la Riva. Pruebas de 

composiciones de servicios web. Revista Novática, nº 200, pp. 61-64, 

July-August 2009. 

 

J. García-Fanjul, M. Palacios, J. Tuya, C. de la Riva. Methods for 

Testing Web Service Compositions. Methods for Testing Web 

Service Compositions. UPGRADE, The European Journal for the 

Informatics Professional, 10 (5), pp. 62-66, 2009. 

[2010]. In this year, we performed a mapping study following the guidelines 

proposed by Kitchenham et al. [67][68][69][20] about the works that address the testing 

of SOA where the services are discovered, selected and invoked at runtime. The 

research protocol we developed to perform the mapping study was published in a 

national workshop [97]. The initial review of the found studies gave us hints about the 

testing of Service Level Agreements as a promising research topic so we carried out a 

preliminary research that was published in an international conference [96]. In this work 

we use the Category Partition Method (CPM) [94], which has previously been used in 

other fields of software testing [11][34]. 

M. Palacios, J. García-Fanjul, J. Tuya, C. de la Riva. A Proactive 

Approach to Test Service Level Agreements. 5th International 

Conference on Software Engineering Advances (ICSEA 2010), pp. 

453-458, Nice (France), 2010. 

 Conference indexed in the CORE Ranking. 

M. Palacios, J. García-Fanjul, J. Tuya. Protocolo para la revisión 

sistemática de estudios sobre pruebas en SOAs con enlace 

dinámico. 5th Taller sobre Pruebas en Ingeniería del Software (PRIS 

2010), Valencia (Spain), Septiembre 2010, Actas de los Talleres de las 

Jornadas de Ingeniería del Software y Bases de Datos, Vol. 4, No. 5, 

pp. 17-24, 2010. 

NOVATICA’09 

UPGRADE’09 

ICSEA’10 

PRIS’10 



Chapter 1: Introduction  30 

[2011]. During this year we published the results derived from the mapping study 

performed the year before [98][103]. At that moment we realized that we would guide 

our research work to the SLA-based testing of Service Based Applications. Hence, we 

started to devise a test method that combines the advantages of both proactive and 

reactive approaches. The design of the method and the definition of a test strategy for 

SLAs were published in an international conference [99] and a national conference, 

respectively [100]. 

M. Palacios, J. García-Fanjul, J. Tuya. Testing in Service 

Oriented Architectures with Dynamic Binding: a Mapping 

Study. Information and Software Technology, vol 53 (3), March 

2011. 

 Impact Factor: 1.829 

 In Computer Science - Software Engineering category: 

position 19 of 93 (first quartile – Q1). 

 

M. Palacios. Defining an SLA-aware Method to Test Service 

Oriented Systems. 9th International Conference on Service-

Oriented Computing, PhD Symposium, Paphos (Cyprus), 2011. 

In G. Pallis et al. (Eds.): ICSOC 2011, LNCS 7221, Springer 

2012, pp. 164–170, 2012. 

 Conference indexed in the first level (A) of CORE Ranking. 

 

M. Palacios, J. García-Fanjul, J. Tuya. Definición de una Estrategia 

de Pruebas basada en Acuerdos de Nivel de Servicio. XVI Jornadas 

en Ingeniería del Software y Bases de Datos (JISBD 2011), pp. 519-

524, La Coruña (Spain), 2011. 

[2012]. In this year, we focused on the definition of a test criterion that allows 

identifying a set of test requirements from the information contained in the SLA. The 

IST’11 

ICSOC’11 

JISBD’11 



Chapter 1: Introduction  31 

first results of this work were published in one of the most important international 

conferences in the scope of web services [101]. Furthermore, we collaborated with other 

researchers to study the evaluation of SLAs in the context of the NDT (Navigational 

Development Techniques) methodology [42][90]. This study was also published in an 

international conference [102]. 

M. Palacios, J. García-Fanjul, J. Tuya, G. Spanoudakis. 

Identifying Test Requirements by Analyzing SLA Guarantee 

Terms. 19th International Conference on Web Services (ICWS), 

pp. 351-358, Honolulu, Hawaii (USA), 2012. 

 Conference indexed in the first level (A) of CORE Ranking. 

 

M. Palacios, L. Moreno, M.J. Escalona, M. Ruiz. Evaluating the 

service level agreements of NDT under WS-Agreement. An 

empirical analysis. 8th International Conference on Web Information 

Systems and Technologies (WEBIST 2012), pp. 246-250, Porto 

(Portugal), 2012. 

 Conference indexed in the CORE Ranking. 

 

M. Palacios, J. García-Fanjul, J. Tuya. Testing in Service Oriented 

Architectures with Dynamic Binding: A Mapping Study. 12th 

Jornadas en Ingeniería del Software y Bases de Datos (JISBD 2012), 

pp. 383-384, Almería (Spain), 2012 (Recently Published Articles 

Track). 

[2013]. During this year, we refined and concluded the work we had developed 

the years before. First of all, we elaborated an article that contains all the details about 

the criterion that allows deriving test cases from the information specified in the SLA 

by means of applying combinatorial testing techniques. This article was submitted to the 

Computer Standards & Interfaces journal [106]. After that, we elaborated another article 

WEBIST’12 

ICWS’12 

JISBD’12 



Chapter 1: Introduction  32 

that presents a coverage-based criterion that allows identifying test requirements from 

the logical combination of SLA guarantee terms. This article was submitted and 

accepted in the IEEE Transactions on Service Computing journal [105] and it was 

published in 2014. Finally, we presented the details about the development of SLACT 

tool in an article that was published in the IEEE Latin America Transactions journal 

[107]. A demonstration about the aforementioned tool was also showed in a national 

conference [104]. 

 

M. Palacios, J. García-Fanjul, J. Tuya, G. Spanoudakis. 

Coverage-based Testing for Service Level Agreements. IEEE 

Transactions on Services Computing. 28 Feb. 2014. IEEE 

computer Society Digital Library. 

 Impact Factor: 2.460 

 In Computer Science - Software Engineering category: 

position 5 of 105 (first quartile – Q1). 

 In Computer Science – Information Systems category: 

position 13 of 132 (first quartile – Q1). 

 

 

M. Palacios, J. García-Fanjul, J. Tuya. Design and 

Implementation of a Tool to Test Service Level Agreements. 

IEEE Latin America Transactions. Vol. 12, Issue 2, March 

2014, pp. 256-261. 

   Impact Factor: 0.218 

 In Computer Science - Information Systems category: 

position 129 of 132 (fourth quartile – Q4). 

 In Engineering – Electrical & Electronic category: position 

227 of 242 (fourth quartile – Q4). 

  

IEEE TSC’13 

IEEE LAT’13 



Chapter 1: Introduction  33 

M. Palacios, J. García-Fanjul, J. Tuya, G. Spanoudakis. 

Automatic test case generation for WS-Agreements using 

combinatorial testing. Computer Standards & Interfaces. 

(Submitted in 2013). 

 Impact Factor: 0.978 

 In Computer Science - Software Engineering category: 

position 55 of 105 (third quartile – Q3). 

 In Computer Science – Hardware and Architecture 

category: position 26 of 50 (third quartile – Q3). 

 

M. Palacios, P. Robles, J. García-Fanjul, J. Tuya. SLACT: a 

Test Case Generation Tool for Service Level Agreements. 

13th Jornadas en Ingeniería del Software y Bases de Datos 

(JISBD 2013), Madrid, 2013 (Tool Demonstration Track). 

1.4.4 Research visits 

During his academic stage, the PhD student has visited the Department of 

Computing of the City University London in the United Kingdom (5 months). In 

London he has collaborated with the members of the Software Engineering at City 

Research Group (SE@City), founded and leaded by Dr. George Spanoudakis. Since 

these visits he has closely worked with Dr. Spanoudakis, who is one of the most 

important international researchers in the service oriented computing research area, 

specially focused on topics related to Service Level Agreements. The information about 

his visits at City is represented in Table 1.2. 

Year Arrival Date Departure Date Goal 

2011 11/11/2011 31/12/2011 
Definition of a test method by means of 
analyzing the information contained in the 
Guarantee Terms of an SLA. 

2012 01/05/2012 31/07/2012 
Improvement of the identification of test 
requirements taking the logical relationship 
between the Guarantee Terms into account. 

Table 1.2: Information about the research visits. 

CSI’13 

JISBD’13 



Chapter 1: Introduction  34 

1.4.5 Developed tools 

The results of this dissertation have been integrated into a tool named SLACT 

(SLA Combinatorial Testing) [123], developed in the context of our research group and 

registered in the Spanish Intellectual Property Office (Nº 05/2013/458). Basically, 

SLACT allows analyzing the specification of the SLA with the aim at identifying test 

requirements that will be combined in order to generate a set of test cases. A detailed 

description of SLACT is presented in Chapter 7 of this dissertation. 

1.5 International thesis 

With the elaboration, submission and defence of this dissertation we expect to 

obtain not only the degree of Doctor of Philosophy (PhD) but the International Mention 

of such degree. In Spain, the Royal Decree 99/2911 [16] is the official document that 

regulates the requirements to be fulfilled in order to achieve the international mention in 

the PhD degree, which are the following: 

1. During the academic stage in the PhD programme, the student has 

completed a minimum stay of three months outside Spain in a Higher 

Education institution or a prestigious research centre in another foreign 

country, studying or doing research. This stay must be acknowledged by 

the thesis director and must also be certified by the PhD Programme. 

2. Part of the PhD dissertation, at least the abstract and conclusions, has been 

written and presented in one of the official languages, excluding Spanish, 

commonly used for scientific communications in the field of knowledge. 

3. The PhD dissertation has been informed by a minimum of two experts 

from a Higher Education institutions or research institution from a foreign 

country other than Spain. 

4. At least one expert from a Higher Education institution or research 

institution from a foreign country, other than Spain, with a degree of 

Doctor and different from the supervisor of the stay mentioned in the first 

requirement has been part of the PhD Dissertation Committee. 



Chapter 1: Introduction  35 

All of the above requirements have been met during the academic stage of this 

PhD. The first requirement is satisfied thanks to the two certified stays as a visiting 

researcher at City University London, supervised by Dr. George Spanoudakis (see 

Section 1.4.4: Research Visits). This dissertation has been completely written in 

English, which is the most widely accepted language in the field of Computer Science, 

so the second requirement is also satisfied. Furthermore, both the Abstract and 

Conclusions sections are written in Spanish as well. With the aim at satisfying the third 

requirement, this dissertation has been sent to Dr. Ernesto Damiani and Dr. 

Massimiliano Di Penta in order to get their evaluation reports. Finally, Dr. Christos 

Kloukinas has accepted our invitation to be part of this PhD Dissertation Committee so 

the last requirement will also be met. 

1.6 Structure of this dissertation 

The reminder of this document is structured as follows: 

Chapter 1 comprises this introduction section. 

Chapter 2 highlights the basic concepts used within this dissertation and summarizes the 

state of the art in the addressed research topic.  

Chapter 3 presents the SLA Testing Framework (SLATF), including its main activities, 

inputs and outputs. 

Chapter 4 proposes a concise way to unequivocally evaluate Service Level Agreements, 

including their guarantee terms and compositors. 

Chapter 5 addresses the generation of tests taking the information contained in the 

individual SLA guarantee terms into account. To do this, we devise a criterion that 

makes use of standard combinatorial testing techniques. 

Chapter 6 also addresses the generation of tests but, in this case, we consider the 

information contained in the logical combinations of guarantee terms. To do this, we 

devise a criterion that is based on coverage-based testing. 



Chapter 1: Introduction  36 

Chapter 7 describes the details about the level of automation of the two aforementioned 

criteria. 

Chapter 8 presents the evaluation of the proposed approach in an e-Health based case 

study provided in the context of a European Project. 

Chapter 9 and Chapter 10 states the conclusions of the research performed during this 

PhD and outlines potential research lines for our future work (in English and Spanish 

respectively). 

1.7 The picture of this dissertation 

The last section of the chapter summarizes the main concepts of this dissertation 

in form of a word cloud (Figure 1.2), being agreed with the classical adage that says “A 

picture is worth a thousand words”. 

 

Figure 1.2: Word Cloud of this dissertation.



37 

Chapter 2 
 

 Background 

 

Program testing can be used to show the presence 
of bugs, but never to show their absence! 

Edsger Wybe Dijskstra, 1930-2002 
Dutch computer scientist, 1972 Turing Award 

 

 

 

 

 

 

 

his chapter outlines the main concepts of this dissertation. Firstly, it provides 

important definitions about software testing, one of the cornerstones of this thesis. 

After that, it presents the Service Oriented Architecture (SOA) software development 

paradigm and the important role of Service Level Agreements (SLAs) to regulate the 

distribution of the services. Finally, it describes the related work in the field of SOA 

testing and SLA-based testing. 

 

 

 

  

T 



Chapter 2: Background  38 

2.1 Introduction 

In this chapter we present the main concepts that represent the cornerstones of this 

dissertation. Firstly, we introduce the software testing by means of providing standard 

definitions that will help to understand the main core of our approach. After that, we 

explain the importance of the Service Oriented Architectures paradigm within the 

development of a great number of applications nowadays. Furthermore, we outline the 

most relevant properties of Service Level Agreements and, to be more specific, the WS-

Agreement standard language. Finally, we analyze other works that have previously 

been proposed in the scope of the topic addressed in this dissertation. 

2.2 Software Testing 

Several definitions have been proposed in the literature when referring to software 

testing. According to the ISO/IEC 24765 (Software and Systems Engineering 

Vocabulary): 

“Software Testing can be defined as an activity in which a system is executed 

under specified conditions, the results are observed or recorded, and an evaluation is 

made of some aspect of the system” [59]. 

This definition requires the Software Under Test (SUT) to be executed. Other 

authors distinguish between static and dynamic testing [9]. In this case, the static testing 

is carried out without executing the SUT whereas the dynamic testing always involves 

the execution of the SUT. In the context of this dissertation, the SUT is any service-

based application, typically a web service composition, in which the execution 

conditions of the constituent services are specified in an SLA. 

In the recently published ISO/IEC/IEEE 29119 Software and Systems 

Engineering - Software Testing: 

“Software Testing is defined as a set of activities conducted to facilitate the 

discovery and / or evaluation of properties of one or more test items” [60]. 

Another typical definition of testing says that: 



Chapter 2: Background  39 

“Software Testing involves any activity aimed at evaluating an attribute or 

capability of a program or system and determining that it meets its required results” 

[54]. 

In addition to this, one of the classical and simpler definitions outlines the main 

objective of testing as: 

“Software testing is the process of evaluating a program with the intent of finding 

faults” [88]. 

The detection of problems in the SUT is usually addressed with two main 

different approaches. On the one hand, the execution of the SUT is typically performed 

through the design and execution of test cases. According to the IEEE Standard 

Glossary of Software Engineering Technology, a test case is “a set of inputs, execution 

conditions, and expected results developed for a particular objective” [58]. Thus, 

executing the software and comparing the obtained outputs with the expected results 

allows determining whether the behaviour of the software is correct or not. The 

generation and execution of test cases is considered a proactive or ex ante approach in 

the sense that it is able to detect problems in the SUT before such problems occur in an 

operational environment and lead to undesired consequences for the stakeholders. 

On the other hand, monitoring is also a widely used testing technique that allows 

passively observing real time executions with the aim of detecting any deviation from 

the expected behavior of the software during its operation [35]. Monitoring based 

approaches are considered reactive because problems are detected ex post, after they 

have occurred and, thus, potential further consequences cannot always be avoided. The 

concept of monitoring is named as on-line testing by Bertolino in [14]. 

Concerning these two main testing approaches, a test requirement represents a 

specific feature or situation of the SUT that must be satisfied or covered during testing 

[92]. Test requirements are typically identified following a specific test strategy, which 

might be based on different factors such as risks, models of the system, expert advice or 

heuristics. In this context, the test basis represents all documents from which the 



Chapter 2: Background  40 

requirements of a system can be inferred or the documentation on which test cases are 

based [61]. 

In this dissertation, we tailor different standard testing techniques in order to 

identify the test requirements and, later, combine such test requirements with the aim at 

deriving the test cases. Below, we briefly describe the main characteristics of these 

testing techniques. 

The Classification Tree Method [53] provides a systematic way to hierarchically 

partition the inputs of a SUT into classifications and classes via the construction of an 

appropriate classification tree. Each classification is a disjoint partition related to the 

SUT and each class is a disjoint partition of the values of the corresponding 

classifications. From the constructed tree, test coverage items shall be derived by 

combining leaf nodes using combinatorial techniques. In this context, a test coverage 

item represents an attribute or combination of attributes regarding the SUT that will be 

exercised by a test case. 

Combinatorial testing techniques [52][91] are used to generate test cases that 

achieve different levels of coverage. The combinations are defined in terms of 

parameters and the values that they can take. To align this with the constructed 

classification tree, classifications represent parameters and classes represent parameter 

values. There are different combinatorial testing techniques such as Pair-wise (broadly 

use in software testing [78][89]), All combinations or Each choice that will be later used 

in this thesis. 

Modified Condition Decision Coverage (MCDC), defined in the RTCA/DO-178B 

standard [116], is a broadly studied structural coverage criterion. MCDC is applied to a 

specification of the SUT, which may be the code of the program itself. MCDC allows 

identifying test requirements taking the specification of the SUT into account and, 

besides, it provides a linear increase in the number of test requirements [38]. 



Chapter 2: Background  41 

2.3 Service Oriented Architectures 

In this section we present the basic concepts about the paradigm of Service 

Oriented Architectures (SOAs) and we highlight the main characteristics of Service 

Level Agreements (SLAs), which are one of the key issues of this thesis. 

Service Oriented Architectures have become a successful paradigm to develop 

distributed applications by integrating available services over the web. Such services are 

autonomous and platform-independent entities that can be described, published, 

discovered and dynamically assembled for developing rapid, low-cost, interoperable 

and evolvable distributed applications [109]. Web services are the most used SOA 

based technology and they are supported with a set of W3C XML based standards: 

Simple Object Access Protocol (SOAP) [124], Web Service Description Language 

(WSDL) [139] and Universal Description, Discovery and Integration (UDDI) [132]. 

Service Oriented Architectures allow the interaction between service providers 

and clients. In a Service-Based Application, the provider publishes the description of 

the services, generally specified in WSDL, in a registry. This registry can be 

implemented using the UDDI standard and it is in charge of storing service descriptions 

and acts as an intermediary between providers and clients. After the services are 

published, a client sends a query to the registry to find the desired service. The registry 

matches the client’s request with the available information and returns to the client a set 

of service interface descriptions that satisfy its requirements. The client has to select the 

most suitable service and bind with its provider performing the invocation of the service 

and receiving the corresponding response. 

In Figure 2.1 the typical SOA triangle, adapted from [110], with the roles that 

each stakeholder plays and the operations that can be performed is depicted. 



Chapter 2: Background  42 

 

Figure 2.1: SOA Architecture: roles and operations. 

A client can decide at design time which service is going to be executed so the 

binding is considered as static. However, a challenging feature of SOA is the possibility 

to select and invoke a service at runtime. There are two scenarios where this binding can 

be considered as dynamic. In the first scenario, a set of potential candidate services is 

available at design time although the client does not know exactly which one is going to 

be invoked until the moment of the binding. In the second, the discovery, selection and 

invocation can be performed at runtime using a registry. In this case, until the discovery, 

the client has no knowledge about the potential services that can be invoked. 

2.4 Service Level Agreements 

Service Level Agreements (SLAs) are contracts that specify the rules for the 

trading between the consumers and the Service Based Applications (SBAs) providers. 

Typically, these rules specify which the constituent services of the SBA that will be 

regulated by the agreement are, and how these services should be offered. 

The management of SLAs [115] is an integral part of the applications developed 

under the rules of a standard SOA Governance framework [12] Bertolino, SOA Test 

Framework] and has recently received considerable attention both in industry and 

academia (see, for example, the SLA@SOI FP7 European Project [122]). Many large 

companies, including Amazon [1], Microsoft [83], Google [51], AT&T [4] and HP [57], 

that provide XaaS (Everything as a Service) use SLAs as a mechanism for specifying 

the functionalities and QoS levels that they are capable of providing in their XaaS 



Chapter 2: Background  43 

offerings. Although the existing SLAs in the industrial domain seems to be quite simple 

nowadays, they could become very complex by means of establishing relationships 

between the terms or including information regarding the functional and non-functional 

features of the services as well as the penalties derived from the violations of the agreed 

guarantees. 

In addition to typical tasks involved within the management of the SLAs, 

including negotiation [36][112][142], evaluation [26], optimization [113][135], 

monitoring [77][126][136] or testing [37], the specification of the SLAs has been 

widely studied over the last few years [130]. In many occasions the SLAs are specified 

in documents without any kind of format or even using natural language. Unfortunately, 

this lack of methodology when creating an SLA hinders the automatic management of 

the agreement. In our case, the testing of the SLAs requires using such documents as the 

test basis so we need to have the specification of the SLA somehow formalized in order 

to automate as much as possible the obtaining of tests. 

Over the last decade, different languages have been proposed [108] with the aim 

to support and standardize the specification of SLAs (e.g., WSLA [66], WS-Agreement 

[3], WSLO [129], SLANG [71][121], WS-QoS [128] or WS-Policy [134]). Among 

them, WS-Agreement is the one that has received more attention regarding the SLA-

based testing, at least from the academic scope. WS-Agreement presents a generic 

syntax that allows extrapolating its derived outcomes to any other existing SLA 

specification language. In fact, WS-Policy, which is gaining attraction from the 

industrial space, shares the same notation as WS-Agreement to represent the 

relationships between the guarantees. Thus, in this work, we focus on the syntax and 

semantics of WS-Agreement because it is a well-accepted standard in the SOA protocol 

stack for the management of the SLAs (Figure 2.2) and has been used in different 

approaches regarding the testing of SBAs [15][77][85]. 



Chapter 2: Background  44 

 

Figure 2.2: Web Service Protocol Stack (adapted from IBM Software Group [118]). 

WS-Agreement 

WS-Agreement (WSAG) [3] is an XML based language proposed by the Open 

Grid Forum (OGF) that specifies a protocol for the establishment of agreements 

between two parties. This standard defines a hierarchical structure for the specification 

of an SLA. The specification of an SLA using the WS-Agreement standard language is 

composed of three main parts (Figure 2.3). These are: 

 Name: This part represents an optional name that can be given to the 

agreement. 

 Context: This part describes the involved parties and their role as initiator 

or responder. Additionally, it may specify any other information of the 

agreement that is not related with the obligations of these parties, such as 

the “Expiration Date. 

 Terms: This part expresses the negotiated and agreed obligations of each 

party. Obligations are specified using different types of terms: 

o Service Description Terms (SDT): describe information about the 

functional aspects of the services. 

HTTP / HTTPS SMTP RMI / IIOP JMSTRANSPORTS

XML SOAP WS-AddressingMESSAGING

XSD WSDL WS-Policy

DESCRIPTION 

AND 

DISCOVERY

WS-Resource Properties WS-Base Faults

WS-Metadata Exchange

WS-Security

WS-Agreement

QUALITY OF 

EXPERIENCE 

(QoX)
WS-Reliable Messaging

WS-Transaction

WS-Resource Lifetime

WS-Service Group WS-Notification BPEL4WS
SERVICE 

COMPOSITION
WS-CDL

WS-Coordination

UDDI WS-Inspection

WS-Discovery

WS-Notification

SAML



Chapter 2: Background  45 

o Service Properties (SP): provide measurable aspects that are used 

to express the requirements (guarantees) of the services. 

o Guarantee Terms (GT): describe the obligations that must be 

satisfied by a specific obligated party. 

 

Figure 2.3: WS-Agreement structure. 

The most important information of the SLA is represented by means of the 

Guarantee Terms, which describe the obligations that must be satisfied by a specific 

obligated party. A Guarantee Term (GT) contains the following internal elements:  

1) The Scope specifies the list of services the term applies to. 

2) The Qualifying Condition (QC) represents a precondition or assertion that 

determines whether the term is relevant and must be considered during the 

evaluation process. 

3) The Service Level Objective (SLO) specifies the guarantee that must be 

met. 

4) Optionally a Business Value List (BVL) for such term may also be 

specified containing some information as the penalties for not having 

satisfied the associated guarantee. 

The specification of domain specific languages or extensions to express the 

conditions of the Guarantee Terms is out of the scope of WS-Agreement. 



Chapter 2: Background  46 

It is worth noting that WS-Agreement allows the logical combination of these 

terms by means of elements named Compositors. More specifically, there are three 

different compositors: All, OneOrMore and ExactlyOne, which are equivalent to the 

logical AND, OR and XOR operators respectively. 

2.5 Related Works 

In this section we briefly outline the works that have been previously proposed to 

address the testing of applications developed under the Service Oriented Architecture 

paradigm and those attempts that take the SLA as the test basis. 

2.5.1 SOA Testing 

As stated by Canfora and Di Penta [21], the dynamic and adaptive nature of SOA-

based systems makes that most testing techniques cannot be directly applied when 

testing services and service-oriented systems. Some key issues that affect the testability 

of service-based applications include: 

 Lack of observability of the service code and structure. The services 

become just interfaces for consumers and system integrators, and this 

hinders the application of white-box testing approaches that require having 

some knowledge of the structure of the code and data flow. 

 Dynamicity and Adaptiveness. In traditional systems it is almost possible 

to determine the component that will be invoked or, at least, the set of 

possible targets [80]. This is not true anymore for SOA, where a system 

may be described by means of a workflow of abstract services that are 

automatically discovered, selected and invoked at runtime, which is called 

dynamic binding. 

 Lack of control. While component or libraries are physically integrated in 

a classical software system, this is not the case for services, which are 

deployed in an independent infrastructure and are maintained and evolved 

under the control of the service provider. This implies that the system 



Chapter 2: Background  47 

integrators cannot decide the strategy to migrate a new version and, 

consequently, to perform regression testing to the system [23]. 

 Cost of testing. The invocation of the services that are deployed in the 

provider’s infrastructure also affects the cost of testing, when services are 

charged on a per-use basis. Furthermore, repeated invocations of a service 

for testing may not be allowed if the service produces side effects other 

than a simple response, for example in web service compositions that 

implements the business process of a hotel booking [24]. 

These and other more issues imply that traditional testing techniques need to be 

adapted when testing service based systems. In the literature, many efforts have been 

made in the area of testing of services and service-based applications. A survey of SOA 

testing is presented in [22] and another survey about web service testing is presented in 

[17]. Furthermore, a systematic review about formal approaches to test service based 

software is provided by Endo and Simao in [40] and another systematic review is 

presented by Zakaria in [141], where they study the state of the art about unit testing 

web service compositions specified using the standard language WS-BPEL [138]. 

Finally, Palacios et al. [98] present a mapping study about testing SOA-based systems 

with dynamic binding. 

In addition to this, many works have been proposed to address the testing of web 

service composition [39][45][46][55][56][74][127]. Those works focus on different 

aspects of the compositions such as internal behaviour, coordination, control flow 

execution, robustness or non-functional testing. The testing of web service composition 

in the integration level has also been investigated by Bucchiarone et al. in [19]. 

2.5.2 SLA-based Testing 

In the context of service-based applications, the SLA-based testing has been 

identified as a challenge [23][6]. During recent years, many works have been proposed 

with the final objective of detecting SLA violations. Typically, related strands of work 

may be categorized in two main groups:  



Chapter 2: Background  48 

 Testing: the set of works which are aimed at anticipating problems and/or 

prevent them before deployment, when such problems would lead to 

undesired consequences for the stakeholders who have signed the 

agreement. 

 Monitoring: the set of works that are aimed at detecting SLA violations at 

runtime when the SUT is already deployed in the operational environment. 

These two main approaches have been discussed in the literature when testing 

SOA, identifying their advantages as well as their drawbacks. In Figure 2.4, Canfora 

and Di Penta [21] show the role of testing and monitoring, aiming at exploding the 

synergies between both testing techniques. 

 

Figure 2.4: The role of testing, of monitoring and their interaction (Adapted from [21]). 

In this figure, there are many weaknesses of monitoring that suggest to perform 

testing (simple arrows), and vice versa. Also, there many cases where testing and 

monitoring can be applied in order to complement each other (double arrow). 

2.5.2.1 Testing 

Regarding the testing of SLAs, few approaches have focused on the identification 

of tests from the specification of the SLAs in order to anticipate problems. 

Di Penta et al. [37] perform black-box and white-box testing by means of using 

Genetic Algorithms with the aim of detecting SLA violations in atomic and composite 



Chapter 2: Background  49 

services. This approach generates combinations of inputs and bindings of the 

constituent services that may cause violations of the SLA. 

Bertolino et al. [10] propose PUPPET framework, which generates test beds from 

the WSDL and BPEL specification of service compositions, considering the information 

contained in a WS-Agreement. Although they do not specify the tests for the SBA, they 

provide the necessary infrastructure to deploy and execute such tests. 

Kotsokalis et al. [70] have proposed to use Binary Decision Diagrams in order to 

model the content of SLAs for testing purposes. However they do not focus on a 

specific standard language although they attempt to obtain the diagrams from WS-

Agreement. In their approach, they use two different values to evaluate the terms of the 

SLA. 

Finally, Muller et al. [86] propose static testing by automatically detecting and 

explaining inconsistencies between the terms of WS-Agreements using a Constraint 

Satisfaction Problem based approach. 

2.5.2.2 Monitoring 

Regarding the second group, there are more works that use monitoring techniques 

rather than testing to detect SLA violations. 

Mahbub and Spanoudakis [77] focus on WS-Agreement to propose modelling and 

monitoring the conditions contained in the SLA using an Event Calculus (EC) based 

approach. Raimondi et al. [114] proposed a system that automatically monitors SLAs, 

translating timeliness constraints into timed automata, which is used to verify traces of 

services executions. Comuzzi et al. [31] tackles the relation between the establishment 

and monitoring of SLAs in the scope of SLA@SOI European Project [122]. Sahai et al. 

[119] propose an automated and distributed SLA monitoring engine in order to check 

the compliance of the SLA and, if necessary, take control actions to enable such 

compliance. Michlmayr et al. [87] present a framework that combines the advantages of 

both client- and server-side SLA monitoring. This framework builds on event 

processing to inform about QoS measurements and possible SLA violations. Fakhfakh 

et al. [43] elaborate a complete, generic and semantically rich model for an SLA based 



Chapter 2: Background  50 

on ontologies. They use the Semantic Web Rule Language (SWRL) to specify the SLA 

obligation within the model. Such model facilitates the monitoring of the SLA as well 

as triggering eventual corrective actions in case of SLA violations. 

Beyond these works, there are other systems that have been developed to monitor 

whether service based applications violate SLAs including, for example, SALMon 

[2][93], SALMonADA [85], SLAMonitor [50], HA-SLA [84] and CLAM [18]. 

2.5.2.3 Other Approaches 

In the borderline between these testing and monitoring, there is a set of works that 

make use of information gathered from monitoring techniques in order to prevent SLA 

violations. 

Lorenzoli and Spanoudakis [75][76] present the EVEREST+ framework, which 

supports the monitoring and prediction of potential violations of the QoS metrics 

specified in an SLA. Leitner et al. [73] propose a framework that allows monitoring and 

predicting SLA violations before they have occurred using machine learning techniques 

and they have also addressed the prevention of SLA violations using self-adaption [72]. 

Ivanovic et al. [62] propose a constraint-based approach to monitor and analyze the QoS 

metrics included in the SLA for the purpose of anticipating the detection of potential 

SLA violations. Finally, Schmieders et al. [120] combined monitoring and prediction 

techniques in order to prevent SLA violations. 

2.6 Summary 

In this chapter we have presented the basic concepts that are necessary to 

understand the remaining of this dissertation. 

We have introduced some notions about software testing, including general 

definitions of testing, test cases, test requirements as well as the description of some 

standard testing techniques, which are used in this thesis. 

After that, we have presented the main characteristics of Service Oriented 

Architectures including the stakeholders that usually appear in the life cycle of a service 

based applications as well as the typical operations that are performed in order to 



Chapter 2: Background  51 

discovery, select and invoke the services. Furthermore, we have also highlighted the 

importance of Service Level Agreements within the provisioning and consumption of 

the services, focusing on the WS-Agreement standard for being the language we have 

used in the current work. 

Finally, we have briefly described the state of the art about the existing works that 

address the testing in the context of SOA-based systems and we have presented those 

works that put their effort in detecting, preventing or predicting SLA violations. 

In the following chapters, we will present our contribution within the context of 

this dissertation. We will start presenting SLATF (SLA Testing Framework) in Chapter 

3, which allows testing SLA-aware service-based applications. 



52 

Chapter 3 
 

 SLA Testing Framework 

 

Computers are incredibly fast, accurate, and stupid: 
humans are incredibly slow, inaccurate and brilliant; 

together they are powerful beyond imagination. 

Albert Einstein, 1879-1955 
German physicist, 1921 Nobel Prize in Physics 

 

 

 

 

 

 

 

his chapter presents SLATF (SLA Testing Framework), a framework that allows 

testing SLA-aware Service-based Applications (SBAs). It introduces the main 

activities involved in SLATF, which will be later described in detail in the rest of 

chapters of this dissertation. 

 

 

 

 

  

T 



Chapter 3: SLA Testing Framework  53 

3.1 Introduction 

As we have outlined in Chapter 2, the process of developing software under the 

Service-Oriented Architecture (SOA) paradigm presents specific characteristics that 

need to be taken into account. Basically, different providers develop the services and 

define the interfaces of such services, which are made public using registries, web pages 

or any other adequate source. The services are therefore deployed in an operational 

environment which may be, for example, in the own providers’ infrastructures or hired 

to a third-party hosting service. Once the services are ready to be used, it is necessary to 

establish the set of conditions that will govern the provision and consumption of such 

services. These conditions are often agreed between the provider and the consumer and 

specified in a Service Level Agreement (SLA), which acts as a guarantee for the 

stakeholders involved in the service trading. 

During the execution of the services, different problems may happen in the 

service based application. Sometimes these problems are related to the agreed 

conditions specified in the SLA, whose violations lead to the application of the 

corresponding penalties also stated in the SLA. Hence, a necessity arises in the sense 

that we need to detect such problems in the SBA as soon as possible so as the 

consequences derived from an SLA violation can be avoided. Typically, the detection of 

such problems is usually carried out by means of software testing approaches, which 

may be reactive or proactive as we have previously described in Section 2.2. 

In the scope of this PhD we focus on the definition of a proactive approach to test 

SLA-aware Service Based Applications (SBAs). In this chapter we start presenting a 

step-wise test framework that addresses the detection of problems related to guarantee 

terms of the SLA by using software testing techniques. 

3.2 SLA Testing Framework (SLATF) 

The objective of SLATF (SLA Testing Framework) is to test a service-based 

application where an SLA specifies the conditions that must be checked to decide 

whether the execution of the services is successful. This framework involves a test 

process that contains four activities to deal with: (1) SLA evaluation, (2) identification 



Chapter 3: SLA Testing Framework  54 

of test requirements, (3) generation of test cases, and (4) execution of test cases. The 

general architecture of SLATF is depicted in Figure 3.1 and the information flow of the 

framework, with its activities and their corresponding inputs and outputs, is represented 

in Figure 3.2. 

 

Figure 3.1: SLATF architecture. 

 

Figure 3.2: SLATF Testing Framework. 



Chapter 3: SLA Testing Framework  55 

In Figure 3.2 the activities of SLATF are represented using rectangles. These 

activities receive different artifacts as inputs and provide their own outputs. The relation 

between the activities and their inputs and outputs is represented with directed arrows in 

the figure. 

First of all, SLATF requires the definition of a concise way to determine whether 

the SLA has been fulfilled or violated. This evaluation of the SLA is an orthogonal 

activity that closely affects the rest of the testing process. This means that there is a 

dependency between the SLA evaluation and the other three activities involved in the 

process in the sense that such activities use the evaluation in order to carry out their 

tasks. This dependency is represented in Figure 3.2 using dashed arrows pointing from 

the dependent activities to the SLA evaluation, which is the independent one. 

The main input of SLATF is an SLA specified in the WS-Agreement standard 

language [3], which may represent both functional and non-functional characteristics of 

the service based application. Taking the aforementioned evaluation process into 

account, such SLA is used as the test basis in order to identify test requirements 

(situations that should be covered during testing) regarding the SBA. 

The next activity of SLATF is the generation of a set of test cases, which takes the 

previously identified test requirements as input. The set of test cases will be designed 

with the aim at covering all the test requirements. Each test case will cover as many test 

requirements as possible in order to reduce the size of the final set of test cases. 

The last step of SLATF involves the execution of the test cases in the service 

based application. The results of the tests allow detecting problems in the SBA and 

determining whether the behaviour satisfies the agreed guarantees by means of 

evaluating the SLA. This decision is represented in Figure 3.2 using a solid line that 

departs from the SLA evaluation activity. 

