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Unbalanced power flow in distribution systems with
embedded transformers using the complex theory in

αβ0 stationary reference frame
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Abstract—This paper presents three new contributions to
power flow analysis of unbalanced three-phase distribution sys-
tems. First, a complex vector based model in αβ0 stationary
reference frame is developed to state the power flow equations
using a compact matrix formulation. The proposed model is based
on Kirchhoff’ s current law (KCL) and Kirchhoff’ s voltage law
(KVL). Then, a general and exact power transformer model in
the αβ0 reference frame is proposed. Finally, this transformer
model is incorporated into the power flow problem. It will be
shown that the use of an orthogonal reference frame simplifies
the modeling of the distribution network components. In this
work, both the network and the power transformer, as well as
PQ type loads, PQ and PV type generators and a slack bus
are modeled. By using the node incidence matrix instead of the
admittance matrix, the information about the grid topology and
the grid parameters (including power transformers) is separately
organized. As it will be demonstrated, the proposed formulation is
ready to incorporate other complex models of loads, generators
or storage devices. The model is tested by using the IEEE 4
and the IEEE 123 Node Test Feeders with different transformer
connections and balanced and unbalanced lines and loads.

Index Terms—Power flow, three-phase unbalanced power flow,
distribution system, unbalanced loads, transformer modeling.

NOMENCLATURE

Acronyms
AC Alternating current.
BFS Backward/Forward sweep.
DC Direct current.
KCL Kirchhoff’s current law.
KVL Kirchhoff’s voltage law.
PCC Point of common coupling.
PhSh Phase shift.
pu Per unit.
PWM Pulse width modulation.
VSC Voltage source converter.
Functions
δ Delta function (phase shift and connection depen-

dant).
Matrices
A abc to αβ0 transformation matrix.
G Rotation matrix.
Γ Node incidence matrix.
Id Identity matrix.
L Inductance matrix.
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M Power system matrix.
N Transformer rotation matrix.
R Resistance matrix.
TDY Wye to delta transformation matrix.
TR Primary to secondary transformation matrix.
Z Impedance matrix.
Reference frames
αβ0 Stationary orthogonal reference.
abc Stationary three phase reference.
dq0 Synchronous rotating orthogonal reference.
Subscripts
A, B, C Transformer primary phases.
a, b, c Transformer secondary phases.
Br Branch (line) currents.
α , β , 0 Stationary reference frame components.
r , i Real and imaginary parts.
G Generator.
I to IV Type of transformer rotation matrix.
L Load.
N Transformer neutral.
ph− ph Phase to phase.
trans Transformer.
Superscripts
′ Ideal transformer primary phases.
* Extended to the whole system.
P, S Primary, secondary.
PS Secondary for ∆Yg connection and primary for other

connections.
T Transposed.
Variables
∆V Voltage drop.
γ Transformer rotation angle.
I Current.
ω Pulsation.
V Voltage.
ϕ Transformer phase shift.
Z Transformer impedance per phase.
Vectors
∆V Voltage drop vector (real and/or imaginary parts).
∆v Instantaneous three phase voltage drop vector.
I Current vector (real and/or imaginary parts).
i Instantaneous three phase current vector.
P Active power vector (three components).
Q Reactive power vector (three components).
V Voltage vector (real and/or imaginary parts).
z Whole power system vector (voltages and currents).
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I. INTRODUCTION

UP to the date, many works have been carried out to
accurately model unbalanced distribution power systems.

Developed models include different components, such as lines
and cables, capacitors, loads, voltage regulators and power
transformers, see for instance [1], [2].

Due to the increase of distributed generation (DG) in power
systems, there have been significant advances in the unba-
lanced load flow analysis techniques in distribution networks.
Most of these advances deal with the inclusion of distributed
generators and their controls in power flow calculations. Some
related works were presented in [3]–[5], in which single-
phase and three-phase voltage source converters (VSC) were
modeled. Moreover, recent studies related to DG controls are
focused on the use of DG devices working under unbalanced
conditions [6]–[8], since it is a common situation in distributed
systems. In most of these cases, the control of such devices is
implemented in an orthogonal-stationary reference frame. To
state the power flow problem, some of these works employed
more than one reference frame to solve the different parts of
the system [3], [4].

In the literature the authors have found that there is no
previous work combining the traditional power flow problem
with the new distributed technologies in a unique reference
frame. To include these emerging technologies into distri-
bution system power flow analyses (where the presence of
transformers is really important), an unbalanced power flow
model in αβ0 stationary reference frame, capable of handling
distributed generators and loads, and power transformers in an
easy way would be very useful. This is the aim of the present
work.

The main characteristics of a distribution system that must
be taken into account for power flow calculations can be
summarized as follows [3], [9], [10]:

• Radially or weakly meshed topology.
• Extremely large number of nodes and branches with a

wide X/R ratio.
• Unbalanced operation basically derived from untrans-

posed lines and unbalanced loading formed by the users.
• Presence of DGs and distributed storage systems.
The first two features may cause the traditional power

flow algorithms based on Newton-Raphson or Gauss-Seidel
approaches to fail due to ill-conditioning problems [10]. How-
ever, some authors still defend power flow algorithms with a
solver derived from Newton-Raphson. For instance in [11] a
network-based distributed slack bus model was proposed and
good results were obtained in a 394-bus radial system.

