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1. Introduction

The paper is devoted to the study of the qualitative properties of energy solutions of
the Dirichlet problem for the doubly nonlinear anisotropic parabolic equation with variable
nonlinearity





d

dt

(
|v|m(z) sign v

)
=

n∑

i=1

Di

(
ai(z)|Div|

pi(z)−2Div
)
+ b(z)|v|σ(z)−2v + g in QT ,

v = 0 on ΓT ,

v(x, 0) = v0(x) in Ω,

(1.1)

where QT = Ω×(0, T ), Ω ⊂ R
n is a bounded domain with Lipschitz-continuous boundary ∂Ω,

ΓT = ∂Ω× (0, T ) is the lateral boundary of the cylinder QT . The exponents of nonlinearity
m(z), pi(z) and σ(z) are given functions of the argument z = (x, t) ∈ QT .

The total derivative with respect to t is calculated according to the rule

d

dt
ψ(v,m) = ψv(v,m) vt + ψm(v,m)mt,

which allows one to rewrite equation (1.1) in the formally equivalent form

m|v|m−1vt =
n∑

i=1

Di

(
ai|Div|

pi−2Div
)
+ b|v|σ−2v − |v|m−1 v ln |v|mt + g.
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This equation can degenerate or become singular at the points where |Div| and/or v vanish
or become infinite. Moreover, the behavior of the solution may depend crucially on the sign
of mt(x, t) in the logarithmic nonlinear term on the right-hand side.

The study of problem (1.1) was initiated in [1, 7]. It was shown that under certain
conditions on the data problem (1.1) admits a bounded solution understood in the sense of
Definition 2.1 below. In dependence on the properties of the coefficients and the variable
exponents of nonlinearity, the existence result proved in [1, 7] is local or global in time (see
Theorem 2.1 below). The maximal interval of existence is defined as the time interval where
the solution remains bounded.

In the present paper we derive the conditions on the data that ensure the presence of
the following effects.

• Finite time blow-up: there exists a finite moment t∗ such that

Σ(t) ≡

∫

Ω
|v|m(x,t)+1 dx→ ∞ as t→ t∗,

(which implies that ‖v(·, t)‖∞,Ω becomes infinite at the same moment).

• Extinction in a finite time: there is a finite t∗ > 0 such that Σ(t) ≡ 0 for all t ≥ t∗.
In particular, this effect may take place even in the case when the equation eventually
becomes linear. This happens if m → 1, σ → 2 and pi → 2 as t → ∞ and the rates of
convergence satisfy some additional conditions.

• In case that the solution exists for all times but doesn’t vanish in a finite time, we
estimate the rate of growth or decay of Σ(t) as t→ ∞.

Examples of conditions on the data which provide the above-described effects can be
furnished by the model equation

d

dt

(
|v|m(t)−1v

)
=
(
|vx|

p(t)−2vx

)
x
+ b |v|σ(t)−1v, (x, t) ∈ (0, 1) × (0, T ], (1.2)

with the constant coefficient b and the independent of x nonlinearity exponents m(t) > 0,
p(t) > 1 and σ(t) > 1. In this simple case

• if b > 0, σ(t) > max {m(t) + 1, p(t)}, m′(t) ∈ [−µ, 0] with some constant µ > 0, and if

∫ 1

0

(
1

p(0)
|v′0|

p(0) −
1

σ(0)
|v|σ(0)

)
dx < 0,

then every solution blows-up for the sufficiently small µ;

• if b = 0, m′(t) ∈ [0, µ] and
m(t)p(t)

m(t) + 1
< 1, then the solution vanishes in a finite time,

provided that µ is sufficiently small;
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• if b < 0, m′(t) ∈ [0, µ] and
1

σ(t)
+
m(t)

p(t)
> 1, then the solution vanishes in a finite time

if µ is sufficiently small;

The properties of finite time vanishing and blow-up are well-studied by now for the
solutions of nonlinear parabolic equation of the type (1.1) with constant exponent of non-
linearity. A thorough discussion of these issues and an extensive bibliography can be found
in the monographs and surveys [15, 12, 2, 11, 17]. For equations with variable nonlinearity,
which degenerate or become singular either with respect to the solution (the case pi ≡ 2), or
with respect to the gradient (the case m ≡ 1), these effects were studied in papers [3, 4, 5, 6].
The decay rates for solutions of equations of the type (1.1) with constant exponents of non-
linearity can be found in [13], the case of equation (1.1) with m = 1 and variable pi and σ
was partially studied in [6].

The absence of exact solutions (or sub/supersolutions) of equation (1.1) with the ani-
sotropic diffusion part or with the time-dependent nonlinearity exponents prevents one from
using the methods based on comparison. The results below are obtained by means of the
study of the differential inequalities for suitable energy functions associated with the solution.
In the case that the exponents of nonlinearity are constant or time-independent we recover
some of the results available in the literature for doubly nonlinear equations (see, e.g., [8]).

Organization of the paper. In the next auxiliary section we introduce the spaces of
Lebesgue and Sobolev with variable exponents and recall the basic properties of the functions
from these spaces. We introduce the notion of strong solution of problem (1.1) and cite the
existence theorem proved in [7]. We also recall the energy identity for such solutions, which
happens to be the main tool in the study of the localization and blow-up properties.

In Section 3 we study equation (1.1) in the case b(z) > 0. We derive the ordinary
differential inequality for the energy function Σ(t) and prove that under certain conditions
on the data every function satisfying this inequality blows-up in a finite time.

Section 4 is devoted to derivation of the embedding inequalities in anisotropic Sobolev
spaces with variable exponents. Using these inequalities we derive the differential inequality
for the energy function Σ(t) in the case b(z) ≤ 0. The study of the differential inequality is
given in Section 6: it is shown that under suitable conditions on the initial data every function
satisfying this inequality vanishes in a finite time. The concluding Section 7 is devoted to
the study of the decay or growth rates of the solutions as t → ∞.

The specific form of the main energy identity (2.14) allows for an easy extension of the
results concerning the finite-time extinction and the large-time behavior to the equations
with the lower-order terms of critical growth:

d

dt

(
|v|m(z)−1v

)
=

n∑

i=1

Di

(
ai|Div|

pi(z)−2Div
)
+ c(z)|v|m(z)−1v + b(z)|v|σ(z)−2v + g,

where b(z) ≤ 0 and c(z) ≤ γ(t) with a bounded function γ(t).
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2. Function spaces, existence theorem and energy estimates

2.1. Function spaces

We begin with recalling some known facts from the theory of the Sobolev spaces with
variable exponent. The reader is referred to the monograph [9] for the detailed exposition of
this theory.

Let Lp(·)(Ω) be the set of measurable functions f(x) on Ω such that

Ap(·)(f) =

∫

Ω

|f(x)|p(x) dx <∞.