In the rest of this chapter we describe the general characteristics of the four 

different activities to be carried out in SLATF, aligned with the research objectives 

stated in Chapter 1. Both the SLA evaluation and the identification of test requirements 

will be fully addressed in the following chapters of this dissertation. We will also 



Chapter 3: SLA Testing Framework  56 

outline how to derive test cases from the identified test requirements. Further 

automation of the test cases execution is expected to be addressed in our future work 

and, thus, is out of the scope of this dissertation. 

3.2.1 SLA Evaluation in a nutshell 

The evaluation of an SLA requires making a decision about whether the agreed 

guarantees are being respected or not during a specific execution of the SLA-aware 

Service Based Application. By means of observing the service executions, the 

evaluation allows detecting whether a deviation from the expected behaviour of the 

SBA according to the SLA has arisen. Disregarding the testing approach to be applied 

(for example, proactive or reactive as stated in Chapter 2), the SLA evaluation is a 

process that always needs to be performed when an SLA is associated to the SBA. This 

decision is typically carried out using a binary logic so the SLA can be evaluated as 

Fulfilled or Violated. However, the use of these two classical values makes difficult to 

represent all the potential situations that can arise during the evaluation of the SLA. 

Thus, in Chapter 4 we will introduce two more evaluation values (Not Determined and 

Inapplicable), which lead to a four-valued logic in order to evaluate SLAs. 

Furthermore, it is worth mentioning that the evaluation of an SLA depends on the 

evaluation of its guarantee terms. Hence, it is necessary to define a specific way to 

determine the evaluation value in two different levels: 

1. The evaluation of each individual guarantee term. 

2. The evaluation of the logical relationships between the guarantee terms and, 

consequently, the complete SLA. 

The complete description of the activity that determines the evaluation of the SLA 

is fully addressed in Chapter 4 of this dissertation. 

3.2.2 Identification of test requirements 

The identification of test requirements is performed by means of analyzing the 

SLA and taking the aforementioned four-valued logic into account. Typically, a test 

requirement represents a specific feature of the software that must be satisfied or 



Chapter 3: SLA Testing Framework  57 

covered during testing [92]. At this stage, it is necessary to clarify the concept of test 

requirement within the scope of this dissertation. On the one hand, the test requirements 

may be identified taking the information contained in the individual guarantee terms 

into account. These test requirements are called Primitive Test Requirements in this 

dissertation with the following meaning: 

 A Primitive Test Requirement (Primitive TR) involves exercising a situation 

associated to the evaluation of a single guarantee term. 

On the other hand, we have previously mentioned that the guarantee terms can be 

grouped according to a specific relationship, for example, using the compositor 

elements. Likewise, new test requirements can also be identified by means of 

combining the Primitive Test Requirements: 

 A Combined Test Requirement (Combined TR) involves exercising a 

particular combination of Primitive Test Requirements that require the 

evaluation of multiple guarantee terms. 

The terminology of these two types of test requirements has been previously used 

in other works related to software testing in SBAs [25]. Figure 3.3 illustrates an 

example of the specification of Primitive Test Requirements for an SLA with three 

guarantee terms as well as the specification of Combined Test Requirements. 

For each guarantee term represented in the figure a set of Primitive Test 

Requirements are identified. As we have introduced in Section 3.2.1, we will use four 

different values to evaluate each guarantee term. These evaluation values are 

represented in the figure with coloured squares (green for Fulfilled, red for Violated, 

grey for Not Determined and yellow for Inapplicable). The Primitive TRs are 

represented with solid circles under such evaluation values. For example, the Primitive 

TR remarked in the figure represents a situation in which the guarantee term GT1 is 

evaluated as Violated. It is worth mentioning that it is possible to identify one Primitive 

TR for each of the four aforementioned evaluation values. 

 



Chapter 3: SLA Testing Framework  58 

 

Figure 3.3: Primitive and Combined Test Requirements. 

Based on these Primitive TRs, different Combined Test Requirements are 

identified by combining one Primitive TR from each guarantee term. Hence, a 

Combined TR represents a scenario in which the test situations associated to a particular 

combination of Primitive TRs are exercised. For example, the first Combined TR 

(remarked in the figure) involves testing the situation in which GT1 is forced to be 

Violated, GT2 is evaluated as Fulfilled and GT3 is Inapplicable during the evaluation. 

Bearing this classification in mind, the concept of test requirement can be defined 

as follows in the context of this dissertation: 

Definition 1: A test requirement represents a situation related to the SUT in 

which one or more Guarantee Terms has to take a predetermined evaluation value and 

specific conditions must be satisfied. 

In addition to this, we will define different testing techniques that determine how 

the test requirements are obtained (from the individual guarantee terms or the 

relationships between such terms). Here again, we distinguish between two different 

testing levels (as we did during the SLA evaluation), depending on the test basis 

considered to identify the test requirements: 



Chapter 3: SLA Testing Framework  59 

1. Guarantee Term Testing Level 

2. Compositor (Logical relationships between Guarantee Terms) Testing Level. 

The first of these levels will be addressed in Chapter 5 of this dissertation whereas 

the second level will be addressed in Chapter 6 of this dissertation. 

3.2.2.1 Guarantee Term Testing Level 

The identification of the test requirements in the first of these testing levels is 

represented in Figure 3.4. 

 

Figure 3.4: Guarantee Term Testing Level Test Requirements. 

In the Guarantee Term testing level the Primitive TRs are obtained from the 

specification of the individual SLA guarantee terms. Each Primitive TR considers the 

conditions specified in the internal elements of the guarantee term (Scope, QC and 

SLO) as well as the evaluation value of such term. To be more specific, up to six 

Primitive TRs can be identified for each SLA guarantee term (top part of Figure 3.4) as 

we will describe in Chapter 5. These Primitive TRs are represented in the figure with 

squares. Each square contains the identifier of the test requirement in the top part and a 

coloured rectangle in the bottom part. The colour represents the evaluation value of the 



Chapter 3: SLA Testing Framework  60 

guarantee term for such Primitive TR (green for Fulfilled, red for Violated, yellow for 

Inapplicable and grey for Not Determined). 

After the identification of the Primitive TRs, combinatorial testing techniques [52] 

are applied in order to obtain the Combined Test Requirements. A Combined TR will 

contain one Primitive TR for each of the guarantee terms specified in the SLA (bottom 

part of Figure 3.4). 

3.2.2.2 Compositor Testing Level 

The identification of the test requirements in the second of the testing levels is 

represented in Figure 3.5. 

 

Figure 3.5: Compositor Testing Level Test Requirements. 

In the second of the testing levels, we will define SLACDC (SLA Condition 

Decision Coverage), a coverage-based testing criterion that allows identifying test 

requirements taking the logical relationships of the SLA guarantee terms into account. 

Firstly, the Primitive TRs are identified from the individual guarantee terms. In this 

case, we obtain one Primitive TR for each of the evaluation values that the guarantee 

term can take. This means that we will identify four Primitive TRs for each guarantee 



Chapter 3: SLA Testing Framework  61 

term (top part of Figure 3.5). After that, we will obtain the Combined TRs by means of 

combining the Primitive TRs applying SLACDC. A Combined TR will usually cover 

one Primitive TR for each of the guarantee terms contained in a compositor (bottom 

part of the Figure 3.5).  

3.2.2.3 Additional issues 

With the identification and combination of the test requirements, the problem of 

the combinatorial explosion may arise [52]. The number of situations related to the SLA 

that need to be tested could become unmanageable when the complexity of the SLA 

grows. The identification of the test requirements tries to maximize the trade-off among 

different criteria such as risks, models of the systems, likely failures, compliance 

requirements, expert advice or heuristics [61]. In some cases, it may be adequate to 

design an in-depth and exhaustive set of test requirements even if it involves a high cost 

in terms of money or effort. In other cases, however, there might be constraints 

hindering the definition the tests. When this happens, the tester is forced to select a less 

exhaustive testing technique. Hence, in each of the two aforementioned testing levels 

we will make design decisions in order to obtain a reasonable cost-effective set of test 

requirements. 

Finally, we must also bear in mind that some of the identified test requirements 

may represent non-feasible situations regarding the SLA-aware service based 

application. In this case and based on the syntax and semantics of the SLA as well as 

the business logic of the SBA, we will define specific constraints with the aim at 

avoiding the obtaining of non-feasible test requirements. These constrains will be 

presented in Section 5.3.3 of this dissertation. 

3.2.3 Generation of test cases 

The objective of this activity is the derivation of a set of test cases that cover all 

the previously identified test requirements. A test case represents a scenario of the SBA 

that exercises one or more of the previously identified test requirements. The goal of 

generating the test cases is achieved by means of suitably selecting a set of test 

requirements to be covered, considering that the more test requirements that can be 

covered in a single test case, the fewer test cases will be needed in order to cover all the 



Chapter 3: SLA Testing Framework  62 

requirements. Hence, we need to get a good balance between covering too many and too 

few test requirements in each test case. 

The generation of the test cases depends on the way we have previously identified 

the set of Primitive and Combined Test Requirements. In the Guarantee Term Testing 

Level described in Section 3.2.2.1, a Combined TR involves the evaluation of all the 

guarantee terms specified in the SLA. Hence, such Combined TR represents a complete 

specific scenario of the SBA. This implies that a test case will generally cover only one 

Combined TR although it is also possible to design test cases that cover more than one 

Combined TR. In Figure 3.6 we have extended the diagram of Figure 3.4 in order to 

represent the relation between the Combined TRs and the test cases in the first of the 

testing levels. 

 

Figure 3.6: Relation Combined TR – Test Cases in the Guarantee Term Testing Level. 



Chapter 3: SLA Testing Framework  63 

In the Compositor Testing Level described in Section 3.2.2.2, a Combined TR 

represents a scenario that only affects a specific part of the SLA (the guarantee terms 

involved in a compositor). In this case, a test case will usually cover one Combined TR 

for each of the compositors to represent a complete scenario related to the SBA. Here 

again, it is also possible to generate a test case in which different scenarios are 

sequentially exercised. In Figure 3.7 we have extended the diagram of Figure 3.5 to 

represent the relation between the Combined TRs and the test cases in this second 

testing level. 

 

Figure 3.7: Relation Combined TR – Test Cases in the Compositor Testing Level. 

The problem of the non-feasible situations arises again. Despite of having 

previously identified only feasible test requirements to be exercised, it does not mean 

that the combination of such test requirements constitute a scenario that makes sense. 

Typically, there will be Combined TRs that are incompatible to be combined within the 



Chapter 3: SLA Testing Framework  64 

same test case due to the specification of the SLA or even the SBA so this task of 

generating the test cases by combining the Combined TRs is not definitely trivial and 

must be carefully performed. To address this issue, we have considered representing 

constraints that allow determining which Combined Test Requirements are mutually 

incompatible. 

It is worth mentioning that both the identification of test requirements and the 

generation of test cases are often a tedious task so it is desirable to automate them as 

much as possible. In Chapter 7 of this dissertation we will describe SLACT (SLA 

Combinatorial Testing), a tool we have implemented to automate the identification of 

test requirements as well as the generation of test cases. 

3.2.4 Execution of test cases 

The execution of the derived test cases allows exercising the set of test 

requirements. Such executions are analyzed bearing in mind the SLA evaluation in 

order to determine whether the SBA behaves as expected. In spite of the fact that the 

execution of test cases is out of the scope of this PhD, below we outline some issues 

that need to be considered in order to complete the testing process described in SLATF. 

First of all, it may be necessary to define a strategy in order to decide which test 

cases will be executed as well as the order of such executions. This is due to some 

factors that may hinder the testing process such as cost, excessive deadline pressure and 

so on. In these situations the test cases that are more likely to find a problem in the SBA 

should be executed first. Likewise, the test cases that aim at detecting more critical 

problems in the SBA should have more priority than the others. Aligned with this, a 

specific characteristic of SOA based systems needs to be considered in the sense that the 

tester does not probably have unlimited and full access to the services but executions 

usually imply an economic cost. Hence, the necessity to define a priority about the 

execution of the test cases and their priority becomes more critical. 

A significant issue that also needs to be considered is whether all the test cases are 

executable or not. This is really important in software testing but even more in SOA 

systems because many times the tester does not have full control of the services or the 

testing environment so some test cases may become non-testable. In case he does not 



Chapter 3: SLA Testing Framework  65 

have the capacity to configure the behaviour of the services properly regarding the 

specification of the test cases, he could need to implement mocks in order to mimic 

such behaviour. 

3.3 Summary 

In this chapter we have presented SLATF, a framework that allows testing SLA-

aware service based applications. This framework involves different activities that need 

to be carried out, taking the specification of an SLA using the WS-Agreement standard 

language as the test basis. 

The evaluation of the SLA is an orthogonal activity that affects all the testing 

process involved in the SLATF framework. All the details about such evaluation are 

fully addressed in Chapter 4 of this dissertation. This evaluation is a key issue in this 

research in the sense that it allows deciding whether the conditions of the SLA are being 

fulfilled or not and, furthermore, it contributes to the design of the tests. 

The rest of the activities involved in SLATF are related to the design and 

execution of the tests. As the SLA contains both guarantee terms and compositors, two 

different testing levels are considered regarding the information of the SLA that is taken 

as the test basis. In each of these testing levels we will use specific testing techniques in 

order to identify and combine the test requirements, which can be of two different types: 

Primitive and Combined. The development of the testing process in each of the two 

testing levels is described in Chapter 5 and Chapter 6 of this dissertation respectively. 

Finally, the automation of the aforementioned activities is addressed by 

implementing SLACT tool, which is fully described in Chapter 7 of this dissertation. 



66 

Chapter 4 
 

 SLA Evaluation 

 

When code and comments disagree, 
both are probably wrong. 

Norm Schryer 
Computer scientist 

 

 

 

 

 

 

 

his chapter outlines the importance of the evaluation of SLAs in order to design 

tests as well as monitor the behavior of the service-based applications and detect 

derived problems. It introduces a four-valued logic that allows unequivocally evaluating 

the SLA and its internal elements. 

  

T 



Chapter 4: SLA Evaluation  67 

4.1 Introduction 

In the SLATF framework we have presented in Chapter 3 to test SLA-aware 

service based applications, the evaluation of an SLA is a key issue that requires 

determining whether the agreed conditions specified in the guarantee terms are being 

fulfilled or violated and contributes to design the tests. The decision about the 

evaluation is made by means of observing the behaviour of the constituent services of 

the SBA during their executions, collecting relevant data concerning the SLA and 

checking the specification of such SLA by analyzing the collected data. 

Typically, the evaluation of an SLA as well as the evaluation of each guarantee 

term is performed in a dichotomic way. This means that it could be depicted with a two-

way traffic light indicator with two colours: green if the SLA is fulfilled and red if the 

SLA is violated. For example, the dashboard represented in Figure 4.1 shows the results 

of the evaluation of an SLA that is associated to a SBA that implements the business of 

a Travel Agency. 

 

Figure 4.1: Dashboard with a two-way evaluation. 

The Travel Agency uses a web service composition that invokes different services 

depending on the client’s requests. The agency allows booking different transports such 

as flights or private cars as well as accommodation in hotels. Furthermore, the agency 

has different types of clients, which lead to specific offers or discounts. 

The SLA represented in the figure contains three guarantee terms that are 

specified in the WS-Agreement standard language. As we introduced in Section 2.4, a 



Chapter 4: SLA Evaluation  68 

guarantee term is specified by means of the internal elements: Scope, Qualifying 

Condition and Service Level Objective. These guarantee terms are composed in this 

SLA as follows: 

                                         

The evaluation of this SLA is equivalent to the following logical formula: 

                                           

This evaluation is performed by analyzing the information gathered from the 

monitors during the services executions. The green lights become red when a problem 

concerning the SLA has been detected. The evaluation of each guarantee term is 

depicted in the first three rows of the figure whereas the evaluation of the SLA as a 

whole is depicted in the last row. As can be seen, the aforementioned logical formula 

shows the direct relation between the evaluation of the guarantee terms and the 

evaluation of the SLA. The violation of GT1 leads to the violation of the SLA. 

Furthermore, this SLA is also violated when both guarantee terms GT2 and GT3 are 

being violated at the same time. 

At this stage, the two typical values (Fulfilled / Violated) used in the dashboard of 

Figure 4.1 may not be enough to represent all the potential situations derived from the 

evaluation of an SLA and its guarantee terms that need to be tested. For example, there 

is a guarantee term that regulates the conditions that must be satisfied when the method 

getDiscount of the SBA is executed. This method provides the discount to be applied to 

the clients of the agency when booking its products. The method has been successfully 

executed during the monitoring period so the green led would be therefore permanently 

lighted in the dashboard. However and from a testing point of view, we do not have 

knowledge about how the SBA will behave when the method getDiscount is not 

executed. This means that despite the non-execution of getDiscount, the SBA has to 

properly manage the situation and continue arranging the client’s order. Hence, it is 

necessary to design tests that aim at detecting potential problems in the SBA when 

getDiscount is not executed. In this context, a new evaluation value would be necessary 

to represent the aforementioned scenario in the dashboard. 



Chapter 4: SLA Evaluation  69 

Likewise, we have to consider the situation that arises when evaluating the 

guarantee term GT2. This term regulates the conditions that must be satisfied when the 

service bookFlight is invoked by a VIP client. This means that the Qualifying Condition 

of the term (clientType = VIP) determines whether such term is relevant during the 

evaluation of the SLA or not. As can be seen in the figure, the service bookFlight has 

been successfully executed by VIP clients except three gaps in which the term has been 

violated. However, we have no information about how the SBA will behave when a 

non-VIP client tries to book a flight. Hence, we need to exercise such situation with 

specific tests in order to detect any potential problem regarding the booking of a flight 

by a non-VIP client. Here again, this scenario cannot be represented in the dashboard 

with only two different colours and a new evaluation value would be necessary. 

In addition to the potential values the SLA can take, the evaluation of such SLA 

depends on the evaluation of its guarantee terms and, consequently, on the logical 

relationships of such terms, as we introduced in Chapter 3. Hence, we identify two 

different levels regarding the evaluation of the SLAs: 

 Level I: Individual Guarantee Terms. 

 Level II: Compositor (logical relationships between Guarantee Terms) 

elements. 

The first level involves making a decision about the fulfilment of each individual 

guarantee term represented in the SLA. The second level involves considering sets of 

guarantee terms logically grouped by compositor elements and determining whether 

these compositors are being fulfilled or not. Likewise, the evaluation of the guarantee 

terms allows evaluating the compositor elements and, recursively, the evaluation of all 

the compositors allows determining the final evaluation of the whole SLA. For 

example, the evaluation of GT2 and GT3 represented in Figure 4.1 allows evaluating 

the OneOrMore compositor. Likewise, the evaluation of such compositor and GT1 

allows evaluating the All compositor and, consequently, the SLA. 

In this section we propose a logic that allows evaluating both individual guarantee 

terms and compositors, from a testing point of view, including the potential situations 



Chapter 4: SLA Evaluation  70 

derived from the decision about whether the SLA is being fulfilled or not. The use of 

this logic in the SLATF framework described in Section 3.2 tackles two different but 

important objectives in the sense that it allows: on the one hand, the obtaining of the 

expected evaluation value of the SLA and its internal elements (including both 

Guarantee Terms and Compositors). On the other hand, it also allows guiding the 

identification of test requirements through the application of coverage criteria to the 

guarantee terms and compositor elements specified in the SLA. 

4.2 Evaluation of Guarantee Terms 

In this section we focus on each individual guarantee term in order to address the 

evaluation of the SLA. To deal with this issue, we firstly introduce the concept of 

evaluation value and we anticipate the potential evaluation values that can be taken: 

Definition 2: An evaluation value is the output provided by the mechanism in charge of 

making a decision about the fulfilment of a guarantee term, a compositor or an SLA. 

There are four different evaluation values: (F) Fulfilled, (V) Violated, (N) Not 

Determined and (I) Inapplicable. 

This definition means that an element of the SLA denoted by t can be evaluated 

with those four evaluation values using a function ev(t): 

                                                         

As we have outlined in Section 2.4, a guarantee term in WS-Agreement is 

composed of the internal elements Scope, Qualifying Condition (QC) and Service Level 

Objective (SLO). These elements and their evaluation are represented in Figure 4.2. 

According to the semantics of such elements, it is the Qualifying Condition 

element who determines whether the guarantee term is relevant and requires to be 

evaluated. This means that if the QC is not satisfied, the guarantee term does not have to 

be taken into account during the evaluation process. If the QC is satisfied, then we 

check whether the service specified in the Scope is executed and, consequently, the 

fulfillment of the Service Level Objective (SLO). 

 



Chapter 4: SLA Evaluation  71 

 

Figure 4.2: SLA evaluation values. 

Bearing Figure 4.2 in mind, a guarantee term specified in WS-Agreement is 

evaluated with the two classical evaluation values as follows: 

 FULFILLED - if and only if the methods of the services specified in the Scope 

have been executed, the Qualifying Condition has been met and the Service 

Level Objective has been satisfied. 

 VIOLATED - if and only if the methods of the services specified in the Scope 

have been executed, the Qualifying Condition has been met and the Service 

Level Objective has not been satisfied. 

In addition to these two evaluation values, a third potential value named Not 

Determined that a term can take after its evaluation can be identified and arises when 

the service associated to the term has not been invoked. The interpretation of this value 

according to WS-Agreement is that, at the moment of the evaluation, no activity 

regarding the term has happened yet or no activity is currently happening that allows 

evaluating whether the term is fulfilled or violated. Actually, WS-Agreement identifies 

these three situations as the potential runtime states of an SLA. Hence, a guarantee term 

is evaluated as: 



Chapter 4: SLA Evaluation  72 

 NOT DETERMINED - if and only if the methods of the services specified in 

the Scope have not been executed and the Qualifying Condition has been met. 

However, apart from these three values outlined in WS-Agreement, we have 

identified another specific situation where the term can be found after its evaluation and 

which has not been explicitly identified in WS-Agreement. This new situations arises 

when the Qualifying Condition of the term is not met during the execution of services. 

In this case, the Guarantee Term becomes invalid and it must not be taken into account 

for the purpose of the evaluation of the SLA so we say that a Guarantee Term is 

evaluated as: 

 INAPPLICABLE - if and only if the Qualifying Condition has not been 

satisfied. 

In other fields within the software engineering, it has been necessary to extend the 

typical binary logic (true / false) to deal with similar situations. For example, in the 

context of Database Management Systems (DBMS) the interpretation of the missing 

information is considered by means of a third value (null), which has also been broadly 

used in the scope of database applications testing [8][29][49][131]. In our case, the use 

of these two additional evaluation values (Not Determined and Inapplicable) could 

represent an analogous interpretation of the treatment of the null value in DBMS and 

leads to a four-valued logic to evaluate SLAs. 

Example of guarantee term in WS-Agreement and its evaluation 

Figure 4.3 shows an example of a guarantee term specified in WS-Agreement and 

its evaluation according to the diagram depicted in Figure 4.2. 

This guarantee term affects the method getDiscount of the service WSBookFlight, 

which is part of the web service composition implemented by the Travel Agency, as we 

introduced in Section 4.1 of this chapter. In this case, the client contacts the agency in 

order to book a flight. To be more specific, the aforementioned method must provide 

the discount to be applied in the transaction. Regarding the evaluation of the term, if the 

method getDiscount is invoked in order to provide a discount for a VIP client, the 

response time will determine whether the term is evaluated as Fulfilled or Violated (left 



Chapter 4: SLA Evaluation  73 

part of Figure 4.3). In addition to this, if the method getDiscount is not executed during 

the web service composition when a VIP client tries to book a flight, we do not have 

information yet to say that the guarantee term has been satisfied or violated so, 

according to the four-valued logic, this term is evaluated as Not Determined (central 

part of Figure 4.3). Finally, in case the operation is performed by a non-VIP client, then 

the Qualifying Condition is not satisfied so the guarantee term becomes irrelevant for 

the SLA evaluation and, according to this logic, the term is evaluated as Inapplicable 

(right part of Figure 4.3). 

<GuaranteeTerm> 

    Name = “GT_VIP_Client” Obligated = “ServiceProvider”  

    <Scope> 

        serviceName = “WSBookFlight” method = “getDiscount” 

   </Scope> 

   <QualifyingCondition> 

        clientType = “VIP” 

   </QualifyingCondition> 

   <ServiceLevelObjective> 

        response time < 3 

   </ServiceLevelObjective> 

</GuaranteeTerm> 

 

Figure 4.3: Evaluation of a Guarantee Term in WS-Agreement. 



Chapter 4: SLA Evaluation  74 

4.3 Evaluation of Compositor elements 

After having described a systematic way to evaluate each individual SLA 

Guarantee Term, in this section we focus on the logical combinations of such terms. We 

have previously outlined in Section 2.4 that an SLA specified in WS-Agreement 

represents a hierarchical structure of guarantee terms, logically combined using the 

specific Compositor Elements All, OneOrMore and ExactlyOne, which are equivalent to 

the AND, OR and XOR logical operators, respectively. Thus, we complete the logic that 

allows evaluating the individual Guarantee Terms in order to unequivocally determine 

the evaluation value of these compositors.  

According to the semantics of each compositor, in the following subsections we 

define how the compositor elements will be evaluated. 

4.3.1 All Compositor 

The All compositor in WS-Agreement is the equivalent to the classical AND 

logical operator in the sense that it requires that all its guarantee terms must be fulfilled. 

Hence, an All compositor element with multiple Guarantee Terms is evaluated as 

follows: 

         
         

 Fulfilled if  

                      

                                       

 Violated if  

                  

 Not Determined if  

                                             

 Inapplicable if  

                   



Chapter 4: SLA Evaluation  75 

The interpretation of this evaluation outcome is that an All compositor element 

with n guarantee terms is evaluated as Fulfilled if at least one of its guarantee terms has 

been evaluated as Fulfilled and the rest of such terms have been evaluated as Fulfilled 

or Inapplicable. The same compositor is evaluated as Violated when there is at least one 

guarantee term that has been evaluated as Violated. The All compositor is evaluated as 

Not Determined if there is at least one guarantee term evaluated as Not Determined and 

none of the rest of the guarantee terms has been evaluated as Violated. Finally, the All 

compositor is evaluated as Inapplicable if all its guarantee terms have been evaluated as 

Inapplicable. 

In Table 4.1 we represent the evaluation value of an All compositor with three 

guarantee terms. In the first three columns we represent the multiple combinations of 

the evaluation values of such guarantee terms. In the last column we represent the 

evaluation value of the compositor (for example, if GT1 is evaluated as Fulfilled, GT2 

is evaluated as Inapplicable and GT3 is evaluated as Violated, the All compositor is 

evaluated as Violated). The number of potential combinations is 64 (4
n
, being n the 

number of guarantee terms in the compositor). 

 



Chapter 4: SLA Evaluation  76 

GT1 GT2 GT3 All 

F F F F 
F F V V 
F F N N 
F F I F 
F V F V 
F V V V 
F V N V 
F V I V 
F N F N 
F N V V 
F N N N 
F N I N 
F I F F 
F I V V 
F I N N 
F I I F 
V F F V 
V F V V 
V F N V 
V F I V 
V V F V 
V V V V 
V V N V 
V V I V 
V N F V 
V N V V 
V N N V 
V N I V 
V I F V 
V I V V 
V I N V 
V I I V 

 

GT1 GT2 GT3 All 

N F F N 
N F V V 
N F N N 
N F I N 
N V F V 
N V V V 
N V N V 
N V I V 
N N F N 
N N V V 
N N N N 
N N I N 
N I F N 
N I V V 
N I N N 
N I I N 
I F F F 
I F V V 
I F N N 
I F I F 
I V F V 
I V V V 
I V N V 
I V I V 
I N F N 
I N V V 
I N N N 
I N I N 
I I F F 
I I V V 
I I N N 
I I I I 

Table 4.1: Truth table of an All compositor with three guarantee terms. 

  



Chapter 4: SLA Evaluation  77 

4.3.2 OneOrMore Compositor 

Likewise, an OneOrMore is the equivalent to the classical OR logical operator in 

the sense that it requires that at least one guarantee term must be fulfilled. Hence, an 

OneOrMore compositor element with multiple Guarantee Terms is evaluated as 

follows: 

               
        

 Fulfilled if  

                  

 Violated if  

                     

                                        

 Not Determined if  

                                             

 Inapplicable if  

                   

In Table 4.2 we represent the evaluation value of an OneOrMore compositor with 

three guarantee terms. In the first three columns we represent the multiple combinations 

of the evaluation values of such guarantee terms. In the last column we represent the 

evaluation value of the compositor (for example, if GT1 is evaluated as Inapplicable, 

GT2 is evaluated as Fulfilled and GT3 is evaluated as Not Determined, the OneOrMore 

compositor is evaluated as Fulfilled). 



Chapter 4: SLA Evaluation  78 

GT1 GT2 GT3 OneOrMore 

F F F F 
F F V F 
F F N F 
F F I F 
F V F F 
F V V F 
F V N F 
F V I F 
F N F F 
F N V F 
F N N F 
F N I F 
F I F F 
F I V F 
F I N F 
F I I F 
V F F F 
V F V F 
V F N F 
V F I F 
V V F F 
V V V V 
V V N N 
V V I V 
V N F F 
V N V N 
V N N N 
V N I N 
V I F F 
V I V V 
V I N N 
V I I V 

 

 

GT1 GT2 GT3 OneOrMore 

N F F F 
N F V F 
N F N F 
N F I F 
N V F F 
N V V N 
N V N N 
N V I N 
N N F F 
N N V V 
N N N N 
N N I N 
N I F F 
N I V N 
N I N N 
N I I N 
I F F F 
I F V F 
I F N F 
I F I F 
I V F F 
I V V V 
I V N N 
I V I V 
I N F F 
I N V N 
I N N N 
I N I N 
I I F F 
I I V V 
I I N N 
I I I I 

Table 4.2: Truth table of an OneOrMore compositor with three guarantee terms 

  



Chapter 4: SLA Evaluation  79 

4.3.3 ExactlyOne Compositor 

Finally, an ExactlyOne compositor element is the equivalent to the XOR logical 

operator. This means that only one guarantee term must be fulfilled. Hence, an 

ExactlyOne compositor with multiple Guarantee Terms is evaluated as follows: 

                
        

 Fulfilled if  

                     

                                     

 Violated if  

                     

                                    

 Not Determined if  

                      

                                    

 Inapplicable if  

                   

In Table 4.3 we represent the evaluation value of an ExactlyOne compositor with 

three guarantee terms. In the first three columns we represent the multiple combinations 

of the evaluation values of such guarantee terms. In the last column we represent the 

evaluation value of the compositor (for example, if GT1 is evaluated as Fulfilled, GT2 

is evaluated as Inapplicable and GT3 is evaluated as Fulfilled, the ExactlyOne 

compositor is evaluated as Violated). 



Chapter 4: SLA Evaluation  80 

GT1 GT2 GT3 ExactlyOne 

F F F V 
F F V V 
F F N V 
F F I V 
F V F V 
F V V F 
F V N N 
F V I F 
F N F V 
F N V N 
F N N N 
F N I N 
F I F V 
F I V F 
F I N N 
F I I F 
V F F V 
V F V F 
V F N N 
V F I F 
V V F F 
V V V V 
V V N N 
V V I V 
V N F N 
V N V N 
V N N N 
V N I N 
V I F F 
V I V V 
V I N N 
V I I V 

 

 

GT1 GT2 GT3 ExactlyOne 

N F F V 
N F V N 
N F N N 
N F I N 
N V F N 
N V V N 
N V N N 
N V I N 
N N F N 
N N V N 
N N N N 
N N I N 
N I F N 
N I V N 
N I N N 
N I I N 
I F F V 
I F V F 
I F N N 
I F I F 
I V F F 
I V V V 
I V N N 
I V I V 
I N F N 
I N V N 
I N N N 
I N I N 
I I F F 
I I V V 
I I N N 
I I I I 

Table 4.3: Truth table of an ExactlyOne compositor with three guarantee terms. 

  



Chapter 4: SLA Evaluation  81 

4.4 Recursive Evaluation 

An SLA represents a hierarchical structure that contains compositor elements and 

guarantee terms. Moreover, the compositors can be composed of guarantee terms or 

other compositors. Hence, the evaluation of the SLA is performed by means of 

recursively evaluating its internal elements, taking both guarantee terms and 

compositors into account. In addition to this, it is worth mentioning that a WS-

Agreement always specifies the content of the whole agreement under an All external 

compositor element so the evaluation of the SLA would be equivalent to the evaluation 

of such most external All element. 

Figure 4.4 shows an example of this recursive evaluation. The SLA depicted in 

the figure contains three compositors and six guarantee terms under the most external 

All compositor. All of these elements are colored depending on their evaluation value 

(green for Fulfilled, red for Violated, grey for Not Determined and yellow for 

Inapplicable).  

 

Figure 4.4: Example of recursive evaluation. 

In the left part of the figure, the All compositor is evaluated as Violated because 

one of its guarantee terms (GT3) is evaluated as Violated. In the right part of the figure, 

the ExactlyOne compositor is evaluated as Fulfilled because only one of its guarantee 

terms is Fulfilled. Likewise, the OneOrMore compositor is evaluated as Fulfilled 



Chapter 4: SLA Evaluation  82 

because, at least, one of its internal elements (the ExactlyOne compositor, in this case) 

is evaluated as Fulfilled although the guarantee term GT4 is evaluated as Not 

Determined. The evaluation values of these elements determine that the most external 

All compositor and, consequently the whole SLA, is evaluated as Violated. 

4.5 Summary 

In this chapter we have presented the logic we have devised in order to evaluate 

both the individual Guarantee Terms of an SLA specified in the WS-Agreement 

standard language and their relationships by means of using the Compositor elements. 

In the beginning of the chapter we have described why we consider that a binary 

logic with its classical values (true / false or its equivalent Fulfilled / Violated) is not 

enough to deal with all the potential situations derived from the evaluation of the SLA 

when the objective is to design tests. 

After, we have defined a four-valued logic that allow us to address different 

activities involved in the SLATF framework presented in Chapter 3: on the one hand, 

the obtaining of the expected evaluation value of the SLA and, on the other hand, 

guiding the identification of test requirements and generation of test cases from the 

specification of the SLA. 

In the following Chapter 5 and Chapter 6 we will describe the use of the proposed 

logic to identify test requirements taken the specification of the SLA into account. 

 



83 

Chapter 5 
 

 Guarantee Term Testing Level 

 

Research is to see what everybody else has seen, 
and to think what nobody else has though. 

Albert Szent-Gyorgyi, 1893-1986 
Hungarian Biochemist, 1937 Nobel Prize for Medicine 

 

 

 

 

 

 

 

his chapter addresses the generation of tests considering the information 

contained in the individual SLA guarantee terms. It firstly outlines how to 

identify test requirements by using the evaluation logic presented in the previous 

chapter. After that, it describes how these test requirements are combined by tailoring 

different testing techniques, including the Classification Tree Method (CTM) and 

combinatorial testing. Finally it specifies a set of rules that allow avoiding the 

generation of non-feasible tests. 

  

T 



Chapter 5: Guarantee Term Testing Level  84 

5.1 Introduction 

In Chapter 3 we introduced SLATF, a framework that aims at testing SLA-aware 

service based applications. This framework takes the specification of the SLA as the test 

basis, distinguishing between two different testing levels depending on whether we 

analyze the individual guarantee terms or the complete logical structure of the SLA. As 

part of SLATF, in Chapter 4 we defined the logic that allows evaluating the elements of 

the SLA. In this chapter we focus on the first of the testing levels by considering the 

specification of the guarantee terms in WS-Agreement in order to identify the test 

requirements and derive the test cases. 

To address this issue different tasks, which are the realization of the activities 

defined in SLATF, must be carried out. First of all, we have to identify the set of 

situations related to the SLA that need to be tested (Primitive Test Requirements). This 

identification is based on the syntax and semantics of each guarantee term and must take 

the evaluation logic described in Section 4.2 into account, trying to avoid the obtaining 

of situations that cannot be exercised. 

Once the test requirements have been obtained, we have to combine them in order 

to derive the Combined Test Requirements. Such Combined TRs will later be exercised 

by means of the generation of test cases. 

This process may present two main problems: 

1. The obtaining of an unmanageable number of Combined Test Requirements. 

2. The generation of invalid Combined TRs due to the non-feasible combinations 

of specific Primitive TRs. 

We deal with the first of these problems by applying standard combinatorial 

testing techniques, which allow grading the intensity of the tests. Depending on the 

technique applied, we will obtain a specific coverage of the Primitive TRs, considering 

that the stronger coverage we expect, the higher number of Combined TRs will be 

obtained. 



Chapter 5: Guarantee Term Testing Level  85 

The second of the aforementioned problems is addressed by means of the 

definition of specific constraints to guide the combinations of the test requirements. 