Most authors agree that the special characteristics of dis-
tribution systems require different algorithms based on the
application of KCL and KVL. This is the case of the Back-
ward/Forward sweep (BFS) sequential methods and some
direct methods, as for instance [12], [13]. In [14] the BFS
method was applied to develop a general four-wire distribu-
tion network approach. The Kron’s reduction to merge the
neutral and the ground into the phases was not employed,
thus neutral and ground currents and voltages had to be
explicitly represented. In [15] the BFS method was applied

using the Kron’s reduction. In this case, the mutual coupling
was simulated through equivalent branch voltage sources or
current injections. More recently, the authors in [9] propose a
modified BFS algorithm to solve weakly meshed distribution
systems. They break the meshes and apply a compensation
technique based on current injection.

Some of the most sophisticated analyses were presented in
[3], [4]. In these works, a sequential power flow analysis,
which combines a BFS approach for single phase laterals
with sequence-components for three phase networks, is pro-
posed. The authors apply steady-state sequence components
to different kind of DGs based on VSC. They also consider
different control modes and operational constraints, including
phase current limit, modulation index or voltage limit at the
point of common coupling (PCC). They solve the power flow
problem in the sequence component frame, but they need the
dq0 synchronous frame to calculate the internal parameters and
operational limits of DGs. In that case it would have been very
helpful a unique reference frame to model the whole system.

The application of the dq0 reference frame to the power
flow formulation is not new [16], and it has been recently
used in microgrids steady-state modeling [12], and in unified
AC/DC power flow analysis [13]. However, in those cases the
dq0 reference frame is applied to balanced systems, so the dq0
components are constant in steady state analysis. This is not
a valid assumption when working with unbalanced systems.

In [5], the dq0 reference frame was employed to solve the
power flow problem in unbalanced three-phase power systems
containing PWM converters. However in that case, the zero
and negative sequences caused pulsating terms to appear, so
the obtained expressions were quite intricate.

Regarding the unbalanced three phase power flow problem,
the use of the αβ0 reference frame and a complex vector
model are proposed in this paper. The use of this reference
frame includes the benefits provided by an orthogonal ref-
erence frame, avoiding the pulsating terms derived from the
existence of sequence components.

Related to the power transformer modeling for power-flow
analysis, most authors have developed models based on the
primitive admittance matrix and the nodal admittance matrix
[1], [17], [18]. A number of authors proposed methods to
incorporate such models into the BFS problem [19]–[22]. In
[23] the primitive admittance based model was formulated in
sequence components. In [24] a positive sequence component
model of a power transformer with different connections was
described and tested with a Newton based power flow solver.

In [25] an exact method satisfying KVL, KCL and the ideal
relationship between voltages and currents in both transformer
windings was proposed in abc coordinates, but the authors only
described the ungrounded wye-delta connection.

As this last one, some of the cited works present a model
for a specific connection, while others describe general models
valid for several connections. The former lack of standardiza-
tion, and the latter use quite complex matrices.

As it will be demonstrated in Section III, in this paper the
power transformer is modeled as an exact approach in the
same αβ0 stationary reference frame employed for the power
flow problem. Moreover, the model is stated in a way that,
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unlike in [25], the formulation does not need to be rewritten
for each connection type and phase shift.

Summarizing, the present work states a power flow for-
mulation conjugating the use of the αβ0 coordinates and
the node incidence matrix instead of the admittance matrix.
On one hand, the use of the αβ0 reference frame allows
the authors to obtain a general but simple power transformer
model, applicable to any connection or phase shift. It must also
be remarked that the model is ready to incorporate any other
device controlled into the same reference frame, as for instance
some DG’s designed to be used in unbalanced conditions [6]–
[8]. On the other hand, the use of the node incidence matrix,
instead of the admittance matrix, will prevent some serious
drawbacks [26]:

• The admittance matrix merges together all parallel lines
and shunt devices. It is not possible unequivocally go
back to the line and transformer parameters. With the
proposed method, the information regarding the system
parameters and topology is separately organized.

• Any change in the system topology or parameters requires
rebuilding the whole admittance matrix. In this proposal,
the transformer connection or phase shift, as well as any
other system parameter, can be independently modified
without restoring the node incidence matrix.

To the authors’ knowledge there are no previous power
flow models that simultaneously permit the inclusion of three
phase unbalanced lines, loads, transformers and distributed
generators in a unique reference frame, that is a rectangular
reference frame, without need for reference transformations.
The authors would like to emphasize that what it is proposed
in this paper is a model, or formulation, to be used in power
flow analysis, so different methods (algorithms) could be
applied to solve the problem. The proposed formulation is
based on the application of KCL and KVL like the BFS
methods. In this particular case, the authors chose a direct
approach [12], [13] to simultaneously solve the whole system
of equations by means of the trust-region dogleg algorithm
[27]. However, other algorithms could be used to solve the
proposed formulation.

The paper is structured as follows. Sections II and III will
respectively describe the complex vector model in αβ0 frame
of an RL element and a three-phase power transformer. In
Section IV, these models will be incorporated into the whole
grid by using a compact matrix formulation. In Section V
the models are validated by means of the IEEE 4 Node Test
Feeder benchmark [28]. Several cases based on the IEEE
123 Node Test Feeder [28] are also solved to evaluate the
model performance in large distribution systems. Ultimately,
in Section VI the conclusions are presented.

II. COMPLEX VECTOR MODEL OF A THREE-PHASE
UNBALANCED RL ELEMENT IN αβ0

The voltage drop ∆vabc in the abc reference frame for a
series RL element, depending on the branch current iabc, when
voltages and currents are time dependant, is:

∆vabc = Rabc iabc + Labc
d iabc
dt

(1)

Where Rabc and Labc are the resistance and the inductance
matrices considering coupling effects. These matrices are ob-
tained through Carlson’s equations [29] and Kron’s reduction
[30].

