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Disease liability prediction from large scale
genotyping data using classifiers with a reject
option

José R. Quevedo, Antonio Bahamonde, Miguel Pérez-Enciso and Oscar Luaces

Abstract—Genome-wide association studies (GWA) try to identify the genetic polymorphisms associated with variation in phenotypes.
However, the most significant genetic variants may have a small predictive power to forecast the future development of common
diseases. We study the prediction of the risk of developing a disease given genome-wide genotypic data using classifiers with a reject
option, which only make a prediction when they are sufficiently certain, but in doubtful situations may reject making a classification. To
test the reliability of our proposal, we used the Wellcome Trust Case Control Consortium (WTCCC) data set, comprising 14,000 cases

of 7 common human diseases and 3,000 shared controls.

Index Terms—Genome-wide analysis, classification with a reject option, risk of common human diseases.

1 INTRODUCTION

HE aim of genome-wide association (GWA) studies
Tis to identify the genetic variants associated with
variation in phenotypes that are, hopefully, reasonably
close to the actual causal mutations. There is a fast
increasing literature employing this approach, typically
applied to case/control studies, although also to quan-
titative traits; see for instance the references quoted
in Table 2. However, it has been acknowledged that,
compared with clinical risk factors alone, those genetic
signals associated with the risk of some common dis-
eases may have a small predictive power to anticipate
their future development. See for instance [1] for a recent
review, [2] with respect to cardiovascular disease risk,
and [3] for type 2 diabetes. This lack of predictive power
would be due to loci of small effects that are not detected
in GWAS and/or rare variants. Recently [4] have shown
that this is indeed the case for human height, a trait with
high heritability but where few individual genetic effects
have been uncovered.

In this paper we study the prediction of phenotypes
from genome-wide genotypic data from a different per-
spective. We are primarily interested in the prediction
of liability, i.e. the risk of developing a disease given
certain genotype data, rather than in the association
of genotype with phenotype per se. For this purpose,
we extend the binary classification task into a more
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relaxed formulation of 3 classes: positive (case), negative
(control), and wuncertain. The goal is to build classifiers
that return only one class when they are sufficiently sure,
but which may opt for returning both classes in doubtful
situations, in other words, the classifiers may assign an
uncertain tag to an individual. Therefore, the user can
choose the level of risk in misclassification by modifying
an appropriate threshold as detailed below.

These types of classifiers have received different
names in the literature. In [5] the authors present an al-
gorithm to learn set-valued classifiers called Naive Credal;
this is an extension of the Naive Bayes classifier to
imprecise probabilities. In [6], [7] these classifiers are
called nondeterministic; the aim is to predict a set of
classes that is as small as possible, while still containing
the true class.

In binary classification tasks, nondeterministic or set-
valued classifiers have been presented as classifiers with
a reject option [8], [9]. In [10] these classifiers are used
to handle microarray data. In this approach, the entries
that are likely to be misclassified are rejected, they are
not classified and can be handled by other procedures:
a manual classification, for instance.

In addition to build classifiers with a reject option,
in this paper we propose a new method to select the
features to be used. Taking into account the high dimen-
sionality of data, first we employ a filter instead of other
time-consuming procedures. One important quality of
the filter used, FCBF [11], is that it is able to remove
redundant features from genotype descriptions. The fea-
ture selector is completed with the use of a grid search.
The whole feature selector is a fully scalable method
suitable for dealing with large genetic data sets.

To validate the method, we report a set of experi-
mental results. We use the Wellcome Trust Case Control
Consortium (WTCCC) data set presented in [12]. This is
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a collection of 14,000 cases of 7 common diseases and
3,000 shared controls.

About 500,000 single nucleotide polymorphisms
(SNPs) were genotyped in the British individuals, pro-
viding a comprehensive coverage of the genome.

We compare the prediction scores obtained using the
entire collection of SNPs with those obtained using
only a reduced set of SNPs, namely those reported in
recently published GWA studies. We confirm that a
reliable predictive model cannot be constructed using
only highly associated SNPs to a given disease. While
the prediction scores obtained from the entire set are
quite promising, the prediction power of the SNPs with
documented association signals are quite modest. Our
results therefore highlight the fact that ascertaining the
main genetic causes of the disease may not suffice when
it comes to predicting disease liability.