These constraints may be obtained by analyzing the specification of the SLA and any 

knowledge regarding the behaviour of the service based application. By considering 

these constraints, we assure that the Combined TRs obtained do not present non-feasible 

combinations of Primitive TRs. 

The identification and combination of the test requirements is a laborious as well 

as a tedious task so we have implemented SLACT, a tool that automates each of the 

tasks presented along this chapter. The details of such tool are described in Chapter 7. 

5.2 Identification of Primitive Test Requirements 

The first activity of SLATF involves the identification of test requirements by 

analyzing the information contained in the SLA. To address this identification, we make 

use of the four-valued logic. To be more specific, in this testing level we are considering 

the specification of the individual guarantee terms of the SLA as the test basis so we 

focus on the logic defined in Section 4.2 to evaluate a guarantee term. According to 

such logic, there are four different values of evaluation for a guarantee term. At first 

glance, we could consider that it is necessary to identify four different situations with 

the aim at achieving full coverage while evaluating the guarantee term. However, the 

internal syntactic structure and the semantics of a guarantee term specified in the WS-

Agreement standard language require a more complete coverage criterion to represent 

all the potential situations that are interesting to observe or exercise from a testing point 

of view. 

At this stage, it is important to distinguish between the concepts of evaluation 

value and test requirement. On the one hand, we described evaluation value in Chapter 

4 (Definition 2) as the output provided by the mechanism that makes the decision about 

the fulfilment of a guarantee term, a compositor or an SLA. Such evaluation can take 

four different values: Fulfilled, Violated, Inapplicable and Not Determined. On the other 

hand, we described test requirement in Chapter 3 (Definition 1) as a situation that 

involves the evaluation of one or more guarantee terms and the exercitation of specific 

conditions. 



Chapter 5: Guarantee Term Testing Level  86 

In this context and during the exercitation of the constituent conditions of the test 

requirement, the four-valued logic defined in Chapter 4 is used to provide the final 

evaluation value for the test requirement. In Figure 5.1, we show an example of a 

Guarantee Term specified in WS-Agreement of the Travel Agency SBA, where a test 

requirement is identified when such guarantee term takes the Violated evaluation value. 

 

Figure 5.1: Relation Test Requirement – Evaluation Value. 

This test requirement exercises the situation that involves the following 

conditions: the method getFlightPrice from the service WSTravelAgency specified in 

the Scope is executed, the invocation is performed by a Premium client so the 

Qualifying Condition is met and, finally, the response time is higher than 180 seconds 

so the Service Level Objective is not satisfied. Hence, the evaluation value for the 

GT_Flight_Premium guarantee term is Violated according to the aforementioned 

conditions. 

5.2.1 General Case 

Keeping the definition of an evaluation value in mind, a guarantee term may be 

evaluated with four different values but it may involve exercising different situations. 

From a testing point of view and according to the syntax of a Guarantee Term, these 

situations arise when checking the conditions specified in the internal elements of such 

guarantee term: Scope, Qualifying Condition and Service Level Objective. These 

elements are represented using a decision tree in Figure 5.2. 



Chapter 5: Guarantee Term Testing Level  87 

 

Figure 5.2: Test Requirements from a Guarantee Term. 

First of all, we check whether the methods of the services specified in the Scope 

element have been executed or not (the verification of this condition is performed using 

satisfied/unsatisfied as outputs). After that, we check whether the Qualifying Condition 

of the term is satisfied or not. This condition determines whether the guarantee term 

becomes relevant or irrelevant during the evaluation process. Finally, we check whether 

the guarantee specified in the Service Level Objective is satisfied or not. 

If we apply the multiple combinations of these three internal elements of a 

Guarantee Term, we will obtain 8 situations to test. However, as can be seen in the 

figure, only six situations are feasible according to the semantic meaning of such 

internal elements. The other two non-feasible situations relate to cases where the 

methods of the services specified in the Scope have not been executed so it is 

impossible to check whether the Service Level Objective has been satisfied or not (see 

right branch of the figure). 



Chapter 5: Guarantee Term Testing Level  88 

The feasible combinations of the internal elements of a guarantee term lead to the 

identification of six Primitive Test Requirements for such guarantee term (represented 

in the figure by PTR1-PTR6). In the left branch of the figure, four Primitive TRs 

identified as PTR1-PTR4 are obtained when the methods of the services specified in the 

Scope are executed: 

PTR1 The methods of the services are invoked, the Qualifying Condition is 

satisfied and the Service Level Objective is satisfied (GT evaluated as 

Fulfilled). 

PTR2 The methods of the services are invoked, the Qualifying Condition is 

satisfied and the Service Level Objective is unsatisfied (GT evaluated as 

Violated). 

PTR3 The methods of the services are invoked, the Qualifying Condition is 

unsatisfied and the Service Level Objective is satisfied (GT evaluated as 

Inapplicable). 

PTR4 The methods of the services are invoked, the Qualifying Condition is 

unsatisfied and the Service Level Objective is unsatisfied (GT evaluated as 

Inapplicable). 

Apart from these four Primitive TRs, we also consider those situations where the 

methods of the services specified in the Scope element have not been invoked at the 

time of the evaluation (right branch of Figure 5.2). Namely, we include what happens 

when the Qualifying Condition is satisfied / unsatisfied while the methods of the 

services are not executed. For each Guarantee Term, other two test requirements 

identified as PTR5-PTR6 are identified as well. 

PTR5 The methods of the services are not executed while the Qualifying 

Condition is satisfied (GT evaluated as Not Determined). 

PTR6 The methods of the services are not executed while the Qualifying 

Condition is unsatisfied (GT evaluated as Inapplicable). 



Chapter 5: Guarantee Term Testing Level  89 

5.2.2 Particular Cases 

In addition to the general case, we have to deal with an important issue regarding 

the identification of the Primitive Test Requirements. Depending on the internal syntax 

and semantics of the Guarantee Terms of WS-Agreement, we have to consider two 

particular cases where not all the six Primitive TRs are identified. These two cases are 

described below. 

5.2.2.1 PC1: Guarantee terms without Qualifying Condition 

The first particular case (PC1) arises when the Guarantee Term has no Qualifying 

Condition associated. The Qualifying Condition determines whether a term is relevant 

and it must be considered during the evaluation process or not. In this case and given 

that there is no Qualifying Condition the term is always relevant so only three Primitive 

Test Requirements (PTR1, PTR2 and PTR5) are identified. Furthermore, the 

specification of the Primitive Test Requirements PTR1 and PTR2 must be adapted as 

“The methods of the services are invoked and the Service Level Objective is satisfied / 

unsatisfied” respectively and test requirement PTR5 as “The methods of the services are 

not executed (GT evaluated as Not Determined)”. In Figure 5.3 the application of this 

particular case is represented. At the top of the figure a guarantee term without 

Qualifying Condition is specified in WS-Agreement whereas the identified Primitive 

Test Requirements are represented at the bottom. 

<GuaranteeTerm> 

    Name = “GT_BookCar” Obligated = “ServiceProvider”  

    <Scope> 

        serviceName = “TravelAgency” method = “bookCar” 

   </Scope> 

   <ServiceLevelObjective> 

        responseTime < 50  

   </ServiceLevelObjective> 

</GuaranteeTerm> 



Chapter 5: Guarantee Term Testing Level  90 

 

Figure 5.3: Particular Case 1: Guarantee Term without Qualifying Condition. 

5.2.2.2 PC2: Qualifying Condition is an assertion over service 
attributes 

WS-Agreement states in its specification that the Qualifying Condition is an 

assertion over service attributes and/or external factors. In the former case, for example, 

this condition may make reference to an input parameter or condition of the service 

while in the latter it can represent a specific state of the SUT. The second particular case 

(PC2) arises when the Qualifying Condition of the Guarantee Term is an assertion over 

the service attributes. This case occurs because the semantics of the Qualifying 

Condition also affect the identification of the test requirements. In this case, it is 

impossible to check the fulfilment of the QC if the methods of the services have not 

been executed so Primitive Test Requirements PTR5 and PTR6 will not be identified. In 

such case, test requirements PTR5 and PTR6 are joined in only one as “The methods of 

the services are not executed (GT evaluated as Not Determined)” so we would obtain 

one Primitive Test Requirement less than in the general case. In Figure 5.4 the 

application of this second particular case is represented. At the top of the figure a 



Chapter 5: Guarantee Term Testing Level  91 

guarantee term where the Qualifying Condition is an assertion over service attributes is 

depicted whereas the identified Primitive Test Requirements are represented at the 

bottom of such figure. 

<GuaranteeTerm> 

    Name = “clientPremium” Obligated = “ServiceProvider”  

    <Scope> 

         serviceName = “TravelAgency” method = “getPrice” 

   </Scope> 

   <QualifyingCondition> 

         clientType = Premium 

   </QualifyingCondition> 

   <ServiceLevelObjective> 

         responseTime < 10   

   </ServiceLevelObjective> 

</GuaranteeTerm> 

 

Figure 5.4: Particular Case 2: the Qualifying Condition is an assertion over the service 
attributes. 



Chapter 5: Guarantee Term Testing Level  92 

5.2.3 Categorization of Primitive Test Requirements 

The aforementioned identification of the Primitive TRs is related to different 

testing objectives. Likewise, we have defined a categorization of such test requirements 

so as the tester has the capability to decide which testing objectives are going to be 

prioritized. Hence, this categorization can be used to identify a reduced set of test 

requirements instead of obtaining the whole set of Primitive Test Requirements from 

the terms of the SLA. Furthermore, although it is not an issue to address in the scope of 

this dissertation, this categorization may also be used to establish monitoring objectives, 

making a decision about the characteristics of the SUT that are more interesting to be 

observed at runtime. 

Table 5.1 displays the categorization of test requirements according to their 

meaning or testing objective. The first column of this table shows the identifier of each 

category. The second column outlines the description of the testing objective of the 

category. Finally, last column lists the Primitive Test Requirements that are included in 

such category. 

Category Testing Objective Primitive TRs 

C1 Expected behaviour of the SUT PTR1 
C2 Test the behaviour after a term violation PTR2 
C3 Testing need indicator while monitoring PTR3, PTR4 

C3.1 Test the monitor to avoid false positives PTR4 
C4 Test the effects of not executing a service PTR5, PTR6 

Table 5.1: Primitive Test Requirements categorization. 

Category 1 (C1) makes reference to the situations where the execution of the SUT 

satisfies the conditions specified in the guarantee term of the SLA so such term is 

evaluated as Fulfilled. From a monitoring point of view, these situations represent the 

expected behaviour of the SUT so they should be continuously exercised if no problem 

arises during the period of time the system is being observed. Test requirement PTR1 

identified from the Guarantee Term is included in this category. 

Category 2 (C2) represents those test requirements that involve a violation of any 

of the terms included in the SLA so test requirement PTR2 is included in this category. 

Even when an SLA violation arises, the application must deliver an expected behaviour 



Chapter 5: Guarantee Term Testing Level  93 

despite of any detected problem. Thus, the application will have to manage the violation 

according to the business values such as penalties specified in the SLA. Furthermore, 

the monitoring system must be able to detect the problem and report it in a proper way 

as well as evaluating the term as Violated. These situations are very interesting in both 

testing and monitoring approaches because their detection allows analyzing the 

information collected from the monitor and making a decision about any corrective 

action in order to solve the problem and avoid future consequences. 

Category 3 (C3) includes those Primitive Test Requirements that represent 

executions where the services are invoked under circumstances that do not satisfy the 

Qualifying Condition so the terms become irrelevant and they must not be taken into 

account when evaluating the SLA. While monitoring, the systematic fulfilment of these 

requirements means that the application is continuously being executed under 

conditions that do not fulfil the QC so we do not have evidences about how the 

application would behave when the execution conditions change. Hence, they indicate 

the need of designing tests with the aim of checking whether the application is able to 

fulfil the GT in the future. Test requirements PTR3 and PTR4 are included in this 

category. 

Within this category, there is a subcategory 3.1 (C3.1) of requirements that can be 

used to check the behaviour of the monitoring system that gathers information from the 

executions of the services and makes a decision about the evaluation of the SLA. More 

specifically, these requirements aim at checking that this monitor does not detect a false 

positive, that is to say, a violation in a term when such term is not relevant for the 

evaluation of the SLA. Test requirement PTR4 is included in this category. They 

represent situations where both the Qualifying Condition and the Service Level 

Objective are not satisfied so the monitoring system must be aware that this term is 

inapplicable and it cannot be evaluated as violated. 

Category 4 (C4) includes those requirements where a service associated to a 

Guarantee Term is not executed so the term must be evaluated as Not Determined. The 

fulfilment of these requirements may represent a problem during the evaluation process 

because there is a lack of information to determine whether a term is being fulfilled or 

not. Due to this concern, these requirements are used to test whether the monitoring 



Chapter 5: Guarantee Term Testing Level  94 

system is able to perform the evaluation process properly even when a service (method) 

has not been executed. Furthermore, these tests may lead to detect problems not in the 

application but in the SLA specification itself so the agreement can be reviewed and 

updated accordingly. Test requirements PTR5 and PTR6 are included in this category. 

5.3 Combination of Test Requirements 

At this stage, we have already identified a set of Primitive Test Requirements 

from the specification of the SLA guarantee terms. In this section we address the 

generation of Combined Test Requirements by means of combining the previously 

identified Primitive TRs. We apply specific standard testing techniques to address such 

generation. This process of the combination of the Primitive TRs is designed to be 

carried out disregarding whether all the possible Primitive TRs have been identified or 

only a subset of them from any of the aforementioned categories. 

First of all, we hierarchically represent the relevant information of the SLA in an 

adequate model using the Classification Tree Method (CTM) [53]. The resultant tree 

will later be used to derive the Combined Test Requirements. As we have outlined in 

Section 2.2, this method is expressed in terms of classifications and classes so, in the 

context of this SLA Guarantee Term testing level, such classifications and classes that 

will be used to build the tree need to be identified. 

In order to build such tree, we use the hierarchy of the SLA specified in WS-

Agreement from the most external All compositor to the Guarantee Terms. We build a 

node of the tree for each compositor and for each Guarantee Term. After that, we 

construct the leaves of the tree by means of representing the Primitive Test 

Requirements that have been identified according to Section 5.2 for each guarantee 

term. Consequently, the classifications of the tree represent the guarantee terms whereas 

the classes represent the Primitive TRs to be tested for each guarantee term (see Figure 

5.5). 



Chapter 5: Guarantee Term Testing Level  95 

 

Figure 5.5: Structure of the Classification Tree. 

According to this construction, we finally obtain a tree that contains one 

classification for each Guarantee Term specified in the SLA and each classification can 

have 6, 3 or 5 classes (represented in the leaves of the tree) depending on the application 

of the general and the particular cases, described in Section 5.2. With this approach, 

both the classifications and the classes fulfil the restriction of being disjoint partitions 

with respect to the SLA. Note also that in order to be consistent with the notation of the 

testing techniques described in the ISO/IEC 29119 [60], in the rest of this chapter we 

will use the concept of class (CL) when we refer to the different Primitive Test 

Requirements that arise from the evaluation of a Guarantee Term. 

In Figure 5.6 we show an example of a tree constructed from the analysis of a 

WS-Agreement with three Guarantee Terms where no particular cases are applied to the 

first one, the particular case PC1 is applied to the Guarantee Term GT2 and the 

particular case PC2 is applied to the Guarantee Term GT3. The leaves that represent the 

classes are depicted with different colours depending on the evaluation value of the 

Guarantee Term during the exercitation of such class (green for Fulfilled, red for 

Violated, yellow for Inapplicable and grey for Not Determined). 



Chapter 5: Guarantee Term Testing Level  96 

 

Figure 5.6: Example of a Classification Tree from an SLA. 

5.3.1 Derivation of Combined TRs using Combinatorial Testing 

Once we have constructed the resultant classification tree, we can make a decision 

about the parts of the tree that need to be tested with more thoroughness. To address this 

issue, we apply combinatorial testing [30] in order to derive the Combined Test 

Requirements for those tree parts that need to be tested. Furthermore, we have to 

consider that when deriving the Combined TRs, not all the combinations of classes will 

be used because we have to deal with the two aforementioned potential problems. The 

first one is related to the number of derived Combined TRS, which can be 

unmanageable if the SLA is complex and the second problem affects the testability of 

specific Combined TRs because there are combinations that lead to non-feasible 

situations to be tested.  

To solve the first of these problems, we apply standard combinatorial testing 

techniques with the aim of obtaining a reduced (but significant) number of Combined 

TRs. To deal with the second problem, we define specific constraints that the Combined 

TRs have to satisfy to avoid generating non-feasible combinations of Primitive TRs. 

5.3.2 Combinatorial Strategy 

At this point and in order to derive the Combined TRs, we use different 

combinatorial testing techniques. These techniques are defined in terms of parameters 

and values. When testing the SLA based on the constructed tree, the parameters are the 

classifications that represent the Guarantee Terms and the values are the classes that 

represent the Primitive Test Requirements. Moreover, each Combined TR will contain 

one Primitive TR for each of the classifications of the tree. 



Chapter 5: Guarantee Term Testing Level  97 

After the identification of the parameters and their corresponding values, we 

derive the Combined TRs by means of applying any of the testing techniques 

standardized in the ISO/IEC 29119, which allow grading the intensity of the tests. These 

techniques are based on coverage and there are different coverage criteria that can be 

applied. The simplest coverage criterion is provided by each choice testing (also known 

as 1-wise) which requires that every class of every classification (Guarantee Term) must 

be exercised in at least one test case in the test suite. The most exhaustive coverage 

criterion is provided by all combinations testing, which requires that every possible 

combination of classes of all the classifications must be included in at least one test 

case. Between them, a widely used coverage criterion is provided by pair-wise testing 

(also known as all pairs or 2-wise). Pair-wise testing requires that every possible pair of 

classes of any two classifications represent the Combined TRs and they must be 

included in at least one test case. 

In Figure 5.7 we show an example of the application of each-choice testing to the 

classification tree that was shown as example in Figure 5.6.  

 

Figure 5.7: Example of the application of each-choice testing. 

As can be seen, a total of 14 classes (Primitive Test Requirements) are identified 

for the three classifications (guarantee terms) of the tree. By means of applying each-

choice testing, each of these classes is included in at least one Combined Test 



Chapter 5: Guarantee Term Testing Level  98 

Requirement. Furthermore, each Combined TR contains exactly three Primitive TRs, 

one for each of the guarantee terms of the SLA. For this example, it is enough to derive 

six Combined TRs in order to cover all the identified Primitive TRs. 

In addition to existing testing techniques, we may define a strategy that guides the 

combinations depending on factors related to the content of the SLA and the behaviour 

of the SBA (e.g., critical SBA functionalities). This means that we may want to be more 

exhaustive and apply a combinatorial testing technique in a specific part of the tree (for 

example, a branch or a group of classifications) whereas a less exhaustive technique 

may be applied in a different part of the tree. 

5.3.3 Definition of testability constraints 

The derivation of the Combined Test Requirements may produce some 

combinations which do not make sense and lead to non-feasible test cases that cannot be 

executed. In this section we define specific constraints that allow excluding non-feasible 

Combined TRs. 

We distinguish between two types of constraints: implicit and explicit. The 

implicit constraints are automatically obtained based on the information that is 

represented in the terms of the SLA. The explicit constraints are manually identified 

through the analysis of the SUT. 

a) Implicit Constraints 

Based on the syntax and semantics structure of WS-Agreement, we can identify a 

set of implicit constraints that help avoiding non-feasible combinations of classes used 

to derive the Combined TRs. These constraints are automatically obtained from the 

specification of the SLA.  

We have defined the following set of implicit constraints for the general case 

where six classes are identified for each classification. If any of the two particular cases 

described in Section 5.2.2 has been applied to the involved classifications, these 

constraints must be suitably adapted. 



Chapter 5: Guarantee Term Testing Level  99 

Before discussing the constraints, let us assume that the selection of a class within 

a classification is represented by the function             , which means that the 

class CLy of the classification GTx is exercised. 

I1: Guarantee Terms (GT) that affect the same method/service 

Suppose that the method/service specified in the scope of the Guarantee Term 

GT1 is the same as the one specified in Guarantee Term GT2. If any of the classes CL5-

CL6 of the classification that represents GT1 is selected to be combined in a Combined 

TR, then the method/service specified in the Scope of GT1 is not executed. Therefore 

one of the classes CL5-CL6 of the classification that represents GT2 must also be 

exercised. This constraint can be formally expressed as: 

                                         

                      
 

                     

I2: Guarantee Terms that have the same Qualifying Conditions 

If a pair of Guarantee Terms shares the same Qualifying Condition and this is 

met, then all the classifications that represents these guarantee terms must take the 

values of the classes CL1, CL2 or CL5 but not CL3, CL4 or CL6. Likewise, if the 

Qualifying Condition is not met, then the classifications must take the values of the 

classes CL3, CL4 or CL6 but not CL1, CL2 or CL5. 

                                                           

 
 
                         

                                                           

 
 
                         

I3: Guarantee Terms that have mutually disjoint Qualifying Conditions 

If the Qualifying Condition of the first Guarantee Term is met then it is obvious 

that the Qualifying Condition of the second term must not be met and vice versa. 

                                    

                         
 

                         



Chapter 5: Guarantee Term Testing Level  100 

                                    

                         
 

                         

b) Explicit Constraints 

In order to identify explicit constraints, an analysis of the business logic of the 

SUT must be carried out. These constraints refer to some specific situations concerning 

the possible behaviour of the SUT with regards to the ability to execute particular 

combinations of service methods, and affect the evaluation of the Guarantee Terms 

involved in the corresponding execution. 

The set of explicit constraints includes the following: 

E1: The execution of a method/service implies the non-execution of another 

method/service. 

It means that if a method/service Si (specified in the Scope of GTi) is executed 

then the method/service Sj (specified in the Scope of GTj) cannot be invoked or, 

formally: 

                                            

 
 
                      

E2: The non-execution of a method/service implies the non-execution of another 

method/service 

It means that if a method/service Si (specified in the Scope of GTi) is not executed 

then the method/service Sj (specified in the Scope of GTj) cannot be invoked: 

                                    

 
 
                      

E3: The execution of a method/service implies the execution of another 

method/service 

It means that if a method/service Si (specified in the Scope of GTi) is executed 

then the method / service Sj (specified in the Scope of GTj) must be invoked: 

 



Chapter 5: Guarantee Term Testing Level  101 

                                            

 
 

                              

E4: The non-execution of a method/service implies the execution of another 

method/service 

It means that if a method / service Si (specified in the Scope of GTi) is not 

executed then the method / service Sj (specified in the Scope of GTj) must be invoked: 

                                    

 
 

                              

E5: The execution of a method/service is required 

It means that a method / service Si (specified in the Scope of GTi) is mandatory to 

be invoked during the execution of the SUT: 

                              

E6: Additional constraints 

Depending on the content of QCs or SLOs, the use of a specific Primitive Test 

Requirement of GT (GTi) may require also the use of a specific Primitive TR for 

another GT (GTj). The specification of this rule (E6) depends on the information of the 

Guarantee Terms. For example, consider the following two guarantee terms (left part of 

Figure 5.8) and a subset of the identified classes (right part of Figure 5.8).  



Chapter 5: Guarantee Term Testing Level  102 

 

Figure 5.8: Excerpt of SLA Guarantee Terms and identified classes. 

In this example, if GT1 is violated (exercising CL2) then GT2 must be evaluated 

as Inapplicable because the Qualifying Condition (client =Premium) is not met. In this 

case, the class CL4 must be exercised (note that CL3 could not be exercised because the 

response time forced by CL2 of GT1 is more than 10 seconds so the Service Level 

Objective of GT2 would never be met). 

5.4 Derivation of test cases 

Once we have identified the Primitive Test Requirements, the derivation of the 

Combined Test Requirements leads to the generation of test cases. We have previously 

said that a Combined TR contains one Primitive TR for each of the guarantee terms 

specified in the SLA. This means that, after exercising a Combined TR, all the 

guarantee terms of the SLA can be evaluated and, consequently, the SLA is also 

evaluated.  



Chapter 5: Guarantee Term Testing Level  103 

In this context, a Combined TR may already represent a complete scenario related 

to the SUT. Hence, a test case will usually cover one Combined TR although it is also 

possible to design test cases that sequentially exercise more than one Combined TR. 

In addition to this information, it is necessary to have some knowledge about the 

behaviour of the SUT in order to specify the test case steps that exercise the Combined 

Test Requirements. For example, different sources of information can be used such as 

UML State Transition Diagrams or Sequence Diagrams. 

5.5 Summary 

In this chapter we have addressed the first of the testing levels defined in Section 

3.2.2. From the specification of the individual guarantee terms of an SLA a set of 

Primitive Test Requirements are identified and organized in a Classification Tree. After 

that, these Primitive TRs are combined in order to derive the Combined Test 

Requirements by means of applying standard combinatorial testing techniques. 

Furthermore, the obtaining of non-feasible Primitive TRs as well as non-feasible 

combinations of such requirements in Combined TRs has been avoided through the 

definition of specific constraints regarding the specification of the SLA and the 

behaviour of the SBA. These Combined TRs are exercised through the design and 

execution of the test cases. 

In the next Chapter 6 we will focus on the second of the testing levels, taking the 

logical relationships of the guarantee terms into account in order to design the tests. 

In addition to this, in Chapter 7 we will present SLACT (SLA Combinatorial 

Testing), a tool we have developed to automate the tasks described in this chapter. 



104 

Chapter 6 
 

 Compositor Testing Level 

 

Science is made up of mistakes, which in turn are 
the steps towards the truth. 

Jules Verne, 1828-1905 
French novelist, poet and playwright 

 

 

 

 

 

 

 

his chapter also addresses the generation of tests but, in this case, the logical 

relationships between the SLA guarantee terms are also considered. In order to 

identify the test requirements, SLACDC (SLA Condition Decision Coverage) criterion 

is presented. The generation of non-feasible tests is again avoided by means of the 

definition of specific rules. 

 

 

  

T 



Chapter 6: Compositor Testing Level  105 

6.1 Introduction 

In Chapter 3 we presented SLATF, a framework that allows testing Service-Based 

Applications by means of analyzing the specification of the associated Service Level 

Agreement. In Chapter 4 we dealt with the evaluation of the SLA, which is an 

orthogonal activity that affects the rest of the activities involved in the testing process 

developed in SLATF. Based on this logic, in Chapter 5 we took the content of the SLA 

guarantee terms into account in order to identify a set of Primitive Test Requirements. 

The combination of these Primitive TRs allows deriving Combined Test Requirements 

that are finally used to generate the test cases. In this chapter we propose a further step 

by considering the logical relationships between the SLA guarantee terms in order to 

identify new Combined TRs. 

When addressing this process, two issues may arise again, as in the Guarantee 

Term Testing Level, during the identification of the Combined TRs: 

1. The combinatorial explosion depending on the size of the SLA. 

2. The presence of non-feasible test requirements due to inadequate 

combinations. 

We tackle the first of these issues by defining SLACDC (SLA Condition / 

Decision Coverage), a test criterion that is based on the MCDC (Modified Condition / 

Decision Coverage) criterion [116]. SLACDC allows identifying a manageable set of 

Combined TRs by means of providing a linear increase in the number of test 

requirements when the number of guarantee terms becomes higher. 

Regarding the second issue, we define a set of rules that allow avoiding the 

identification of non-feasible Combined TRs by analyzing the specification of the 

guarantee terms and their relationships. The application of these rules implies the 

modification of the non-feasible test requirements in order to obtain other test 

requirements that represent feasible situations to be tested. 



Chapter 6: Compositor Testing Level  106 

Both the identification of the test requirements as well as the application of the 

aforementioned rules are fully automated. The details about such automation are 

described in Chapter 7 of this dissertation. 

6.2 SLACDC Test Criterion 

The process of testing SLA-aware SBAs can be addressed by identifying test 

requirements from the specification of the SLA using a criterion based on the principle 

of the Modified Condition / Decision Coverage (MCDC). This criterion allows 

obtaining a cost-effective set of test requirements, representing situations that are 

interesting to exercise regarding the SLA and the SBA. 

In this section we describe SLACDC, a test criterion that aims at identifying test 

requirements by analyzing the logical relationships between the SLA guarantee terms. 

First of all, we outline how to identify the Primitive Test Requirements. After that, the 

test criterion is defined and we describe the algorithms to combine the Primitive TRs 

and obtain the Combined TRs. Finally we define the rules that allow avoiding the 

obtaining of non-feasible test requirements. 

6.2.1 Identification of Primitive Test Requirements 

In Chapter 4 we define the logic to evaluate the guarantee terms and the 

compositor elements of the SLA. According to this logic, we outlined that each of the 

aforementioned elements are evaluated with four potential evaluation values. 

Furthermore, in Chapter 5 we described how this logic can be used to identify a set of 

Primitive Test Requirements from the specification of the guarantee terms. In the 

Guarantee Term Testing Level described in such chapter, six Primitive TRs were 

identified taking the structure of each guarantee term into account. In the present 

chapter, we focus on the logical relationships of the guarantee terms so we decide to 

select one Primitive TR for each of the evaluation values that a guarantee term can take, 

this is four Primitive Test Requirements for guarantee term. Each Primitive TR 

exercises the situation where the associated guarantee term is evaluated with one of the 

four potential values (Figure 6.1). Our objective with this design decision is to obtain a 

reduced but cost-effective set of Combined TRs that involves the evaluation of each 

guarantee term with all its potential values. 



Chapter 6: Compositor Testing Level  107 

 

Figure 6.1: Relation Primitive Test Requirements – Evaluation values. 

In such figure it can be seen that the Primitive Test Requirement PTR1 

corresponds to the situation where the guarantee term is evaluated as Fulfilled, PTR2 is 

equivalent to Violated, PTR3 is equivalent to Not Determined and, finally, PTR4 is 

equivalent to Inapplicable. Hence, we will use the identifiers of the evaluation values (F, 

V, N, I) to represent the Primitive Test Requirements in order to make easier the 

comprehension of this chapter: 

                           

                           

                           

                            

For example, when we say that the guarantee term GT1 is evaluated as Violated, it 

means that the Primitive Test Requirement PTR2 of such guarantee term is exercised. 

6.2.2 Four-valued MCDC Test Criterion 

The Modified Condition Decision Coverage (MCDC), defined in the RTCA/DO-

178B standard [116], is a broadly studied structural coverage criterion 

[137][27][63][64]. It has been used for test suite reduction and prioritization [65] 

because it provides a linear increase in the number of test requirements [38]. MCDC is a 

criterion that falls between condition/decision and multiple condition coverage [27]. 

This criterion has been shown to represent a good balance of test-set size and fault 

detecting ability [140][28] simultaneously. MCDC is defined as a conjunction of the 

following requirements: 

 Every point of entry and exit in the program has been invoked at least once. 

 Every condition in a decision in the program has taken all possible outcomes 

at least once. 



Chapter 6: Compositor Testing Level  108 

 Every decision in the program has taken all possible outcomes at least once. 

 Each condition in a decision has been shown to independently affect the 

decision’s outcome (a condition is shown to independently affect a decision’s 

outcome by varying just that condition while holding fixed all other possible 

conditions). 

For example, consider the decision d = (a AND b) where a, b are two boolean 

conditions. To satisfy MCDC criterion, we need to generate three test cases (0,1) (1,1) 

(1,0) as described in Figure 6.2. 

 

Figure 6.2: Example of application of MCDC with two evaluation values. 

The MCDC criterion is usually defined for a binary logic. However, the 

application of MCDC when the logic allows four different evaluation values is more 

complex. So, in our approach: 

Definition 3: A set of Combined Test Requirements satisfies the SLACDC (SLA 

Condition / Decision Coverage) criterion for a set of Guarantee Terms grouped within 

a compositor using the four-valued logic if and only if it fulfils the following sub-

criteria: 

SC1 Every guarantee term has taken all possible evaluation values at least 

once. 

SC2 The compositor has taken all possible evaluation values as outcome at 

least once. 

SC3 For each possible evaluation value of a guarantee term, a variation from 

a specific evaluation value to a different value has been shown to 

independently affect the evaluation of the compositor (this is, when we 



Chapter 6: Compositor Testing Level  109 

switch the evaluation value of the guarantee term while holding fixed the 

evaluation values of the rest of terms, the outcome of the evaluation of 

the compositor varies). 

As an example, consider an All compositor element with two guarantee terms 

(GT1 and GT2) represented in Figure 6.3. 

 

Figure 6.3: Example of application of SLACDC. 

To address the identification of the Combined Test Requirements in the example, 

we start from the situation where both guarantee terms are evaluated as Fulfilled and, 

thus, the All compositor is also evaluated as Fulfilled (row 1 in the figure). Then, we set 

the second row obtaining the first pair (a), which allows us to switch the evaluation 

value of GT1 from Fulfilled to Violated and this change affects the evaluation value of 

the compositor, which also changes from Fulfilled to Violated. After this, we set the 

third row obtaining a new pair (b), where the evaluation value of GT1 switches from 

Violated to Inapplicable and, consequently, the evaluation value of the All compositor 

changes from Violated to Fulfilled. 

This process continues until we obtain six different pairs (a to f) that fulfil the 

sub-criteria SC1 and SC3 of SLACDC criterion (Definition 3). At this stage, sub-

criterion SC2 is not fulfilled because the All compositor has not been evaluated as 

Inapplicable yet. In order to satisfy sub-criterion SC2 we identify a new Combined TR 

(row 8) where both guarantee terms are evaluated as Inapplicable and, thus, the All 

compositor also takes the Inapplicable evaluation value. Hence, a final set of 8 

Combined Test Requirements (CTR1-CTR8) is obtained (Figure 6.3) that satisfy the 



Chapter 6: Compositor Testing Level  110 

criterion instead of the 16 test requirements that would be obtained using a complete 

combination (two guarantee terms with four evaluation values = 4
2
). 

6.2.3 Generation of Combined Test Requirements 

In this section we present in detail the algorithms that are necessary to automate 

the obtaining of the Combined Test Requirements regarding the logical combinations of 

terms expressed by means of the compositor elements. For each compositor, we define 

the algorithm that obtains the Combined TRs and we illustrate the process with 

examples. 

6.2.3.1 All Compositor 

While testing the conditions specified in an All compositor, we check how the 

variation of a guarantee term evaluation affects the evaluation of the compositor while 

the rest of guarantee terms are evaluated as fulfilled. Hence, the algorithm to obtain the 

set of Combined TRs for an All compositor that groups n Guarantee Terms is as 

follows: 

1. Initialize the set with an initial Combined Test Requirement (CTR1) where all the 

guarantee terms are evaluated as Fulfilled. 

2. For each GTi in the All_Compositor: 

Add a new Combined TR by means of switching the evaluation value of GTi from 

Fulfilled (as it is in CTR1) to (Violated, Inapplicable, Not Determined) while the 

evaluation of GTj with j ≠ i remains fixed to Fulfilled. 

3. Add a new Combined TR where all the guarantee terms are evaluated as 

Inapplicable in order to get the Inapplicable evaluation value in the 

All_Compositor. 

As an example, we partially illustrate the identification process of Combined TRs 

for an All compositor with 3 internal Guarantee Terms: ALL (GT1, GT2, GT3,). 

 



Chapter 6: Compositor Testing Level  111 

Step1: 

The set of test requirements is initialized with CTR1 where: 

                              

Step2: 

For each guarantee term we add three Combined TRs where the evaluation value 

of each guarantee term must be switched from Fulfilled to (Violated, Inapplicable, Not 

Determined) while holding the rest of terms fixed with Fulfilled: 

                                           
 

                                           
 

                                           

The set of Combined TRs identified in this step is represented in Table 6.1 

(CTR2-CTR10). 

Step3: 

We identify a new Combined TR where all the guarantee terms are evaluated with 

the Inapplicable value: 

                             

The final set of Combined TRs identified for this compositor is represented in 

Table 6.1. The first column labels each Combined TR and the evaluations of the 

individual guarantee terms (GT) and the compositor are represented in the rest of the 

columns. The first row is remarked because it corresponds to the initial Combined TR 

and the cells that represent the guarantee terms that switch their evaluation values are 

grey shaded. 

  



Chapter 6: Compositor Testing Level  112 

Test Req. ev (GT1) ev (GT2) ev (GT3) ev (All) 

CTR1 F F F F 
CTR2 V F F V 
CTR3 I F F F 
CTR4 N F F N 
CTR5 F V F V 
CTR6 F I F F 
CTR7 F N F N 
CTR8 F F V V 
CTR9 F F I F 

CTR10 F F N N 
CTR11 I I I I 

Table 6.1: Set of Combined TRs for an All compositor with three guarantee terms. 

For example, the Combined Test Requirement CTR2 implies that the guarantee 

term GT1 is evaluated to Violated (exercising PTR2) whereas guarantee terms GT2 and 

GT3 are both evaluated to Fulfilled (exercising PTR1 for those terms). As we are 

dealing with an All compositor and one guarantee term has been violated, then the 

evaluation value of the compositor is also Violated. 