The set Lp(·)(Ω) equipped with the Luxemburg norm

‖f‖p(·),Ω ≡ ‖f‖Lp(·)(Ω) = inf
{
λ > 0 : Ap(·) (f/λ) ≤ 1

}

becomes a Banach space. The Banach space W
1, p(·)
0 (Ω) with p(x) ∈ [p−, p+] ⊂ (1,∞) is

defined by





W
1, p(·)
0 (Ω) =

{
u ∈ Lp(·)(Ω) : |∇u|p(x) ∈ L1(Ω), u = 0 on ∂Ω

}
,

‖u‖
W

1,p(·)
0 (Ω)

= ‖∇u‖p(·),Ω.
(2.1)

Let us indicate the basic properties of the spaces Lp(·)(Ω) andW
1,p(·)
0 (Ω) used in the rest

of this paper.

• It follows directly from the definition of the norm that

min
(
‖f‖p

−

p(·) , ‖f‖
p+

p(·)

)
≤ Ap(·)(f) ≤ max

(
‖f‖p

−

p(·) , ‖f‖
p+

p(·)

)
. (2.2)

• Hölder’s inequality. For all f ∈ Lp(·)(Ω), g ∈ Lp′(·)(Ω) with

p(x) ∈ (1,∞), p′(x) =
p(x)

p(x)− 1
, p− = inf

Ω
p(x), (p′)− = inf

Ω
p′(x),

the following inequality holds:

∫

Ω

|f g| dx ≤

(
1

p−
+

1

(p′)−

)
‖f‖p(·) ‖g‖p′(·) ≤ 2 ‖f‖p(·) ‖g‖p′(·) . (2.3)

Let m(z) > 0 and pi(z) > 1, i = 1, . . . , n, be given functions continuous in QT . For
every fixed t ∈ [0, T ] we introduce the Banach space

Vt(Ω) =
{
u(x) ∈ Lm(·,t)+1(Ω) ∩W 1,1

0 (Ω) : |Diu(x)|
pi(x,t) ∈ L1(Ω)

}
,

‖u‖Vt(Ω) = ‖u‖m(·,t)+1,Ω +
∑

i

‖Diu‖pi(·,t),Ω.

By W(QT ) we denote the Banach space
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W(QT ) =
{
|u|m(z)+1 ∈ L1(QT ) : |Diu|

pi(z) ∈ L1(QT ), u(·, t) ∈ Vt(Ω) for a.e. t ∈ (0, T )
}
,

‖u‖W(QT ) =
∑

i

‖Diu‖pi(·,·),QT
+ ‖u‖m(·,·)+1,QT

.

2.2. Existence of strong solutions

The solution of problem (1.1) is understood as follows:

Definition 2.1. A function v(z) is called Strong Solution of problem (1.1) if

1. v ∈ L∞(QT ) ∩W(QT ), |v|
m(z)−1v2t ∈ L1(QT ) and |Div|

pi(z) ∈ L∞(0, T ;L1(Ω)),
2. for every test-function φ ∈ W(QT )

∫

QT

[
φ
d

dt

(
|v|m−1v

)
+

n∑

i=1

ai |Div|
pi−2Div ·Diφ

]
dz

=

∫

QT

b|v|σ−2v φ dz +

∫

QT

g φ dz,

(2.4)

3. for every ψ(x) ∈ C∞
0 (Ω)

∫

Ω
ψ(x)(|v|m(z)−1v − |v0|

m0−1v0) dx → 0 as t→ 0, m0 = m(x, 0). (2.5)

Let φ(x, t) ∈ C0(QT ). Throughout the rest of the text we use the notations

φ+(t) = sup
Ω
φ(x, t), φ−(t) = inf

Ω
φ(x, t),

φ+ = sup
QT

φ(x, t), φ− = inf
QT

φ(x, t).

Let us assume that the coefficients of equation (1.1) and the exponents of nonlinearity
are subject to the following conditions:





there exist positive constants a±, b± p±, m±, σ± such that

0 < a− ≤ ai(z) ≤ a+, −b− ≤ b(z) ≤ b+,

1 < p− ≤ pi(z) ≤ p+, 1 < σ− ≤ σ(z) ≤ σ+, 0 < m− ≤ m(z) ≤ m+,

(2.6)





m(z), σ(z) ∈ C0(QT ), pi(z) satisfy the log-continuity condition

∀ z1, z2 ∈ QT |pi(z1)− pi(z2)| ≤ ω(|z1 − z2|), limτ→0+ω(τ) ln
1

τ
= C <∞,

(2.7)

mt ∈ L∞(QT ), ∃µ = const > 0 : |mt| ≤ µ a.e. in QT , (2.8)

{
0 ≤ −pit(z) ≤ Cp, 0 ≤ b(z)σt(z) ≤ Cσ,

0 ≤ −ait(z) ≤ Ca, 0 ≤ bt(z) ≤ Cb,
(2.9)

with nonnegative constants Ca, Cb, Cσ, Cp.
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Theorem 2.1 (Th. 3.1, [7]). Let the exponents m(z), σ(z), pi(z) satisfy conditions (2.6),
(2.7), (2.9) and let mt ≥ 0 a.e. in QT . Let us assume that there exists a constant α > 0 such
that if p−(t) < n for some t ∈ [0, T ], then

m+(t) + 1 + α <
np−(t)

n− p−(t)
, where

1

p−(t)
=

1

n

n∑

i=1

1

p−i (t)
. (2.10)

Assume that m(z) satisfies the oscillation condition

m+ − 1

2
< min

{
m−,

(
1−

1

p−

)
(m− + 1)

}
if m+ > 1 and

n∑

i=1

1

p−i
> 1. (2.11)

Then for every v0 ∈ L∞(Ω) ∩ V0(Ω) and every g ∈ L∞(QT ) with |gt(z)|
1+ 1

m(z) ∈ L1(QT )
problem (1.1) has at least one strong solution in a cylinder QT ∗,

T ∗ = sup{θ : ‖v(t)‖∞,Ω <∞ ∀ t ∈ (0, θ)}.

Moreover, for small τ the solution satisfies the estimate

‖v(t)‖∞,Ω ≤ (1 + ‖v0‖∞,Ω) e
A t, t ∈ [0, τ ], (2.12)

with a constant A independent of v. If either supQT
(σ(z) − m(z)) ≤ 1, or b+ ≤ 0, then

estimate (2.12) remains true for all T > 0, the constructed solution exists globally in time
and T ∗ = T . In the case m− ≥ 1 the solution satisfies the inclusion |v|m(z)−1vt ∈ L2(QT∗

).