The αβ0 to abc transformation for a generic three complex
component vector x is defined as:

xabc = A xαβ0 (2)

Where A is the invertible matrix:

A =

√
2

3

⎛

⎜⎜⎜⎝

1 0 1√
2

− 1
2

√
3
2

1√
2

− 1
2 −

√
3
2

1√
2

⎞

⎟⎟⎟⎠

The choice of this matrix was made to be easily inverted. As
it can be checked A−1 = AT . By replacing (2) into (1) the
voltage drop in αβ0 is obtained:

∆vαβ0 = Rαβ0 iαβ0 + Lαβ0
d iαβ0
dt

(3)

Where Rαβ0 and Lαβ0 are the transformed resistance and
inductance matrices:

Rαβ0 = A−1 Rabc A (4)
Lαβ0 = A−1 Labc A (5)

Equation (3) represents the general dynamic model for an RL
element in αβ0 reference frame. In the steady state analysis,
the differential equation (3) can be replaced by an algebraic
equation by means of phasor theory. Thus, each sine wave
x(t), with time invariant amplitude and angular frequency ω,
and its time derivative dx(t)

dt are represented by two phasors
X and Ẋ respectively as shown in equations (6) and (7):

X = Xr + j Xi (6)

Ẋ = −ωXi + j ωXr (7)

Where subscripts r and i stand for real and imaginary parts
respectively. With the above mentioned assumptions, equation
(3) becomes:

[
∆Vαβ0

]T
= Zαβ0

[
Iαβ0

]T (8)

Where:

[
∆Vαβ0

]
= [∆Vαr ∆Vβr ∆V0r ∆Vαi ∆Vβi ∆V0i ] (9)

[
Iαβ0

]
=

[
Iαr Iβr I0r Iαi Iβi I0i

]
(10)

Zαβ0 =

(
Rαβ0 −ω Lαβ0

ω Lαβ0 Rαβ0

)
(11)

To implement shunt capacitors, that means RC type elements,
the same procedure could be employed to obtain the dual
equation of (8). An example of RC type elements in a
rectangular reference frame can be seen in [31].
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Fig. 1: Wye-delta step-up.
.

III. COMPLEX VECTOR MODEL OF A THREE-PHASE
TRANSFORMER IN αβ0 REFERENCE FRAME

To describe the αβ0 transformer model, the step-up Y∆
ungrounded three-phase transformer of the IEEE 4 Node Test
Feeder benchmark [28] will be employed. The primary and
secondary windings are connected as it is shown in Fig. 1. The
chosen currents are also depicted. The transformer impedance
is concentrated in the primary side of the model, but other
considerations may be made without many modifications. As
it can be seen in the figure, the real transformer (primary nodes
A, B and C) is partitioned in a line impedance and an ideal
transformer (primary nodes A′, B′ and C′).

When working in the per unit (pu) system of representa-
tion, and choosing the appropriate voltage base for primary
and secondary voltages, the turns ratio becomes 1:1, so the
relationship between primary and secondary voltages in Fig.
1 can be expressed as:

⎡

⎣
VA′N

VB′N

VC′N

⎤

⎦ = TR

⎡

⎣
Vab

Vbc

Vca

⎤

⎦ (12)

Where the matrix TR in pu depends only on the transformer
connection and phase shift. In the present case TR is deduced
from Fig. 1 and the dot convention:

TR =

⎛

⎝
0 0 −1

−1 0 0
0 −1 0

⎞

⎠

TR is a nonsingular matrix that satisfies TT
R = T−1

R . In
(12), phase-to-neutral voltages are employed in the primary
side of the ideal transformer and phase-to-phase voltages are
employed in the secondary side. Uppercase characters denote
primary voltages or currents, and lowercase characters are used
for the secondary ones.

Due to the fact that there is no neutral conductor available
in the primary side of the transformer, a fictitious neutral point
should be chosen as a reference point to determine phase-to-
neutral voltages in the real transformer (primary nodes A, B
and C). To avoid this problem the authors have worked with
phase-to-phase voltages both in primary and secondary sides
of the real transformer.

The phase-to-phase voltages in the primary side of the ideal
transformer are calculated from phase-to-neutral voltages and

the matrix TDY :
⎡

⎣
VA′B′

VB′C′

VC′A′

⎤

⎦ = TDY

⎡

⎣
VA′N

VB′N

VC′N

⎤

⎦ (13)

TDY =

⎛

⎝
1 −1 0
0 1 −1

−1 0 1

⎞

⎠

TDY is a singular matrix. This implies that phase-to-neutral
voltages can not be obtained from phase-to-phase voltages.
However, when working with phase-to-phase voltages, this
problem is overcome. In others cases the applied criteria
is as follows: phase-to-phase voltages are used in delta or
ungrounded wye connections and phase-to-ground voltages are
chosen for grounded wye connections.