The application of SLACDC criterion provides a linear number of combinations 

related to the number of conditions. In general, the number of combinations that 

satisfies MCDC for a binary logical decision is (n+1) where n is the number of 

conditions within the decision, there are two possible truth values (true/false) for each 

condition and the maximum number of combinations is 2*n [28]. In our case and 

dealing with a four-valued logic for the evaluation of the guarantee terms, the number of 

Combined TRs obtained with SLACDC criterion remains linear regarding the number 

of guarantee terms and evaluation values and can be obtained according to the following 

formula: 

                                     

Where n is the number of internal terms within the compositor and v the number 

of evaluation values of each guarantee term (in this case, v = 4). If we apply a complete 

combination using the four-valued logic, the number of obtained Combined Test 

Requirements would be 4
n
. 



Chapter 6: Compositor Testing Level  113 

6.2.3.2 OneOrMore Compositor 

The algorithm to obtain the set of Combined Test Requirements from an 

OneOrMore compositor is similar to the one for All compositor, but in this case we 

want to exercise the variation of one term while the rest of guarantee terms have been 

violated. Thus, the algorithm for the identification of Combined TRs for an OneOrMore 

compositor is as follows: 

1. Initialize the set with an initial Combined Test Requirement (CTR1) where all the 

guarantee terms are evaluated as Violated. 

2. For each GTi in the OneOrMore_Compositor: 

Add a new Combined TR by means of switching the evaluation value of GTi from 

Violated (as it is in CTR1) to (Fulfilled, Inapplicable, Not Determined) while the 

evaluation of GTj with j ≠ i remains fixed to Violated. 

3. Add a new Combined TR where all the guarantee terms are evaluated as 

Inapplicable in order to get the Inapplicable evaluation value in the 

OneOrMore_Compositor. 

We have omitted the explanation of the steps that perform the identification of test 

requirements for this compositor because the process is the same as for the All 

compositor. As an example, the test requirements identified for an OneOrMore 

compositor with 3 guarantee terms can be seen in Table 6.2. 

  



Chapter 6: Compositor Testing Level  114 

Test Req. ev (GT1) ev (GT2) ev (GT3) ev (OneOrMore) 

CTR1 V V V V 
CTR2 F V V F 
CTR3 I V V V 
CTR4 N V V N 
CTR5 V F V F 
CTR6 V I V V 
CTR7 V N V N 
CTR8 V V F F 
CTR9 V V I V 

CTR10 V V N N 
CTR11 I I I I 

Table 6.2: Set of Combined TRs for an OneOrMore compositor with three guarantee 
terms. 

The number of test requirements for an OneOrMore compositor is also given by 

the formula: 

                                          

6.2.3.3 ExactlyOne Compositor 

The identification of Combined Test Requirements from an ExactlyOne 

compositor varies a little regarding the two aforementioned algorithms for compositors 

All and OneOrMore. The reason is that two different scenarios need to be considered for 

this compositor: 

1. Test the combinations where the evaluation value of the compositor varies due 

to the flip from none term evaluated as fulfilled to only one term fulfilled. 

2. Test the combinations where the evaluation value of the compositor varies due 

to the flip from only one term evaluated as fulfilled to more than one term 

fulfilled. 

The first scenario exercises the situation where all the guarantee terms are initially 

evaluated as Violated and we switch the evaluation value of each guarantee term to 

(Fulfilled, Inapplicable and Not Determined). Hence, it can be seen that this first 

scenario is exercised using the same set of Combined Test Requirements that we have 

described for the OneOrMore compositor. This means that the algorithm (A1) to test 



Chapter 6: Compositor Testing Level  115 

this first scenario is the same and the Combined TRs obtained are represented in Table 

6.3 (rows 1-11). 

Row Test Req. ev (GT1) ev (GT2) ev (GT3) ev (ExOne) 

1 CTR1 V V V V 
2 CTR2 F V V F 
3 CTR3 I V V V 
4 CTR4 N V V N 
5 CTR5 V F V F 
6 CTR6 V I V V 
7 CTR7 V N V N 
8 CTR8 V V F F 
9 CTR9 V V I V 

10 CTR10 V V N N 
11 CTR11 I I I I 
12 Duplicated (CTR5) V F V F 
13 CTR12 F F V V 
14 CTR13 I F V F 
15 CTR14 N F V N 
16 Duplicated (CTR2) F V V F 
17 Duplicated (CTR12) F F V V 
18 CTR15 F I V F 
19 CTR16 F N V N 
20 Duplicated (CTR2) F V V F 
21 CTR17 F V F V 
22 CTR18 F V I F 
23 CTR19 F V N N 
24 Duplicated (CTR11) I I I I 

Table 6.3: Set of Combined TRs for an ExactlyOne compositor with three guarantee 
terms. 

To exercise the second scenario, we have to obtain the Combined Test 

Requirements where there is already only one guarantee term evaluated as Fulfilled and 

we flip the evaluation of another guarantee term between the four possible evaluation 

values so the outcome of the compositor changes. The algorithm (A2) for the 

identification of these Combined TRs is as follows: 

  



Chapter 6: Compositor Testing Level  116 

1. Initialize an empty set of Combined Test Requirements. 

2. For each GTi in the ExactlyOne_Compositor: 

a) Add an initial Combined TR where one guarantee term GTj with j ≠ i is 

evaluated as Fulfilled and the rest of guarantee terms are evaluated as 

Violated. 

b) Add a new Combined TR by means of switching the evaluation value of 

GTi from Violated (as it is in the current initial test requirement) to 

(Fulfilled, Inapplicable, Not Determined) while the evaluation of GTj 

with j ≠ i remains fixed to Fulfilled and the evaluation of the rest of the 

terms remains fixed to Violated. 

3. Add a new Combined TR where all the guarantee terms are evaluated as 

Inapplicable in order to get the Inapplicable evaluation value in the 

ExactlyOne_Compositor. 

The Combined Test Requirements obtained with this algorithm (A2) are 

represented in Table 6.3 (rows 12-24). The cells that contain the initial Combined Test 

Requirement of step 2 for each guarantee term are remarked. 

These two aforementioned scenarios may be tested independently and it is the 

tester who decides whether (s)he wants to exercise both scenarios or just one. In case 

the tester decides to test both scenarios, it is necessary to apply an additional step that 

involves the removal of duplicated Combined TRs that are identified for both 

algorithms (A1 and A2). 

In Table 6.3 we have joined the set of Combined TRs obtained through the 

algorithm A1 and the algorithm A2 and we have marked the duplicated Combined TRs. 

In the first column we identify with a number all the Combined TRs obtained with both 

algorithms. In the second column we set an identifier to the final Combined TR or a 

brief description about the reason for removing such Combined TR. In the rest of 

column the evaluation values of the guarantee terms and compositor are represented. 

Furthermore, we have remarked the rows that represent the initial Combined TR in each 



Chapter 6: Compositor Testing Level  117 

algorithm and those cells where the evaluation value of the guarantee term is switched 

(grey shaded). 

After joining both sets and removing the duplicated Combined Test 

Requirements, a final number of 19 Combined TRs are identified. This number is 

obtained through the formula:  

                             

Where n is the number of guarantee terms included in the ExactlyOne compositor. 

Thus, even applying these two algorithms to the compositor, we still provide a linear 

growth of Combined TRs regarding the number of guarantee terms included in such 

compositor. 

6.2.4 Removing non-Feasible Test Requirements 

The application of the aforementioned algorithms provides a set of Combined 

Test Requirements that satisfies the SLACDC criterion for the logical combinations of 

terms expressed by means of the compositors. However some of the identified 

Combined TRs correspond to situations that may be non-feasible to exercise due to the 

semantic information contained in the guarantee terms. Hence, we have to deal with 

these specific situations in order to refine the Combined TRs previously obtained. To 

address this improvement we define a set of rules that allow modifying the non-feasible 

Combined TRs and obtain other Combined TRs that represent feasible and interesting 

situations to be tested. 

These rules are defined to keep fulfilling, as much as possible, the sub-criteria 

SC1 and SC2 of the criterion (Definition 3) whereas the sub-criterion SC3 will need to 

be relaxed. Thus, it cannot be assured that these three sub-criteria will finally be 

fulfilled in the resultant set of Combined Tests Requirements due to the dependencies 

between the conditions specified in the SLA. 

The application of the rules involves identifying the Combined Test Requirements 

that are non-feasible in which certain evaluation values will be modified (a certain 

Primitive TR will be exercised instead of other) to obtain feasible Combined Test 

Requirements. This process requires that more than one evaluation value is switched 



Chapter 6: Compositor Testing Level  118 

within the same Combined TR so SLACDC criterion is based on a specific form of 

MCDC named Masking MCDC, investigated by Chilenski [28], which allows more 

than one condition to vary at once ensuring that only the condition of interest influences 

the outcome. 

6.2.4.1 Rule 1: Guarantee Terms without Qualifying Condition 

This first rule is applied when some of the guarantee terms included in the 

compositor does not have Qualifying Condition. In this case, the Combined Test 

Requirements where such term is evaluated as Inapplicable (exercising the Primitive 

Test Requirement PTR4) must be removed. This means that: 

                                      

 

   
  

                                     

In Figure 6.4 an example of the application of this rule over the Travel Agency 

scenario described in Section 4.1 and Section 5.2 is depicted.  

 

Figure 6.4: Example of application of Rule1: GTs without QC. 

There is an All compositor with two internal guarantee terms. The first of them 

(GT1) does not have Qualifying Condition so the Combined Test Requirements where 

this term is evaluated as Inapplicable are removed. In the right part of the figure all the 



Chapter 6: Compositor Testing Level  119 

guarantee terms obtained for the All compositor are represented. The Combined TRs 

where the current rule is applied are crossed out so we finally obtain a set of six 

Combined TRs instead of the original set of eight Combined TRs. In this case and due 

to the content of the SLA, the sub-criterion SC1 of SLACD is not satisfied because GT1 

does not take the Inapplicable evaluation value. Furthermore, the sub-criterion SC2 is 

not satisfied either because the All compositor does not take the Inapplicable value. 

6.2.4.2 Rule 2: Guarantee Terms with the same Scope 

This second rule is applied when there are guarantee terms in a compositor that 

are related to the same method and service (Scope). In this case, the Combined Test 

Requirements that include these terms contain coupled conditions (in MCDC conditions 

that cannot be varied independently are said to be coupled [27]) or, in SLACDC 

criterion, better named as coupled guarantee terms. This implies that if one of these 

terms is evaluated as Not Determined (exercising PTR3 where the method/service is not 

invoked), then the other term must be evaluated as Not Determined (if the QC of the 

term is met) or Inapplicable (if the QC is no met). 

This is: 

                                      

 

   
  

                                        

                            

This means that, for example, if we have a compositor with two guarantee terms 

(GT1 and GT2) that affect the same method and service and GT1 has been evaluated as 

Not Determined, then the following Combined Test Requirements cannot be exercised: 

(GT1 = Not Determined and GT2 = Fulfilled) 

(GT1 = Not Determined and GT2 = Violated) 

At this stage, if we have identified non-feasible Combined Test Requirements due 

to dependencies between the scopes of a pair of involved guarantee terms, we have to 

modify the evaluation value of one of these guarantee terms. The procedure we follow 

to change this value aims at keep fulfilling as much as possible the sub-criterion SC1 of 



Chapter 6: Compositor Testing Level  120 

Definition 3, bearing in mind that sub-criteria SC2 and SC3 may be then relaxed. Then, 

the evaluation values Fulfilled / Violated will be the candidates to be modified because, 

by construction, they are much more common than the other value Not Determined. 

According to this principle, we search the Combined TRs that contain pairs of 

guarantee terms affecting the same method and service. If one of the terms is evaluated 

as Not Determined and the other is not, we change the evaluation value of this last 

guarantee term to Not Determined. This process must be repeated for each pair of terms 

in a Combined TR that affect the same method and service. Furthermore, if the resultant 

Combined TR is already duplicated, it is removed. 

To illustrate the application of this rule, we consider an example of an All 

compositor with three guarantee terms (GT1, GT2, GT3), all of them affecting the same 

method / service (represented in the left part of Figure 6.5). 

 

Figure 6.5: Example of application of Rule2: GTs with same Scope. 



Chapter 6: Compositor Testing Level  121 

The set of Combined Test Requirements identified using the All compositor 

algorithm is represented in the first table within the top right part of the figure. From 

this requirements and applying this rule, we modify the specification of the Combined 

TRs 4, 7 and 8 in order to modify the non-feasible situations represented in such 

requirements. In the right part of the figure, we remark the involved guarantee terms in 

the modification, we underline the evaluation value that has been modified in each 

change and we cross out the removed test requirements for being duplicated. Finally, 

the resulting set of Combined Test Requirements is represented in the bottom right part 

of the figure. Despite of having modified the evaluation values in some Combined TRs, 

it is remarkable that, in this example, sub-criteria SC1 and SC2 of the criterion are still 

being fulfilled whereas sub-criterion SC3 has been relaxed for having switched more 

than one evaluation value in the same Combined Test Requirement. 

6.2.4.3 Rule 3: Guarantee Terms that have exactly the same QC 

This rule is applied when there are some terms within a compositor that specify 

exactly the same Qualifying Condition, which is a common situation in an SLA. If such 

Qualifying Condition is met, the guarantee terms can be evaluated as Fulfilled or 

Violated or Not Determined but never Inapplicable. If it is not met, the guarantee terms 

must be evaluated as Inapplicable (exercising PTR4). Hence, in this case we have again 

coupled guarantee terms and it does not make sense that some of these terms are 

evaluated as Inapplicable while the others are Fulfilled, Violated or Not Determined 

(exercising PTR1, PTR2 or PTR3). This is: 

                                      

 

   
  

                                   

                            

This means that, for example, if a compositor contains two guarantee terms GT1 

and GT2 that share the same Qualifying Condition, the following combinations cannot 

be exercised: 

(GT1 = Fulfilled and GT2 = Inapplicable) 

(GT1 = Violated and GT2 = Inapplicable) 



Chapter 6: Compositor Testing Level  122 

(GT1 = Not Determined and GT2 = Inapplicable) 

(GT1 = Inapplicable and GT2 = Fulfilled) 

(GT1 = Inapplicable and GT2 = Violated) 

(GT1 = Inapplicable and GT2 = Not Determined) 

As we specified for the previous rule, we have to modify the Combined Test 

Requirements that contain these non-feasible combinations. Here again, we relax the 

sub-criterion SC3 of the SLACDC criterion but trying to respect sub-criteria SC1 and 

SC2 as much as possible. 

To achieve this, we select the Combined TRs where this rule needs to be applied. 

As in the previous rule, the evaluation values Fulfilled and Violated are more usual than 

the Inapplicable so these are the values as well as Not Determined that will be modified 

to Inapplicable. Here again, this variation must be repeated for each pair of guarantee 

terms that contains the same Qualifying Condition within the compositor and resultant 

duplicated Combined Test Requirements should be removed. 

To illustrate the application of this rule, we use an example of an All compositor with 

four guarantee terms (represented in the left part of the Figure 6.6) that affect different 

services. 



Chapter 6: Compositor Testing Level  123 

 

Figure 6.6: Example of application of Rule3: GTs with same QC. 

Three of these terms (GT1, GT3 and GT4) specify the same condition in the 

Qualifying Condition element. Once we have identified the set of Combined Test 

Requirements by means of applying the algorithm for the All compositor, we have to 

select and modify those requirements that contain any of the non-feasible 

aforementioned combinations (Combined TRs 3, 9 and 12). In the right part of the 

figure, we perform the modifications, indicating the involved guarantee terms and 

crossing out the removed test requirements for being duplicated. 

6.2.4.4 Rule 4: Guarantee Terms that have mutually disjoint QCs 

This rule arises when, in a compositor, there are guarantee terms that contain 

Qualifying Conditions that are mutually disjoint. This means that, if the Qualifying 



Chapter 6: Compositor Testing Level  124 

Condition of one term is met then the Qualifying Condition of the other term must not 

be met. Regarding the non-feasible Combined Test Requirements, if one of these terms 

is evaluated as Fulfilled or Violated (exercising PTR1 or PTR2) in a test requirement 

then the other one term must be evaluated as Inapplicable (PTR4). This is: 

                                      

 

   
  

                                    

                                     

* Note that in this context, the operator (!) does not mean that one Qualifying 

Condition is the opposite to the other. It really means that if the first QC is met then 

the second QC cannot be met. 

Thus and considering again the coupled guarantee terms, if we have a compositor 

element with two internal Guarantee Terms GT1 and GT2 that have mutually disjoint 

Qualifying Conditions, the following combinations do not make sense to be tested: 

(GT1 = Fulfilled and GT2 = Fulfilled) 

(GT1 = Fulfilled and GT2 = Violated) 

(GT1 = Fulfilled and GT2 = Not Determined) 

(GT1 = Violated and GT2 = Fulfilled) 

(GT1 = Violated and GT2 = Violated) 

(GT1 = Violated and GT2 = Not Determined) 

(GT1 = Not Determined and GT2 = Fulfilled) 

(GT1 = Not Determined and GT2 = Violated) 

(GT1 = Not Determined and GT2 = Not Determined) 

In order to avoid the appearance of these combinations in the final test suite, we 

have to modify the Combined Test Requirements that contain such combinations. The 

procedure is similar to the one performed in the previous pair of rules (Rule2 and 



Chapter 6: Compositor Testing Level  125 

Rule3). In fact, this rule is practically the opposite as Rule3. Here again, we will change 

from the most common Fulfilled or Violated as well as Not Determined to the 

appropriate  Inapplicable evaluation value. 

According to this principle, we search the involved Combined Test Requirements. 

By construction, in each Combined TR there is a guarantee term whose evaluation value 

varied (named pivot GT) while the evaluation values of the other terms remained fixed. 

If the pair of terms that have mutually disjoint QC includes the pivot GT, then we 

always modify the evaluation value of the other term from Fulfilled, Violated or Not 

Determined to Inapplicable. On the other hand, if the pair of terms does not include the 

pivot GT, then we could modify the evaluation value of any of the two guarantee terms. 

As always, we have to repeat the process for each pair of terms that appear in the 

Combined TR and remove the Combined TRs that become duplicated. 

In Figure 6.7 we show the application of this rule for an All compositor with two 

internal guarantee terms that present two mutually disjoint Qualifying Conditions in 

their specifications. 

 

Figure 6.7: Example of application of Rule4: GTs with mutually disjoint QCs. 



Chapter 6: Compositor Testing Level  126 

In the example, the first four Combined Test Requirements were obtained by 

holding fixed the value Fulfilled in the second guarantee term while switching the value 

of the first guarantee term (so the pivot GT is GT1). Hence, in Combined TRs 1, 2 and 4 

we change the value of the second guarantee term from Fulfilled to Inapplicable as 

explained before. In test requirements 5 and 7 the pivot GT is GT2 so we modify the 

evaluation value Fulfilled of GT1 to Inapplicable. 

6.2.5 Derivation of Test Cases 

Once we have obtained the set of Combined Test Requirements from the 

compositor elements of the SLA, the next step involves the generation of a set of test 

cases that cover such Combined TRs. In this Compositor Testing Level, a Combined TR 

represents a partial situation related to the SUT. This means that the Combined TR 

exercises the specific conditions of the guarantee terms involved in the compositor. In 

this context, a complete scenario is designed by means of combining one Combined TR 

for each of the compositors specified in the SLA. This is equivalent to apply an each-

choice testing strategy to the Combined TRs but bearing in mind that such Combined 

TRs have been properly elaborated before. Hence, a test case usually covers as many 

Combined TRs as the number of compositors in the SLA. Even in some occasions, a 

test case may exercise more than one complete scenario related to the SUT. 

In addition to this, we have assured that in each Combined TR there are not non-

feasible situations by applying the specific rules described in Section 6.2.4. However, 

this does not mean that any combination of the Combined TR in a test case makes 

sense. There may be Combined TRs that are incompatible to be combined within the 

same test case due to the specification of the SBA. As we mentioned in the Guarantee 

Term Testing Level, here again it may also be necessary to have some knowledge about 

the behaviour of the SBA in order to properly combine the test requirements and obtain 

an effective set of test cases. 

6.3 Summary 

In this chapter we have addressed the second of the testing levels defined in 

Section 3.2.2. We have focused on the logical relationships of the SLA guarantee terms 

in order to identify the test requirements. First of all, we have identified the Primitive 



Chapter 6: Compositor Testing Level  127 

Test Requirements taking the potential evaluation values of a guarantee term into 

account. After that, we have defined SLACDC, a coverage-based criteria that allows 

obtaining a cost-effective set of Combined Test Requirements. These Combined TRs 

are later exercised through the design and execution of a set of test cases. This 

generation of test cases takes into account a set of rules that allow avoiding the 

derivation of non-feasible combinations of test requirements. 

In Chapter 7 we will provide details about the level of automation of the tasks 

described in the present chapter. 

In Chapter 8 we will apply the testing techniques presented in both Chapter 5 and 

Chapter 6 in a case study. 



128 

Chapter 7 
 

 Automation 

 

In theory there is no difference between theory and practice. 
In practice there is. 

"Yogi" Berra 
American former catcher 

 

 

 

 

 

 

 

his chapter presents the automation of the testing techniques described in the 

previous chapters. It firstly introduces SLACT (SLA Combinatorial Testing), a 

tool that implements the identification of test requirements as well as their combinations 

to derive the test cases. After that, it also describes the SLACDC Generator, a prototype 

that automates the generation of tests by applying the aforementioned SLACD criterion. 

  

T 

http://en.wikipedia.org/wiki/Catcher


Chapter 7: Automation  129 

7.1 Introduction 

In the previous chapters we introduced the SLATF framework that allows testing 

SLA-aware service based applications and we defined a four-valued logic to evaluate 

the SLA based on the results of the executions. Furthermore, we addressed the 

generation of test requirements in the two testing levels described in Chapter 5 and 

Chapter 6. In the present chapter we provide the details about the automation of the 

different tasks presented in such chapters. 

First of all we will introduce SLACT, a tool that allows analyzing the SLA, 

identifying the Primitive Test Requirements and the generation of the Combined Test 

Requirements in the Guarantee Term Testing Level. SLACT uses different 

combinatorial testing techniques in order to combine the Primitive TRs and derive the 

Combined TRs that lead to the test cases. 

After that, we describe the level of automation of the Compositor Testing Level. 

We have developed a prototype that supports the generation of Combined Test 

Requirements from the logical relationships of the SLA terms. This prototype takes the 

SLACDC test criterion described in Chapter 6 into account in order to derive the test 

requirements. 

It is worth mentioning that a proper combination of test requirements represents a 

complete scenario that can be tested. Bearing in mind that SLACT will allow obtaining 

only feasible combinations of test requirements, we consider that a tester or practitioner 

will be able to directly derive test cases from the aforementioned combinations provided 

by SLACT. Thus we will refer to the outcomes of SLACT as test cases along this 

chapter. 

7.2 SLACT 

SLACT (SLA Combinatorial Testing) [123] is a Java-based standalone 

application that implements the process of generating test cases by means of identifying 

the Primitive and the Combined Test Requirements from the specification of a Service 

Level Agreement, as described in the Guarantee Term Testing Level presented in 

Chapter 5. This generation includes the analysis of the SLA, the identification of 



Chapter 7: Automation  130 

Primitive Test Requirements from the guarantee terms and the combinations of such 

requirements in order to derive the Combined Test Requirements. Each of these tasks 

involved in the generation of the test cases is therefore performed in an automatic way 

so the effort in terms of cost and time derived from the tester’s work gets reduced 

significantly. 

In this chapter the architecture of SLACT is presented and all the functionalities 

implemented within the components are described. 

7.2.1 Architecture 

The architecture of SLACT is depicted in Figure 7.1. 

 

Figure 7.1: SLACT architecture. 

The inputs are represented on the left of the figure whereas the outputs are 

represented on the right. In the centre of the figure we represent the following 

components that have been implemented in order automate the generation of the test 

requirements: 

 Parser: receives the SLA as input and extracts the relevant information. 



Chapter 7: Automation  131 

 Generator: analyzes the information extracted by the Parser, identifies the 

Primary Test Requirements and constructs the classification tree. 

 Executor: obtains the sets of Combined Test Requirements by means of 

combining the Primary TRs identified by the Generator. 

 Analyzer: analyzes the sets of Combined Test Requirements and obtains 

information related to the coverage of the Primary TRs. It also provides a 

description of such Primary TRs 

 User Interface (UI): allows providing information that need to be taken into 

account in order to obtain the Combined Test Requirements. 

Furthermore, SLACT makes use of an existing combinatorial testing tool 

developed by Microsoft, which is grey-coloured in the figure: 

 PICT (Pairwise Independent Combinatorial Tool) [33][82]: performs the 

combinations of the Primary Test Requirements considering the specific 

combinatorial strategy selected by the tester. 

In the following sections we present the language supported by SLACT as well as 

we define each of its components, describing in detail their inputs, the implemented 

functionalities and their outputs. 

7.2.2 Syntax supported by SLACT 

Currently, SLACT supports the use of SLAs written in the WS-Agreement 

standard language. WS-Agreement allows specifying the SLA using the guarantee terms 

that contain the Scope, the Qualifying Condition and the Service Level Objective. 

However, WS-Agreement leaves open the syntax for the specification of the conditions 

represented within such elements. Hence, the most usual way to express the conditions 

of the guarantee terms is by means of the definition of Domain Specific Languages 

(DSL), which are tailored to a specific application domain [79][133]. 

In our case, we have developed a particular DSL in order to specify the internal 

elements of the guarantee term. Hence, SLACT is able to parse the Scope, the 



Chapter 7: Automation  132 

Qualifying Condition and the Service Level Objective of the guarantee terms when such 

elements are written using the DSL represented in Figure 7.2. 

<wsag:GuaranteeTerm  

wsag:Name="name_of_the_guarante_term" 

wsag:Obligated="obligated_party"> 

 

<wsag:ServiceScope  

   wsag:ServiceName="name_of_the_service"> 

   <SLATest:Method> 

     <NameMethod> name_of_the_method </NameMethod> 

   </SLATest:Method> 

</wsag:ServiceScope> 

 

<wsag:QualifyingCondition> 

   <SLATest:variable> 

       name_of_the_variable 

   </SLATest:variable> 

   <SLATest:operator> 

       possible_operators (eq | ne | gt | lt | gte | lte) 

   </SLATest:operator> 

   <SLATest:constant> 

       constant_value 

   </SLATest:constant> 

</wsag:QualifyingCondition> 

 

... Rest of the Guarantee Term ... 

 

</wsag:GuaranteeTerm> 

Figure 7.2: DSL supported by SLACT. 

7.2.3 How SLACT works 

SLACT implements the aforementioned components in order to obtain the 

Combined Test Requirements. In this section, we describe how each component carries 

out its tasks, starting from the analysis of the information specified in the SLA and 

ending with the generation of the Combined TRs that cover the previously identified 

Primitive TRs. 



Chapter 7: Automation  133 

7.2.3.1 Parser 

This component receives the specification of the SLA in WS-Agreement as input. 

The parser is in charge of analyzing and extracting the relevant information contained in 

the SLA, including the compositor elements and their constituent guarantee terms. 

With the information gathered from the agreement, SLACT constructs the first 

levels of the Classification Tree as described in Section 5.2, excluding the leaves of the 

tree, which represent the Primitive Test Requirements that will be later identified. 

7.2.3.2 Generator 

The first task implemented by the Generator is the identification of the Primitive 

Test Requirements from the specification of the guarantee terms of the SLA, as 

described in Section 5.2. To address this issue it uses the information previously 

obtained by the parser. The Generator takes the general case into account as well as the 

two particular cases. The first one (PC1) is automatically applied when the guarantee 

term does not present the Qualifying Condition. The second one (PC2) is required to be 

applied by the tester through the User Interface of SLACT. In Figure 7.3 we represent 

the area of the User Interface where the guarantee terms are showed and the application 

of the particular cases can be selected. In this figure, the information showed is related 

to the scenario of the Travel Agency we introduced in Section 4.1 of Chapter 4. 

 

Figure 7.3: Guarantee Terms and Particular Cases table. 

The first column of the table shows the name of the guarantee term. The second 

and third columns represent the name of the service and method specified in the Scope, 

respectively. The forth column indicates the guarantee terms that are affected by the 



Chapter 7: Automation  134 

first particular case (PC1). The last column allows selecting which guarantee terms 

should be affected by the second particular case (PC2). 

After identifying the Primitive TRs, the Generator finishes the construction of the 

Classification Tree by representing such test requirements in the last level of the 

hierarchy of the tree. This classification tree is one of the outputs of the Generator. 

Once the Primitive TRs are identified and the classification tree constructed, 

SLACT tries to avoid non-feasible combinations of the test requirements regarding the 

content of the SLA and the context of the service based application. To solve this 

problem, SLACT uses two types of constraints in order to guide the proper combination 

of the Primitive TRs, as described in Section 5.3.3: 

 Implicit Constraints. 

 Explicit constraints. 

The specification of both implicit and explicit constraints is the second output of 

the Generator. 

Implicit Constraint 

The implicit constraints are automatically identified by the Generator taken the 

content of the guarantee terms into account. There are three different types of implicit 

constraints, as we described in Section 5.3.3 of this dissertation: 

(I1): this constraint is identified when there is a set of terms that affect the same 

services, which are specified in the Scope element. When this happens, the Generator 

defines the rules using a specific syntax [33] that is appropriate for the Executor 

component. For example, let us consider two guarantee terms (GT1 and GT2) that 

satisfy the aforementioned condition, affecting the same services in the Scope. In this 

case, the Generator specifies the following rules: 

#Terms : GT1, GT2 

******************************** 

IF [GT1] IN {"PTR5", “PTR6} THEN [GT2] IN {"PTR5", “PTR6”}; 

IF [GT2] IN {"PTR5", “PTR6} THEN [GT1] IN {"PTR5", “PTR6”}; 



Chapter 7: Automation  135 

This pair of rules means that if the Primitive PTR5 or PTR6 of one of the 

guarantee terms are exercised, then any of the two Primitive TRs of the other guarantee 

term must also be exercised. 

 

(I2): this constraint is identified when there is a set of terms that share the same 

Qualifying Condition. Again, we represent an example where three guarantee terms 

(GT1, GT2 and GT3) satisfy such conditions. In this case, the Generator defines the 

following pair of rules: 

#Terms : GT1, GT2, GT3 

******************************** 

IF [GT1] IN {"PTR1", "PTR2", "PTR5"} THEN ([GT2] IN {"PTR1", 

"PTR2", "PTR5"} AND [GT3] IN {"PTR1", "PTR2", "PTR5"}); 

IF [GT1] IN {"PTR3", "PTR4", "PTR6"} THEN ([GT2] IN {"PTR3", 

"PTR4", "PTR6"} AND [GT3] IN {"PTR3", "PTR4", "PTR6"}); 

-------------------------------- 

IF [GT2] IN {"PTR1", "PTR2", "PTR5"} THEN ([GT1] IN {"PTR1", 

"PTR2", "PTR5"} AND [GT3] IN {"PTR1", "PTR2", "PTR5"}); 

IF [GT2] IN {"PTR3", "PTR4", "PTR6"} THEN ([GT1] IN {"PTR3", 

"PTR4", "PTR6"} AND [GT3] IN {"PTR3", "PTR4", "PTR6"}); 

-------------------------------- 

IF [GT3] IN {"PTR1", "PTR2", "PTR5"} THEN ([GT1] IN {"PTR1", 

"PTR2", "PTR5"} AND [GT2] IN {"PTR1", "PTR2", "PTR5"}); 

IF [GT3] IN {"PTR3", "PTR4", "PTR6"} THEN ([GT1] IN {"PTR3", 

"PTR4", "PTR6"} AND [GT2] IN {"PTR3", "PTR4", "PTR6"}); 

The meaning of each pair of rules is as follows. If the Primitive PTR1 or PTR2 of 

one guarantee term are exercised then the other two guarantee terms must exercise the 

Primitive PTR1, PTR2 or PTR5. Likewise, if the Primitive PTR3 and PTR4 of one 

guarantee term are exercised then the other two guarantee terms must exercise the 

Primitive PTR3, PTR4 or PTR6. 

 

(I3): this constraint is identified when there is a set of terms that present mutually 

disjoint Qualifying Conditions. For example, let us assume that there are a group of 

guarantee terms (GT1 and GT2) that have a Qualifying Condition that is mutually 



Chapter 7: Automation  136 

disjoint regarding another group of terms (GT3, GT4 and GT5). The Generator will 

define the following pair of rules: 

#Terms : (GT1, GT2) vs (GT3, GT4, GT5) 

******************************** 

IF ([GT1] IN {"PTR1", "PTR2", "PTR5"} OR [GT2] IN {"PTR1", 

"PTR2", "PTR5"}) THEN (NOT [GT3] IN {"PTR1", "PTR2", "PTR5"} AND 

NOT [GT4] IN {"PTR1", "PTR2", "PTR5"} AND NOT [GT5] IN {"PTR1", 

"PTR2", "PTR5"}); 

IF ([GT1] IN {"PTR3", "PTR4", "PTR6"} OR [GT2] IN {"PTR3", 

"PTR4", "PTR6"}) THEN (NOT [GT3] IN {"PTR3", "PTR4", "PTR6"} AND 

NOT [GT4] IN {"PTR3", "PTR4", "PTR6"} AND NOT [GT5] IN {"PTR3", 

"PTR4", "PTR6"}); 

-------------------------------- 

IF ([GT3] IN {"PTR1", "PTR2", "PTR5"} OR [GT4] IN {"PTR1", 

"PTR2", "PTR5"} OR [GT5] IN {"PTR1", "PTR2", "PTR5"}) THEN (NOT 

[GT1] IN {"PTR1", "PTR2", "PTR5"} AND NOT [GT2] IN {"PTR1", 

"PTR2", "PTR5"}); 

IF ([GT3] IN {"PTR3", "PTR4", "PTR6"} OR [GT4] IN {"PTR3", 

"PTR4", "PTR6"} OR [GT5] IN {"PTR3", "PTR4", "PTR6"}) THEN (NOT 

[GT1] IN {"PTR3", "PTR4", "PTR6"} AND NOT [GT2] IN {"PTR3", 

"PTR4", "PTR6"}); 

The first pair of rules has the following meaning. If any of the guarantee terms of 

the first group exercises the Primitive PTR1, PTR2 or PTR5 then the guarantee terms of 

the second group must not exercise Primitive PTR1, PTR2 or PTR5. Likewise, if any of 

the guarantee terms of the first group exercise the Primitive PTR3, PTR4 or PTR6 then 

the guarantee terms of the second group must not exercise Primitive PTR3, PTR4 or 

PTR6. 

The second pair of rules has the same meaning but changing the order of the 

groups of guarantee terms. 

The identification of these constraints is automatically performed by SLACT. 

Furthermore and after that, the constraints are displayed in the User Interface and 

SLACT provides the opportunity to remove any of the identified constraints (Figure 

7.4). The first column of the corresponding table numbers the rules. The second column 

represents the identifier of the type of implicit constraint. Finally, the third column 

shows the guarantee terms that are affected by the constraint. 



Chapter 7: Automation  137 

 

Figure 7.4: Implicit Constraints table. 

Explicit Constraint 

The explicit constraints are specified by the tester through the User Interface of 

SLACT (Figure 7.5). The potential explicit constraints to be defined are described in 

Section 5.3.3 of this dissertation. It is also possible to load the explicit constraints from 

a file or even to save the specified constraints to a file for their future use. 

 

Figure 7.5: Explicit Constraints section. 

7.2.3.3 Executor 

The Executor is in charge of performing the combination of the Primitive Test 

Requirements in order to derive the Combined Test Requirements and obtain the test 

cases. To do this, it takes the constraints identified by the Generator into account. This 

component makes use of the Pairwise Independent Combinatorial Tool (PICT) [33][82], 

which is a free tool developed by Microsoft whose core generation algorithm is a greedy 

heuristics optimized for speed. 

As we have outlined in Section 5.3, the combination of the Primitive Test 

Requirements is a very laborious task in the sense that the number of potential test 

requirements could be really high if the SLA is quite complex. To address this issue, in 

this dissertation we use standard combinatorial testing tools, broadly studied in the 



Chapter 7: Automation  138 

scope of software testing [30]. Therefore SLACT allows the user to decide the 

combinatorial strategy through the User Interface (Figure 7.6), by means of giving the 

possibility to select between a weaker or stronger strategy. The weakest strategy would 

be selected by applying each-choice testing whereas the strongest strategy would be 

selected by applying all combinations (this is, selecting base choice testing and setting 

the General Combination Order with the value of the total number of guarantee terms). 

 

Figure 7.6: Selection of the combinatorial strategy. 

In the left part of the figure the four potential strategies are depicted. If the hybrid 

strategy is selected, in the middle part of this section it is possible to select the general 

order of combination and the individual strategy for specific groups of guarantee terms. 