A byproduct of the proof of Theorem 2.1 are the energy relations for the constructed
strong solution. Let us introduce the energy functional

E(t, v) =

∫

Ω

(
n∑

i=1

ai
|Div|

pi

pi
− b

|v|σ

σ

)
dx. (2.13)

Theorem 2.2 (Theorems 7.1, 7.2, [7]). Let the conditions of Theorem 2.1 be fulfilled. Then
problem (1.1) has a strong solution which satisfies the equality: ∀ a.e. t ∈ (0, T ∗)

d

dt

(∫

Ω

m

m+ 1
|v|m+1 dx

)
+

n∑

i=1

∫

Ω
ai|Div|

pi dz +

∫

Ω
b |v|σ dx

=

∫

Ω
g v dz +

∫

Ω

∂tm

(m+ 1)2
[1− (m+ 1) ln |v|] |v|m+1 dx.

(2.14)

Moreover, if b(z) ≥ b− > 0, g(z) ≡ 0 and 0 ≤ σt(z) ≤ Cσ in the cylinder QT ∗, then

E(t, v) ≤ E(0, v0) + C∗t+M(µ) for a.e. t ∈ (0, T ∗), (2.15)

where M(s) → 0 as s→ 0 and

C∗ = |Ω|

(
n
a+Cp

(p−)2
+

(
1 +

1

e

)
b+Cσ

(σ−)2

)
.
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The derivation of the energy estimates (2.14), (2.15) in [7] was tightly related to the
method of regularization of the degenerate equation (1.1). The sequence of solutions of the
regularized problems converges to a strong solution of problem (1.1) understood in the sense
of Definition 2.1, and the energy relations (2.14), (2.15) are obtained as the limits of the
corresponding relations for the solutions of the regularized problems. It is not clear, however,
whether the conditions on the data imposed in Theorem 2.1 are indeed essential for the
validity of the energy estimates. Since the study of the localization and blow-up properties
of solutions to problem (1.1) relies solely on the analysis of the energy relations (2.14), (2.15)
and is practically independent of the existence theorem, it is convenient to introduce the
concept of Energy Solution of problem (1.1): a function

v ∈ C0(0, T ;Lm+1(Ω)) ∩W(QT )

is called Energy Solution of problem (1.1) if it satisfies (2.4), (2.5) and the energy relations
(2.14), (2.15).

All the further considerations are confined to the class of Energy Solutions of problem
(1.1), which is surely nonempty by virtue of Theorem 2.1.

3. Sufficient conditions of the finite time blow-up

Given an energy solution v(z) of problem (1.1), we define the blow-up moment t∗ as
follows:

Σ(t) ≡

∫

Ω

m

m+ 1
|v|m+1 dx→ ∞ as t→ t∗, m = m(x, t). (3.1)

We begin with proving several technical lemmas.

Lemma 3.1. Let µ+ and µ− be positive constants, 1 < µ− ≤ µ+ < ∞. If a nonnegative
function f(t) satisfies the inequality

{
λ f ′(t) ≥ C min

{
fµ

+
(t), fµ

−

(t)
}

for a.e. t ≥ 0,

f(0) = f0 > 0, λ = const > 0,
(3.2)

then there exists a finite moment t∗ such that f(t) → ∞ as t→ t∗.

Proof. Let us denote t∗ = sup{t > 0 : f(t) < ∞}. Introduce the function w(t) :=
f(t)

f0
,

which satisfies the conditions





λw′(t) ≥ D min
{
wµ+

(t), wµ−

(t)
}

for a.e. t ∈ (0, t∗),

w(0) = 1, D = C min
{
fµ

+−1
0 , fµ

−−1
0

}
.

(3.3)

By virtue of (3.3) w(t) is monotone increasing, whence w(t) > 1 for all t ∈ (0, t∗). Then (3.3)
reads

Dwµ−

(t) ≤ λw′(t) for a.e. t ∈ (0, t∗), w(0) = 1,
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and can be directly integrated:

w(t) ≥
λ

1
µ−−1

(λ−D(µ− − 1) t)
1

µ−−1

.

It follows that

w(t) → ∞ as t→
λ

D(µ− − 1)
=

λ f0

C(µ− − 1)min
{
fµ

+

0 , fµ
−

0

} ≡ θ∗(f0) <∞, (3.4)

which means that t∗ ≤ θ∗.

Lemma 3.2. Let µ± be positive constants, 1 < µ− ≤ µ+ <∞. If a continuous function f(t)
satisfy the conditions

{
(C1t− C2) + λ f ′(t) ≥ C min

{
fµ

+
(t), fµ

−

(t)
}

for a.e. t ≥ 0,

f(0) = f0 > 0,
(3.5)

with positive constants C1 and C2, then there exists f∗ > 0 such that for every initial value
f0 > f∗ there is a finite t∗ such that f(t) → ∞ as t→ t∗ ≤ C1/C2.

Proof. Let θ∗(s) be the monotone decreasing function defined in (3.4) and let f∗ be the
solution of the equation C1(1 + θ∗(f∗)) = C2:

f∗ =





(
λC1

C C2(µ− − 1)

) 1
µ+−1

if
λC1

C C2(µ− − 1)
< 1,

(
λC1

C C2(µ− − 1)

) 1
µ−−1

otherwise.

Under this choice of f∗ we have that C1t−C2 < 0 on the interval (0, θ∗(f0)) for every f0 > f∗.
It follows that instead of (3.5) f(t) satisfies inequality (3.2) and, by virtue of Lemma 3.1,

f(t) → ∞ as t→
λ f0

C(µ− − 1)min
{
fµ

+

0 , fµ
−

0

} < θ∗(f∗, µ
−).

Theorem 3.1. Let v(z) be an energy solution of problem (1.1) in a cylinder QT , T < ∞.
Assume that g ≡ 0 and there exist constants b− > 0 and δ > 1 such that b(z) ≥ b− in QT

σ−(t) > δ max

{
m+(t) + 1, max

i=1,...,n
p+i (t)

}
∀ (x, t) ∈ QT . (3.6)

Let C∗ and E(t, v) denote the constant and the energy functional from Theorem 2.2.
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(i) If C∗ = 0, mt = 0 and E(0, v0) < 0, the solution blows-up in a finite time t∗ with

t∗ ≤
1

b−(σ− − p+)
(
1− m++1

σ−

)
min

{
Σµ+

(0), Σµ−
(0)
} , µ± =

(
σ(z)

m(z) + 1

)±

.

(ii) If C∗ > 0, mt = 0 and E(0, v0) < 0, there exists Σ∗(0) such that for every Σ(0) > Σ∗(0)
the solution blows-up in finite time.

(iii) If −µ ≤ mt ≤ 0, C∗ > 0 and E(0, v0) < 0,

E(0, v0) + µ |Ω|

(
1 +

m+ + 1

m− + 1

)
e

m++1
m−+1 < 0,

there exist µ∗ > 0 and Σ∗(0) such that for 0 ≤ µ < µ∗ and Σ(0) > Σ∗(0) the solution
blows-up in a finite time.