Replacing (12) into (13), the primary voltages in the ideal
transformer can be rewritten as a function of the secondary
voltages: ⎡

⎣
VA′B′

VB′C′

VC′A′

⎤

⎦ = TDY TR

⎡

⎣
Vab

Vbc

Vca

⎤

⎦ (14)

The voltage drops in the power transformer impedances are
obtained as: ⎡

⎣
VAA′

VBB′

VCC′

⎤

⎦ = Ztrans

⎡

⎣
IA
IB
IC

⎤

⎦ (15)

Where

Ztrans =

⎛

⎝
ZA 0 0
0 ZB 0
0 0 ZC

⎞

⎠ = Z

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

The transformer windings are equal and balanced, thus the
three impedances might be represented by Z . In the next equa-
tion, the voltage drops in the power transformer impedances
are related to the phase-to-phase voltages in the primary side
of the real and the ideal transformers.
⎡

⎣
VAB − VA′B′

VBC − VB′C′

VCA − VC′A′

⎤

⎦ =

⎡

⎣
VAA′ − VBB′

VBB′ − VCC′

VCC′ − VAA′

⎤

⎦ = TDY

⎡

⎣
VAA′

VBB′

VCC′

⎤

⎦ (16)

Combining (14), (15) and (16) the relationship between pri-
mary voltages, secondary voltages and primary line currents
can be written as:

⎡

⎣
VAB

VBC

VCA

⎤

⎦ = TDY TR

⎡

⎣
Vab

Vbc

Vca

⎤

⎦+ TDY Ztrans

⎡

⎣
IA
IB
IC

⎤

⎦ (17)

Equation (17) relates primary voltages and currents to sec-
ondary voltages in abc coordinates. It can be rewritten in a
more compact way:

[
Vph−ph

]P
abc

= TDY TR

[
Vph−ph

]S
abc

+

+ TDY Ztrans

[
IBr

]P
abc

(18)
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TABLE I: Matrices for all connections and phase shifts.

Connection PhSh NI NII NIII NIV γ

YgYg

ϕ

Id (3×3)

⎛

⎜⎜⎝
G(−ϕ)

δ(γ)

⎞

⎟⎟⎠

⎛

⎜⎜⎝
−G(ϕ)

−δ(γ)

⎞

⎟⎟⎠ Id (3×3) ϕ

∆∆
√
3

⎛

⎜⎜⎝
G(30◦)

0

⎞

⎟⎟⎠

⎛

⎜⎜⎝
G(−ϕ)

δ(γ)

⎞

⎟⎟⎠

⎛

⎜⎜⎝
−G(ϕ)

−δ(γ)

⎞

⎟⎟⎠ Id (3×3) ϕ

Yg∆ Id (3×3)

⎛

⎜⎜⎝
G(−ϕ − 30◦)

δ(γ)

⎞

⎟⎟⎠
√
3

⎛

⎜⎜⎝
−G(ϕ)

0

⎞

⎟⎟⎠ Id (3×3) ϕ + 30◦

Y∆
√
3

⎛

⎜⎜⎝
G(30◦)

0

⎞

⎟⎟⎠
√
3

⎛

⎜⎜⎝
G(−ϕ)

0

⎞

⎟⎟⎠
√
3

⎛

⎜⎜⎝
−G(ϕ)

0

⎞

⎟⎟⎠ Id (3×3) ϕ + 30◦

∆Yg

⎛

⎜⎜⎝
G(30◦ − ϕ)

δ(γ)

⎞

⎟⎟⎠

⎛

⎜⎜⎝
G(30◦ − ϕ)

δ(γ)

⎞

⎟⎟⎠ −Id (3×3)

√
3

⎛

⎜⎜⎝
G(−ϕ)

0

⎞

⎟⎟⎠ ϕ − 30◦

Where G(θ) =

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
Id (3×3) =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ and δ(γ) =

{
1 if ( γ

120 + 1) is an integer
−1 any other case

Where:
[
Vph−ph

]P
abc

are phase to phase primary voltages in abc.

[
Vph−ph

]S
abc

are phase to phase secondary voltages in abc.

[
IBr

]P
abc

are line primary currents in abc.

The αβ0 model is then obtained by using equation (2) into
(18):

[
Vph−ph

]P
αβ0

= A−1TDY TRA
[
Vph−ph

]S
αβ0

+

+ A−1TDY ZtransA
[
IBr

]P
αβ0

(19)

To establish the relationship between primary and secondary
line currents in the same pu system than the one used for
voltages, it can be considered (see Fig. 1):

⎡

⎣
IA
IB
IC

⎤

⎦ = −TR

⎡

⎣
Iab
Ibc
Ica

⎤

⎦ (20)

⎡

⎣
Ia
Ib
Ic

⎤

⎦ = −TT
DY

⎡

⎣
Iab
Ibc
Ica

⎤

⎦ (21)

From the above equations it can be stated that:
⎡

⎣
Ia
Ib
Ic

⎤

⎦ = (TRTDY )
T

⎡

⎣
IA
IB
IC

⎤

⎦ (22)

The currents model of the power transformer in αβ0 reference
frame is summarized in:

[IBr]
S
αβ0 = A−1(TRTDY )

T A [IBr]
P
αβ0 (23)

This formulation can be extended to any other transformer
connection. Thus, a generalized equation similar to (19) can
be expressed as follows:
[
Vph−ph

]P
αβ0

= NII
[
Vph−ph

]S
αβ0

+ Z NI
[
IBr

]PS

αβ0
(24)

Where NI and NII are the rotation matrices shown in Table
I. The line currents

[
IBr

]PS

αβ0
are primary currents in all

connections except in ∆Yg connection, in which it is easier
to consider secondary currents with no need for modifications
in (24).