The details of the selected hybrid strategy are showed in the table of the right part of the 

figure. In such example, a pair-wise strategy is used with the guarantee terms GT1 and 

GT4 whereas a 3-wise strategy is used with the guarantee terms GT1, GT3 and GT5. 

The rest of the combinations are performed using an each-choice testing (1-wise) as it is 

specified in the General Combination Order option. 

The combinations of test requirements carried out by SLACT are based on the 

greedy algorithm of PICT. This means that, in different executions, the results of the 

combinations obtained by the tool may be different. Because of this, SLACT provides 

two different ways to be run: 

 Performing multiple executions in order to obtain different sets of Combined 

Test Requirements and selecting the optimum among them (the one that 

achieves the selected coverage with the least number of Combined TRs). In 

this case, the number of executions is an input provided by the tester through 

the User Interface (Figure 7.7). 



Chapter 7: Automation  139 

 

Figure 7.7: Selection of multiple executions. 

 Performing a single execution in order to obtain one set of Combined TRs that 

satisfies the selected coverage. The type of this execution is selected by the 

tester through the User Interface (Figure 7.8), by deciding between 

deterministic or random. 

 

Figure 7.8: Selection of single execution. 

The output of the Executor is the specification of the test suite that contains the 

Combined Test Requirements (Figure 7.9). This specification may be obtained in a file 

with a csv / txt format. In the first column the identifier of the test case is represented. In 

the rest of the column the Primitive TRs exercised of each guarantee term are showed. 

 

Figure 7.9: Specification of the Test Suite. 



Chapter 7: Automation  140 

7.2.3.4 Analyzer 

The Analyzer is in charge of two main different issues. On the one hand, it 

receives the results gathered from the multiple executions of the Executor and 

determines which test suite provides the selected coverage with the least number of 

Combined Test Requirements. On the other hand, it analyses the Combined TRs with 

the aim at assuring that all of the Primitive TRs have been covered. 

The outputs of the Analyzer are: 

1. A report that contains the statistics regarding the coverage of each Primitive 

TR in the resultant set of test cases (Figure 7.10). In such report, it is showed 

the number of test cases where each Primitive TR is exercised. 

 

Figure 7.10: Report of statistics about coverage. 



Chapter 7: Automation  141 

2. A detailed description of each Primitive TR identified from the guarantee 

terms of the SLA (Figure 7.11). This description shows the action to be 

executed in order to exercise each Primitive TR. 

 

Figure 7.11: Description of the Primitive Test Requirements. 

With the specification of a Combined Test Requirement, the description of the 

involved Primitive TRs in such Combined TR as well as some knowledge about the 

behaviour of the service-based application, a test case that exercises the specific 

scenario represented by the Combined TR is obtained. 

7.2.3.5 User Interface 

The User Interface (UI) of SLACT is depicted in Figure 7.12 and allows the tester 

to select the XML file that contains the SLA to be analyzed. 



Chapter 7: Automation  142 

 

Figure 7.12: SLACT User Interface (UI). 

In the top section of the interface, the information obtained by the Parser is 

showed and it allows deciding whether the particular case PC2 must be applied during 

the identification of the Primitive Test Requirements. The user interface also shows the 

obtained implicit constraints and allows removing any constraints if necessary. 

In the following section the explicit constraints can be manually specified as well 

as loaded from a file. Furthermore, the specification of such constraints can be saved to 

a file. 

After that, it is possible to select the combinatorial strategy by means of deciding 

the testing technique to be applied. If the hybrid strategy is selected, the details of such 

strategy can be specified or loaded from a file. After the complete definition of the 

hybrid strategy, this can be saved to a file. 



Chapter 7: Automation  143 

The last section requires deciding whether SLACT needs to be executed several 

times or just one. If the multiple execution option is selected, the number of times must 

be specified. If the tester selects the single option, (s)he also has to specify whether that 

single execution will be deterministic or random. 

Finally and after launching the execution through the “Run” button, the details of 

such execution as well as the progress will be displayed in the bottom part of the 

interface. Once SLACT has finished the execution, it is possible to save the information 

displayed in the log to a file. 

7.3 SLACDC Tool Support 

SLACT has been designed and implemented to automate the generation of 

Combined Test Requirements within the Guarantee Term Testing Level, described in 

Chapter 5. To address the identification of the Combined TRs in the Compositor 

Testing Level as described in Chapter 6, a prototype has been implemented. Currently, 

this prototype is developed as a standalone java component named 

SLACDC_Generator. In future work, this component will be integrated with the rest of 

functionalities provided by SLACT. 

The SLACDC_Generator takes advantage of some of the outputs provided by 

SLACT. Specifically, we have used the analysis of the SLA and the extraction of 

relevant information performed by the Parser component. The SLACDC_Generator is in 

charge of analyzing the information gathered from the Parser with the aim at identifying 

new test requirements. It focuses on the hierarchical structure of the SLA represented by 

means of the compositors and their guarantee terms. This component automatically 

identifies a set of Combined Test Requirements for each of the existing compositors, 

which satisfy the conditions of the SLACDC Test Criterion defined in Section 6.2.2. 

Furthermore, it deals with the problem regarding the obtaining of non-feasible test 

requirements by means of implementing the applications of the four specific rules 

described in Section 6.2.4. 

The output of this component is the specification of the Combined Test 

Requirements. In Figure 7.13 an excerpt of such specification is showed. 



Chapter 7: Automation  144 

 

Figure 7.13: Excerpt of the Combined TRs in the Compositor Testing Level. 

For each compositor, the Combined Test Requirements are represented in rows. 

These Combined TRs include the specification of the Primitive Test Requirements. As 

we described in Section 6.2.1, in this Compositor Testing Level a Primitive TR is 

identified for each of the evaluation value of the guarantee term so the Primitive TR is 

represented with the name of the evaluation value. We have represented these Primitive 

TRs in the mid-columns of the figure. Finally, in the last column the evaluation value of 

the compositor based on the evaluation of their guarantee terms is presented. 

7.4 Summary 

In this chapter we have described the level of automation of the testing techniques 

described in Chapter 5 and Chapter 6. 

On the one hand, we have presented SLACT (SLA Combinatorial Testing), a tool 

that allows identifying the Primitive Test Requirements in the Guarantee Term Testing 

Level as well as the generation of test cases by means of deriving the Combined Test 

Requirements. To address these issues, SLACT implements different components and 



Chapter 7: Automation  145 

makes use of an independent testing tool provided by Microsoft named PICT (Pairwise 

Independent Combinatorial Tool). 

On the other hand, we have described the prototype we have implemented to deal 

with the generation of the Combined TRs in the Compositor Testing Level. To address 

this task, we have developed a component named SLACDC_Generator that allows 

obtaining a set of Combined TRs that fulfil the SLACDC test criterion defined in 

Section 6.2.2 of this dissertation. 

Both SLACT and the SLACDC_Generator will be used to generate the test 

requirements in a case study, which is fully described in the next Chapter 8. 



146 

Chapter 8 
 

 Case Study 

 

The scientist is free, and must be free to ask any question, to doubt 
any assertion, to seek for any evidence, to correct any errors. 

J. Robert Oppenheimer, 1904-1967 
American physicist and the scientific 

director of the Manhattan Project 
 

 

 

 

 

 

 

his chapter describes the application of the testing techniques proposed in this 

dissertation. It firstly presents the eHealth service-based scenario, including its 

constituent services and the associated Service Level Agreement. After that, it addresses 

the generation of tests by using the developed tool presented in the previous chapter. 

 

 

  

T 



Chapter 8: Case Study  147 

8.1 Introduction 

In previous chapters of this dissertation we introduced the SLATF framework that 

allows testing SLA-aware service –based applications (Chapter 3) and the logic that 

evaluates the SLA and its internal elements (Chapter 4). After that, we distinguished 

between two different testing levels depending whether we take the individual guarantee 

terms into account (Chapter 5) or we consider the logical relationships of such terms 

(Chapter 6) in order to design the tests. Furthermore, we developed SLACT tool 

(Chapter 7), which allows automating most of the tasks involved in such levels. In the 

present chapter we apply the aforementioned knowledge in a real application by using 

SLACT. 

The software under test (SUT) is an eHealth service-based scenario that was 

proposed in the context of the PLASTIC Project [111], funded by the European 

Commission under the FP6 contract number 026955. This scenario has been used in 

previous service-aware testing approaches [10][44][13][5]. 

8.2 eHealth Service Based Application 

In this section we describe the business logic of the eHealth service-based 

application as well as the content of the SLA that specifies the conditions to be fulfilled 

during the execution of the services. After that, we apply the testing techniques 

described in Chapter 5 and Chapter 6 of this dissertation in order to identify the test 

requirements and generate the test cases. 

8.2.1 Description 

The behaviour of the eHealth case study is represented in Figure 8.1. 



Chapter 8: Case Study  148 

 

Figure 8.1: eHealth scenario. 

The application is deployed as a composite web service (WSHealth) that receives 

an alarm from patients and triggers appropriate actions to solve such alarms. There are 

two different types of alarms: Emergencies and No Confirmation. When an alarm 

arrives at the system, this service finds the list of professionals who can take 

responsibility for handling the incident by invoking a service called WSRegistry. This 

registry provides a list of IP addresses of the professionals who are available at that 

moment depending on the type of the alarm: doctors (WSDoctor) if it is an Emergency 

and supervisors (WSSupervisor) if it is No Confirmation. These professionals are 

connected to the system through wired or mobile devices. Thus, the conditions related 

to these connections are different. If a doctor is contacted, (s)he may get measures from 

medical devices (available as WSMedicalDevice services) deployed in the patient’s 

location. If the contacted agent is a supervisor, (s)he should arrange an appointment for 

the patient using the calendar service WSCalendar. 

8.2.2 SLA details 

The conditions that govern the execution of this eHealth service based system are 

specified in an SLA using WS-Agreement. This SLA is included in Appendix 1: 



Chapter 8: Case Study  149 

eHealth SLA of this dissertation and can also be publicly downloaded [125]. A 

graphical representation of the SLA is depicted in Figure 8.2. 

 

Figure 8.2: eHealth SLA. 

This SLA contains 14 Guarantee Terms, which are logically grouped using 5 

compositors under the most external and mandatory All compositor. In Table 8.1 we 

represent the distribution of the guarantee terms in each of these compositors. 



Chapter 8: Case Study  150 

Compositor Guarantee Terms 

All (1) GT1, GT2 
All (2) GT3, GT4, GT5, GT6, GT7 

ExactlyOne (1) GT8, GT9 
ExactlyOne (2) GT10, GT11 

All (3) GT12, GT13, GT14 

Table 8.1: Structure of the eHealth SLA. 

The guarantee terms of the SLA are related to 6 different services and 9 service 

methods. Twelve of these terms present the whole structure of a Guarantee Term, i.e., a 

scope, a Qualifying Condition and a Service Level Objective. The other two Guarantee 

Terms do not have Qualifying Condition. 

8.3 Guarantee Term Testing Level 

In the first of the testing levels, we address the identification of the Primitive and 

the Combined Test Requirements as well as the generation of test cases. To do this, we 

apply the testing techniques described in Chapter 5. 

8.3.1 Construction of the Classification Tree 

First of all, we apply the steps described in Section 5.2 in order to construct a 

classification tree by means of identifying the classifications and classes from the 

eHealth SLA. As we previously stated, the classifications are constructed by 

representing the compositor elements and the guarantee terms whereas the classes 

represent the Primitive Test Requirements identified by applying the general case and 

the particular cases. The results of this process are summarized in Table 8.2. 

  



Chapter 8: Case Study  151 

Service Method Classif. 
Partic. 
Cases 

Classes 

WSHealth reportAlarm 
GT1 PC2 CL1, CL2, CL3, CL4, CL5 
GT2 PC2 CL1, CL2, CL3, CL4, CL5 

WSRegistry 

getResidentialGateway - - - 

getConnectedDeviceIP 

GT3 PC2 CL1, CL2, CL3, CL4, CL5 
GT4 PC2 CL1, CL2, CL3, CL4, CL5 
GT5 PC1 CL1, CL2, CL5 
GT6 PC2 CL1, CL2, CL3, CL4, CL5 
GT7 PC2 CL1, CL2, CL3, CL4, CL5 

WSDoctor receiveAlarm 
GT8 PC2 CL1, CL2, CL3, CL4, CL5 
GT9 PC2 CL1, CL2, CL3, CL4, CL5 

WSSupervisor receiveAlarm 
GT10 PC2 CL1, CL2, CL3, CL4, CL5 
GT11 PC2 CL1, CL2, CL3, CL4, CL5 

WS 
MedicalDevice 

getMedicalDevices GT12 PC1 CL1, CL2, CL5 

getMeasure 
GT13 PC2 CL1, CL2, CL3, CL4, CL5 
GT14 PC2 CL1, CL2, CL3, CL4, CL5 

WSCalendar 
getAppointment 

ByMonth 
- - - 

getAppointment - - - 

 TOTAL 14  66 

Table 8.2: eHealth Classifications and Classes *. 

* Each class CL1-CL6 represents the situation where the Primitive Test 

Requirement PTR1-PTR6 is exercised. 

The services and methods that constitute the case study are represented in the first 

and second column. The classifications at the lowest level of the tree are represented in 

the third column. The particular cases applied to identify the classes are outlined in the 

forth column. The identifiers of the classes of the tree are represented in the last column. 

In this scenario, the case C1 is applied to GT5 and GT12 (only CL1, CL2 and CL5 are 

identified) and the case C2 is applied to all the other Guarantee Terms (class CL6 is not 

identified). 

This table is a simplified representation of the classification tree without including 

the nodes that represent the compositor elements of WS-Agreement. The classifications 

at the lowest level represent the Guarantee Terms of the SLA and the classes 

represented in the leaves of the tree are related to the identified Primitive TRs for each 

Guarantee Term. Hence, the number of identified classifications is 14 and the number of 

classes is 66. The complete classification tree is represented in Figure 8.3 - Figure 8.8. 



Chapter 8: Case Study  152 

 

Figure 8.3: Classification Tree (top levels). 

 

 

Figure 8.4: All (1) Classification Tree. 

 

 

Figure 8.5: All (2) Classification Tree 



Chapter 8: Case Study  153 

 

Figure 8.6: ExactlyOne (1) Classification Tree. 

 

 

Figure 8.7: ExactlyOne (2) Classification Tree. 

 

 

Figure 8.8: All (3) Classification Tree. 

This model is the basis to derive the Combined Test Requirements. This task is 

performed by combining the classes (Primitive TRs) using specific combinatorial 

criteria and specifying the rules the guide such combinations. In this case, the derivation 

of the Combined TRs involves the combination of the 14 classifications. Twelve of 

these classifications have 5 classes each whereas the other two classifications have 3 

classes each. 



Chapter 8: Case Study  154 

8.3.2 Derivation of Combined Test Requirements 

In addition to the construction of the classification tree, we have identified the set 

of implicit and explicit constraints that will guide the combinations of the classifications 

and their classes. The implicit constraints are automatically obtained by SLACT 

whereas the explicit constraints are specified through the User Interface. After analyzing 

the content of the SLA and relevant information regarding the behaviour of the SUT, 26 

constraints (12 implicit and 14 explicit) have been identified in order to guide the 

derivation of the Combined TRs. All these implicit and explicit constraints are 

represented in Table 8.3 and Table 8.4 respectively.  

ID Rule 
Constrained 

Guarantee Terms 
Explanation 

1 I1 GT1, GT2 Both GTs are related to WSHealth.reportAlarm 

2 I1 
GT3, GT4, GT5, GT6, 

GT7 
All these GTs are related to 

WSRegistry.getConnectedDeviceIP 

3 I1 GT8, GT9 Both GTs are related toWSDoctor.receiveAlarm 

4 I1 GT10, GT11 
Both GTs are related to 

WSSupervisor.receiveAlarm 

5 I1 GT13, GT14 
Both GTs are related to 

WSMedicalDevice.getMeasure 

6 I2 GT1, GT3, GT6 
All these GTs have the same QC: alarmType = 

Emergency 

7 I2 GT2, GT4, GT7 
All these GTs have the same QC: alarmType = 

No Confirmation 

8 I2 GT8, GT10 
Both GTs have the same QC: deployedOn = 

MobileNode 

9 I2 GT9, GT11 
Both GTs have the same QC: deployedOn = 

WiredServer 

10 I3 
(GT1, GT3, GT6) 

vs 
(GT2, GT4, GT7) 

Both sets of GTs have mutually disjoint QCs: 
(alarmType = Emergency) vs (alarmType = No 

Confirmation) 

11 I3 
(GT8, GT10) 

vs 
(GT9, GT11) 

Both sets of GTs have mutually disjoint QCs: 
(deployedOn = MobileNode) vs (deployedOn = 

WiredServer) 

12 I3 GT13 vs GT14 
Both GTs have mutually disjoint QCs: (idDevice 

= device_1) vs (idDevice = device_2) 

Table 8.3: eHealth Implicit Constraints. 

 



Chapter 8: Case Study  155 

ID Rule 
Constrained 

Guarantee Terms 
Explanation 

13 E1 GT10, GT11 
If the type of the alarm is an Emergency, a 

supervisor cannot be invoked. 

14 E1 GT8, GT9 
If the type of the alarm is No Confirmation, a 

doctor cannot be invoked. 

15 E2 
GT8, GT9, 

GT10, GT11 
If the registry is not invoked, neither a doctor 

nor a supervisor can be invoked 

16 E3 GT10, GT11 
If a doctor is invoked, a supervisor cannot be 

invoked 

17 E3 GT8, GT9 
If a supervisor is invoked, a doctor cannot be 

invoked 

18 E4 GT12, GT13, GT14 
If a doctor is not invoked, the medical devices 

cannot be invoked 

19 E5 GT1, GT2 
WSHealth.reportAlarm must always be 

invoked. 

20 E6 
GT8, GT9, 

GT10, GT11 
If no professionals are found, no doctor nor 

supervisor can be invoked 

21 E6 GT13, GT14 
If medical devices IPs are not found, no 

medical devices can be invoked 

22 E6 GT1 
If GT2 is violated, then GT1 is exercised 

through CL4. 

23 E6 GT3 
If GT4 is violated, then GT3 is exercised 

through CL4. 

24 E6 GT9 
If GT8 is violated, then GT9 is exercised 

through CL4. 

25 E6 GT11 
If GT10 is violated, then GT11 is exercised 

through CL4. 

26 E6 GT13 
If GT14 is violated, then GT13 is exercised 

through CL4. 

Table 8.4: eHealth Explicit Constraints. 

The identifier of each constraint is represented in the first column. The reference 

to the implicit or explicit applied constraint is represented in the second column. The 

Guarantee Terms whose values will be affected by the constraint are represented in the 

third column. Finally, a brief explanation of the constraint is provided in the last 

column. 

Once we have identified the constraints that should influence the generation of 

test cases, it is necessary to select the strategy for combining the parameters and their 

values, and obtaining the Combined TRs that will be used during testing. Three 



Chapter 8: Case Study  156 

different strategies are applied in order to grade the level of intensity of the obtained 

sets of Combined TRs: 

i. Each choice testing (1-wise) to all the classifications. 

ii. Pair-wise testing (2-wise) to all the classifications. 

iii. Hybrid. 

The third strategy is a hybrid of the other two which involves applying pair-wise 

testing to a specific set of Guarantee Terms and each choice to the rest. In this eHealth 

scenario, we have applied pair-wise to the most critical functionalities of the SUT (the 

actions that are triggered after receiving an alarm of type Emergency). It is remarkable 

that the Guarantee Terms that are related to the arrival of an Emergency are scattered in 

the SLA and, thus, the classifications that represent such Guarantee Terms (GT1, GT3, 

GT8, GT9, GT12, GT13 and GT14) are represented in different branches of the tree. 

This hybrid strategy provided an intermediate level of intensity between the weakest 

coverage provided by the each choice coverage and the strongest intensity provided by 

the pair-wise coverage. 

Considering that SLACT allows applying a non-deterministic algorithm and, 

therefore, obtaining different sets of Combined TRs for the same input, we have 

executed the tool for each of the three coverage strategies, and run the combinations for 

each strategy several times and get the output with the lowest number of Combined TRs 

that satisfies such coverage strategy. In order to check the behaviour of the 

combinations, for each strategy we have run the combinatorial testing tool 3000 times 

and we have obtained a minimum number of 10, 42 and 32 Combined TRs for the each 

choice, pair-wise and hybrid strategies respectively. 

The results of these multiple executions are represented in Figure 8.9. The x-axis 

in the figure represents the number of Combined TR generated for each strategy by the 

tool. The y-axis represents the number of times each size is obtained. For example, for 

the each choice strategy, a set of 11 generated Combined TRs has been obtained more 

than 1200 times. 



Chapter 8: Case Study  157 

 

Figure 8.9: Executions of the three combinatorial strategies. 

Each choice strategy 

In the case of the each choice strategy, the results obtained for SLACT presents a 

mean (μ) of 11.37 (number of Combined TRs) and a standard deviation (σ) of 0.91. To 

be more specific, 95% of the sets contain approximately between 10 and 13 Combined 

TRs. In the case of the pair-wise strategy, the parameters are μ = 47.68, σ = 1.48 and 

95% of the executions have provided a set with a number of Combined TRs between 45 

and 50. Finally, the hybrid strategy is represented by μ = 34.84, σ = 1.22 and 95% of the 

sets would contain between 33 and 37 Combined TRs. 

Analyzing the results for each applied coverage strategy and starting with the first 

one (each choice), we have obtained a set of 10 Combined TRs (the output file is 

represented in Figure 8.10). In this file, the classifications of the tree (Guarantee Terms) 

are represented in columns and the Combined TRs obtained through the combination of 

the classes are represented in rows. 

 

Figure 8.10: Combined TRs output file. 



Chapter 8: Case Study  158 

The classification tree as well as the Primitive TRs covered in each Combined TR 

in the each-choice strategy is represented in Figure 8.11 (GT1-GT7) and Figure 8.12 

(GT8-GT14). 

 

Figure 8.11: Classification tree of Combined TRs for each choice (I). 

 

Figure 8.12: Classification tree of Combined TRs for each choice (II). 

With these ten Combined TRs, 64 of the 66 classes are exercised at least once 

(except CL5 for GT1 and GT2 that are constrained by the explicit rule with ID 19 of 

Table 8.4 and, thus, they are impossible to be exercised) and the coverage report 

provided by the Analyzer component of SLACT is represented in Table 8.5. 

  



Chapter 8: Case Study  159 

 Each choice 
 CL1 CL2 CL3 CL4 CL5 

GT1 3 3 2 2 0 
GT2 3 1 3 3 0 
GT3 3 2 3 1 1 
GT4 3 1 3 2 1 
GT5 8 1 - - 1 
GT6 3 2 2 2 1 
GT7 2 2 4 1 1 
GT8 1 1 1 1 6 
GT9 1 1 1 1 6 

GT10 1 1 1 1 6 
GT11 1 1 1 1 6 
GT12 2 2 - - 6 
GT13 1 1 1 1 6 
GT14 1 1 1 1 6 

Table 8.5: Number of times the classes are covered in: each choice. 

In the first column we represent the set of Guarantee Terms and in the first row 

we represent the classes obtained for each GT. In the table, each cell specifies the 

number of times such class is exercised within this set of Combined TRs. For example, 

the class CL1 identified from the specification of GT5 is exercised in 8 Combined TRs 

for this strategy. If there is a hyphen (-) in a cell, it means that the class represented in 

such column was not identified due to the application of the particular cases explained 

in Section 5.2.2. 

Pair-wise strategy 

Regarding the second of the applied coverage strategies (pair-wise), the set with 

the least number of Combined TRs that we obtained contained 42 Combined TRs. The 

number of Combined TRs obtained is higher than in the 1-wise strategy because, now, 

each potential pair of classes of different classifications (Guarantee Terms) is included 

in at least one Combined TR. The classification tree with the Primitive TRs and the 

Combined TRs for this strategy is represented in Figure 8.13 (GT1-GT7) and Figure 

8.14 (GT8-GT14). 



Chapter 8: Case Study  160 

 

Figure 8.13: Classification tree of Combined TRs for pair-wise (I). 



Chapter 8: Case Study  161 

 

Figure 8.14: Classification tree of Combined TRs for pair-wise (II). 

The results provided by the Analyzer regarding the coverage for the classes of 

each Guarantee Term are also represented in Table 8.6 (b). 

  



Chapter 8: Case Study  162 

 Each choice (a) Pair-wise (b) 
 CL1 CL2 CL3 CL4 CL5 CL1 CL2 CL3 CL4 CL5 

GT1 3 3 2 2 0 13 16 6 7 0 
GT2 3 1 3 3 0 7 7 16 13 0 
GT3 3 2 3 1 1 13 13 5 6 4 
GT4 3 1 3 2 1 6 6 14 13 4 
GT5 8 1 - - 1 34 34 - - 4 
GT6 3 2 2 2 1 14 14 5 6 4 
GT7 2 2 4 1 1 5 5 14 13 4 
GT8 1 1 1 1 6 6 6 5 8 17 
GT9 1 1 1 1 6 7 7 5 7 17 

GT10 1 1 1 1 6 3 3 2 2 33 
GT11 1 1 1 1 6 2 2 2 3 33 
GT12 2 2 - - 6 12 12 - - 21 
GT13 1 1 1 1 6 4 4 4 7 23 
GT14 1 1 1 1 6 5 5 5 5 23 

Table 8.6: Number of times the classes are covered in: each choice (a) and pair-wise (b). 

As it can be seen in this table, all classes in the 2-wise strategy have been 

exercised more times than in the case of each choice. This indicates a higher level of 

intensity in the tests. Here again and due to the specification of the explicit rule 19, there 

are two classes that are never exercised (CL5 for GT1 and GT2).  

Hybrid-wise strategy 

Finally, we have also applied the hybrid-wise strategy with the aim of grading the 

intensity of the tests depending on the critical functionality of the eHealth system. With 

this strategy, the smallest set we have obtained contains 32 Combined TRs. The 

classification tree with the test requirements is represented in Figure 8.15 (GT1-GT7) 

and Figure 8.16 (GT8-GT14). 



Chapter 8: Case Study  163 

 

Figure 8.15: Classification tree of Combined TRs for Hybrid-wise (I). 

 



Chapter 8: Case Study  164 

 

Figure 8.16: Classification tree of Combined TRs for Hybrid-wise (II). 

The results provided by the Analyzer are represented in Table 8.7 (c) 

 Each choice (a) Pair-wise (b) Hybrid (c) 
 CL1 CL2 CL3 CL4 CL5 CL1 CL2 CL3 CL4 CL5 CL1 CL2 CL3 CL4 CL5 

GT1 3 3 2 2 0 13 16 6 7 0 27 1 2 2 0 
GT2 3 1 3 3 0 7 7 16 13 0 3 1 2 26 0 
GT3 3 2 3 1 1 13 13 5 6 4 11 16 1 3 1 
GT4 3 1 3 2 1 6 6 14 13 4 2 2 26 1 1 
GT5 8 1 - - 1 34 34 - - 4 30 1 - - 1 
GT6 3 2 2 2 1 14 14 5 6 4 26 1 1 3 1 
GT7 2 2 4 1 1 5 5 14 13 4 1 3 1 26 1 
GT8 1 1 1 1 6 6 6 5 8 17 7 6 6 6 7 
GT9 1 1 1 1 6 7 7 5 7 17 5 7 6 7 7 

GT10 1 1 1 1 6 3 3 2 2 33 1 1 1 1 28 
GT11 1 1 1 1 6 2 2 2 3 33 1 1 1 1 28 
GT12 2 2 - - 6 12 12 - - 21 12 9 - - 11 
GT13 1 1 1 1 6 4 4 4 7 23 4 4 4 7 13 
GT14 1 1 1 1 6 5 5 5 5 23 4 4 5 6 13 

Table 8.7: Number of times the classes are covered in: each choice (a), pair-wise (b) and 
hybrid (c). 



Chapter 8: Case Study  165 

There are some classes that are as much tested as in the pair-wise strategy because 

they are related to Guarantee Terms that affect the more critical part of the SUT 

(Emergencies). On the other hand, there are other classes that are covered with less 

intensity, representing non-critical situations of the SUT. 

All the results derived from the coverage of the different classes are synthesised in 

Figure 8.17. 

 

Figure 8.17: Classes coverage results. 



Chapter 8: Case Study  166 

In the figure, the x-axis represents the Guarantee Terms and their corresponding 

classes and the y-axis represents the number of times each such class is exercised within 

the applied coverage strategy. As shown in the figure, in the hybrid strategy there are 

specific classes of Guarantee Terms that are much more exercised than others (for 

example, CL1 of GT1, CL2 and CL3 of GT2 or CL1 of GT5). These classes are related 

to situations that are considered critical for the behaviour of the SUT (e.g., the arrival of 

an alarm of type Emergency). Thus, we have decided to combine them more thoroughly 

than classes related to a non-critical behaviour of the SUT. 

8.3.3 Generation of Test Cases 

Once we have obtained the Combined Test Requirements for each of the selected 

coverage strategies, the last step involves the generation of the test cases that exercise 

such Combined TRs. As it is stated in Section 5.3, in this testing level a Combined TR 

represents a complete scenario regarding the service-based application so we will 

generate one test case for each of the Combined TRs identified. This means that we will 

have 10 test cases for the first strategy (each-choice), 42 test cases for the second 

strategy (pair-wise) and 32 test cases for the last strategy (hybrid). 

To address the generation of the test cases, it is necessary to have some 

knowledge about the behaviour of the service-based application. In this case, we make 

use of an UML sequence diagram, also provided within the context of the PLASTIC 

project (represented in Figure 8.18), in order to manage the order of the service 

invocations. 



Chapter 8: Case Study  167 

 

Figure 8.18: eHealth UML sequence diagram. 

8.3.3.1 Each choice strategy 

In this section, the ten test cases generated from the Combined TRs in the each 

choice strategy are specified in Table 8.8 - Table 8.17. The process for testing the 

scenario represented in such test case is described in the first column. The expected 



Chapter 8: Case Study  168 

output is showed in the second column. The values inherent to the evaluation of the 

guarantee terms are represented in the third column. Finally, the Primitive TRs (classes 

in CTM) exercised within the test case are represented in the last column. 

For the first test case we also represent in Figure 8.19 the specification of the 

Combined TR so we can see the co-relation between the content of such Combined TR 

and how the Primitive TRs are exercised in the test case. 

 

Figure 8.19: CTR1 of each-choice strategy. 

Process Expected Output Eval. Values PTRs exercised 

An Emergency alarm 
arrives to the eHealth 
system. 

   

The registry is queried. It provides a non-empty 
and correct list of 
professionals in less than 
3 seconds. 
The list contains only 
doctors. 

ev(GT3) = F 
ev(GT4) = I 
ev(GT5) = F 
ev(GT6) = F 
ev(GT7) =I 

ex(GT3) = CL1 
ex(GT4) = CL3 
ex(GT5) = CL1 
ex(GT6) = CL1 
ex(GT7) = CL4 

A doctor connected to the 
system through a wired 
device is contacted. 

(s)he provides a response 
in less than 2 seconds. 

ev(GT8) =I 
ev(GT9) = F 

ex(GT8) = CL3 
ex(GT9) = CL1 

As a doctor has been 
contacted, no supervisors 
are invoked. 

 ev(GT10) = N 
ev(GT11) = N 

ex(GT10) = CL5 
ex(GT11) = CL5 

The doctor finds the list of 
devices deployed in the 
patient’s home. 

This invocation spends 
more than 2 seconds. 

ev(GT12) = V ex(GT12) = CL2 

The doctor gets the 
measure of device_1. 

The measure is provided 
in less than 3 seconds. 

ev(GT13) = F ex(GT13) = CL1 

The doctor does not 
consult the measure of 
device_2. 

 ev(GT14) = I ex(GT14) = CL3 

 After having carried out all 
of these tasks, the eHealth 
system provides a 
response to the patient 
spending more than 600 
seconds. 

ev(GT1) = V 
ev(GT2) = I 

ex(GT1) = CL2 
ex(GT2) = CL4 

In this scenario, the guarantee terms GT1 and GT12 have been violated so the corresponding 
penalties should be applied. 

Table 8.8: Test Case 1 for the each-choice strategy. 



Chapter 8: Case Study  169 

The rest of the test cases are represented in the tables shown hereafter. 

Process Expected Output Eval. Values PTRs exercised 

A No Confirmation alarm 
arrives to the eHealth 
system. 

   

The registry is queried. It provides an empty list of 
supervisors, spending 
more than 6 seconds to 
give the response. 

ev(GT3) = I 
ev(GT4) = V 
ev(GT5) = V 
ev(GT6) = I 
ev(GT7) = V 

ex(GT3) = CL4 
ex(GT4) = CL2 
ex(GT5) = CL2 
ex(GT6) = CL3 
ex(GT7) = CL2 

No doctors are contacted.  ev(GT8) = N 
ev(GT9) = N 

ex(GT8) = CL5 
ex(GT9) = CL5 

No supervisors are 
contacted. 

 ev(GT10) = N 
ev(GT11) = N 

ex(GT10) = CL5 
ex(GT11) = CL5 

No medical devices are 
consulted. 

 ev(GT12) = N 
ev(GT13) = N 
ev(GT14) = N 

ex(GT12) = CL5 
ex(GT13) = CL5 
ex(GT14) = CL5 

 The eHealth system 
provides a response to the 
patient spending more 
than 600 seconds. 

ev(GT1) = I 
ev(GT2) = V 

ex(GT1) = CL4 
ex(GT2) = CL2 

In this scenario, the guarantee terms GT2, GT4, GT5 and GT7 have been violated so the 
corresponding penalties should be applied. 

Table 8.9: Test Case 2 for the each-choice strategy. 

  



Chapter 8: Case Study  170 

Process Expected Output Eval. Values PTRs exercised 

A No Confirmation alarm 
arrives to the eHealth 
system. 

   

The registry is queried. It provides a non-empty 
and correct list of 
professionals in less than 
3 seconds. 
The list contains only 
supervisors. 

ev (GT3) = I 
ev(GT4) = F 
ev(GT5) = F 
ev(GT6) = I 
ev(GT7) = F 

ex(GT3) = CL3 
ex(GT4) = CL1 
ex(GT5) = CL1 
ex(GT6) = CL4 
ex(GT7) = CL1 

A supervisor connected to 
the system through a 
wired device is contacted. 

(s)he provides a response 
in less than 15 seconds 

ev(GT10) = I 
ev(GT11) = F 

ex(GT10) = CL3 
ex(GT11) = CL1 

As a supervisor has been 
contacted, no doctors are 
invoked. 

 ev(GT8) = N 
ev(GT9) = N 

ex(GT8) = CL5 
ex(GT9) = CL5 

As the alarm is managed 
by a supervisor, no 
medical devices are 
consulted. 

 ev(GT12) =N  
ev(GT13) = N 
ev(GT14) = N 

ex(GT12) = CL5 
ex(GT13) = CL5 
ex(GT14) = CL5 

 After having carried out all 
of these tasks, the eHealth 
system provides a 
response to the patient 
spending less than 300 
seconds. 

ev(GT1) = I 
ev(GT2) = F 

ex(GT1) = CL3 
ex(GT2) = CL1 

In this scenario, none of the guarantee terms has been violated so no consequences are 
derived. 

Table 8.10: Test Case 3 for the each-choice strategy. 

  



Chapter 8: Case Study  171 

Process Expected Output Eval. Values PTRs exercised 

An Emergency alarm 
arrives to the eHealth 
system. 

   

The registry is queried. It provides a non-empty 
list of professionals in 
more than 6 seconds. 
The list contains both 
doctors and supervisors. 

ev(GT3) = V 
ev(GT4) = I 
ev(GT5) = F 
ev(GT6) = V 
ev(GT7) = I 

ex(GT3) = CL2 
ex(GT4) = CL4 
ex(GT5) = CL1 
ex(GT6) = CL2 
ex(GT7) = CL3 

A doctor connected to the 
system through a mobile 
device is contacted. 

(s)he provides a response 
in more than 6 seconds. 

ev(GT8) = V 
ev(GT9) = I 

ex(GT8) = CL2 
ex(GT9) = CL4 

As a doctor has been 
contacted, no supervisors 
are invoked. 

 ev(GT10) = N 
ev(GT11) = N 

ex(GT10) = CL5 
ex(GT11) = CL5 

The doctor finds the list of 
devices deployed in the 
patient’s home. 

This invocation spends 
less than 2 seconds. 

ev(GT12) =F ex(GT12) = CL1 

The doctor gets the 
measure of device_1. 

The measure is provided 
in more than 10 seconds. 

ev(GT13) = V ex(GT13) = CL2 

The doctor does not 
consult the measure of 
device_2. 

 ev(GT14) = I ex(GT14) = CL4 

 After having carried out all 
of these tasks, the eHealth 
system provides a 
response to the patient 
spending less than 300 
seconds. 

ev(GT1) = F 
ev(GT2) = I 

ex(GT1) = CL1 
ex(GT2) = CL3 

In this scenario, the guarantee terms GT3, GT6, GT8 and GT13 have been violated so the 
corresponding penalties should be applied. 