Proof. (i)-(ii) The assumption m ≡ m(x) allows us to drop in (2.14), (2.15) the terms de-
pending on mt and to write these relations in the form

∀ a.e. t ∈ (0, T ) Σ′(t) =

∫

Ω

(
−

n∑

i=1

ai|Div |pi + b |v|σ
)
dx, (3.7)

E(t, v) ≤ E(0, v0) +C∗t. (3.8)

Let us multiply (3.7) by a constant λ > 0 and add to (3.8). Dropping the nonnegative term
on the left-hand side, we obtain the inequality

E(t, v) + λ

∫

Ω

(
−

n∑

i=1

ai|Div |pi + b |v|σ
)
dx ≤ λΣ′(t) + (E(0, v0) + C∗t), (3.9)

whence

∫

Ω

(
n∑

i=1

(
1

pi
− λ

)
ai|Div |pi + b

(
λ−

1

σ

)
|v|σ

)
dx ≤ λΣ′(t) + (E(0, v0) +C∗t) (3.10)

Assumption (3.6) allows one to choose λ in such a way that

1

σ(z)
≤

1

σ−(t)
< λ ≤

1

p+(t)
≤

1

p(z)
.

Plugging this inequality to (3.10) we obtain the inequality

∫

Ω

(
a−
(

1

p+
− λ

) n∑

i=1

|Div |pi + b−
(
λ−

1

σ−

)
|v|σ

)
dx ≤ λΣ′(t) + (E(0, v0) + C∗t),

in which the first term on the left-hand side is nonnegative and can be omitted:
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b−
(

1

p+
−

1

σ−

)∫

Ω
|v|σ dx ≤ λΣ′(t) + (E(0, v0) + C∗t). (3.11)

According to (3.6) 1+m+ < σ− in QT . Using the Hölder inequality (2.3) and (2.1), we have
that for a.e. t ∈ (0, T )

Σ(t) ≤

∫

Ω
|v|m+1 dx ≤ max

{
‖v‖

m+(t)+1
m(·,t)+1 , ‖v‖

m−(t)+1
m(·,t)+1

}

≤ max





(∫

Ω
vσ(z) dx

)m+(t)+1

σ−(t)

,

(∫

Ω
vσ(z) dx

)m−(t)+1

σ+(t)



 ,

whence

min

{
Σ

σ−(t)

m+(t)+1 (t), Σ
σ+

m−(t)+1 (t)

}
≤

∫

Ω
|v|σ(z) dx.

Set

µ+ =
σ+

m− + 1
, µ− =

σ−

m+ + 1
, C = b−

(
1

p+
−

1

σ−

)
. (3.12)

Combining the last inequality with (3.11), we arrive at the differential inequality for Σ(t):





C min
{
Σµ+

(t), Σµ−

(t)
}
≤ λΣ′(t) + (E(0, v0) + C∗t) for a.e. t ∈ (0, T ),

Σ(0) =

∫

Ω

m0

m0 + 1
|v0|

m0+1 dx.
(3.13)

The assertions (i) and (ii) follow now from Lemmas 3.1 and 3.2.

(iii) It is assumed that −µ ≤ mt ≤ 0 a.e. in QT . Let us denote

J(t) =

∫

Ω

∂tm

(m+ 1)2
[1− (m+ 1) ln |v|] |v|m+1 dx.

Noting that the integrand of J is nonnegative on the set where ln |v| >
1

m+ 1
, we estimate

it as follows: ∀ t ∈ (0, T )

J(t) ≥

∫

Ω∩{ln |v|< 1
m+1}

∂tm

(m+ 1)2
[1− (m+ 1) ln |v|] |v|m+1 dx

≥

∫

Ω∩{ln |v|< 1
m+1}

∂tm

(m+ 1)2

(
1 +

m+ + 1

m− + 1

)
e

m++1
m−+1 dx

≥

(
1 +

m+ + 1

m− + 1

)
e

m++1
m−+1

∫

Ω

∂tm

(m+ 1)2
dx ≥ −µL

10



with the constant L = |Ω|

(
1 +

m+ + 1

m− + 1

)
e

m++1
m−+1 > 1. The energy relations (2.14), (2.15)

take the form

∀ a.e. t ∈ (0, T )

∫

Ω

(
−

n∑

i=1

ai|Div |pi + b |v|σ
)
dx ≤ Σ′(t) + µL,

E(t, v) ≤ E(0, v0) + C∗t+M(µ), M(µ) → 0 as µ→ 0.

Gathering them and following the derivation of (3.13) we arrive at the inequality





C min
{
Σµ+

(t), Σµ−

(t)
}
≤ λΣ′(t) + (λµL+M(µ) +E(0, v0)) + C∗t in (0, T ),

Σ(0) =

∫

Ω

m0

m0 + 1
|v0|

m0+1 dx > 0.

Since E(0, v0) < 0 and λµL + M(µ) → 0 as µ → 0, assertion (iii) follows from Lemma
3.2.

Corollary 3.1. Theorem 3.1 states that given any negative initial energy E(0, v0) every
energy solution blows-up in a finite time, provided that mt is nonpositive and appropriately
small, and that Σ(0) is sufficiently big. On the other hand, it is easy to infer from the proof of
Lemmas 3.1, 3.2 that for every fixed µ and Σ(0) one may indicate the threshold value E∗ < 0
such that the every energy solution blows-up if E(0, v0) < E∗.

4. Embedding inequalities in anisotropic spaces

Let us introduce the functions

Σ(t) =

∫

Ω

m(z)

1 +m(z)
|v(z)|m(z)+1 dx,

Λ(t) =

n∑

i=1

∫

Ω
|Div(z)|

pi(z) dx,

Θ(t) =

∫

Ω

(
n∑

i=1

|Div(z)|
pi(z) + |v(z)|σ(z)

)
dx

and denote

1

p±(t)
=

1

n

n∑

i=1

1

p±i (t)
. (4.1)

We will rely on the following known result.
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Lemma 4.1 ([10, 14, 16]). Let Ω ⊂ R
n be a bounded domain with Lipschitz-continuous

boundary. Denote W 1,~p
0 (Ω) ≡

{
u ∈W 1,1

0 (Ω) : Diu ∈ Lpi(Ω), i = 1, n
}
, pi > 1. Let

r∗ =





np

n− p
if p < n,

any number from [1,∞) if p ≥ n,

1

p
=

1

n

n∑

i=1

1

pi
.

For r ∈ [1, r∗] the embedding W 1,~p
0 (Ω) →֒ Lr(Ω) is continuous and for every u ∈W 1,~p

0 (Ω)

‖u‖r,Ω ≤ C(Ω, n)

(
n∏

i=1

‖Diu‖pi,Ω

) 1
n

with an independent of u constant C. For r ∈ [1, r∗) the embedding is compact.

For any given positive constant L we denote

BL =

{
v ∈ W(QT ) : sup

(0,T )
Σ(t) +

∫ T

0
Λ(t) dt ≤ L

}
.