Due to the fact that
[
IBr

]PS

αβ0
are only defined as secondary

currents in ∆Yg connection, equation (23) is generalized by
means of two expressions:

−
[
IBr

]P
αβ0

+ NIV
[
IBr

]PS

αβ0
= 0 (25)

[
IBr

]S
αβ0

+ NIII
[
IBr

]PS

αβ0
= 0 (26)

Where NIII and NIV are the rotation matrices shown in Table
I.

An inspection of Table I reveals that to obtain the rotation
matrices NI, NII, NIII and NIV, it is not necessary to use TR

or TDY matrices. Only the phase shift and the connection
type are required to define the exact model of the power
transformer. Equations (25) and (26) are the same for all
connections and phase shifts. Only matrices NI, NII, NIII and
NIV need to be defined. Table I gives the generalization of the
model because, unlike the transformer model in [25], in the
present work all the possibilities are presented.

The αβ0 transformer model can be easily included in the
network model as it will be explained in next section.
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IV. NETWORK MODELING IN αβ0 REFERENCE FRAME

To obtain a compact matrix expression, the formulation
developed in [13] is going to be adapted to the αβ0 reference
frame. The formulation is based on the node incidence matrix
Γ, which is associated to the graph describing the system
topology. To obtain the matrix Γ , the electrical network is re-
presented by an oriented-type graph. Firstly, the network nodes
are numbered. The graph edges represent the connections
between numbered network nodes. Under this assumption, and
considering that the oriented edges always go from the lower
node number to the higher, the matrix Γ can be formed as:

Γij =

⎧
⎪⎨

⎪⎩

1 when the tail of the edge i is node j.

−1 when the head of the edge i is node j.

0 otherwise.

This section is divided into subsections A and B. In the
first one, it will be described how the formulation is adapted
to an electrical network without power transformers. In the se-
cond subsection, the accommodation of the power transformer
model in the proposed formulation will be explained.

A. Network description without power transformers
With the use of Γ, each component in (8) can be expressed

for a whole network as follows:

Γ
[
Vαr

]T
= Rαα

[
Iαr
]T

+ Rαβ

[
Iβr
]T

+

+ Rα0

[
I0r
]T − ωLαα

[
Iαi
]T −

− ωLαβ

[
Iβi
]T − ωLα0

[
I0i
]T (28)

Γ
[
Vαi

]T
= ωLαα

[
Iαr
]T

+ ωLαβ

[
Iβr
]T

+

+ ωLα0

[
I0r
]T

+ Rαα

[
Iαi
]T

+

+ Rαβ

[
Iβi
]T

+ Rα0

[
I0i
]T (29)

Where Vαr, Iαr are vectors containing the α component real
parts of all node voltages and line currents respectively, and
Vαi, Iαi are vectors including the α component imaginary
parts of the same voltages and currents. Analogous definitions
are also applicable to Vβr, V0r, Vβi, V0i, Iβr, I0r, Iβi and
I0i. R∗∗ and L∗∗ are diagonal matrices extended to all network
lines. They are formed with the ∗∗ elements of the transformed
resistance and inductance matrices Rαβ0 and Lαβ0 described
in (4) and (5) for each system line.

Similar expressions might be obtained for β and zero
voltage components. However, by defining a new extended
node incidence matrix Γ∗ in which each element is replaced
by itself multiplied by the identity matrix Id (6×6), the KVL
for all system lines can be readily formulated:

Γ∗ [V∗]T
αβ0

= Z∗
αβ0

[
I∗Br

]T
αβ0

(30)

Where [V∗]αβ0 and [I∗Br]αβ0 are the extended node volt-
ages and branch currents vectors for the whole power system,
respectively. [V∗]αβ0 is constructed by adding 6 components
with the same structure as the one defined in expression (9) for
each node, and [I∗Br]αβ0 is formed by adding 6 components
with the same structure as the one defined in expression (10)
for each branch. Z∗

αβ0 is the extended impedance matrix for

the whole system, so it is a block diagonal matrix in which
each line adds a block as the one in (11).

In a similar manner, KCL for all system nodes is expressed
as follows:

Γ∗T [I∗Br]
T
αβ0 = −I∗d

[
I∗L
]T
αβ0

+ I∗d
[
I∗G
]T
αβ0

(31)

Where I∗d is a block diagonal matrix. Each node will add
a new block, which is the identity matrix Id (6×6). [I∗L]αβ0
and [I∗G]αβ0 are respectively the currents demanded by the
loads and the currents injected by the generators at each
network node. The structure of these vectors will be equal
to the structure of [I∗Br]αβ0 , since each node will add the six
components described in (10).

Expressions (30) and (31) can be rewritten in a really
compact matrix form, including all linear KVL and KCL
equations:

M zT = 0 (32)

Where z is the vector representing voltage and current mag-
nitudes and it is constructed as follows:

z =
[[

I∗Br

]
αβ0

[
I∗L
]
αβ0

[
I∗G
]
αβ0

[
V∗]

αβ0

]
(33)

The structure of M is represented in expression (34).

M =

(
Z∗
αβ0 −Γ∗

Γ∗T I∗d −I∗d

)
(34)

Loads and generators will add the non linear equations to
the power flow problem. Each PQ load will add the next
expressions:

Pabc = real
(
AVαβ0 ⊗ conj

[
AILαβ0

])
(35)

Qabc = imag
(
AVαβ0 ⊗ conj

[
AILαβ0

])
(36)

Pabc and Qabc are vectors including respectively the active
and reactive powers demanded by the loads in abc coordinates.
Since these powers can be balanced or not, they can always be
calculated by means of these general expressions (35) and (36).
In the present case, for the sake of simplicity, the active and
reactive power are given in abc coordinates, as the problem
input data. The operation ⊗ is defined as the element-wise
product of two vectors.