Table 8.11: Test Case 4 for the each-choice strategy. 

  



Chapter 8: Case Study  172 

Process Expected Output Eval. Values PTRs exercised 

A No Confirmation alarm 
arrives to the eHealth 
system. 

   

The registry is queried. It provides a non-empty 
list of professionals in a 
time between 3 seconds 
and than 6 seconds. 
The list contains both 
doctors and supervisors. 

ev (GT3) = I 
ev(GT4) = F 
ev(GT5) = F 
ev(GT6) = I 
ev(GT7) = V 

ex(GT3) = CL4 
ex(GT4) = CL1 
ex(GT5) = CL1 
ex(GT6) = CL3 
ex(GT7) = CL2 

A supervisor connected to 
the system through a 
wired device is contacted. 

(s)he provides a response 
in more than 20 seconds. 

ev(GT10) = I 
ev(GT11) = V 

ex(GT10) = CL4 
ex(GT11) = CL2 

As a supervisor has been 
contacted, no doctors are 
invoked. 

 ev(GT8) = N 
ev(GT9) = N 

ex(GT8) = CL5 
ex(GT9) = CL5 

As the alarm is managed 
by a supervisor, no 
medical devices are 
consulted. 

 ev(GT12) =N  
ev(GT13) = N 
ev(GT14) = N 

ex(GT12) = CL5 
ex(GT13) = CL5 
ex(GT14) = CL5 

 After having carried out all 
of these tasks, the eHealth 
system provides a 
response to the patient 
spending less than 300 
seconds. 

ev(GT1) = I 
ev(GT2) = F 

ex(GT1) = CL3 
ex(GT2) = CL1 

In this scenario, the guarantee terms GT7 and GT11 have been violated so the corresponding 
penalties should be applied. 

Table 8.12: Test Case 5 for the each-choice strategy. 

  



Chapter 8: Case Study  173 

Process Expected Output Eval. Values PTRs exercised 

A No Confirmation alarm 
arrives to the eHealth 
system. 

   

The registry is queried. It provides a non-empty 
list of professionals in less 
than 3 seconds. 
The list contains only 
supervisors. 

ev(GT3) = I 
ev(GT4) = F 
ev(GT5) = F 
ev(GT6) = I 
ev(GT7) = F 

ex(GT3) = CL3 
ex(GT4) = CL1 
ex(GT5) = CL1 
ex(GT6) = CL3 
ex(GT7) = CL1 

A supervisor connected to 
the system through a 
wired device is contacted. 

(s)he provides a response 
in more than 20 seconds. 

ev(GT10) = V 
ev(GT11) = I 

ex(GT10) = CL2 
ex(GT11) = CL4 

As a supervisor has been 
contacted, no doctors are 
invoked. 

 ev(GT8) = N 
ev(GT9) = N 

ex(GT8) = CL5 
ex(GT9) = CL5 

As the alarm is managed 
by a supervisor, no 
medical devices are 
consulted. 

 ev(GT12) =N  
ev(GT13) = N 
ev(GT14) = N 

ex(GT12) = CL5 
ex(GT13) = CL5 
ex(GT14) = CL5 

 After having carried out all 
of these tasks, the eHealth 
system provides a 
response to the patient 
spending more than 600 
seconds. 

ev(GT1) = I 
ev(GT2) = V 

ex(GT1) = CL4 
ex(GT2) = CL2 

In this scenario, the guarantee terms GT2 and GT10 have been violated so the corresponding 
penalties should be applied. 

Table 8.13: Test Case 6 for the each-choice strategy. 

  



Chapter 8: Case Study  174 

Process Expected Output Eval. Values PTRs exercised 

An Emergency alarm 
arrives to the eHealth 
system. 

   

The registry is queried. It provides a non-empty 
list of professionals in less 
than 3 seconds. 
The list contains both 
doctors and supervisors. 

ev(GT3) = F 
ev(GT4) = I 
ev(GT5) = F 
ev(GT6) = V 
ev(GT7) = I 

ex(GT3) = CL1 
ex(GT4) = CL3 
ex(GT5) = CL1 
ex(GT6) = CL2 
ex(GT7) = CL4 

A doctor connected to the 
system through a mobile 
device is contacted. 

(s)he provides a response 
in less than 2 seconds. 

ev(GT8) = F 
ev(GT9) = I 

ex(GT8) = CL1 
ex(GT9) = CL3 

As a doctor has been 
contacted, no supervisors 
are invoked. 

 ev(GT10) = N 
ev(GT11) = N 

ex(GT10) = CL5 
ex(GT11) = CL5 

The doctor finds the list of 
devices deployed in the 
patient’s home. 

This invocation spends 
less than 2 seconds. 

ev(GT12) =F ex(GT12) = CL1 

The doctor does not 
consult the measure of 
device_1. 

 ev(GT13) = I ex(GT13) = CL3 

The doctor gets the 
measure of device_2. 

The measure is provided 
in less than 3 seconds. 

ev(GT14) = F ex(GT14) = CL1 

 After having carried out all 
of these tasks, the eHealth 
system provides a 
response to the patient 
spending more than 600 
seconds. 

ev(GT1) = V 
ev(GT2) = I 

ex(GT1) = CL2 
ex(GT2) = CL4 

In this scenario, the guarantee terms GT1 and GT6 have been violated so the corresponding 
penalties should be applied. 

Table 8.14: Test Case 7 for the each-choice strategy. 

  



Chapter 8: Case Study  175 

Process Expected Output Eval. Values PTRs exercised 

A No Confirmation alarm 
arrives to the eHealth 
system. 

   

The registry is not 
queried. 

 ev(GT3) = N 
ev(GT4) = N 
ev(GT5) = N 
ev(GT6) = N 
ev(GT7) = N 

ex(GT3) = CL5 
ex(GT4) = CL5 
ex(GT5) = CL5 
ex(GT6) = CL5 
ex(GT7) = CL5 

As the list of professionals 
is not available, neither 
doctors nor supervisors 
are invoked. 

 ev(GT8) = N 
ev(GT9) = N 
ev(GT10) = N 
ev(GT11) = N 

ex(GT10) = CL5 
ex(GT11) = CL5 
ex(GT8) = CL5 
ex(GT9) = CL5 

No medical devices are 
consulted. 

 ev(GT12) =N 
ev(GT13) =N 
ev(GT14) =N 

ex(GT12)= CL5 
ex(GT13)= CL5 
ex(GT14)= CL5 

 After having carried out all 
of these tasks, the eHealth 
system provides a 
response to the patient 
spending between 300 
and 600 seconds 

ev(GT1) = I 
ev(GT2) = F 

ex(GT1) = CL4 
ex(GT2) = CL1 

In this scenario, none of the guarantee terms has been violated so no consequences are 
derived. 

Table 8.15: Test Case 8 for the each-choice strategy. 

  



Chapter 8: Case Study  176 

Process Expected Output Eval. Values PTRs exercised 

An Emergency alarm 
arrives to the eHealth 
system. 

   

The registry is queried. It provides a non-empty 
list of professionals in 
more than 6 seconds. 
The list contains only 
doctors. 

ev(GT3) = F 
ev(GT4) = I 
ev(GT5) = F 
ev(GT6) = F 
ev(GT7) = I 

ex(GT3) = CL1 
ex(GT4) = CL3 
ex(GT5) = CL1 
ex(GT6) = CL1 
ex(GT7) = CL3 

A doctor connected to the 
system through a wired 
device is contacted. 

(s)he provides a response 
in more than 6 seconds. 

ev(GT8) = I 
ev(GT9) = V 

ex(GT8) = CL4 
ex(GT9) = CL2 

As a doctor has been 
contacted, no supervisors 
are invoked. 

 ev(GT10) = N 
ev(GT11) = N 

ex(GT10) = CL5 
ex(GT11) = CL5 

The doctor finds the list of 
devices deployed in the 
patient’s home. 

This invocation spends 
more than 2 seconds. 

ev(GT12) =V ex(GT12) = CL2 

The doctor does not 
consult the measure of 
device_1. 

 ev(GT13) = I ex(GT13) = CL4 

The doctor gets the 
measure of device_2. 

The measure is provided 
in more than 10 seconds. 

ev(GT14) = V ex(GT14) = CL2 

 After having carried out all 
of these tasks, the eHealth 
system provides a 
response to the patient 
spending between 300 
and 600 seconds. 

ev(GT1) = V 
ev(GT2) = I 

ex(GT1) = CL2 
ex(GT2) = CL4 

In this scenario, the guarantee terms GT1, GT9 and GT12 have been violated so the 
corresponding penalties should be applied. 

Table 8.16: Test Case 9 for the each-choice strategy. 

  



Chapter 8: Case Study  177 

Process Expected Output Eval. Values PTRs exercised 

A No Confirmation alarm 
arrives to the eHealth 
system. 

   

The registry is queried. It provides a non-empty 
list of professionals in a 
time between 3 and 6 
seconds. 
The list contains only 
supervisors. 

ev(GT3) = I 
ev(GT4) = F 
ev(GT5) = F 
ev(GT6) = I 
ev(GT7) = F 

ex(GT3) = CL4 
ex(GT4) = CL1 
ex(GT5) = CL1 
ex(GT6) = CL4 
ex(GT7) = CL1 

A supervisor connected to 
the system through a 
mobile device is 
contacted. 

(s)he provides a response 
in less than 15 seconds. 

ev(GT10) = F 
ev(GT11) = I 

ex(GT10) = CL1 
ex(GT11) = CL3 

As a supervisor has been 
contacted, no doctors are 
invoked. 

 ev(GT8) = N 
ev(GT9) = N 

ex(GT8) = CL5 
ex(GT9) = CL5 

As the alarm is managed 
by a supervisor, no 
medical devices are 
consulted. 

 ev(GT12) =N  
ev(GT13) = N 
ev(GT14) = N 

ex(GT12) = CL5 
ex(GT13) = CL5 
ex(GT14) = CL5 

 After having carried out all 
of these tasks, the eHealth 
system provides a 
response to the patient 
spending between 300 
and 600 seconds. 

ev(GT1) = I 
ev(GT2) = V 

ex(GT1) = CL4 
ex(GT2) = CL2 

In this scenario, the guarantee term GT2 has been violated so the corresponding penalty 
should be applied. 

Table 8.17: Test Case 10 for the each-choice strategy. 

8.3.3.2 Discussion about the different test suites 

So far, we have specified the scenarios associated to the test cases for the first of 

the applied testing strategies (each-choice testing). For the description of these scenarios 

we have used the natural language since the specification of the test cases is fully 

represented by the rows of the trees of Figure 8.11 - Figure 8.16. Due to this, in this 

section, instead of specifying the scenarios of the sets of 42 and 32 test cases obtained 

within the other two strategies (pair-wise and hybrid respectively) we will state some 

differences that arise from the derivation of these test suites. 

With the generation of the test suite for the each-choice strategy, all the previously 

identified Primitive TRs are exercised at least once. The execution of the test cases 



Chapter 8: Case Study  178 

allows us to be able to detect specific problems in the eHealth system. For example, we 

are testing that both types of alarm arrive to the system, we assure that doctors and 

supervisors connected to the system with both wired and mobile devices are contacted 

during the execution of the test cases, we force that the doctors consult the measure of 

the existing medical devices and so on. However, there are other situations that are 

unexercised so potential problems could remain covered so a more exhaustive criterion 

may need to be applied. 

The application of the second strategy (pairwise), more exhaustive than the first 

one, generates a larger set of test cases so the cost of generating and executing such test 

cases is also higher. However, the obtained test suite allows exercising new situations 

that may uncover hidden problems. Below, we will state some representative scenarios 

that are exercised within the test cases generated by applying the pairwise strategy (and 

also the hybrid strategy) and that remained unexercised with the each-choice strategy. 

Firstly, there are some scenarios related to the invocation of the medical devices 

that we have to consider. As it can be seen in Figure 8.20 (a), in the set of Combined 

TRs of the each-choice strategy and, therefore, in the set of derived test cases, the two 

medical devices are never invoked within the same execution of the eHealth system 

(CL1 or CL2 of GT13 are never combined with CL1 or CL2 of GT14). 

 

Figure 8.20: Invocation of both medical devices. 



Chapter 8: Case Study  179 

In the pair-wise strategy, we have obtained Combined TRs that address the 

invocation of both medical devices within the same execution of the system, for 

example, in the Combined TR3 and Combined TR24 remarked in Figure 8.20 (b). This 

means that there are specific test cases that exercise situations where both medical 

devices are consulted. These scenarios are represented using the natural language in 

Table 8.18 - Table 8.19. Furthermore, it is worth mentioning that such situations are 

also exercised in the test suite generated within the hybrid strategy. This is because the 

invocation of the medical devices is carried out when an Emergency arrives in the 

system and we have defined in the hybrid strategy that the guarantee terms associated to 

an Emergency are tested using pairwise testing. 

Process Expected Output Eval. Values PTRs exercised 

An Emergency alarm 
arrives to the eHealth 
system. 

   

... 

The doctor gets the 
measure of device_1. 

The measure is provided 
in less than 3 seconds. 

ev(GT13) = F ex(GT13) = CL1 

The doctor gets the 
measure of device_2. 

The measure is provided 
in less than 10 seconds. 

ev(GT14) = F ex(GT14) = CL1 

... 

Table 8.18: Partial Test Case for the Combined TR3. 

Process Expected Output Eval. Values PTRs exercised 

An Emergency alarm 
arrives to the eHealth 
system. 

   

... 

The doctor gets the 
measure of device_1. 

The measure is provided 
in more than 3 seconds. 

ev(GT13) = V ex(GT13) = CL2 

The doctor gets the 
measure of device_2. 

The measure is provided 
in less than 10 seconds. 

ev(GT14) = F ex(GT14) = CL1 

... 

Table 8.19: Partial Test Case for the Combined TR24. 

In addition to these situations, there are more scenarios that are tested within the 

pairwise and hybrid strategies but not in the each-choice. For example, in the test suite 

generated in the each-choice strategy, there is only one test case that exercises the 

situation where a doctor connected to the system through a mobile device consults the 



Chapter 8: Case Study  180 

measure of the first medical device (see Combined TR4 of Figure 8.21 (a)). In that 

situation, both the doctor and the medical device spend more time to answer than the 

specified in the SLA (exercising CL2 of GT8 and CL2 of GT13).  

 

Figure 8.21: Invocation of doctors and medical devices. 

In the pair-wise strategy, there are at least four test cases where a doctor 

connected through a mobile node consults the measure of the first device. These test 

cases exercise the situations represented in the Combined TR8, TR9, TR24 and TR40 



Chapter 8: Case Study  181 

(remarked in Figure 8.21 (b)). As can be seen, in these test cases we are testing the 

combinations where: 

a) The doctor spends more time to answer than the specified in the SLA 

(exercising CL2 of GT8) whereas the medical devices spends less time that 

the allowed (exercising CL1 of GT13) -> Combined TR8. 

b) Both the doctor and the medical device spend less time to answer than the 

specified in the SLA (exercising CL1 of GT8 and GT13) -> Combined TR9. 

c) Both the doctor and the medical device spend more time to answer than the 

specified in the SLA (exercising CL2 of GT8 and GT13) -> Combined TR24. 

d) The doctor spends less time to answer than the specified in the SLA 

(exercising CL1 of GT8) whereas the medical devices spends more time that 

the allowed (exercising CL2 of GT13) -> Combined TR40. 

These scenarios are not considered within the each-choice strategy but they are 

exercised in both pair-wise and hybrid strategies. The same occurs with the doctor 

connected to the system through a wired device and the measurement provided by the 

second medical device. 

Apart from this, there are other scenarios that remain unexercised in the less 

exhaustive strategies but not in the more exhaustive ones. These scenarios are related, 

for example, to the enquiry of the registry, which may answer with different response 

times and may provide empty and non-empty list of professionals. Other situations that 

are considered are those where the supervisors or the doctors are contacted when the 

registry has successfully provided its results or when a problem with such results has 

previously been detected. 

In addition to the potential advantages of using different combinatorial strategies, 

the identification of test requirements guided by the four-valued logic allows testing 

specific scenarios of the service-based application. For example, the behavior of the 

SBA when a specific service is not executed is tested due to the Not Determined 

evaluation value. Another interesting test situations is when one of the medical devices 



Chapter 8: Case Study  182 

is queried whereas the other is not, exercising the Inapplicable evaluation value in the 

corresponding guarantee term. 

8.4 Compositor Testing Level 

In this second testing level, again we address the identification of new test 

requirements as well as the generation of the test cases. In this case, we focus on the 

logical relationships of the guarantee terms involved in the SLA. To do this, we use the 

SLACDC_Generator presented in Section 7.3, which implements the algorithms 

described in Section 6.2.3 that allow obtaining Combined Test Requirements fulfilling 

the SLACDC criterion. 

8.4.1 Identification of Primitive Test Requirements 

The identification of the Primitive Test Requirements is performed taking the 

potential evaluation values of a guarantee term into account. To be more specific and as 

we explained in Section 6.2.1, we identify one Primitive TR for each of the four 

evaluation values that a guarantee term can take. 

As it is described in Section 8.2.2 of this chapter, the SLA that governs the 

executions of the services in the eHealth application contains 14 individual guarantee 

terms. Hence, we identify a set of 56 Primitive Test Requirements (14 GTs * 4 

evaluation values / GT). These Primitive TRs will be combined in the following section 

depending on the compositor where each guarantee term is specified. 

8.4.2 Derivation of Combined Test Requirements 

The algorithms described in Section 6.2.3 have been automatically applied in 

order to obtain the initial set of Combined Test Requirements. The SLA includes 5 

compositors that contain the 14 guarantee terms so 5 sets of Combined TRs are 

obtained, one for each compositor. The compositors of the SLA are represented in the 

first column of Table 8.20 and the number of initial Combined TRs for each compositor 

is represented in the second column. 

  



Chapter 8: Case Study  183 

Compositor Initial Rule1 Rule2 Rule3 Rule4 Total 
  R M R M R M R  

All (1) 8 0 2 1 0 0 3 1 6 
All (2) 17 2 5 4 4 2 6 1 8 

ExOne (1) 13 0 4 3 0 0 4 4 6 
ExOne (2) 13 0 4 3 0 0 4 4 6 

All (3) 11 2 2 1 0 0 5 1 7 

Total 62 4 17 12 4 2 22 11 33 

Table 8.20: Combined Test Requirements in the Compositor Testing Level. 

As we have previously stated, some of these test requirements may be non-

feasible so the rules defined in Section 6.2.4 have also been applied. As a result, Table 

8.20 also displays the number of Combined TRs that have been modified (M) or 

removed (R) after applying each rule (middle columns). Lastly, the last column outlines 

the final number of Combined TRs obtained for each compositor. 

Initially, a set of 62 Combined Test Requirements are identified by applying the 

SLACDC criterion. These Combined TRs fulfil the conditions specified in such 

criterion, which assures that every Guarantee Term and every Compositor take the four 

potential evaluation values and the variation of any value affects the output of the 

evaluation. After that, the rules we have defined in Section 6.2.4 are automatically 

applied in order to avoid the obtaining of non-feasible combination of Primitive Test 

Requirements. 

The set of Combined Test Requirements contains a total number of 33 

requirements, which are represented in trees in Figure 8.22 - Figure 8.26. 

 

Figure 8.22: Combined Test Requirements of the All (1) Compositor. 



Chapter 8: Case Study  184 

 

Figure 8.23: Combined Test Requirements of the All (2) Compositor. 

 

Figure 8.24: Combined Test Requirements of the ExactlyOne (1) Compositor. 

 

Figure 8.25: Combined Test Requirements of the ExactlyOne (2) Compositor. 

 

Figure 8.26: Combined Test Requirements of the All (3) Compositor. 

This number is significantly lower than the number of Combined TRs we had 

obtained if we had applied a complete combination using the four-valued logic in each 

compositor. In that case, we had initially obtained a set of 1136 test requirements (4
n
 for 



Chapter 8: Case Study  185 

each compositor, where n is the number of involved GTs). From this set, we would also 

have to identify the non-feasible Combined TRs and modify or remove them 

accordingly 

8.4.3 Generation of Test Cases 

In this section we address the generation of test cases by means of composing the 

Combined Test Requirements in order to obtain a complete scenario of the SBA. This is 

a task that is manually done by the tester, taking some issues into account. 

First, the objective is to obtain a test suite that exercises all the Combined TRs 

with the least number of test cases. Hence, when generating a new test case the tester 

tries to exercise Combined TRs that have not been exercised in previous test cases. This 

means that we are somehow applying each-choice testing with combinations of test 

requirements that have previously been elaborated (the Combined Test Requirements). 

Second, depending on the behaviour of the SBA there may be combinations of 

Combined TRs that may be non-feasible. Thus, the tester must carefully select the 

Combined TRs to be composed within a test case. 

Third, the Combined TRs of Figure 8.22 - Figure 8.26 were identified using the 

SLACDC criterion. This means that such identification is based in the content of the 

SLA but it does not take into account aspects related to the behaviour of the SBA. This 

implies that some of the Combined TRs may represent situations that cannot be 

exercised in the SBA so the tester should adapt or remove such test requirements. 

Furthermore and due to the same reason, when generating a test case it may be 

necessary to create a new Combined TR in order to obtain a feasible complete scenario 

to be tested in the SBA. 

Bearing these considerations in mind, during the generation of the test cases we 

become aware that seven Combined TRs represent non-feasible situations regarding the 

SBA. Below we describe the reasons of each Combined TR. 

 The Combined Test Requirement CTR3 requires the non-execution of the 

eHealth system. This invocation is mandatory to manage the arrival of an alarm 



Chapter 8: Case Study  186 

so the non-invocations of this service are situations that cannot be tested. Thus, 

we have removed this Combined TR. 

 The Combined Test Requirements CTR6 requires that an alarm with a different 

type of Emergency and No Confirmation arrives at the system, which is not 

allowed because the system only receives alarms of such types. In this case, one 

test case is designed to test how the system behaves when a non-accepted alarm 

arrives. 

 The Combined Test Requirements CTR18 and CTR24 are identified to test the 

management of an alarm by a doctor or supervisor which is not connected to the 

system through a wired or mobile device. As it is specified that these are the 

only two ways to be connected to the system, the situations exercised by CTR18 

and CTR24 are non-feasible. Furthermore, these two CTRs were obtained in 

order to evaluate the corresponding compositors as Inapplicable. Thus, they are 

not designed to test a specific change in the evaluation value of specific 

guarantee terms so we have removed such test requirements from the set of 

Combined TRs. 

 In the Combined Test Requirement CTR12 the violation of the GT5 implies that 

the registry provides an empty list of professionals as output. However, the 

fulfilment of GT6 requires that the list of professionals provided by the registry 

must contain only doctors. As the combination of these two situations becomes 

non-feasible, the Combined TR12 has to be adapted or removed. The violation 

of GT5 implies that we need to make a decision about the evaluation of GT6 

when the list of professionals provided by the registry is empty. In this case, we 

have decided that this test requirement will not be adapted and we have also 

removed it. However, we have to take into account that the aforementioned 

situation is really interesting and should be tested, disregarding the evaluation 

value of GT6. 

 Finally, the Combined Test Requirement CTR28 requires that the doctor does 

not consult the list of medical devices deployed in the patient’s home so, in that 

situation, such doctor is not capable to get the measures from the devices. As 



Chapter 8: Case Study  187 

this test requirement aims at testing the non-execution of the service that 

provides the list of medical devices, we have adapted the Combined TR so, now, 

it also implies the non-execution of the services specified in GT13 and GT14 

(Figure 8.27). 

 

 

Figure 8.27: Modified CTR28. 

With this modified set of Combined TRs, we have derived eleven test cases that 

exercise all the resultant Combined TRs by means of applying each-choice testing to the 

compositors. The exercitation of the Combined TRs in each test case is represented in 

Table 8.21. The identifier of each test case is showed in the first column. In the rest 

columns the exercised Combined TRs from each compositor are also outlined. 

Test Case All (1) All(2) ExOne(1) ExOne(2) All(3) 

TC1 CTR1 CTR7 CTR15 CTR22 CTR27 
TC2 CTR5 CTR11 CTR17 CTR22 CTR29 
TC3 CTR2 CTR8 CTR16 CTR21 CTR28 
TC4 CTR4 CTR10 CTR16 CTR23 CTR28 
TC5 CTR5 CTR11 CTR20 CTR22 CTR30 
TC6 CTR5 CTR13 CTR19 CTR22 CTR31 
TC7 CTR2 CTR14 CTR16 CTR25 CTR28 
TC8 CTR5 CTR11 CTR20 CTR22 CTR32 
TC9 CTR2 CTR8 CTR16 CTR26 CTR28 

TC10 CTR5 CTR11 CTR20 CTR22 CTR33 
TC11 CTR6 CTR9 CTR16 CTR22 CTR28 

Table 8.21: Combined TRs exercised in each test case. 

The Combined Test Requirements exercised in each test case are also specified in 

trees in Figure 8.28 and Figure 8.29. 



Chapter 8: Case Study  188 

 

Figure 8.28: Combined Test Requirements – Test Cases tree (I). 

 

Figure 8.29: Combined Test Requirements – Test Cases tree (II). 

The specifications of all the test cases are described in the following Table 8.22 - 

Table 8.32. The process for testing the scenario represented in such test case is 

described in the first column. The expected output is showed in the second column. The 

values inherent to the evaluation of the guarantee terms are represented in the third 

column. Finally, the Combined TRs exercised within the test case are represented in the 

last column. 



Chapter 8: Case Study  189 

Process Expected Output Eval. Values CTR exercised 

An Emergency alarm 
arrives to the eHealth 
system. 

   

The registry is queried. It provides a non-empty 
list of professionals 
spending more than 3 
seconds. 
The list contains only 
doctors. 

ev(GT3) = V 
ev(GT4) = I 
ev(GT5) = F 
ev(GT6) = F 
ev(GT7) = I 

CTR7 

A doctor connected to the 
system through a wired 
device is contacted. 

(s)he provides a response 
spending more than 2 
seconds. 

ev(GT8) = I 
ev(GT9) = V CTR15 

As a doctor has been 
contacted, no supervisors 
are invoked. 

 ev(GT10) = N 
ev(GT11) = N CTR22 

The doctor finds the list of 
devices deployed in the 
patient’s home. 

This invocation spends 
more than 2 seconds. 

ev(GT12) =V 

CTR27 
 

The doctor gets the 
measure of device_1. 

The measure is provided 
in less than 3 seconds. 

ev(GT13) = F 

The doctor does not 
consult the measure of 
device_2. 

 ev(GT14) = I 

 After having carried out all 
of these tasks, the eHealth 
system provides a 
response to the patient 
spending more than 300 
seconds. 

ev(GT1) = V 
ev(GT2) = I 

CTR1 

In this scenario, the guarantee terms GT1, GT3, GT9 and GT12 have been violated so the 
corresponding penalties should be applied. 

Table 8.22: Test Case 1 in the Compositor Testing Level. 

  



Chapter 8: Case Study  190 

Process Expected Output Eval. Values CTR exercised 

An Emergency alarm 
arrives to the eHealth 
system. 

   

The registry is queried. It provides a non-empty 
list of professionals in less 
than 3 seconds. 
The list contains only 
doctors. 

ev(GT3) = F 
ev(GT4) = I 
ev(GT5) = F 
ev(GT6) = F 
ev(GT7) = I 

CTR11 

A doctor connected to the 
system through a mobile 
device is contacted. 

(s)he provides a response 
spending more than 8 
seconds. 

ev(GT8) = V 
ev(GT9) = I CTR17 

As a doctor has been 
contacted, no supervisors 
are invoked. 

 ev(GT10) = N 
ev(GT11) = N CTR22 

The doctor finds the list of 
devices deployed in the 
patient’s home. 

This invocation in less 
than 2 seconds. 

ev(GT12) =F 

CTR29 
 

The doctor gets the 
measure of device_1. 

The measure is provided 
in more than 3 seconds. 

ev(GT13) = V 

The doctor does not 
consult the measure of 
device_2. 

 ev(GT14) = I 

 After having carried out all 
of these tasks, the eHealth 
system provides a 
response to the patient in 
less than 300 seconds. 

ev(GT1) = F 
ev(GT2) = I 

CTR5 

In this scenario, the guarantee terms GT8 and GT13 have been violated so the corresponding 
penalties should be applied. 

Table 8.23: Test Case 2 in the Compositor Testing Level. 

  



Chapter 8: Case Study  191 

Process Expected Output Eval. Values CTR exercised 

A No Confirmation alarm 
arrives to the eHealth 
system. 

   

The registry is queried. It provides a non-empty 
list of professionals in less 
than 6 seconds. 
The list contains only 
supervisors. 

ev(GT3) = I 
ev(GT4) = F 
ev(GT5) = F 
ev(GT6) = I 
ev(GT7) = V 

CTR8 

A supervisor connected to 
the system through a 
wired device is contacted. 

(s)he provides a response 
in more than 15 seconds. 

ev(GT10) = I 
ev(GT11) = V CTR21 

As a supervisor has been 
contacted, no doctors are 
invoked. 

 ev(GT8) = N 
ev(GT9) = N CTR16 

As the alarm is managed 
by a supervisor, no 
medical devices are 
consulted. 

 ev(GT12) =N  
ev(GT13) = N 
ev(GT14) = N CTR28 

 After having carried out all 
of these tasks, the eHealth 
system provides a 
response to the patient in 
less than 600 seconds. 

ev(GT1) = I 
ev(GT2) = F 

CTR2 

In this scenario, the guarantee terms GT7 and GT11 have been violated so the corresponding 
penalties should be applied. 

Table 8.24: Test Case 3 in the Compositor Testing Level. 

  



Chapter 8: Case Study  192 

Process Expected Output Eval. Values CTR exercised 

A No Confirmation alarm 
arrives to the eHealth 
system. 

   

The registry is queried. It provides a non-empty 
list of professionals 
spending more than 6 
seconds. 
The list contains only 
supervisors. 

ev(GT3) = I 
ev(GT4) = V 
ev(GT5) = F 
ev(GT6) = I 
ev(GT7) = F 

CTR10 

A supervisor connected to 
the system through a 
mobile device is 
contacted. 

(s)he provides a response 
in less than 20 seconds. 

ev(GT10) = V 
ev(GT11) = I 

CTR23 

As a supervisor has been 
contacted, no doctors are 
invoked. 

 ev(GT8) = N 
ev(GT9) = N CTR16 

As the alarm is managed 
by a supervisor, no 
medical devices are 
consulted. 

 ev(GT12) =N  
ev(GT13) = N 
ev(GT14) = N CTR28 

 After having carried out all 
of these tasks, the eHealth 
system provides a 
response to the patient 
spending more than 600 
seconds. 

ev(GT1) = I 
ev(GT2) = V 

CTR4 

In this scenario, the guarantee terms GT2, GT4 and GT10 have been violated so the 
corresponding penalties should be applied. 

Table 8.25: Test Case 4 in the Compositor Testing Level. 

  



Chapter 8: Case Study  193 

Process Expected Output Eval. Values CTR exercised 

An Emergency alarm 
arrives to the eHealth 
system. 

   

The registry is queried. It provides a non-empty 
list of professionals in less 
than 3 seconds. 
The list contains only 
doctors. 

ev(GT3) = F 
ev(GT4) = I 
ev(GT5) = F 
ev(GT6) = F 
ev(GT7) = I 

CTR11 

A doctor connected to the 
system through a mobile 
device is contacted. 

(s)he provides a response 
in less than 8 seconds. 

ev(GT8) = F 
ev(GT9) = I CTR20 

As a doctor has been 
contacted, no supervisors 
are invoked. 

 ev(GT10) = N 
ev(GT11) = N CTR22 

The doctor finds the list of 
devices deployed in the 
patient’s home. 

This invocation in less 
than 2 seconds. 

ev(GT12) =F 

CTR30 
The doctor does not 
consult the measure of 
device_1. 

 ev(GT13) = I 

The doctor gets the 
measure of device_2. 

The measure is provided 
in more than 10 seconds. 

ev(GT14) = F 

 After having carried out all 
of these tasks, the eHealth 
system provides a 
response to the patient in 
less than 300 seconds. 

ev(GT1) = F 
ev(GT2) = I 

CTR5 

In this scenario, none of the guarantee terms has been violated so no consequences are 
derived. 

Table 8.26: Test Case 5 in the Compositor Testing Level. 

  



Chapter 8: Case Study  194 

Process Expected Output Eval. Values CTR exercised 

An Emergency alarm 
arrives to the eHealth 
system. 

   

The registry is queried. It provides a non-empty 
list of professionals in less 
than 3 seconds. 
The list contains both 
doctors and supervisors. 

ev(GT3) = F 
ev(GT4) = I 
ev(GT5) = F 
ev(GT6) = V 
ev(GT7) = I 

CTR13 

A doctor connected to the 
system through a mobile 
device is contacted. 

(s)he provides a response 
in less than 2 seconds.. 

ev(GT8) = I 
ev(GT9) = F CTR19 

As a doctor has been 
contacted, no supervisors 
are invoked. 

 ev(GT10) = N 
ev(GT11) = N CTR22 

The doctor finds the list of 
devices deployed in the 
patient’s home. 

This invocation in less 
than 2 seconds. 

ev(GT12) =F 

CTR31 
The doctor does not 
consult the measure of 
device_1. 

 ev(GT13) = N 

The doctor does not 
consult the measure of 
device_2. 

 ev(GT14) = N 

 After having carried out all 
of these tasks, the eHealth 
system provides a 
response to the patient in 
less than 300 seconds. 

ev(GT1) = F 
ev(GT2) = I 

CTR5 

In this scenario, the guarantee term GT6 has been violated so the corresponding penalty 
should be applied. 

Table 8.27: Test Case 6 in the Compositor Testing Level. 

  



Chapter 8: Case Study  195 

Process Expected Output Eval. Values CTR exercised 

A No Confirmation alarm 
arrives to the eHealth 
system. 

   

The registry is queried. It provides a non-empty 
list of professionals in less 
than 6 seconds. 
The list contains both 
doctors and supervisors. 

ev(GT3) = I 
ev(GT4) = F 
ev(GT5) = F 
ev(GT6) = I 
ev(GT7) = V 

CTR14 

A supervisor connected to 
the system through a 
wired device is contacted. 

(s)he provides a response 
in less than 15 seconds. 

ev(GT10) = I 
ev(GT11) = F CTR25 

As a supervisor has been 
contacted, no doctors are 
invoked. 

 ev(GT8) = N 
ev(GT9) = N CTR16 

As the alarm is managed 
by a supervisor, no 
medical devices are 
consulted. 

 ev(GT12) =N  
ev(GT13) = N 
ev(GT14) = N CTR28 

 After having carried out all 
of these tasks, the eHealth 
system provides a 
response to the patient in 
less than 600 seconds. 

ev(GT1) = I 
ev(GT2) = F 

CTR2 

In this scenario, the guarantee term7 has been violated so the corresponding penalty should 
be applied. 

Table 8.28: Test Case 7 in the Compositor Testing Level. 

  



Chapter 8: Case Study  196 

Process Expected Output Eval. Values CTR exercised 

An Emergency alarm 
arrives to the eHealth 
system. 

   

The registry is queried. It provides a non-empty 
list of professionals in less 
than 3 seconds. 
The list contains only 
doctors. 

ev(GT3) = F 
ev(GT4) = I 
ev(GT5) = F 
ev(GT6) = F 
ev(GT7) = I 

CTR11 

A doctor connected to the 
system through a mobile 
device is contacted. 

(s)he provides a response 
in less than 8 seconds. 

ev(GT8) = F 
ev(GT9) = I CTR20 

As a doctor has been 
contacted, no supervisors 
are invoked. 

 ev(GT10) = N 
ev(GT11) = N CTR22 

The doctor finds the list of 
devices deployed in the 
patient’s home. 

This invocation in less 
than 2 seconds. 

ev(GT12) =F 

CTR32 
The doctor does not 
consult the measure of 
device_1. 

 ev(GT13) = I 

The doctor gets the 
measure of device_2. 

The measure is provided 
in more than 10 seconds. 

ev(GT14) = V 

 After having carried out all 
of these tasks, the eHealth 
system provides a 
response to the patient in 
less than 300 seconds. 

ev(GT1) = F 
ev(GT2) = I 

CTR5 

In this scenario, the guarantee term GT14 has been violated so the corresponding penalty 
should be applied. 

Table 8.29: Test Case 8 in the Compositor Testing Level. 

  



Chapter 8: Case Study  197 

Process Expected Output Eval. Values CTR exercised 

A No Confirmation alarm 
arrives to the eHealth 
system. 