Lemma 4.2. Let the exponents m(z), pi(z) satisfy conditions (2.6). If

m+(t) + 1 ≤





n p−(t)

n− p−(t)
if p−(t) < n,

any number from [1,∞) if p−(t) ≥ n,

then for every v ∈ BL the energy functions Σ(t), Λ(t) satisfy the inequality

∀ a.e. t ∈ (0, T ) Σν+(t)(t) ≤ C Λ(t) with
1

ν+(t)
=
m−(t) + 1

m+(t)

1

p+(t)
(4.2)

with p+(t) defined in (4.1) and a constant C depending on the constants in (2.6), n, |Ω| and
L, but independent of v.

Proof. Given u ∈ BL, let us introduce the function v = γ u with a constant γ ∈ (0, 1]. Denote
by Σv(t) and Λv(t) be the energy functions associated with v. It is easy to calculate that

Σv(t) +

∫ T

0
Λv(t) dt ≤

(
γm

−+1 +max
i
γp

−

i

)(
Σ(t) +

∫ T

0
Λ(t) dt

)
≤ 2 γ L,

whence v ∈ B2γL. If we choose γ from the equality 2 γ L (1 +m+) = m−, then

v ∈ B1, sup
t∈(0,T )

‖v‖m(·,t)+1,Ω ≤ 1. (4.3)

Let us consider first the case when v satisfies conditions (4.3). According to (2.2)

Σ(t) ≤
m+

m− + 1
max

{
‖v(·, t)‖m

+1
m+1,Ω , ‖v(·, t)‖

m−+1
m+1,Ω

}
≤

m+

m− + 1
‖v(·, t)‖m

−+1
m+1,Ω . (4.4)

12



By Lemma 4.1 for every t ∈ [0, T ]

‖v(·, t)‖m+1,Ω ≤ C ‖v(·, t)‖m+(t)+1,Ω

≤ C

(
n∏

i=1

‖Div(·, t)‖p−i (t),Ω

) 1
n

≤ C

(
n∏

i=1

‖Div(·, t)‖pi(·,t),Ω

) 1
n

.

The right-hand side of this inequality can be estimated by means of (2.2): for every fixed
t ∈ [0, T ]

‖Div‖pi,Ω ≤ max

{(∫

Ω
|Div|

pi dx

) 1

p
−

i
(t)
,

(∫

Ω
|Div|

pi dx

) 1

p
+
i

(t)

}

≤ max

{
Λ

1

p
−

i
(t) (t),Λ

1

p
+
i

(t) (t)

}
,

whence

‖v(·, t)‖m+1,Ω ≤ C

(
n∏

i=1

max

{
Λ

1

p
−

i
(t) (t), Λ

1

p
+
i

(t) (t)

}) 1
n

≤ C





(
n∏

i=1
Λ

1

p
+
i

(t) (t)

) 1
n

if Λ(t) ≤ 1,

(
n∏

i=1
Λ

1

p
−

i
(t) (t)

) 1
n

if Λ(t) > 1,

≡ C




Λ

1
p+(t) (t) if Λ(t) ≤ 1,

Λ
1

p−(t) (t) if Λ(t) > 1.

Using (4.4) and (2.2) we obtain the inequality

(
1 +m−

m+
Σ(t)

) p+(t)

1+m−(t)

≤ ‖v(·, t)‖
p+(t)
m+1,Ω = min

{
‖v(·, t)‖

p−(t)
m+1,Ω , ‖v‖

p+(t)
m+1,Ω

}
≤ C Λ(t),

which yields (4.2), provided that v(z) satisfies (4.3). In the general case (4.2) holds for the
function w = γ v with γ = m−/(2L(1 +m+)), which gives estimate (4.2) for v.

Let us accept the notation

GL =

{
v ∈ W(QT ) ∩ L

σ(QT ) : sup
(0,T )

Σ(t) +

∫ T

0
Θ(t) dt ≤ L

}
.

Lemma 4.3. Let the exponents m, pi, σ satisfy conditions (2.6). If





σ− +m− > 2,

m+(t)σ+(t)

σ−(t)− 1
≤

n p−(t)

n− p−(t)
if p−(t) < n,

(4.5)

then for every u ∈ GL
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∀ a.e. t ∈ (0, T ) Σ(t) ≤ C Θ
1

ν+(t) (t),
1

ν+(t)
=

1

σ+(t)
+
m−(t)

p+(t)
(4.6)

with p+(t) defined in (4.1) and a constant C depending on n, |Ω|, the constants in (2.6) and
L, but independent of u.

Proof. The proof imitates the proof of the previous lemma. It is sufficient to prove the
assertion for the functions u ∈ W(QT ) ∩ L

σ(QT ) satisfying the inequality

sup
t∈(0,T )

‖u‖m(·,t)+1,Ω ≤ 1. (4.7)

Observe first that by virtue of Lebesgue’s differentiation theorem Θ(t) is well-defined for
a.a. t ∈ (0, T ) and every u ∈ GL . Following the proof of Lemma 4.2 we find that under
assumption (4.5) for a.e. t ∈ (0, T )

‖|u(·, t)|m(·,t)‖ σ(·,t)
σ(·,t)−1

,Ω
≤ C ‖u(·, t)‖

m−(t)
m+(t)σ+(t)

σ−(t)−1
,Ω

≤ C




Λ

m−(t)

p+(t) (t) if Λ(t) ≤ 1,

Λ
m−(t)

p−(t) (t) if Λ(t) > 1.

Combining this inequality with Hölder’s inequality (2.3) we obtain the estimate
∫

Ω
|u(x, t)|m+1 dx ≤ ‖|u(·, t)|m(·,t)‖ σ(·,t)

σ(·,t)−1
,Ω
‖u(·, t)‖σ(·,t),Ω

≤ C max

{(∫

Ω
|u|σ(z) dx

) 1
σ+(t)

,

(∫

Ω
|u|σ(z) dx

) 1
σ−(t)

}

×max

{
Λ

m−(t)

p+(t) (t),Λ
m−(t)

p−(t) (t)

}
≤ C




Θ

1
ν+(t) (t) if Θ(t) < 1,

Θ
1

ν−(t) (t) if Θ(t) ≥ 1.

Using assumption (4.7) we arrive at the inequality

(
1 +m−

m+
Σ(t)

)ν+(t)

≤

(∫

Ω
|u(z)|m+1 dx

)ν+(t)

≤ min

{(∫

Ω
|u(z)|m+1 dx

)ν+(t)

,

(∫

Ω
|u(z)|m+1 dx

)ν−(t)
}

≤ C Θ(t).