A slack bus imposes the node voltage as shown in (37) (pu
system).

AVαβ0 =

⎡

⎣
e0j

e
−2π
3 j

e
2π
3 j

⎤

⎦ (37)

A PQ generator can be added in the same way as the PQ
load just by substituting ILαβ0 by IGαβ0 .

A PV node is modeled by replacing ILαβ0 by IGαβ0 in (35),
and introducing (38) to state the voltage magnitude constraint
in the pu system.

abs(AVαβ0 ) =

⎡

⎣
Va

Vb

Vc

⎤

⎦ (38)

Where Va, Vb and Vc are the specified voltage magnitudes that
are usually given in abc coordinates.



IEEE TRANSACTIONS ON POWER SYSTEMS, VOL.XX, NO.X, JULY 2012 7

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Z12
αβ0 −Id Id

Z23
αβ0 N∗

I −Id N∗
II

Z34
αβ0 −Id Id

Id Id −Id

−Id N∗
IV Id −Id

N∗
III Id Id −Id

−Id Id −Id

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(27)

1 2 3 4

infinite
bus

I12 I34I23

2500 ft.2000 ft.

load
Fig. 2: IEEE 4 Node Test Feeder system.

In a similar way as the above mentioned loads and genera-
tors, other models of loads and/or generators can be included
into the problem by adding the element equations. The great
advantage of the proposed formulation is that the general
matrix M (34) and the grid equation (32) depend only on the
grid interconnections (nodes and lines). As it will be explained
later, a change in the location of loads or generators does not
modify this matrix.

B. Network description with power transformers
To describe the inclusion of the power transformer model

into the grid model, the IEEE 4 Node Test Feeder benchmark
in Fig. 2 will be used as an example.

The transformer addition requires some modifications in
matrices Z∗

αβ0 , −Γ∗ and Γ∗T in (34). As it was previously
mentioned, Z∗

αβ0 is a block diagonal matrix where each
network line will add a block. These blocks are sorted through
the line (edge) enumeration criteria established by Γ. A
transformer is then considered as a new diagonal block to be
included in the matrix Z∗

αβ0 . For example, in the IEEE 4 Node
Test Feeder case, there are two lines and a power transformer,
so the resulting Z∗

αβ0 matrix is formed by three blocks. Since
the transformer is connected between nodes 2 and 3, it will add
a block matrix (Z23

αβ0 N∗
I ) at the second position as it can be

observed in (27). Z23
αβ0 is the transformer impedance matrix,

with the same structure as (11) and N∗
I is defined as follows:

N∗
I =

(
NI

NI

)
(39)

In the same way, the block matrices N∗
II, N∗

III and N∗
IV can

be built. Such matrices will modify −Γ∗ and Γ∗T following
equations (24), (25) and (26). Due to the fact that the primary
side of the transformer is connected to node 2 and the
secondary to node 3, N∗

II is embedded in −Γ∗ at the same
row block (node 2, second position) as N∗

I in Z∗
αβ0 and at

the third column (node 3). N∗
IV and N∗

III are embedded in Γ∗T

at the same column block (node 2, second position) as N∗
I in

Z∗
αβ0 , and at row blocks 2 and 3 respectively.
The resulting matrix M for the study case is represented in

(27), it is formed by 7 row blocks and 15 column blocks. The
structure of this matrix is the same as in (34). The transformer
is similar to a line but including matrices NI to NIV. As it can
be deducted from the matrix, for each node, load and generator
currents are included (there are four Id block matrices and
four −Id block matrices) although there are no actual loads
and generators in all nodes. Contrary to what it seem this
procedure will make the system to be easily modified, as it
will be demonstrated in Section V.

The inclusion or elimination of a transformer or a line is
quite simple because it is only needed to add or remove the
corresponding row and column blocks from the system matrix.
For example, to eliminate the transformer from the system,
the second row block and the second column block should
be removed from M. Since a node should be eliminated too,
then two more block matrices Id and −Id would be removed
too. The resulting system would have 2 lines and 3 nodes,
and matrix M would be formed by 5 row blocks and 11
column blocks. To change the transformer connection and/or
phase shift instead of removing it, just matrices NI to NIV
need to be modified following the instructions in Table I. This
demonstrated the simplicity and generalization of the proposed
formulation.

V. VALIDATION

The authors have employed the IEEE 4 Node Test Feeder
and the IEEE 123 Node Test Feeder [28] as guides to validate
the model. As it was stated by the Distribution Test Feeder
Working Group that developed this set of standards, the pur-
pose of publishing the data was to make available a common
set of data that could be used by program developers and users
to verify the correctness of their solutions, so the authors have
considered these standards as the most appropriate to validate
and evaluate the proposed model.

A. IEEE 4 Node Test Feeder
The model was tested by means of the IEEE 4 Node

Test Feeder. This is the most adequate feeder to represent
transformers of various configurations, full three phase lines
and unbalanced loads [28]. The system is represented in Fig. 2.
All power transformer connections were analyzed for step-up
and step-down configurations under balanced and unbalanced
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TABLE II: Test results: step-up unbalanced loading.