   

The registry is queried. It provides a non-empty 
list of professionals in less 
than 6 seconds. 
The list contains only 
supervisors. 

ev(GT3) = I 
ev(GT4) = F 
ev(GT5) = F 
ev(GT6) = I 
ev(GT7) = F 

CTR8 

A supervisor connected to 
the system through a 
mobile device is 
contacted. 

(s)he provides a response 
in less than 20 seconds. 

ev(GT10) = F 
ev(GT11) = I 

CTR26 

As a supervisor has been 
contacted, no doctors are 
invoked. 

 ev(GT8) = N 
ev(GT9) = N CTR16 

As the alarm is managed 
by a supervisor, no 
medical devices are 
consulted. 

 ev(GT12) =N  
ev(GT13) = N 
ev(GT14) = N CTR28 

 After having carried out all 
of these tasks, the eHealth 
system provides a 
response to the patient in 
less than 600 seconds.. 

ev(GT1) = I 
ev(GT2) = F 

CTR2 

In this scenario, none of the guarantee terms has been violated so no consequences are 
derived. 

Table 8.30: Test Case 9 in the Compositor Testing Level. 

  



Chapter 8: Case Study  198 

Process Expected Output Eval. Values CTR exercised 

An Emergency alarm 
arrives to the eHealth 
system. 

   

The registry is queried. It provides a non-empty 
list of professionals in less 
than 3 seconds. 
The list contains only 
doctors. 

ev(GT3) = F 
ev(GT4) = I 
ev(GT5) = F 
ev(GT6) = F 
ev(GT7) = I 

CTR11 

A doctor connected to the 
system through a mobile 
device is contacted. 

(s)he provides a response 
in less than 8 seconds. 

ev(GT8) = F 
ev(GT9) = I CTR20 

As a doctor has been 
contacted, no supervisors 
are invoked. 

 ev(GT10) = N 
ev(GT11) = N CTR22 

The doctor finds the list of 
devices deployed in the 
patient’s home. 

This invocation in less 
than 2 seconds. 

ev(GT12) =F 

CTR33 
The doctor gets the 
measure of device_1. 

The measure is provided 
in more than 3 seconds. 

ev(GT13) = V 

The doctor does not 
consult the measure of 
device_2. 

 ev(GT14) = I 

 After having carried out all 
of these tasks, the eHealth 
system provides a 
response to the patient in 
less than 300 seconds. 

ev(GT1) = F 
ev(GT2) = I 

CTR5 

In this scenario, the guarantee term GT13 has been violated so the corresponding penalty 
should be applied. 

Table 8.31: Test Case 10 in the Compositor Testing Level. 

  



Chapter 8: Case Study  199 

Process Expected Output Eval. Values CTR exercised 

An alarm that is not an 
Emergency or Not 
Confirmation arrives to 
the eHealth system. 

   

As the type of the alarm is 
not allowed, the registry is 
not queried. 

 ev(GT3) = N 
ev(GT4) = N 
ev(GT5) = N 
ev(GT6) = N 
ev(GT7) = N 

CTR9 

No doctors are invoked.  ev(GT8) = N 
ev(GT9) = N 

CTR16 

No supervisors are 
invoked. 

 ev(GT10) = N 
ev(GT11) = N 

CTR22 

No medical devices are 
consulted. 

 ev(GT12) =N 
ev(GT13) = N 
ev(GT14) = N 

CTR28 

 After having carried out all 
of these tasks, the eHealth 
system provides a 
response to the patient in 
less than 300 seconds. 

ev(GT1) = I 
ev(GT2) = I 

CTR6 

In this scenario, none of the guarantee terms has been violated so no consequences are 
derived. 

Table 8.32: Test Case 11 in the Compositor Testing Level. 

The final set of Combined TRs contains 29 test requirements. The compositor that 

implies the generation of a higher number of Combined TRs is the All (3). For this 

compositor, seven Combined TRs were identified (CTR27-CTR33). In the final test 

suite, we have derived eleven cases to cover all the resultant Combined Test 

Requirements. This means that some of the Combined TRs are exercised more than 

once within the test suite, which is somehow necessary in order to compose complete 

scenarios to be tested. 

8.5 Summary 

In this chapter we have designed tests for an eHealth case study proposed in a 

European FP7 Project. Taking the eHealth system as our Software Under Test (SUT), 

we have applied the testing techniques developed in the two testing level described in 

Chapter 5 and Chapter 6. In each of these levels and making use of the tool support 

presented in Chapter 7, we have identified a set of test requirements and, later, we have 

generated the test cases that exercised such test requirements. 



Chapter 8: Case Study  200 

To be more specific, in the Guarantee Term Testing Levels we have obtained 

different test suites by means of selecting three different coverage strategies. The size of 

these test suites is 10 test cases for the least exhaustive strategy, 42 test cases for the 

most exhaustive and 32 test cases for the hybrid one, which is an intermediate strategy 

between the previous two. 

In the Compositor Testing Level we have generated a final set of 11 test cases that 

exercise all the Combined Test Requirements identified by means of the application of 

the SLACDC criterion. 

In the following and last chapter of this dissertation, we will state the conclusions 

of the work developed under this PhD and we will also outline potential directions of 

our future work. 

 

 



201 

Chapter 9 
 

 Conclusions 

 

You have to know the past to understand the present 

Carl Sagan, 1934-1996 
American astronomer, cosmologist and science communicator 

 

 

 

 

 

 

 

his chapter presents the conclusions of this dissertation. Firstly it highlights the 

main contributions of this work. After that, it discusses the main limitations and 

outlines potential research lines for future work. 

  

T 



Chapter 9: Conclusions  202 

9.1 Synthesis and Results 

In the field of Service-Based Applications (SBAs), a Service Level Agreement 

(SLA) contains the conditions that must be fulfilled by the provider and the consumer 

during the executions of the services. In this context, many works have been proposed 

to detect whether the behaviour of the SBA has violated the SLA during its executions 

at runtime. When this occurs, different type of penalties may be applied in order to 

somehow compensate the consequences of the SLA violation. Few works have focused 

on the early detection of problems before the SBA is deployed in the operational 

environment. In this thesis, we have addressed the testing of SLAs by means of 

proposing a proactive approach that allows anticipating the detection of problems in the 

SBA so consequences derived from SLA violations can be avoided or minimized. 

The first contribution of this dissertation is the design of SLATF (SLA Testing 

Framework), which defines a testing process that takes the specification of the SLA as 

the test basis (Chapter 3). This framework involves the development of different 

activities with the objective of testing SLA-aware SBAs. 

All the activities presented in SLATF need to take the evaluation of the SLA into 

account. This evaluation allows, on the one hand, determining whether the executions of 

the SBA fulfil the conditions agreed in the SLA. On the other hand, the evaluation is 

also used to identify potential situations that can cause problems in the SBA. In this 

context, the second contribution of this dissertation is a four-valued logic that allows 

evaluating the SLA and its internal elements, including guarantee terms and 

compositors (Chapter 4). 

The testing process of SLATF requires identifying test requirements from the 

specification of the SLA and, later, deriving the test cases that cover such requirements. 

In this thesis, we have established two different testing levels, depending whether the 

tests are obtained from the content of the individual guarantee terms (Guarantee Term 

Testing Level) or from the logical relationships of such terms (Compositor Testing 

Level). In the first of these levels, we make use of standard combinatorial testing 

techniques in order to identify the test requirements and generate the final set of test 

cases (Chapter 5). In the second level, we devise SLACDC (SLA Condition Decision 



Chapter 9: Conclusions  203 

Coverage), a coverage-based criterion that allows identifying test requirements that 

exercise interesting combinations of situations regarding the logical relationships 

between the terms of the SLA (Chapter 6). 

The testing techniques proposed in the two aforementioned testing levels have 

been automated in order to reduce the cost and effort necessary to design the tests. 

Firstly, we have developed the SLACT (SLA Combinatorial Testing) tool, which 

allows us to automatically identify and combine the test requirements from the 

specification of an SLA using the WS-Agreement language (Chapter 7). Furthermore, 

we have also developed a prototype that automates the identification of new test 

requirements by using SLACDC. 

Finally, we have evaluated the feasibility of our approaches using an eHealth 

scenario proposed in the context of a FP7 European Project (Chapter 8). The outcomes 

of this case study show that it is possible to obtain reduced set of test cases that exercise 

different situations regarding the SLA-aware service based application. 

9.2 Discussion, limitations and extensions 

In this section we identify some of the decisions we have made in this dissertation 

and we outline its main limitations. These considerations guide us to highlight 

motivating topics to be explored in our future work. 

WS-Agreement as a cornerstone 

In this thesis, we have used the WS-Agreement standard language in order to 

specify the SLAs that are taken as the test basis. In spite of the fact that many languages 

have been proposed to standardize the specification of SLAs [108], for example, 

WSLA, WSLO, SLANG, WS-QoS or WS-Policy, it has been WS-Agreement who has 

received more attention regarding the testing of SLAs, at least from the academic scope. 

As WS-Agreement presents a generic syntax, we envision that the outcomes derived 

from this dissertation could be extrapolated to any other existing SLA specification 

language. 



Chapter 9: Conclusions  204 

Future work: generalize the proposed testing techniques and provide guidelines 

for the application of such techniques with other SLAs languages. 

Proactive Approach 

Since the beginning, this dissertation focuses on proposing a proactive approach 

in order to anticipate the detection of problems and, thus, avoid or mitigate the 

consequences derived from an SLA violation. To do this, one of the main tasks of this 

PhD involves the identification of test requirements, which represent the situations that 

are more interesting to be tested. We consider that these test requirements could also be 

used to guide the design of monitoring plans, helping to decide which aspects of the 

SBA need to be monitored. 

Future work: find and explode the synergies between our proactive approach and 

the existing SLA monitoring-based approaches. 

Simple conditions in the Qualifying Condition and the Service Level Objective 

In our approach, we consider the content of the QC and the SLO as a whole, 

without analysing the internal conditions of both elements. Hence, we say that the QC 

(or the SLO) is satisfied or not but we do not take into account whether the QC (or the 

SLO) contains a more complex expression that needs to be analysed. 

Future work: study how the complexity of the internal elements of a guarantee 

term affects the definition of new and more accurate tests. 

Simple hierarchy of the SLA 

In our approach, we are considering that the SLA is composed of compositors 

that, likewise, contain guarantee terms. However, this hierarchy could be more complex 

if we add new levels of nesting, for example, dealing with compositors that contain both 

compositors and guarantee terms. 

Future work: study how our approach should operate in case of several levels of 

imbrications. 



Chapter 9: Conclusions  205 

Reuse of already designed tests 

In both testing levels designed in this PhD, we use the SLA as the test basis to 

design the tests. From the content of the SLA, we use the developed tools to obtain the 

set of test requirements that will be later exercised through the test cases. However, a 

change in the specification of the SLA (even if it is a minor change) affects the 

identification of the tests so a new set of test requirements needs to be identified and, 

consequently, new test cases are generated without reusing the previous ones. 

Future work: study how previous test designs could be reused when the 

specification of the SLA changes. 

Automation of test cases 

In this dissertation we obtain the specification of the test cases by means of 

identifying the Primitive TRs and the Combined TRs. From this specification, each test 

case needs to be manually prepared and executed. 

Future work: study how to automate the test cases, probably using an activity-

based or state-based model of the system. 



206 

Chapter 10 
 

 Conclusiones 

 

There will come a time when you believe everything is finished. 
That will be the beginning. 

Louis Dearborn L’Amour, 1908-1988 
American writer 

 

 

 

 

 

 

 

ste capítulo presenta las conclusiones de esta tesis. En primer lugar se resumen las 

principales contribuciones del trabajo realizado. Después se discuten las 

limitaciones de los métodos de prueba propuestos y se esbozan potenciales líneas de 

investigación para el trabajo futuro. 

 

 

  

E 



Chapter 10: Conclusiones  207 

10.1 Resumen y resultados 

En el ámbito de las aplicaciones basadas en servicios (SBAs – Service-Based 

Applications), un Acuerdo de Nivel de Servicio (SLA – Service Level Agreement) 

contiene las condiciones que han de ser cumplidas tanto por el proveedor de los 

servicios como por el consumidor durante la ejecución de los mismos. En este contexto, 

mucho ha sido el trabajo dedicado a detectar si el comportamiento observador durante 

las ejecuciones de la aplicación viola las condiciones especificadas en el SLA. Cuando 

esto ocurre, diferentes tipos de penalización pueden ser aplicadas para compensar las 

consecuencias derivadas de dicha violación. Desafortunadamente, pocos trabajos se han 

orientado a anticipar la detección de las violaciones del SLA antes de que la aplicación 

haya sido desplegada en su entorno operacional. En esta tesis se ha investigado la 

prueba de los SLAs mediante un enfoque proactivo que permite anticipar la detección 

de problemas en la aplicación bajo prueba y, por tanto, se contribuye a evitar o mitigar 

las consecuencias derivadas de las violaciones del SLA. 

La primera contribución de esta tesis es el diseño de SLATF (SLA Testing 

Framework), un marco de trabajo que define un proceso de pruebas que toma la 

especificación del SLA como entrada (Chapter 3). Este marco de trabajo implica el 

desarrollo de diferentes actividades que tienen como objetivo la prueba de aplicación 

basadas en servicio que tienen asociado un acuerdo de nivel de servicio. 

Todas las actividades presentes en SLATF necesitan tener en cuenta la evaluación 

del SLA. Esta evaluación permite, por un lado, determinar si las ejecuciones de la 

aplicación bajo prueba están cumpliendo las condiciones acordadas en el SLA. Por otra 

parte, la evaluación también es usada para identificar potenciales situaciones que 

pueden causar problemas en la aplicación. En este contexto, la segunda contribución de 

esta tesis es la presentación de una lógica cuatrivaluada que permite evaluar el SLA 

y sus elementos internos, incluyendo tanto los términos de garantía individuales como 

las combinaciones lógicas de dichos términos (Chapter 4). 

El proceso de pruebas implementado por SLATF requiere la identificación de 

requisitos de prueba a partir de la especificación del SLA y, posteriormente, derivar los 

casos de prueba que ejercitan dichos requisitos. En esta tesis, hemos establecido dos 



Chapter 10: Conclusiones  208 

niveles de prueba para ello, dependiendo si las pruebas se obtienen a partir del 

contenido de cada término de garantía (Guarantee Term Testing Level) o de sus 

combinaciones lógicas (Compositor Testing Level). En el primero de dichos niveles 

usamos diferentes técnicas de pruebas combinatorias para identificar los requisitos y 

generar el conjunto final de casos de prueba (Chapter 5). En el segundo de los niveles 

desarrollamos SLACDC (SLA Condition Decision Coverage), un criterio de pruebas 

basado en cobertura que permite identificar requisitos de prueba que ejercitan 

combinaciones interesantes de situaciones en relación a las relaciones lógicas entre los 

términos de garantía del SLA (Chapter 6). 

Las técnicas de pruebas propuestas en los citados dos niveles han sido 

automatizadas para reducir el coste y esfuerzo necesario para diseñar las pruebas. En 

primer lugar, hemos desarrollado la herramienta SLACT (SLA Combinatorial 

Testing), la cual automatiza la identificación y combinación de los requisitos de prueba 

a partir de un SLA especificado usando el lenguaje WS-Agreement (Chapter 7). 

Además, también hemos desarrollado un prototipo que automatiza la identificación de 

requisitos de prueba aplicando el criterio de cobertura SLACDC. 

Finalmente hemos evaluado el enfoque desarrollado usando un escenario de tele-

asistencia médica que ha sido propuesto en el contexto de un Proyecto Europeo del 

Séptimo Programa Marco (Chapter 8). Los resultados de este caso de estudio indican 

que es posible obtener un conjunto reducido de casos de prueba que ejercitan diferentes 

situaciones asociadas a la aplicación bajo prueba. 

10.2 Discusión, limitaciones y trabajo futuro 

En esta sección se discuten algunas de las decisiones que han sido tomadas en esta 

tesis y se indican sus principales limitaciones. Este análisis nos permite guiar las líneas 

de trabajo a seguir en el futuro. 

WS-Agreement usado como lenguaje de especificación de SLAs 

En esta tesis se ha usado WS-Agreement como el lenguaje estándar para 

especificar los SLAs que son tomados como entrada al proceso de pruebas. A pesas de 

que muchos otros lenguajes han sido propuestos para estandarizar la especificación del 



Chapter 10: Conclusiones  209 

SLA, como por ejemplo WSLA, WSLO, SLANG, WS-QoS o WS-Policy, ha sido WS-

Agreement el que ha recibido más atención en el contexto de las pruebas del software, 

al menos desde un punto de vista académico. WS-Agreement presenta una sintaxis 

genérica para especificar un SLA y, por tanto, entendemos que los resultados obtenidos 

podrían ser extrapolados a otros lenguajes existentes de SLAs. 

Trabajo Futuro: generalizar las pruebas de testing propuestas y proporcionar unas 

pautas para la aplicación de dichas técnicas con otros lenguajes de SLAs. 

Enfoque Proactivo 

Desde sus inicios, esta tesis se ha enfocado a proponer un enfoque proactivo con 

el objetivo de anticipar la detección de problemas y, por consiguiente, contribuir a evitar 

o mitigar las consecuencias derivadas de una violación del SLA. Para ello, una de las 

principales tareas de esta tesis es la identificación de requisitos de prueba, los cuales 

representan situaciones que son interesantes de ejercitar desde el punto de vista de las 

pruebas. Consideramos que estos requisitos de prueba podrían ser también usados para 

guiar el diseño y preparación de diferentes planes de monitorización, ayudando a decidir 

qué aspectos de la aplicación bajo prueba son más importantes y necesitan ser 

observador. 

Trabajo Futuro: analizar y explotar las sinergias entre nuestro enfoque proactivo 

y los enfoques de pruebas reactivos basados en la monitorización de los SLAs. 

Condiciones simples tanto en la Qualifying Condition como en los Service Level 

Objectives. 

En nuestro enfoque se tiene en cuenta el contenido de la Qualifying Condition 

(QC) y de los Service Level Objectives (SLOs) como un todo, sin analizar las 

condiciones internas de dichos elementos. De esta forma, decimos que la QC (o el SLO) 

se cumplen o no se cumplen, pero no tenemos en cuenta si ambos elementos contienen 

expresiones más complejas que necesitarían ser analizadas con mayor grado de detalle. 

Trabajo Futuro: estudiar cómo la complejidad de los elementos internos de un 

término de garantía afecta a la definición de nuevas y más precisas pruebas. 



Chapter 10: Conclusiones  210 

Jerarquía simple de los SLAs 

En esta tesis se considera que los SLAs están compuestos de compositores que, a 

su vez, contienen términos de garantía. Sin embargo, esta jerarquía podría ser más 

compleja si se incorporan nuevos niveles de anidamiento como, por ejemplo, 

incluyendo compositores dentro de otros compositores. 

Trabajo Futuro: estudiar cómo nuestra aportación debería ser adaptada para 

contemplar la posibilidad de niveles de anidación complejos. 

Reutilización de pruebas ya diseñadas. 

En los dos niveles de pruebas propuestos se usa el SLA como entrada para diseñar 

las pruebas. A partir del contenido del SLA hacemos uso de las herramientas 

desarrolladas para obtener el conjunto de requisitos de prueba que serán ejercitados más 

tarde mediante la ejecución de los casos de prueba. Sin embargo, un cambio en la 

especificación de SLA (incluso siendo una modificación menor) afecta a la 

identificación de las pruebas por lo que un nuevo conjunto de requisitos de prueba 

necesita ser obtenido. Consecuentemente nuevos conjuntos de casos de prueba son 

generados sin tener en cuenta los anteriores. 

Trabajo Futuro: estudiar cómo se pueden reutilizar los casos de prueba ya 

diseñados cuando la especificación del SLA cambia. 

Automatización de los casos de prueba 

En esta tesis se obtiene la especificación de los casos de prueba mediante la 

identificación de los Primitive Test Requirements y los Combined Test Requirements. 

Posteriormente y a partir de dicha especificación, cada caso de prueba necesita ser 

manualmente preparado para llevar a cabo su ejecución. 

Trabajo Futuro: estudiar cómo dichos casos de prueba pueden ser automatizados, 

posiblemente usando un modelo del sistema basado en actividades o estados. 



Institutional Acknowledgments  211 

 

Institutional Acknowledgments 

 

This dissertation has been partially funded by the Department of Science and 

Innovation (Spain) and ERDF funds within the National Program for Research, 

Development and Innovation, project Test4SOA (TIN2007-67843-C06-01), project 

Test4DBS (TIN2010-20057-C03-01) and FICYT (Government of the Principality of 

Asturias) Grant BP09-075. 

 



Appendix 1: eHealth SLA  212 

 

Appendix 1: eHealth SLA 

This SLA can be publicly downloaded in [125]. 

<?xml version="1.0" encoding="UTF-8"?> 

 

<wsag:AgreementOffer  

xmlns:tns="http://www.w3.org/2005/08/addressing"  

xmlns:wsag="http://schemas.ggf.org/graap/2007/03/ws-agreement"  

xmlns:wsrf-bf="http://docs.oasis-open.org/wsrf/bf-2.xsd"  

xmlns:xml="http://www.w3.org/XML/1998/namespace"  

xmlns:xs="http://www.w3.org/2001/XMLSchema"  

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  

xmlns:SLATest="http://giis.uniovi.es/SLATest" 

xsi:schemaLocation="http://schemas.ggf.org/graap/2007/03/ws-

agreement"> 

   

  <wsag:Name>eHealth Scenario</wsag:Name> 

   

  <wsag:Context> 

    <wsag:ServiceProvider>AgreementInitiator</wsag:ServiceProvider> 

    <wsag:ExpirationTime>2013-12-31T00:00:00</wsag:ExpirationTime> 

  </wsag:Context> 

   

  <wsag:Terms> 

    

   <wsag:All> 

    

   <wsag:All> 

    

    <wsag:GuaranteeTerm wsag:Name="GT1" 

wsag:Obligated="ServiceProvider"> 

 

         <wsag:ServiceScope wsag:ServiceName="WSHealth"> 

           <SLATest:Method> 

                <NameMethod>reportAlarm</NameMethod> 

           </SLATest:Method> 

         </wsag:ServiceScope> 

          

         <wsag:QualifyingCondition> 

          <SLATest:variable>alarmType</SLATest:variable> 

          <SLATest:operator>eq</SLATest:operator> 

          <SLATest:constant>Emergency</SLATest:constant> 

         </wsag:QualifyingCondition> 

         

         <wsag:ServiceLevelObjective> 

          <wsag:CustomServiceLevel> 

           <SLATest:variable>responseTime</SLATest:variable> 

           <SLATest:operator>lt</SLATest:operator> 

           <SLATest:constant>300</SLATest:constant> 

           <SLATest:unit>seconds</SLATest:unit> 



Appendix 1: eHealth SLA  213 

          </wsag:CustomServiceLevel> 

         </wsag:ServiceLevelObjective> 

                  

         <wsag:BusinessValueList> 

          <wsag:Penalty> 

           <wsag:AssessmentInterval> 

                 <wsag:Count> 1 </wsag:Count> 

              </wsag:AssessmentInterval> 

           <wsag:ValueExpression> 

            <SLATest:constant>10</SLATest:constant> 

            <SLATest:unit>dollars</SLATest:unit> 

           </wsag:ValueExpression> 

          </wsag:Penalty> 

         </wsag:BusinessValueList> 

        </wsag:GuaranteeTerm> 

         

        <wsag:GuaranteeTerm wsag:Name="GT2" 

wsag:Obligated="ServiceProvider"> 

 

         <wsag:ServiceScope wsag:ServiceName="WSHealth"> 

           <SLATest:Method> 

                <NameMethod>reportAlarm</NameMethod> 

           </SLATest:Method> 

         </wsag:ServiceScope> 

          

         <wsag:QualifyingCondition> 

          <SLATest:variable>alarmType</SLATest:variable> 

          <SLATest:operator>eq</SLATest:operator> 

          <SLATest:constant>No Confirmation</SLATest:constant> 

         </wsag:QualifyingCondition> 

         

         <wsag:ServiceLevelObjective> 

          <wsag:CustomServiceLevel> 

           <SLATest:variable>responseTime</SLATest:variable> 

           <SLATest:operator>lt</SLATest:operator> 

           <SLATest:constant>600</SLATest:constant> 

           <SLATest:unit>seconds</SLATest:unit> 

          </wsag:CustomServiceLevel> 

         </wsag:ServiceLevelObjective> 

                  

         <wsag:BusinessValueList> 

          <wsag:Penalty> 

           <wsag:AssessmentInterval> 

                 <wsag:Count> 1 </wsag:Count> 

              </wsag:AssessmentInterval> 

           <wsag:ValueExpression> 

            <SLATest:constant>10</SLATest:constant> 

            <SLATest:unit>dollars</SLATest:unit> 

           </wsag:ValueExpression> 

          </wsag:Penalty> 

         </wsag:BusinessValueList> 

        </wsag:GuaranteeTerm> 

      

 </wsag:All> 

         

    <wsag:All> 

     

        <wsag:GuaranteeTerm wsag:Name="GT3" 

wsag:Obligated="ServiceProvider"> 



Appendix 1: eHealth SLA  214 

 

         <wsag:ServiceScope wsag:ServiceName="WSRegistry"> 

           <SLATest:Method> 

                <NameMethod>getConnectedDeviceIP</NameMethod> 

           </SLATest:Method> 

         </wsag:ServiceScope> 

          

         <wsag:QualifyingCondition> 

          <SLATest:variable>alarmType</SLATest:variable> 

          <SLATest:operator>eq</SLATest:operator> 

          <SLATest:constant>Emergency</SLATest:constant> 

         </wsag:QualifyingCondition> 

         

         <wsag:ServiceLevelObjective> 

          <wsag:CustomServiceLevel> 

           <SLATest:variable>responseTime</SLATest:variable> 

           <SLATest:operator>lt</SLATest:operator> 

           <SLATest:constant>3</SLATest:constant> 

           <SLATest:unit>seconds</SLATest:unit> 

          </wsag:CustomServiceLevel> 

         </wsag:ServiceLevelObjective> 

                  

         <wsag:BusinessValueList> 

          <wsag:Penalty> 

           <wsag:AssessmentInterval> 

                 <wsag:Count> 1 </wsag:Count> 

              </wsag:AssessmentInterval> 

           <wsag:ValueExpression> 

            <SLATest:constant>3</SLATest:constant> 

            <SLATest:unit>dollars</SLATest:unit> 

           </wsag:ValueExpression> 

          </wsag:Penalty> 

         </wsag:BusinessValueList> 

        </wsag:GuaranteeTerm> 

         

        <wsag:GuaranteeTerm wsag:Name="GT4" 

wsag:Obligated="ServiceProvider"> 

 

         <wsag:ServiceScope wsag:ServiceName="WSRegistry"> 

           <SLATest:Method> 

                <NameMethod>getConnectedDeviceIP</NameMethod> 

           </SLATest:Method> 

         </wsag:ServiceScope> 

          

         <wsag:QualifyingCondition> 

          <SLATest:variable>alarmType</SLATest:variable> 

          <SLATest:operator>eq</SLATest:operator> 

          <SLATest:constant>No Confirmation</SLATest:constant> 

         </wsag:QualifyingCondition> 

         

         <wsag:ServiceLevelObjective> 

          <wsag:CustomServiceLevel> 

           <SLATest:variable>responseTime</SLATest:variable> 

           <SLATest:operator>lt</SLATest:operator> 

           <SLATest:constant>6</SLATest:constant> 

           <SLATest:unit>seconds</SLATest:unit> 

          </wsag:CustomServiceLevel> 

         </wsag:ServiceLevelObjective> 

                  



Appendix 1: eHealth SLA  215 

         <wsag:BusinessValueList> 

          <wsag:Penalty> 

           <wsag:AssessmentInterval> 

                 <wsag:Count> 1 </wsag:Count> 

              </wsag:AssessmentInterval> 

           <wsag:ValueExpression> 

            <SLATest:constant>1</SLATest:constant> 

            <SLATest:unit>dollars</SLATest:unit> 

           </wsag:ValueExpression> 

          </wsag:Penalty> 

         </wsag:BusinessValueList> 

        </wsag:GuaranteeTerm> 

                 

        <wsag:GuaranteeTerm wsag:Name="GT5" 

wsag:Obligated="ServiceProvider"> 

 

         <wsag:ServiceScope wsag:ServiceName="WSRegistry"> 

           <SLATest:Method> 

                <NameMethod>getConnectedDeviceIP</NameMethod> 

           </SLATest:Method> 

         </wsag:ServiceScope> 

                  

         <wsag:ServiceLevelObjective> 

          <wsag:CustomServiceLevel> 

          

 <SLATest:variable>count(list_of_professionals)</SLATest:variable> 

           <SLATest:operator>gt</SLATest:operator> 

           <SLATest:constant>0</SLATest:constant> 

           <SLATest:unit>professionals</SLATest:unit> 

          </wsag:CustomServiceLevel> 

         </wsag:ServiceLevelObjective> 

                  

         <wsag:BusinessValueList> 

          <wsag:Penalty> 

           <wsag:AssessmentInterval> 

                 <wsag:Count> 1 </wsag:Count> 

              </wsag:AssessmentInterval> 

           <wsag:ValueExpression> 

            <SLATest:constant>5</SLATest:constant> 

            <SLATest:unit>dollars</SLATest:unit> 

           </wsag:ValueExpression> 

          </wsag:Penalty> 

         </wsag:BusinessValueList> 

        </wsag:GuaranteeTerm> 

         

        <wsag:GuaranteeTerm wsag:Name="GT6" 

wsag:Obligated="ServiceProvider"> 

 

         <wsag:ServiceScope wsag:ServiceName="WSRegistry"> 

           <SLATest:Method> 

                <NameMethod>getConnectedDeviceIP</NameMethod> 

           </SLATest:Method> 

         </wsag:ServiceScope> 

          

         <wsag:QualifyingCondition> 

          <SLATest:variable>alarmType</SLATest:variable> 

          <SLATest:operator>eq</SLATest:operator> 

          <SLATest:constant>Emergency</SLATest:constant> 

         </wsag:QualifyingCondition> 



Appendix 1: eHealth SLA  216 

                  

         <wsag:ServiceLevelObjective> 

          <wsag:CustomServiceLevel> 

           <SLATest:expression>for all i 

(list_of_professionals(i) = doctor) </SLATest:expression> 

 

          </wsag:CustomServiceLevel> 

         </wsag:ServiceLevelObjective> 

          

         <wsag:BusinessValueList/>            

        </wsag:GuaranteeTerm> 

         

        <wsag:GuaranteeTerm wsag:Name="GT7" 

wsag:Obligated="ServiceProvider"> 

 

         <wsag:ServiceScope wsag:ServiceName="WSRegistry"> 

           <SLATest:Method> 

                <NameMethod>getConnectedDeviceIP</NameMethod> 

           </SLATest:Method> 

         </wsag:ServiceScope> 

          

         <wsag:QualifyingCondition> 

          <SLATest:variable>alarmType</SLATest:variable> 

          <SLATest:operator>eq</SLATest:operator> 

          <SLATest:constant>No Confirmation</SLATest:constant> 

         </wsag:QualifyingCondition> 

                  

         <wsag:ServiceLevelObjective> 

          <wsag:CustomServiceLevel> 

           <SLATest:expression>for all i 

(list_of_professionals(i) = supervisor) </SLATest:expression> 

 

          </wsag:CustomServiceLevel> 

         </wsag:ServiceLevelObjective> 

          

         <wsag:BusinessValueList/>             

        </wsag:GuaranteeTerm> 

    

    </wsag:All> 

         

    <wsag:ExactlyOne> 

         

        <wsag:GuaranteeTerm wsag:Name="GT8" 

wsag:Obligated="ServiceProvider"> 

 

         <wsag:ServiceScope wsag:ServiceName="WSDoctor"> 

           <SLATest:Method> 

                <NameMethod>receiveAlarm</NameMethod> 

           </SLATest:Method> 

         </wsag:ServiceScope> 

          

         <wsag:QualifyingCondition> 

          <SLATest:variable>deployedOn</SLATest:variable> 

          <SLATest:operator>eq</SLATest:operator> 

          <SLATest:constant>MobileNode</SLATest:constant> 

         </wsag:QualifyingCondition> 

         

         <wsag:ServiceLevelObjective> 

          <wsag:CustomServiceLevel> 



Appendix 1: eHealth SLA  217 

           <SLATest:variable>responseTime</SLATest:variable> 

           <SLATest:operator>le</SLATest:operator> 

           <SLATest:constant>6</SLATest:constant> 

           <SLATest:unit>seconds</SLATest:unit> 

          </wsag:CustomServiceLevel> 

         </wsag:ServiceLevelObjective> 

                  

         <wsag:BusinessValueList> 

          <wsag:Penalty> 

           <wsag:AssessmentInterval> 

                 <wsag:Count> 1 </wsag:Count> 

              </wsag:AssessmentInterval> 

           <wsag:ValueExpression> 

            <SLATest:constant>2</SLATest:constant> 

            <SLATest:unit>dollars</SLATest:unit> 

           </wsag:ValueExpression> 

          </wsag:Penalty> 

         </wsag:BusinessValueList> 

        </wsag:GuaranteeTerm> 

         

        <wsag:GuaranteeTerm wsag:Name="GT9" 

wsag:Obligated="ServiceProvider"> 

 

         <wsag:ServiceScope wsag:ServiceName="WSDoctor"> 

           <SLATest:Method> 

                <NameMethod>receiveAlarm</NameMethod> 

           </SLATest:Method> 

         </wsag:ServiceScope> 

          

         <wsag:QualifyingCondition> 

          <SLATest:variable>deployedOn</SLATest:variable> 

          <SLATest:operator>eq</SLATest:operator> 

          <SLATest:constant>WiredServer</SLATest:constant> 

         </wsag:QualifyingCondition> 

         

         <wsag:ServiceLevelObjective> 

          <wsag:CustomServiceLevel> 

           <SLATest:variable>responseTime</SLATest:variable> 

           <SLATest:operator>le</SLATest:operator> 

           <SLATest:constant>2</SLATest:constant> 

           <SLATest:unit>seconds</SLATest:unit> 

          </wsag:CustomServiceLevel> 

         </wsag:ServiceLevelObjective> 

                  

         <wsag:BusinessValueList> 

          <wsag:Penalty> 

           <wsag:AssessmentInterval> 

                 <wsag:Count> 1 </wsag:Count> 

              </wsag:AssessmentInterval> 

           <wsag:ValueExpression> 

            <SLATest:constant>2</SLATest:constant> 

            <SLATest:unit>dollars</SLATest:unit> 

           </wsag:ValueExpression> 

          </wsag:Penalty> 

         </wsag:BusinessValueList> 

        </wsag:GuaranteeTerm> 

                 

    </wsag:ExactlyOne> 

         



Appendix 1: eHealth SLA  218 

    <wsag:ExactlyOne> 

         

        <wsag:GuaranteeTerm wsag:Name="GT10" 

wsag:Obligated="ServiceProvider"> 

 

         <wsag:ServiceScope wsag:ServiceName="WSSupervisor"> 

           <SLATest:Method> 

                <NameMethod>receiveAlarm</NameMethod> 

           </SLATest:Method> 

         </wsag:ServiceScope> 

          

         <wsag:QualifyingCondition> 

          <SLATest:variable>deployedOn</SLATest:variable> 

          <SLATest:operator>eq</SLATest:operator> 

          <SLATest:constant>MobileNode</SLATest:constant> 

         </wsag:QualifyingCondition> 

         

         <wsag:ServiceLevelObjective> 

          <wsag:CustomServiceLevel> 

           <SLATest:variable>responseTime</SLATest:variable> 

           <SLATest:operator>le</SLATest:operator> 

           <SLATest:constant>20</SLATest:constant> 

           <SLATest:unit>seconds</SLATest:unit> 

          </wsag:CustomServiceLevel> 

         </wsag:ServiceLevelObjective> 

                  

         <wsag:BusinessValueList> 

          <wsag:Penalty> 

           <wsag:AssessmentInterval> 

                 <wsag:Count> 1 </wsag:Count> 

              </wsag:AssessmentInterval> 

           <wsag:ValueExpression> 

            <SLATest:constant>1.5</SLATest:constant> 

            <SLATest:unit>dollars</SLATest:unit> 

           </wsag:ValueExpression> 

          </wsag:Penalty> 

         </wsag:BusinessValueList> 

        </wsag:GuaranteeTerm> 

         

        <wsag:GuaranteeTerm wsag:Name="GT11" 

wsag:Obligated="ServiceProvider"> 

 

         <wsag:ServiceScope wsag:ServiceName="WSDoctor"> 

           <SLATest:Method> 

                <NameMethod>receiveAlarm</NameMethod> 

           </SLATest:Method> 

         </wsag:ServiceScope> 

          