The general case reduces to the considered one by means of scaling v = γ u with a constant
γ ∈ (0, 1] such that

Σv(t) +

∫ T

0
Θv(t) dt ≤

(
γm

−+1 +max
i
γp

−

i + γσ
−

)(
Σ(t) +

∫ T

0
Θ(t) dt

)
≤ 3 γ L,

∫

Ω
|v|m+1 dx ≤

1 +m+

m−
Σv(t) ≤ 3

1 +m+

m−
γ L ≤ 1.
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5. Ordinary differential inequalities for the energy function

Let u ∈ W(QT ) be an energy solution of problem (1.1). We assume that

g(z) ∈ L∞(0, T ;L1(Ω)), b(z) ≤ 0 and 0 ≤ mt ≤ µ a.e. in QT . (5.1)

Under these assumptions (2.14) takes on the form: ∀ a.e. t ∈ (0, T )

Σ′(t) +

∫

Ω

(
a−

n∑

i=1

|Diu(z)|
pi(z) − b(z)|u(z)|σ(z)

)
dx

≤

∫

Ω
u g(z) dx +

∫

Ω

mt

(m+ 1)2
(1− (m+ 1) ln |u|)|u|m+1 dx.

Moreover, we will assume that the solution is bounded for all t ∈ (0, T ) (cf. with Theorem
2.1): there exists a constant l <∞ such that

ess sup
(0,T )

‖u(·, t)‖∞,Ω ≤ l. (5.2)

This assumption yields boundedness of the energy function Σ(t):

Σ(t) =

∫

Ω
|u|m+1dx ≤ |Ω|max

{
lm

++1, lm
−+1

}
≡ q. (5.3)

Let us observe that

∫

Ω

mt

(m+ 1)2
(1− (m+ 1) ln |u|)|u|m+1

=

∫

Ω

mt

(m+ 1)2
|u|m+1dx−

∫

Ω

mt

m+ 1
ln |u||u|m+1dx

≤ ess sup
Ω

(
mt

(m+ 1)2

)
Σ(t)− ess sup

Ω

(
mt

m+ 1

)∫

Ω∩{|u|<1}
|u|m+1 ln |u| dx

≡ K1(t)Σ(t) +K2(t) I(t).

Fix t ∈ (0, T ), some α ∈ (0,m−(t) + 1) and represent the integral I(t) in the form

I(t) =

∫

Ω∩{|u|<1}
|u|m+1−α (|u|α |ln |u||) dx.

It is easy to see that the function sα| ln s| with α ∈ (0,m−(t) + 1), defined on the interval

(0, 1), vanishes as s→ 0, s→ 1 and attains the maximum value at the point s = e−
1
α :

max
[0,1]

(sα| ln s|) =
1

α e
.

Using this fact, applying Hölder’s inequality (2.3) and then (2.2), we estimate
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I(t) ≤
1

α e

∫

Ω∩{|u|<1}
|u|m+1−α dx ≤

1

α e

∫

Ω
|u|m+1−α dx

≤
2

α e
‖1‖m(·,t)+1

α
,Ω
‖|u|m+1−α‖ m(·,t)+1

m(·,t)+1−α
,Ω

≤
2

α e
‖1‖m(·,t)+1

α
,Ω
max

{
Σ
1− α

m+(t)+1 (t),Σ
1− α

m−(t)+1 (t)
}
.

Recall that according to the definition of the Luxemburg norm

2

α e
‖1‖m(·,t)+1

α
,Ω

≤
2

α e
max

{
|Ω|

α

m+(t)+1 , |Ω|
α

m−(t)+1

}
≡ λ.

Applying Lemmas 4.2, 4.3 to the left-hand side of (5.2), we continue it in the following way:
∀ a.e. t ∈ (0, T )

Σ′(t) + C Σν+(t)(t) ≤ l

∫

Ω
|g(z)| dx +K1(t)Σ(t)

+ λK2(t)max
{
Σ
1− α

m+(t)+1 (t),Σ
1− α

m−(t)+1 (t)
}
,

(5.4)

where ν+(t) is the variable exponent defined by formula (4.2) if b+ = 0, and by formula (4.6)
if b+ < 0. Let

M = max {1, q} , Z(t) =
Σ(t)

M
≤ 1. (5.5)

Dividing (5.4) by M we arrive at the inequality for Z(t)





Z ′(t) + CMν+(t)−1Zν+(t)(t) ≤
l

M

∫

Ω
g(x, t) dx

+K1(t)Z(t) + λK2(t)M
− α

m+(t)+1Z
1− α

m−(t)+1 (t)

C = const is defined in (4.2) if b+ = 0, or in (4.6) if b+ < 0.

(5.6)

Finally, multiplying (5.6) by the function e−K(t) with

K(t) ≡

∫ t

0
K1(τ) dτ =

∫ t

0
ess sup

Ω

(
mt

(m+ 1)2

)
dτ, (5.7)

we obtain the differential inequality for S(t) ≡ Z(t) e−K(t): ∀ a.e. t ∈ (0, T )

S′(t) +D(t)Sν+(t)(t) ≤ φ(t) + ρ(t)S
1− α

m−(t)+1 (t) (5.8)

with the right-hand side

φ(t) =
l e−K (t)

M

∫

Ω
g(z) dx (5.9)

and the coefficients
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D(t) = C (eM)−K(t) (1−ν+(t)) ,

ρ(t) = λK2(t)M
− α

m+(t)+1 exp

(
K(t)

(
(1−

α

m−(t) + 1

))
.

(5.10)

The derivation of inequality (5.8) remains true if the exponent α depends on t. Let us choose
α ≡ α(t) ∈ (0,m−(t) + 1) in the special way:

ν+(t) = 1−
α(t)

m−(t) + 1
⇐⇒ α(t) = (m−(t) + 1)(1 − ν+(t)).

Then the second term on the right-hand side right of (5.8) transforms into ρ(t)Sν+(t)(t) and
(5.8) leads to the inequality

∀ a.e. t ∈ (0, T ) S′(t) + (D(t)− ρ(t)) Sν+(t)(t) ≤ φ(t). (5.11)

The above arguments are summarized in the following lemma.

Lemma 5.1. Let u ∈ W(QT ) be a bounded energy solution of problem (1.1). Assume that
the conditions of Lemma 4.2 or Lemma 4.3, and conditions (5.1)–(5.2) are fulfilled. Then the
function

S(t) =
e−K(t)

M

∫

Ω
|u|m(x,t)+1 dx

satisfies the differential inequality (5.11) with K(t), D(t), ρ(t) and M defined in (5.7), (5.10)
and (5.5).

Lemma 5.2. Let the conditions of Lemma 5.1 be fulfilled. Assume that in condition (5.3)
q ≤ 1. If the functions m(z), mt(z) satisfy the inequality

4
m+

t (t)

α(t) e
eK(t) max {1, |Ω|} ≤ C ∀ t ∈ (0, T ) (5.12)

with the constant C from (5.6), then the energy function S(t) satisfies the differential inequal-
ity

∀ a.e. t ∈ (0, T ) S′(t) +
1

2
D(t)Sν+(t)(t) ≤ φ(t), D(t) = C e−K(t)(1−ν+(t)), (5.13)

with the right-hand side φ(t) defined in (5.9).