Connection YgYg Yg∆ Y∆ ∆Yg ∆∆
Voltage Node 2
V1 7161̸ − 0.1◦ 7121̸ − 0.4◦ 12348̸ 29.7◦ 12364̸ 29.8◦ 12362̸ 29.8◦

V2 7120̸ − 120.3◦ 7146̸ − 120.3◦ 12393̸ − 90.3◦ 12391̸ − 90.5◦ 12392̸ − 90.4◦

V3 7128̸ 119.3◦ 7149̸ 119.5◦ 12354̸ 149.5◦ 12333̸ 149.6◦ 12334̸ 149.5◦

Voltage Node 3
V1 13839̸ − 2.1◦ 23703̸ 57.2◦ 23703̸ 57.2◦ 13792̸ 27.7◦ 23675̸ 27.2◦

V2 13663̸ − 123.3◦ 24040̸ − 63.6◦ 24040̸ − 63.6◦ 13733̸ − 93.5◦ 24060̸ − 93.6◦

V3 13655̸ 115.1◦ 23576̸ 176.1◦ 23576̸ 176.1◦ 13641̸ 145.4◦ 23573̸ 146◦

Voltage Node 4
V1 13815̸ − 2.2◦ 23637̸ 57.1◦ 23637̸ 57.1◦ 13768̸ 27.7◦ 23610̸ 27.2◦

V2 13614̸ − 123.4◦ 23995̸ − 63.8◦ 23995̸ − 63.8◦ 13684̸ − 93.6◦ 24015̸ − 93.7◦

V3 13615̸ 114.9◦ 23495̸ 175.9◦ 23495̸ 175.9◦ 13600̸ 145.2◦ 23492̸ 145.9◦

Current I12
Ia 216.8̸ − 34◦ 332.6̸ − 28.1◦ 333.5̸ − 28.2◦ 309.3̸ − 35.2◦ 312.3̸ − 34.8◦

Ib 293.3̸ − 149.2◦ 269.5̸ − 155.6◦ 269.6̸ − 155.4◦ 249.5̸ − 146.5◦ 248.1̸ − 147.2◦

Ic 366.7̸ 96.7◦ 275.5̸ 100.3◦ 274.3̸ 100.2◦ 319.2̸ 98.1◦ 319.5̸ 98.7◦

Current I34
Ia 108.6̸ − 34◦ 156.4̸ − 4.8◦ 156.4̸ − 4.8◦ 108.9̸ − 4.1◦ 156.4̸ − 34.8◦

Ib 146.9̸ − 149.2◦ 124.2̸ − 117.2◦ 124.2̸ − 117.2◦ 146.2̸ − 119.4◦ 124.2̸ − 147.2◦

Ic 183.6̸ 96.7◦ 158.4̸ 128.7◦ 158.4̸ 128.7◦ 183.8̸ 127.0◦ 158.5̸ 98.7◦

Where V1 , V2 and V3 are phase to phase voltages in delta and ungrounded
wye connections and phase to ground voltages in grounded wye connections.

load conditions. As an example, in Table II the results obtained
for the power transformer step-up connections with unbalanced
load are presented. It must be pointed out that for three
wire configurations the voltages in Table II (V1, V2 and V3)
are phase-to-phase voltages and phase to neutral voltages are
considered in four wire configurations.

It is established by the Distribution Test Feeder Working
Group in [28] that a good match would have an error less than
0.05%. In view of the results in Table II, and comparing with
the results presented in the website, it is demonstrated that the
model has been properly validated. In the next subsection the
evaluation of the formulation in a more complex and larger
system is conducted.

B. IEEE 123 Node Test Feeder
To evaluate the performance of the proposed model in large

power systems, extensive tests have been carried out in a
system based in the IEEE 123 Node Test Feeder (see Fig.
3). The following considerations were taken into account:

• The voltage regulators and shunt capacitors were not
included.

• 6 power transformer were placed in a way that they divide
the network in 7 different zones, as it is shown in Fig. 3.
The load flow was performed using pu system on a phase-
to-phase voltage basis of 115 kV for zone 1 and 4160
V for other zones. Depending on the zone type (three
wire or four wire) phase-to-neutral voltage basis might
be needed instead of phase-to-phase. The base power
is 5 MVA. Several study cases were solved changing
the power transformer connections and phase shifts. The
resistance and reactance of the power transformers are
respectively considered as 1% and 6% in all cases. In Ta-
ble III three different combinations of power transformer
connections and phase shifts are presented.

• A case without transformers, named base case, was also
considered. In such case, each transformer was replaced
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Fig. 3: Modified IEEE 123 Node Test Feeder.

by a 200 feet line.
• Each zone has 3 or 4 wires depending on the power

transformer connection feeding the zone, so a given zone
can be a three or a four wire zone depending on the study
case. When a line is four wire type the configuration 1
described in the IEEE 123 Node Test Feeder is considered
while configuration 12 is used for 3 wires zones.

• Regarding the loads, two different scenarios were con-
templated. The former uses spot PQ balanced loads of 20
kW and 10 kVAr per phase placed in the same nodes as
the standard case (IEEE 123 Node Test Feeder, input data
extracted from [28]). The latter uses the same unbalanced
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Fig. 4: Matrix M. Case 3 IEEE 123 Node Test Feeder. (See
equation (34)).

load configuration described in the standard.
Eight study cases were examined: six combining the above
described load scenarios with the three different power trans-
former configurations, and two combining the base case with
the two load scenarios. The formulation was solved by means
of the optimization toolbox of MATLAB and the algorithm
called trust-region-dogleg, which is specifically designed for
non linear systems. The algorithm is an iterative method for
nonlinear minimization. Although an initial guess is needed,
the trust-region methods improve robustness when starting far
from the solution [27]. In all cases the initial guess vector was
the null vector. All study cases are reflected in Table IV, in
which the number of iterations required to solve the system
are shown.