         <wsag:QualifyingCondition> 

          <SLATest:variable>deployedOn</SLATest:variable> 

          <SLATest:operator>eq</SLATest:operator> 

          <SLATest:constant>WiredServer</SLATest:constant> 

         </wsag:QualifyingCondition> 

         

         <wsag:ServiceLevelObjective> 

          <wsag:CustomServiceLevel> 

           <SLATest:variable>responseTime</SLATest:variable> 

           <SLATest:operator>le</SLATest:operator> 

           <SLATest:constant>15</SLATest:constant> 



Appendix 1: eHealth SLA  219 

           <SLATest:unit>seconds</SLATest:unit> 

          </wsag:CustomServiceLevel> 

         </wsag:ServiceLevelObjective> 

                  

         <wsag:BusinessValueList> 

          <wsag:Penalty> 

           <wsag:AssessmentInterval> 

                 <wsag:Count> 1 </wsag:Count> 

              </wsag:AssessmentInterval> 

           <wsag:ValueExpression> 

            <SLATest:constant>1.5</SLATest:constant> 

            <SLATest:unit>dollars</SLATest:unit> 

           </wsag:ValueExpression> 

          </wsag:Penalty> 

         </wsag:BusinessValueList> 

        </wsag:GuaranteeTerm> 

         

    </wsag:ExactlyOne> 

         

    <wsag:All> 

         

        <wsag:GuaranteeTerm wsag:Name="GT12" 

wsag:Obligated="ServiceProvider"> 

 

         <wsag:ServiceScope wsag:ServiceName="WSMedicalDevice"> 

           <SLATest:Method> 

                <NameMethod>getMedicalDevices</NameMethod> 

           </SLATest:Method> 

         </wsag:ServiceScope> 

                  

         <wsag:ServiceLevelObjective> 

          <wsag:CustomServiceLevel> 

           <SLATest:variable>responseTime</SLATest:variable> 

           <SLATest:operator>le</SLATest:operator> 

           <SLATest:constant>2</SLATest:constant> 

           <SLATest:unit>seconds</SLATest:unit> 

          </wsag:CustomServiceLevel> 

         </wsag:ServiceLevelObjective> 

                  

         <wsag:BusinessValueList> 

          <wsag:Penalty> 

           <wsag:AssessmentInterval> 

                 <wsag:Count> 1 </wsag:Count> 

              </wsag:AssessmentInterval> 

           <wsag:ValueExpression> 

            <SLATest:constant>1</SLATest:constant> 

            <SLATest:unit>dollars</SLATest:unit> 

           </wsag:ValueExpression> 

          </wsag:Penalty> 

         </wsag:BusinessValueList> 

        </wsag:GuaranteeTerm> 

         

        <wsag:GuaranteeTerm wsag:Name="GT13" 

wsag:Obligated="ServiceProvider"> 

 

         <wsag:ServiceScope wsag:ServiceName="WSMedicalDevice"> 

           <SLATest:Method> 

                <NameMethod>getMeasure</NameMethod> 

           </SLATest:Method> 



Appendix 1: eHealth SLA  220 

         </wsag:ServiceScope> 

          

         <wsag:QualifyingCondition> 

          <SLATest:variable>idMedicalDevice</SLATest:variable> 

          <SLATest:operator>eq</SLATest:operator> 

          <SLATest:constant>device_1</SLATest:constant> 

         </wsag:QualifyingCondition> 

         

         <wsag:ServiceLevelObjective> 

          <wsag:CustomServiceLevel> 

           <SLATest:variable>responseTime</SLATest:variable> 

           <SLATest:operator>le</SLATest:operator> 

           <SLATest:constant>3</SLATest:constant> 

           <SLATest:unit>seconds</SLATest:unit> 

          </wsag:CustomServiceLevel> 

         </wsag:ServiceLevelObjective> 

                  

         <wsag:BusinessValueList> 

          <wsag:Penalty> 

           <wsag:AssessmentInterval> 

                 <wsag:Count> 1 </wsag:Count> 

              </wsag:AssessmentInterval> 

           <wsag:ValueExpression> 

            <SLATest:constant>0.2</SLATest:constant> 

            <SLATest:unit>dollars</SLATest:unit> 

           </wsag:ValueExpression> 

          </wsag:Penalty> 

         </wsag:BusinessValueList> 

        </wsag:GuaranteeTerm> 

         

        <wsag:GuaranteeTerm wsag:Name="GT14" 

wsag:Obligated="ServiceProvider"> 

 

         <wsag:ServiceScope wsag:ServiceName="WSMedicalDevice"> 

           <SLATest:Method> 

                <NameMethod>getMeasure</NameMethod> 

           </SLATest:Method> 

         </wsag:ServiceScope> 

          

         <wsag:QualifyingCondition> 

          <SLATest:variable>idMedicalDevice</SLATest:variable> 

          <SLATest:operator>eq</SLATest:operator> 

          <SLATest:constant>device_2</SLATest:constant> 

         </wsag:QualifyingCondition> 

         

         <wsag:ServiceLevelObjective> 

          <wsag:CustomServiceLevel> 

           <SLATest:variable>responseTime</SLATest:variable> 

           <SLATest:operator>le</SLATest:operator> 

           <SLATest:constant>10</SLATest:constant> 

           <SLATest:unit>seconds</SLATest:unit> 

          </wsag:CustomServiceLevel> 

         </wsag:ServiceLevelObjective> 

                  

         <wsag:BusinessValueList> 

          <wsag:Penalty> 

           <wsag:AssessmentInterval> 

                 <wsag:Count> 1 </wsag:Count> 

              </wsag:AssessmentInterval> 



Appendix 1: eHealth SLA  221 

           <wsag:ValueExpression> 

            <SLATest:constant>0.1</SLATest:constant> 

            <SLATest:unit>dollars</SLATest:unit> 

           </wsag:ValueExpression> 

          </wsag:Penalty> 

         </wsag:BusinessValueList> 

        </wsag:GuaranteeTerm> 

         

    </wsag:All> 

         

   </wsag:All> 

    

  </wsag:Terms> 

   

</wsag:AgreementOffer> 

 



Acronyms  222 

 

Acronyms 

 

BVL Business Value List (refers to an element of a guarantee term in WSAG) 

CL Class (refers to an element of the Classification Tree Method) 

CPM Category Partition Method 

CTM Classification Tree Method 

CTR Combined Test Requirement 

GT Guarantee Term (refers to an element of a WSAG) 

JCR Journal Citation Reports 

MCDC Modified Condition / Decision Coverage 

NDT Navigational Development Techniques methodology 

PhD Doctor of Philosophy 

PTR Primitive Test Requirement 

QC Qualifying Condition (refers to an element of a guarantee term in WSAG) 

QoS Quality of Service 

SBA Service-Based Application 

SDT Service Description Term (refers to an element of a guarantee term in 

WSAG) 

SLA Service Level Agreement 

SLACDC SLA Condition / Decision Coverage 

SLACT SLA Combinatorial Testing 

SLATF SLA Testing Framework 

SLO Service Level Objective (refers to an element of a guarantee term in 

WSAG) 

SOA Service Oriented Architecture 

SUT Software Under Test 

TC Test Case 

WSAG WS-Agreement standard language 

 



Bibliography  223 

 

Bibliography 

 

[1] Amazon EC2 SLA. http://aws.amazon.com/ec2-sla/ 

[2] D. Ameller, and X. Franch. Service level agreement monitor (SALMon). In 

Seventh International Conference on Composition-Based Software Systems 

(ICCBSS), pp. 224-227, 2008. 

[3] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. 

Pruyne, J. Rofrano, S. Tuecke, and M. Xu. Web Services Agreement 

Specification (WS-Agreement). 2011. http://ogf.org/documents/GFD.192.pdf 

[4] AT&T services SLA. http://www.att.com/gen/general?pid=6622 

[5] M. Autili, P.D. Benedetto, and P. Inverardi. Context-aware adaptive services: 

The plastic approach. In 12th International Conference on Fundamental 

Approaches to Software Engineering, FASE 2009, Held as Part of the Joint 

European Conferences on Theory and Practice of Software, ETAPS 2009, York, 

UK, March 22-29, 2009. Lecture Notes in Computer Science, vol. 5503. 

Springer, pages 124–139. 

[6] L. Baresi, N. Georgantas, K. Hamann, V. Issarny, W. Lamersdorf, A. Metzger, 

and B. Pernici. Emerging research themes, Services-Oriented Systems. In 2012 

Annual SRII Global Conference (SRII), pages 333-342, 24-27 July 2012. 

[7] B. Beizer. Software testing techniques (2nd ed.) Van Nostrand Reinhold Co., 

New York, NY, USA, 1990. 

[8] N.D. Belnap. A useful four-valued logic. In J.M. Dunn, G. Epstein (eds.), 

Modern Uses of Multiple-Valued Logic, Dordrecht: Reidel, pages 8-37, 1977. 

[9] A. Bertolino and E. Marchetti. A Brief Essay on Software Testing, Chapter of 

Software Engineering. Volume 1: Development process, Third Edition, IEEE 

Computer Society/Wiley Interscience, 2005, pp 393-411. 

[10] A. Bertolino, G. De Angelis, L. Frantzen, and A. Polini. Model-based generation 

of testbeds for web services. In Proc of Testcom/FATES, Lecture Notes In 

Computer Science, vol. 5047. Springer-Verlag, Berlin, Heidelberg, 2008, pages 

266-282. 

[11] A. Bertolino, J. Gao, E. Marchetti, and A. Polini. Automatic test data generation 

for XML schema-based partition testing. In Proc. of the Second International 

Workshop on Automation of Software Test, May 2007, International Conference 

on Software Engineering, IEEE Computer Society, Washington, DC, page 4. 



Bibliography  224 

[12] A. Bertolino, and A. Polini. SOA Test Governance: enabling service integration 

testing across organization and technology borders. In International Conference 

on Software Testing, Verification and Validation Workshops (ICSTW '09), pages 

277-286, 1-4 April 2009. 

[13] A. Bertolino, G. De Angelis, A. Di Marco, P. Inverardi, A. Sabetta, and M. 

Tivoli. A framework for analyzing and testing the performance of software 

services. In Proceedings of the 3rd ISoLA. CCIS, vol. 17, Springer, Heidelberg, 

2008. 

[14] A. Bertolino. Software testing research: Achievement, challenges and dreams. In 

FOSE’07: Future of Software Engineering, pages 85-103, 2007. 

[15] A. Bertolino, G. de Angelis, and A. Polini. A QoS test-bed generator for web 

services. In ICWE: Proceedings of International Conference on Web 

Engineering, pages 16-20, 2007. 

[16] BOE. (2011, 01/11/2012). Real Decreto 99/2011, January 28. Available. 

http://www.boe.es/buscar/doc.php?id=BOE-A-2011-2541 

[17] M. Bozkurt, M. Harman, Y. Hassoun. Testing and verification in service-

oriented architecture: a survey. Software Testing, Verification and Reliability  

(STVR) 23 (4), 261-313, June 2013. 

[18] K. Bratanis, D. Dranidis, and A. J. H. Simons. SLAs for cross-layer adaptation 

and monitoring of service-based applications: a case study. In Proceedings of 

the International Workshop on Quality Assurance for Service-Based 

Applications (QASBA), 2011. 

[19] A. Bucchiarone, H. Melgratti, and F. Severoni. Testing service composition. In 

Proceedings of the 8th Argentine Symposium on Software Engineering 

(ASSE’07), 2007. 

[20] D. Budgen, M. Turner, P. Brereton, B.A. Kitchenham, Using mapping studies in 

software engineering, in: Proceedings of PPIG, Lancaster University, 2008, pp. 

195–204. 

[21] G. Canfora and M. Di Penta. Testing and self-checking. In Proc. of International 

Workshop on Web Services – Modeling and Testing (WS-MATE), pages 3-12, 

Palermo, Italy, June 2006. 

[22] G. Canfora and M. Di Penta. Service-oriented architectures testing: a survey. In 

Software Engineering: International Summer Schools, ISSSE 2006-2008, 

Salerno, Italy, Lecture Notes In Computer Science, vol. 5413, 2009, Springer-

Verlag, Berlin, pages 78-105. 

[23] G. Canfora and M. Di Penta. Testing services and service-centric systems: 

challenges and opportunities. IT Professional 8 (2), 9–17, 2006. 



Bibliography  225 

[24] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani. QoS-Aware replanning 

of composite web services. In Proc. of the International Conference on Web 

Services (ICWS 2005), Orlando, FL, USA, July 2005. 

[25] R. Casado. Testing advanced transactions in Service-based Software Systems. 

PhD Dissertation. University of Oviedo (Spain), 2013. 

[26] V. Casola, A. Mazzeo, N. Mazzocca, and M. Rak. A SLA evaluation 

methodology in Service Oriented Architectures. In Quality of Protection (pp. 

119-130), 2006, Springer US. 

[27] J.J. Chilenski and S.P. Miller. Applicability of modified condition/decision 

coverage to software testing. Software Engineering Journal, vol 9 (5), pages 

193-229, 1994. 

[28] J.J. Chilenski. An investigation of three forms of the modified condition 

decision coverage (MCDC) criterion. Technical Report DOT/FAA/AR-01/18, 

U.S. Department of Transportation, Federal Aviation Administration, April 

2001. 

[29] E.F. Codd. The Relational Model for Database Management - Version 2. 

Addison-Wesley, Reading, MA, (1990). 

[30] M.B. Cohen, M.B. Dwyer, and J. Shi. Interaction testing of highly-configurable 

systems in the presence of constraints. In Proceedings of the 2007 international 

symposium on Software testing and analysis (ISSTA), ACM, pages 129-139, 

New York, NY, USA, 2007. 

[31] M. Comuzzi, C. Kotsokalis, G. Spanoudakis, and R. Yahyapour. Establishing 

and monitoring SLAs in complex service based systems. In Proc. IEEE 

International Conference on Web Services (ICWS), 2009, Los Angeles, CA. 

[32] L. Copeland. A practitioner’s guide to software test design. Artech House, Inc., 

Norwood, MA, USA, 2003. 

[33] J. Czerwonka. Pairwise testing in real world. Pacific Northwest Software 

Quality Conference, pages 419–430, October 2006. 

[34] C. De la Riva, J. Garcia-Fanjul, and J. Tuya. A partition-based approach for 

XPath testing. In Proc. of the International Conference on Software Engineering 

Advances (ICSEA 06), Oct-Nov. 2006, IEEE Computer Society, Washington, 

DC, 17. 

[35] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and K. Pohl. A journey to 

highly dynamic, self-adaptive service-based applications. Automated Software 

Engineering, 15, 313–34, 2008. 

[36] E. Di Nitto, M. Di Penta, A. Gambi, G. Ripa, and M.L. Villani. Negotiation of 

Service Level Agreements: An architecture and a search-based approach. In 5th 



Bibliography  226 

International Conference on Service-Oriented Computing - ICSOC 2007, pages 

295–306, Vienna, Austria, September 17-20, 2007. 

[37] M. Di Penta, G. Canfora, G. Esposito, V. Mazza, and M. Bruno. Search-based 

testing of service level agreements. In Proc. of the 9th Annual Conference on 

Genetic and Evolutionary Computation (GECCO 07), London, July 2007, ACM, 

New York, pages 1090-1097. 

[38] A. Dupuy and N. Leveson. An Empirical Evaluation of the MCDC Coverage 

Criterion on the HETE 2 Satellite Software. In Proc. 19th Digital Avionics 

System Conference (DASC), 2000. 

[39] A.T. Endo, A. da Simao, S. Souza, and P. Souza. Web services composition 

testing: a strategy based on structural testing of parallel programs. In Testing: 

Academic and Industrial Conference - Practice And Research Techniques (TAIC 

PART), 2008. 

[40] A.T. Endo and A.S. Simao. A systematic review on formal testing approaches 

for web services. In 4th Brazilian Workshop on Systematic and Automated 

Software Testing (SAST 2010) - in conjunction with the 22nd IFIP International 

Conference on Testing Software and Systems (ICTSS’10), 2010. 

[41] ERA. (2012, 29/09/2012). The Computing Research and Education Association 

of Australasia, CORE. http://core.edu.au 

[42] M.J. Escalona and G. Aragón. NDT a model-driven approach for web 

requirements. IEEE Transactions on Software Engineering, vol. 34 (3), pp 377-

390, 2008. 

[43] K. Fakhfakh, T. Chaari, S. Tazi, K. Drira, and M. Jmaiel, M. A comprehensive 

ontology-based approach for SLA obligations monitoring. In the Second 

International Conference on Advanced Engineering Computing and 

Applications in Sciences (ADVCOMP'08), pp. 217-222, 2008 

[44] L. Frantzen, M. N. Huerta, Z. G. Kiss, T. Wallet. On-the-fly model-based testing 

of web services with Jambition. In Int. Workshop on Web Services and Formal 

Methods (WS-FM 2008), ser. LNCS, no. 5387. Springer, 2009, pages 143-157. 

[45] J. García-Fanjul, C. de la Riva, and J. Tuya. Generation of conformance test 

suites for compositions of web services using model checking. In Testing: 

Academic and Industrial Conference - Practice And Research Techniques (TAIC 

PART 2006), pp. 127-130, 2006. 

[46] J. García-Fanjul, J. Tuya, and C. De La Riva. Generating test cases 

specifications for BPEL compositions of web services using SPIN. In 

International Workshop on Web Services–Modeling and Testing (WS-MaTe 

2006), pp. 83-94, 2006 



Bibliography  227 

[47] J. García-Fanjul, M. Palacios, J. Tuya, and C. de la Riva. Pruebas de 

composiciones de servicios web. Novática Journal, number 200, pages 61-64, 

July-August 2009. 

[48] J. García-Fanjul, M. Palacios, J. Tuya, and C. de la Riva. Methods for testing 

web service compositions. The European Journal for the Informatics 

Professional, vol. 10(5), pages 62-66, 2009. 

[49] G. Gessert. Four valued logic for relational database systems. Sigmod Rec. 19 

(1), (1990) 29- 35. 

[50] N. Goel, N.V.N. Kumar, and R.K. Shyamasundar. SLA Monitor: a system for 

dynamic monitoring of adaptive web services. In Proc. 9th IEEE European 

Conference on Web Services (ECOWS), pages 109-116, 2011. 

[51] Google Apps SLA. http://www.google.com/apps/intl/en/terms/sla.html 

[52] M. Grindal, J. Offut, and S.F. Andler. Combination testing strategies – a survey. 

Software Testing, Verification and Reliability, Volume 15, Issue 3, 167–199, 

September 2005. 

[53] M. Grochtmann and K. Grimm. Classification trees for partition testing. 

Software Testing, Verification and Reliability, vol. 3 (2), 63–82, June 1993. 

[54] W.C. Hetzel and B. Hetzel. The complete guide to software testing. John Wiley 

& Sons, Inc. 1991. 

[55] J. Hielscher, R. Kazhamiakin, A. Metzger, and M. Pistore. A framework for 

proactive self-adaptation of service-based applications based on online testing. 

In Proc. of the 1st European Conference on Towards A Service-Based Internet, 

Spain, Dec. 2008, Lecture Notes In Computer Science, vol. 5377, Springer-

Verlag, pages 122-133. 

[56] Z. Hong and Z. Yufeng. Collaborative testing of web services. IEEE 

Transactions on Services Computing, vol. 5, pp. 116-130, 2012. 

[57] HP Cloud SLA: https://www.hpcloud.com/SLA 

[58] IEEE Std 610.12-1990, IEEE standard glossary of software engineering 

terminology, http://standards.ieee.org/findstds/standard/610.12-1990.html. 

[59] ISO/IEC 24765, Software and Systems Engineering Vocabulary, 2006. 

[60] ISO/IEC/IEEE 29119 - Software and Systems Engineering - Software Testing 

Standard. 

[61] ISTQB – International Software Testing Qualifying Boards. 

http://www.istqb.org 



Bibliography  228 

[62] D. Ivanovic, M. Carro, and M. Hermenegildo. Constraint-based runtime 

prediction of SLA violations in service orchestrations. In Proc. International 

Conference on Service Oriented Computing (ICSOC), pages 62-76, Paphos, 

Cyprus, 2011. 

[63] J.A. Jones and M.J. Harrold. Test-suite reduction and prioritization for modified 

condition/decision coverage. IEEE Transactions on Software Engineering, vol 

29 (3), 195-209, 2003. 

[64] J. Kapoor and J.P. Bowen. A formal analysis of MCDC and RCDC test criteria. 

Software Testing, Verification and Reliability, vol 15 (1), 21-40, 2005. 

[65] J. Kapoor and J.P.Bowen. Experimental evaluation of the tolerance for control-

flow test criteria. Software Testing, Verification and Reliability, 14 (3), 167-187, 

2004. 

[66] A. Keller and H. Ludwig. The WSLA Framework: specifying and monitoring of 

service level agreements for web services. IBM research report RC22456, 2002. 

[67] B.A. Kitchenham. Procedures for performing systematic reviews. Keele 

University Technical Report TR/SE-0401 and NICTA Technical Report 

0400011T.1, 2004 

[68] B.A. Kitchenham and S. Charters. Guidelines for performing systematic 

literature reviews in software engineering. Technical Report, EBSE-2007-001, 

UK, July 2007. 

[69] B.A. Kitchenham, D. Budgen, P. Brereton, The value of mapping studies – a 

participant-observer case study, in: EASE’10: Proceedings of Evaluation and 

Assessment in Software Engineering, 2010 

[70] C. Kotsokalis, R. Yahyapour, and M.A. Rojas Gonzalez. Modeling service level 

agreements with binary decision diagrams. In Proc. International Conference on 

Service-Oriented Computing (ICSOC), pages 190-204, 2009. 

[71] D.D. Lamanna, J. Skene, and W. Emmerich. A language for defining service 

level agreements. In 9th IEEE Workshop on Future Trends of Distributed 

Computing Systems (FTDCS'03), San Juan, Puerto Rico, 2003. 

[72] P. Leitner, S. Dustdar, B. Wetzstein, and F. Leymann. Cost-based prevention of 

violations of service level agreements in composed services using self-

adaptation. Workshop on European Software Services and Systems Research-

Results and Challenges (S-Cube), 2012, pp. 34-35. 

[73] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar. Monitoring, prediction 

and prevention of SLA violations in composite services. In Proc. IEEE 

International Conference on Web Services (ICWS) Industry and Applications 

Track, 2010, pages 369-376. 



Bibliography  229 

[74] C.H. Liu, S.L. Chen, and X.Y. Li. A WS-BPEL based structural testing 

approach for web service compositions. In Proceedings of the IEEE 

International Symposium on Service-Oriented System Engineering, pp. 135-141, 

2008 

[75] D. Lorenzoli and G. Spanoudakis. EVEREST+: Runtime SLA violations 

prediction. In 5th Middleware for Service-oriented Computing Workshop, in 

conjunction with the 11th ACM/IFIP/USENIX International Middleware 

Conference, 2010. 

[76] D. Lorenzoli and G. Spanoudakis. Runtime prediction of software service 

availability. In Int. Conference on Software Engineering Research and Practice 

(SERP'11), July 18-21, 2011, USA 

[77] K. Mahbub and G. Spanoudakis. Monitoring WS-Agreements: an event calculus 

based approach. Test and Analysis of Service Oriented Systems, Springer 

Verlang, 2007, pp. 265-306. 

[78] J.D. McCaffrey. An empirical study of pairwise test set generation using a 

genetic algorithm. In 7th International Conference on Information Technology: 

New Generations (ITNG), 2010, 12-14 April 2010, pages 992-997. 

[79] M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-

specific languages. ACM Computing Surveys, Volume 37 Issue 4, 316-344, 

December 2005. 

[80] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object sensitivity for 

points-to analysis for java. ACM Trans. Softw. Eng. Methodol, 14 (1), 1–41, 

2005. 

[81] Microsoft. (2012). Microsoft Academic Research. 

[82] Microsoft PICT (Pairwise Independent Combinatorial Testing). 

http://download.microsoft.com/download/f/5/5/f55484df-8494-48fa-8dbd-

8c6f76cc014b/pict33.msi 

[83] Microsoft Windows Azure SLA. http://www.windowsazure.com/en-

us/support/legal/sla 

[84] A. Mosallanejad, R. Atan. HA-SLA: a hierarchical autonomic SLA model for 

SLA monitoring in cloud computing. Journal of Software Engineering and 

Applications, vol. 6, 114-117, 2013. 

[85] C. Muller, M. Oriol, M. Rodriguez, X. Franch, J. Marco, M. Resinas, and A. 

Ruiz-Cortes. SALMonADA: A platform for monitoring and explaining 

violations of WS-agreement-compliant documents. In Workshop on Principles 

of Engineering Service Oriented Systems (PESOS), 2012 ICSE, pages 43-49, 4 

June 2012. 



Bibliography  230 

[86] C. Muller, M. Resinas, and A. Ruiz-Cortes. Automated analysis of conflicts in 

WS-Agreement. IEEE Transactions on Services Computing. 2013. IEEE 

computer Society Digital Library. IEEE Computer Society, 

http://dx.doi.org/10.1109/TSC.2013.9. 

[87] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar. Comprehensive QoS 

monitoring of web services and event-based sla violation detection. In 

Proceedings of the 4th international workshop on middleware for service 

oriented computing (pp. 1-6). ACM, 2009 

[88] G.J. Myers. The Art of Software Testing. John Wiley & Sons, 2004. 

[89] T. Nanba, T. Tsuchiya, and T. Kikuno. Constructing test sets for pairwise 

testing: A SAT-based approach. In 2nd International Conference on Networking 

and Computing (ICNC), 2011, Nov. 30 2011-Dec. 2 2011, pp.271-274. 

[90] NDTQ-Frawework. www.iwt2.org/iwt2/ndt-qframework.php 

[91] C. Nie and H. Leung. A survey of combinatorial testing. ACM Computing 

Surveys (CSUR), Volume 43 Issue 2, January 2011. 

[92] J. Offut, L. Nan, P. Ammann, and X. Wuzhi. Using abstraction and Web 

applications to teach criteria-based test design. In 24th IEEE-CS Conference on 

Software Engineering Education and Training (CSEE&T), pages 227-236, 2011. 

[93] M. Oriol, J. Marco, X. Franch, and D. Ameller. Monitoring adaptable SOA 

system using SALMon. In Workshop of Service Monitoring, Adaptation and 

Beyond (MONA+), ServiceWave Conf., 2008. 

[94] T. J. Ostrand and M. J. Balcer. The category-partition method for specifying and 

generating functional tests. Communications ACM 31 (6), 676-686, Jun. 1988. 

[95] M. Palacios, J. García-Fanjul, J. Tuya, and C. de la Riva. Estado del arte en la 

investigación de métodos y herramientas de pruebas para procesos de negocio 

BPEL. In Actas de las IV Jornadas Científico-Técnicas en Servicios Web y SOA 

(JSWEB-08), pages 132–137, Sevilla, Spain, October 2008. 

[96] M. Palacios, J. García-Fanjul, J. Tuya, and C. de la Riva. A proactive approach 

to test service level agreements. In 5th International Conference on Software 

Engineering Advances (ICSEA 2010), pages 453-458, Nice, France, 2010. 

[97] M. Palacios, J. García-Fanjul, and J. Tuya. Protocolo para la revisión sistemática 

de estudios sobre pruebas en SOAs con enlace dinámico. In V Taller sobre 

Pruebas en Ingeniería del Software (PRIS 2010), Valencia, Spain, September 

2010. Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases 

de Datos, Vol. 4, No. 5, pages 17-24, 2010. 

[98] M. Palacios, J. García-Fanjul, and J. Tuya. Testing in service oriented 

architectures with dynamic binding: a mapping study. Information and Software 

Technology, 53 (3), 171-189, March 2011. 



Bibliography  231 

[99] M. Palacios. Defining an SLA-aware method to test service oriented systems. In 

9th International Conference on Service-Oriented Computing (ICSOC), PhD 

Symposium, Paphos, Cyprus, December 2011. In G. Pallis et al. (Eds.): ICSOC 

2011, LNCS 7221, Springer 2012, pages 164–170, 2012. 

[100] M. Palacios, J. García-Fanjul, and J. Tuya. Definición de una estrategia de 

pruebas basada en acuerdos de nivel de servicio. In XVI Jornadas en Ingeniería 

del Software y Bases de Datos (JISBD 2011), pages 519-524, La Coruña, Spain, 

September 2011. 

[101] M. Palacios, J. García-Fanjul, J. Tuya, and G. Spanoudakis. Identifying test 

requirements by analyzing SLA guarantee terms. In 19th International 

Conference on Web Services (ICWS), pages 351-358, Honolulu, Hawaii, USA, 

June 2012. 

[102] M. Palacios, L. Moreno, M. J. Escalona, and M. Ruiz. Evaluating the service 

level agreements of NDT under WS-Agreement. An empirical analysis. In 8th 

International Conference on Web Information Systems and Technologies 

(WEBIST 2012), pages 246-250, Oporto, Portugal, 2012. 

[103] M. Palacios, J. García-Fanjul, and J. Tuya. Testing in service oriented 

architectures with dynamic binding: a mapping study. In XVII Jornadas en 

Ingeniería del Software (JISBD 2012) (Already published articles), pages 383-

384, Almería, Spain, September 2012. 

[104] M. Palacios, P. Robles, J. García-Fanjul, J. Tuya. SLACT: a test case generation 

tool for service level agreements. In XVIII Jornadas en Ingeniería del Software y 

Bases de Datos (JISBD 2013). Madrid, 2013 

[105] M. Palacios, J. García-Fanjul, J. Tuya, and G. Spanoudakis. Coverage-based 

testing for service level agreements. IEEE Transactions on Services Computing 

2014. DOI  10.1109/TSC.2014.2300486 

[106] M. Palacios, J. García-Fanjul, J. Tuya, and G. Spanoudakis. Automatic test case 

generation for WS-Agreements using combinatorial testing. Computer 

Standards & Interfaces (Submitted in 2013). 

[107] M. Palacios, J. García-Fanjul, and J. Tuya. Design and implementation of a tool 

to test service level agreements. IEEE Latin America Transactions. Vol. 12, 

Issue 2, March 2014, pp. 256-261. 

[108] L. Paliulionienè. On description of contracts and agreements in the context of 

SOA. Computational Science and Techniques, Vol. 1 Number 2, 183-195, 2013. 

[109] M.P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-Oriented 

Computing: state of the art and research challenges. IEEE Computer 40 (11), 38-

45, November 2007. 



Bibliography  232 

[110] M.P. Papazoglou and W.J.A.M. van den Heuvel, Service oriented architectures: 

approaches, technologies and research issues, Very Large Database Journal 16 

(3), 389–415, 2007. 

[111] PLASTIC European Project homepage. http://www.ist-plastic.org/ 

[112] A. Pichot, O. Waldrich, W. Ziegler, and P. Wieder. Towards dynamic service 

level agreement negotiation: an approach based on WS-Agreement. In 

Proceeding of the Fourth International Conference on Web Information Systems 

and Technologies, 2008. 

[113] D.M. Quan and L.T. Yang. Parallel mapping with time optimization for SLA-

aware compositional services in the business grid. IEEE Transactions on 

Services Computing, vol. 4, no. 3, 196-206, July-Sept. 2011. 

[114] F. Raimondi, J. Skene, and W. Emmerich. Efficient online monitoring of web-

service SLAs. In Proceedings of the 16th ACM SIGSOFT Int. Symposium on 

Foundations of Software Engineering (SIGSOFT'08/FSE-16), 2008. 

[115] O. Rana and W. Ziegler. Research challenges in managing and using service 

level agreements. In Grids, P2P and Services Computing, New York, NY: 

Springer, 2010, pages 187-200. 

[116] RCTA Inc. DO-178-B: Software considerations in airborne systems and 

equipment certification. Radio Technical Commission for Aeronautics (RTCA). 

1992. 

[117] T. Reuters. (2012, 25/09/2012). Journal Citation Reports. 

http://thomsonreuters.com/products_services/science/science_products/a-

z/journal_citation_reports 

[118] D. Sabbah. Bringing grid & web service together. In Opening Keynote Globus 

World 2004, Vice President of Strategy and Technology, IBM Software Group. 

[119] A. Sahai, V. Machiraju, M. Sayal, A. Van Moorsel, and F. Casati. Automated 

SLA monitoring for web services. In Management Technologies for E-

Commerce and E-Business Applications (pp. 28-41). Springer Berlin 

Heidelberg, 2002. 

[120] E. Schmieders, A. Micsik, M. Oriol, K. Mahbub, and R. Kazhamiakin. 

Combining SLA prediction and cross layer adaptation for preventing SLA 

violations. In Proc. 2nd Workshop on Software Services: Cloud Computing and 

Applications based on Software Services, 2011, Timisoara, Romania. 

[121] J. Skene, F. Raimondi, and W. Emmerich. Service-level agreements for 

electronic services. IEEE Transactions on Software Engineering, 36 (2), 288-

304, March-April 2010. 

[122] SLA@SOI European Project. http://sla-at-soi.eu 



Bibliography  233 

[123] SLACT (SLA Combinatorial Testing). http://in2test.lsi.uniovi.es/tools/slact/ 

[124] SOAP - Simple Object Access Protocol. http://www.w3.org/TR/2007/REC-

soap12-part0-20070427 

[125] Software Engineering Research Group (GIIS) sample SLAs. 

http://giis.uniovi.es/testing/downloads/sla/?lang=en 

[126] G. Spanoudakis and K. Mahbub. Non-intrusive monitoring of service-based 

systems. International Journal of Cooperative Information Systems, Vol. 15 

(03), 325-358, 2006. 

[127] C.A. Sun, Y. Shang, Y. Zhao, and T.Y. Chen. Scenario-oriented testing for web 

service compositions using BPEL. In 12th International Conference on Quality 

Software (QSIC), pp. 171- 174, 2012. 

[128] M. Tian, A. Gramm, T. Naumowicz, H. Ritter, and J. Schiller. A concept for 

QoS integration in web services. In 1st Web Services Quality Workshop (WQW 

2003), in conjunction with IEEE Computer Society 4th International Conference 

on Web Information Systems Engineering (WISE 2003), Rome, Italy, December 

2003. 

[129] V. Tosic, B. Pagurek, K. Patel, B. Esfandiari, and W. Ma. Management 

applications of the Web Service Offerings Language (WSOL). In 15th 

International Conference on Advanced Information Systems Engineering 

(CAiSE'03), Velden, Austria, June 2003. 

[130] J. Trienekens, J. Bouman, and M. VanDerZwan. Specification of service level 

agreements: problems, principles and practices. Software Quality Journal, 12, 

43– 57, 2004. 

[131] J. Tuya, M.J. Suárez-Cabal, and C. de la Riva. Full predicate coverage for 

testing SQL database queries. Software Testing, Verification and Reliability, 20 

(3), 237-288, September 2010. 

[132] UDDI - Universal Description, Discovery and Integration. 

http://www.uddi.org/pubs/uddi_v3.htm 

[133] A. Van Deursen, P. Klint, and J. Visser. Domain-specific languages: an 

annotated bibliography. ACM SIGPLAN Notices 35, 6, 26–36, June 2000. 

[134] A.S. Vedamuthu, D. Orchard, F. Hirsch, M. Hondo, P. Yendluri, T. Boubez, and 

U. Yalçinalp. Web services policy 1.5-framework. W3C Recommendation, 4, 1-

41, 2007. 

[135] H. Wada, J. Suzuki, Y. Yamano, and K. Oba. E3: a multiobjective optimization 

framework for SLA-aware service composition. IEEE Transactions on Services 

Computing, vol. 5, no. 3, 358-372, Third Quarter 2012. 



Bibliography  234 

[136] Q. Wang; J. Shao; F. Deng; Y. Liu; M. Li, J. Han, and M. Hong. An online 

monitoring approach for web service requirements. IEEE Transactions on 

Services Computing, vol. 2, no. 4, 338-351, Oct.-Dec. 2009. 

[137] M.R. Woodward and M.A. Hennell. On the relationship between two control-

flow coverage criteria: all JJpaths and MCDC. Information and Software 

Technology, vol 48 (7), 433-440, 2006. 

[138] BPEL - Web Services Business Process Execution Language (OASIS). 

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html 

[139] WSDL - Web Service Description Language. http://www.w3.org/TR/wsdl20 

[140] T.K. Yu and M.F. Lau. A comparison of MC/DC, MUMCUT and several other 

coverage criteria for logical decisions. Journal of Systems and Software, vol. 79 

(5), 577-590, 2005. 

[141] Z. Zakaria, R.Atan, A.A.A. Ghani, N.F.M. Sani. Unit testing approaches for 

BPEL: a systematic review. In APSEC: Proceedings of the Asia-Pacific 

Software Engineering Conference, pages 316-322, 2009. 

[142] F.H. Zulkernine and P. Martin. An adaptive and intelligent SLA negotiation 

system for web services. IEEE Transactions on Services Computing, vol. 4, no. 

1, 31-43, Jan.-March 2011. 

 