Proof. It suffices to check that

ρ(t) ≤
1

2
D(t) ⇐⇒ 2λK2(t) ≤ C e−K(t)M

−K(t)
α(t)

m−(t)+1
+

α(t)

m+(t)+1 .

In the conditions of the lemma q ≤ 1 and M = 1, so that the required inequality follows from
the inequality
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2λK2(t) ≤ C e−K(t).

Since

α(t)

m±(t) + 1
=
m−(t) + 1

m±(t) + 1
(1− ν+(t)) =⇒ |Ω|

α(t)

m±(t)+1 ≤ max {1, |Ω|} ,

the last inequality if fulfilled by virtue of (5.12).

Remark 5.1. Assumption (5.3) is merely technical and can be relaxed. Nonetheless, we
prefer to keep it for the sake of simplicity of presentation.

Remark 5.2. 1. Condition (5.12) is easy to satisfy if m is independent of x. In this case

K(t) =

∫ t

0

mt

(m+ 1)2
dτ =

1

m(0) + 1
−

1

m(t) + 1
<

1

m(0) + 1
< 1

and (5.12) becomes

4m′(t)

(m(t) + 1)(1 − ν+(t))
e max{1, |Ω|} ≤ C.

If b+ = 0, the last inequality is equivalent to the inequality

4m′(t)

m(t)(1 − p+(t)) + 1
e max{1, |Ω|} ≤ C, (5.14)

which relates the admissible growth of m(t) to the behavior of p(x, t).

2. It is to be specially noted that inequality (5.13) remains true even when ν+(t) → 1 as
t → ∞, i.e., when α(t) → 0. In the case m ≡ m(t), b+ = 0 the admissible behavior of
the exponents m(t) and p(x, t) is defined by inequality (5.14).

6. Extinction in a finite time

6.1. The regular case

Inequality (5.13) provides the analytical background for the study of the localization
properties of solutions to problem (1.1). In the study of this inequality we follow the ideas
of the paper [6].

Theorem 6.1 (Vanishing in a finite time). Let v(z) be a bounded energy solution of problem
(1.1). Assume that v satisfies the energy estimate (2.14) and that either the conditions of
Lemma 4.2, or the conditions of Lemma 4.3 are fulfilled. Let ν+(t) denotes the exponent
defined in (4.2) if b+ = 0, or by (4.6) if b+ < 0. If

(a) the conditions of Lemma 5.2 are fulfilled,

(b) 1 > ν0 ≥ ν+(t) and
1

n
+

1

m+(t) + 1
≥

1

p−(t)
if n > p−(t),
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(c) g ≡ 0 a.e. in QT ,

(d) in the case K(t) 6≡ 0, the initial value Σ(0) satisfies the inequality

Σ1−ν0(0) <
1

2
C(1− ν0)

∫ ∞

0
e−K(τ)(1−ν+(τ)) dτ (6.1)

with K(t) from (5.7), and the constant C from (5.6),

then there exists a finite t∗ such that ‖v‖m+1,Ω(t) ≡ 0 for all t ≥ t∗.

Proof. The assertion of the theorem will follow if we prove that S(t) ≡ 0 for all t from some
t∗ on. Under the conditions of the theorem the energy function

S(t) = e−K(t)

∫

Ω

m

m+ 1
|u|m+1 dx

satisfies the differential inequality (5.13) with φ ≡ 0. Let us define

t∗ = inf {t > 0 : ∀ θ ∈ [0, t∗) S(θ) > 0} .

A straightforward integration of (5.13) over the interval (0, t) with t ≤ t∗ yields the relation
(in the case K 6= 0)

0 ≤ S1−ν0(t) ≤ Σ1−ν0(0)−
1

2
C (1− ν0)

∫ t

0
e−K(τ)(1−ν+(τ)) dτ ≡ R(t).

R(t) is a continuous function of t, R(0) > 0 by the definition and, due to (6.1), R(t) < 0
for the sufficiently big t. It follows from that there is a finite t∗ such that R(t∗) = 0 and,
respectively, Σ(t∗) = 0. Since Σ(t) is nonnegative and decreasing, it is necessary that Σ(t) ≡ 0
for all t ≥ t∗. In the case K = 0 integration of (5.13) leads to the inequality

0 ≤ Σ1−ν0(t) ≤ Σ1−ν0(0)− C(1− ν0)t,

and the conclusion follows in the same way with t∗ = Σ1−ν0(0)/(C(1 − ν0)).

Theorem 6.2 (Vanishing at a prescribed moment). Let the conditions of Theorem 6.1 be
fulfilled and g(z) ≡ 0 for a.e. t ≥ tg. Set

R1−ν0(t) =
1

2
C(1− ν0)

∫ tg

t

e1−ν+(τ) dτ.

If the integral

N (tg) =
1

M

∫ tg

0

φ(τ)

R(τ)
dτ

is convergent and
Σ(0)−R(0)(M −N (tg)) ≤ 0,
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then

‖v(·, t)‖m+1,Ω ≡ 0 in Ω for all t ≥ tg.

Proof. The energy function S(t) = Σ(t)e−K(t) satisfies the nonlinear differential inequality
(5.13) with the nonzero right-hand side φ(t). The proof is based on comparison of S(t) with
the solution of the homogeneous differential equation

R′(t) +
1

2
D(t)Rν0(t) = 0, R(0) = R0

with the initial value chosen according to the condition

R1−ν0
0 =

1

2
C(1− ν0)

∫ tg

t

e1−ν+(τ) dτ.

The details of the proof can be found in [6, Theorem 7.1].

6.2. The limit case

The differential inequality (5.13) remains true if ν+(t) → 1 as t → ∞, but the proof
of Theorem 6.1 is no longer valid because ν+(t) is not separated away from the critical
value. Nonetheless, under certain assumptions on ν+(t) the solutions of problem (1.1) still
may display the property of vanishing in a finite time. We will need the following technical
lemma.

Lemma 6.1. Let a nonnegative function S(t) satisfy the conditions





S′(t) + 1
2C e−K(t) (1−ν+(t))Sν+(t)(t) ≤ 0 for a.e. t ≥ 0

with ν+(t) ∈ (0, 1) and C = const > 0,

0 < S(t) ≤ S(0) <∞,

(6.2)

K(t) is a nonnegative function, K(0) = 0. If the exponent ν+(t) is monotone increasing,
then S(t) ≡ 0 for all t ≥ t∗ with t∗ defined from the equality

C

∫ t∗

0

Sν+(s)−1(0)

eK(s)(1−ν+(s))
ds = 2

∫ ∞

0

dz

ez(1−ν+(z))
.

Proof. The proof is an adaptation of the proof of [6, Lemma 9.1]. Let us consider the function
J(t) = S(t)/S(0) which satisfying the conditions

∀ a.e. t > 0 J ′(t) + C e−K(t) (1−ν+(t))Sν+(t)−1(0)Jν+(t) ≤ 0, J(0) = 1, J ′(t) ≤ 0.