Fig. 4 presents the matrix M obtained for the study case 3,
where blanks stand for zeros. The structure of this matrix is
the same as that in (34). The rows at the top correspond to the
KVL equations applied to all system branches and transform-
ers. In this case there are 113 lines and 6 transformers, so the
number of KVL equations is 714 ((113+ 6)× 6). Due to the
fact that these are the voltage drops at the lines (including the
real transformers) there are only elements different from zero
pointing at the branches and transformers currents (columns,
matrix Z∗

αβ0 ) and node voltages (matrix −Γ∗).
The rows at the bottom are the KCL equations, so the

unknowns involved are the branch currents and the transformer
currents (matrix Γ∗T ), the generator currents (matrix I∗d) and
the load currents (matrix −I∗d).

In this case, for the sake of simplicity, the authors have
included generator currents and load currents in all system
nodes, so the dimension of matrices I∗d and −I∗d are the same
for all the study cases. When building the nonlinear equations
in the nodes with no actual generators it is stated that the
vector of generator currents equals to zero (IGαβ0 =[0]). The
same procedure is applied to the load currents at nodes with
no actual connected loads (ILαβ0 =[0]).

This matrix is the same for the eight study cases. To change
from a transformer configuration to a different one, only
matrices N∗

I , N∗
II, N∗

III and N∗
IV need to be defined accordingly

to Table I. The obtained node incidence matrix is always
the same, so in case of changes in branch parameters, just

TABLE III: Transformers configurations.

Conf 1 Conf 2 Conf 3
Conn. PhSh Conn. PhSh Conn. PhSh

T1 YgYg 0 ∆Yg 150 ∆∆ 180
T2 YgYg 0 Yg∆ -30 ∆Yg -30
T3 YgYg 0 Yg∆ 150 Y∆ 150
T4 YgYg 0 ∆∆ 0 ∆Yg 150
T5 YgYg 0 Y∆ 150 ∆∆ 0
T6 YgYg 0 ∆∆ 180 YgYg 0

TABLE IV: Tests in the IEEE 123 Node Test Feeder.

Case 1 2 3 4 5 6 7 8
Trafo Conf. base base 1 2 3 1 2 3
Load Scennario Bal. Unb. Bal. Unb. Bal. Unb. Bal. Unb.
Iterations 11 11 13 13 14 14 15 15
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Fig. 5: Voltage magnitude (pu) per phase at node 116 (Zone
6) for all study cases. Black: phase A, grey: phase B, white:
phase C.

parameters in matrix Z∗
αβ0 should be updated. In this way, it

has been demonstrate the simplicity and the generalization of
the proposed model.

It has to be remarked that the authors propose a model
for power flow studies. In this work, the trust-region dogleg
algorithm [27] was employed to solve the system of equations
but other solving methods could be applied to the same
formulation.

In Fig. 5 the voltage magnitudes per phase at node 116, far
from the slack node, are presented for all study cases. As it
was expected the voltage unbalances are mostly displayed in
cases with unbalanced loading (cases 2, 4, 6 and 8). However
unbalanced voltages are also present in balanced loading
scenarios. This is derived from the non transposed unbalanced
distributed lines. The different transformer configurations have
an important effect on the unbalanced too. The worst case
in terms of voltage drop is case 5. Although this case has
the same balanced loading level as cases 1, 3, 5 and 7, the
transformer configurations have an influence on the voltage
drops in the whole system.

Fig. 6 shows the voltage profile for the whole grid in study
case 8, that is an unbalanced loading case. The figure is divided
into six subplots corresponding to zones from 2 to 6. Zone 1
has been removed because it is only formed by the slack node
1 so it does not give any additional information. As it was
expected, the zones near the slack bus present less voltage
unbalances than the distant zones.
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Fig. 6: Voltage per phase in pu, case of study 8. In z = 0 plane the node numbers are displayed.

VI. CONCLUSION

In the present work it has been demonstrated how a simple
model of an AC network for three-phase unbalanced power
flow studies, with embedded transformers, can be obtained
conjugating the use of a complex vector based model in
αβ0 stationary reference frame and the node incidence matrix
based formulation. The orthogonal frame simplifies the accom-
modation of different kind of devices in the network, as power
transformers or distributed generators, and the node incidence
matrix overcomes all the admittance matrix drawbacks. A
power transformer model was also proposed and tested. With
the suggested formulation, an exact power transformer model
can be implemented just by using the connection type and the
phase shift. Models of PQ loads, PQ, PV and slack generators
were described.

The proposed formulation separately organizes the linear
and the non-linear equations. All the linear equations rep-
resenting the KVL and the KCL for the whole network are
expressed in a compact matrix form and will be independent of
load or generator models. For this reason, the authors can state
that the model allows the inclusion of other complex models of
loads or generators just by adding the corresponding non-linear
equations, without modifying the compact matrix formulation
that represents the core of the power flow problem.

The proposed model has been validated by comparing the
obtained results for the IEEE 4 Node Test Feeder with those
presented in [28], and evaluated in a larger distribution system,
the IEEE 123 Node Test Feeder. The authors obtained appro-
priated results in all cases. To solve the proposed formulation
the trust-region dogleg algorithm was used. However, other
algorithms could be applied.

In future works, the use of an orthogonal reference frame
will allow the modeling of power converters controls and
constraints for distributed generators, lines and loads, in the

same reference frame as the one used for the power flow
analysis.
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