Introducing the new independent variable

τ = C

∫ t

0

(
S(0) eK(θ)

)ν+(θ)−1
dθ,

the new exponent a(τ) ≡ ν+(t) and the new thought function I(τ) ≡ J(t), we find that
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∀ a.e. τ > 0 I ′(τ) + Ia(τ) ≤ 0,

I(0) = 1, I(τ) ≥ 0, I ′(τ) ≤ 0.
(6.3)

By monotonicity of I(τ) there is an interval [0, ǫ) where I(τ) > 0, otherwise I(τ) ≡ 0 for all
τ ≥ 0. Since I(τ) ≤ 1 and a(τ) ∈ (0, 1), then I(τ) ≤ Ia(τ)(τ), which leads to the inequality

I ′(τ) + I(τ) ≤ I ′(τ) + Ia(τ)(τ) ≤ 0. (6.4)

This inequality yields I(τ) ≤ e−τ , whence

τ ≤ − ln I(τ) and a(τ) ≤ a (− ln I(τ)) . (6.5)

Combining this inequality with (6.3) we have that

I ′(τ) + Ia(− ln I(τ))(τ) ≤ 0. (6.6)

The straightforward integration of this inequality over the interval (0, τ) gives:

∫ I(τ)

1

dr

ra(− ln r)
≤ −τ.

Introducing the new variable z = − ln r, we rewrite it in the form

∫ − ln I(τ)

0

dz

ez(1−a(z))
≥ τ for τ ≥ 0.

According to the choice of t∗

∫ − ln I(τ∗)

0

dz

ez(1−a(z))
≥ τ∗ =

∫ ∞

0

dz

ez(1−a(z))
,

which is impossible unless I(τ∗) = S(t∗)/S(0) = 0.

Theorem 6.3 (Extinction of solutions of eventually linear equations). Let v(z) be an energy

solution of problem (1.1) with Σ0 =

∫

Ω
|v0|

m(x,0)+1dx < ∞ and g ≡ 0. Assume that |v| ≤ l

a.e. in QT for some l = const. ≥ 1, mt ≥ 0 a.e. in QT , and that one of the following
conditions holds:

• b(z) ≤ 0, ν+(t) =
m+(t) p+(t)

1 +m−(t)
→ 1 as t→ ∞, ν+(t) is monotone increasing,

• b(z) < b+ < 0, ν+(t) =
(σ+(t) +m+(t)− 1)p+(t)

σ+(t) +m+(t)
→ 1 as t→ ∞, ν+(t) is mono-

tone increasing.
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If

∫ ∞

0

(
Σ0e

K(s)
)ν+(s)−1

ds = ∞,

∫ ∞

0

ds

es(1−ν+(s))
<∞

with K(t) defined in (5.7), then there exists t∗ ∈ (0,∞) such that v(x, t) ≡ 0 in Ω for all
t ≥ t∗, provided that µ and Σ0 are sufficiently small.

Proof. Since the energy function satisfies the differential inequality (5.13), the assertion im-
mediately follows from Lemma 6.1.

6.3. Equations with critical growth

Let v(z) ∈ C0(0, T ;Lm(x,t)+1(Ω)) ∩W(QT ) be an energy solution of the problem





d

dt

(
|v|m(z)−1v

)
=

n∑

i=1

Di

(
ai(z)|Div|

pi(z)−2Div
)

+c(z)|v|m(z)−1v + b(z)|v|σ(z)−2v + g in QT ,

v = 0 on ΓT ,

v(x, 0) = v0(x) in Ω.

(6.7)

Assume that that the data of the problem satisfy the foregoing assumptions and that c(z) ≤
γ(t) a.e. in QT with a bounded function γ(t). Taking v for the test-function, we arrive at
inequality (5.4) with the coefficient K1(t) substituted by

K̃1(t) = γ(t) + ess sup
Ω

(
mt

(m+ 1)2

)

and the coefficient K(t) given by the formula

K̃(t) =

∫ t

0

(
γ(τ) + ess sup

Ω

(
mt

(m+ 1)2

))
dτ.

The differential inequality for the energy function S̃(t) =
e−K̃(t)

M

∫

Ω
|v|m(x,t)+1 dx takes the

form

∀ a.e. t ∈ (0, T ) S̃′(t) +
1

2
D̃(t) S̃ν+(t)(t) ≤ φ̃(t), S̃(0) =

1

M

∫

Ω
|v0|

m0+1 dx,

with the coefficient and the right-hand side

D̃(t) = C e−K̃(t)(1−ν+(t)), φ̃(t) =
l e−K̃ (t)

M

∫

Ω
g(z) dx.

The conclusions about the possibility of the finite-time extinction of the solution follow from
the proofs of Theorems 6.1-6.2.
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7. Large time behavior

The results of Section 6 refer to the cases when either ν+(t) ∈ (0, ν0) with ν0 < 1, or
ν+(t) is monotone increasing and tends to the critical value ν0 = 1 as t → ∞. If neither of
these conditions is fulfilled, the analysis of the differential inequality for the energy function
leads to the following results.

Theorem 7.1. Let the conditions of Theorem 6.1 be fulfilled with g ≡ 0 in QT and v be a
bounded energy solution of problem (1.1). Let ν+(t) : [0,∞) 7→ (0, ν+] be the function defined
in (4.2) if b+ < 0, and in (4.6) if b+ = 0.

1. If ν+ = 1, then

Σ(t) ≡

∫

Ω
|v|m(z)+1 dx ≤ Σ(0) exp

(
K(t)−

1

2
C

∫ t

0

(
Σ(0) eK(s)

)ν+(s)−1
ds

)

with the function K(t) from (5.7) and the constant C from (5.6).

2. If ν+ > 1, then

Σ(t) ≤
Σ(0) eK(t)

(
1 + 1

2C(ν+ − 1)

∫ t

0

(
Σ(0) eK(s)

)ν+(s)−1
ds

) 1
ν+−1

.

3. If ν+ < 1, then

Σ(t) ≤ Σ(0) max

{
0,

(
1−

1

2
C(1− ν+)

∫ t

0

(
Σ(0) eK(s)

)ν+(s)−1
ds

) 1
1−ν+

}
.

Proof. By Lemma 5.2 the energy function S(t) =
Σ(t)

M
e−K(t) satisfies the homogeneous dif-

ferential inequality (5.13). Since S ∈ [0, 1], we may continue (5.13) as follows:

∀ a.e. t ∈ (0, T ) S′ +
1

2
C e−K(t)(1−ν+(t)) Sν+ ≤ 0.

The assertions follow now by the direct integration of the last inequality.

Corollary 7.1. The large time behavior of energy solutions of problem (6.7) is also described
by the estimates of Theorem 7.1, but with the coefficient K(t) substituted by K̃(t) - see Sub-
section 6.3.
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[10] I. Fragalà, F. Gazzola, and B. Kawohl, Existence and nonexistence results for
anisotropic quasilinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21
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