2 METHODS
2.1 Data description

We used the data employed in the genome-wide asso-
ciation study (GWA) carried out by the Wellcome Trust
Case Control Consortium (WTCCC) and reported in [12].
Said database is publicly available on request!.

The data comprises genotype information from 17,000
individuals distributed as 2,000 cases and 3,000 shared
controls for 7 complex, common human diseases: bipolar
disorder (BD), coronary artery disease (CAD), Crohn’s
disease (CD), hypertension (HT), rheumatoid arthritis
(RA), type 1 diabetes (T1D), and type 2 diabetes (T2D).

All 17,000 samples were genotyped with the GeneChip
500K Mapping Array Set (Affymetrix chip), which com-
prises 500,568 SNPs. These numbers are approximate,
since we excluded the same samples and SNPs that were
also excluded in the WTCCC study. More precisely, we
excluded 809 samples and 31,011 SNPs from the full
database, keeping 469,557 SNPs in 16,191 samples with
the following distribution of cases by disease: 1,962 cases
of BD, 1,882 of CAD, 1,698 of CD, 1,950 of HT, 1,834 of
RA, 1,819 of T1D, and 1,915 of T2D. The final number of
controls shared among the seven diseases was 2,938. The
resulting data presented 0.8% of missing values in SNPs
of cases and controls. We used the following imputation
method to handle these missing values: for an individual
with a missing value in the i-th SNP, we imputed the
most probable value conditioned to the value of his/her
(i + 1)-th SNP. In other words, if an individual X has
a missing value in the i-th SNP, we impute the most
frequent value present in other individuals whose value
for the (i + 1)-th SNP coincides with that of X. For the
last SNP of each chromosome, we used the preceding
one instead of the next one.

The experimental design used in this paper was the
same as described in [12]. We constructed for each of

1. At the time of writing this paper, individual-level genotype data
and summary genotype statistics for these collections are held within
the European Genotype Archive, http://www.ebi.ac.uk/ega.

the 7 diseases a binary classification task with about
5,000 individuals; the corresponding cases were labeled
as class +1 and the shared controls were labeled as —1.

The codification of the data to be handled by the
algorithms detailed in the following subsections is of
major importance. For any given individual and locus,
there are four possible combinations of nucleotides: two
for a homozygote and two for a heterozygote. If we
ignore the order in the heterozygous case, the number
of combinations is reduced to 3; thus, a SNP could
be codified by 3 different integer values, say {0,1,2}.
This codification makes sense from a biological point of
view, because it separates homozygous from heterozy-
gous genotypes, and it is an appropriate codification for
algorithms able to deal with symbolic data. However,
algorithms that take into account the numerical relations
of the input values can be biased depending on the codi-
fication selected. A common technique to avoid such bias
consists in transforming each input variable (in this case,
a SNP) into the same number of binary (0/1) features as
possible values the original variable can take (three in
our case); then the newly created feature corresponding
to the value of the original variable is coded as 1, while
the rest are coded as 0. We employed both codifications
in this paper: the former to apply a filter and select
a reduced number of SNPs, and the latter to learn a
numerical model aimed at predicting the probability of
suffering a given disease.

2.2 The learner

The learner used in this paper is a regularized logistic
regressor, LibLinear [13], [14]. To describe the kind of
tasks this learning algorithm is able to deal with, let
{(z;,y;) : i =1,...,1} be a binary classification problem,
where inputs x; are real vectors of dimension n, z; € R",
and 2] € Rforj € {1,...,n}. Inour case, z] € {0,1} con-
tains the genotypic data, since the SNPs are binarized.
The classes may have two possible values, y; € {1, -1},
representing the disease status. In this context, LibLinear
assumes the following probability model

1

Pr(y = £1|x) = 1 o-v(wTatd)’

1)
where w and b are learning parameters. The deterministic
classifier learned is then given by

hper(x) = sign(Pr(class = +1|x) — 0.5). 2

The parameters w € R”, and b € R, are learned minimiz-
ing the negative log-likelihood

l
S s(1e ).
=1

To obtain good generalization abilities, the authors
of LibLinear added a regularization term, 3[w;b]” [w;b],
used in the formulation of Support Vector Machines

(SVM) to incorporate the maximum margin principle.
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LibLinear thus solves the following convex optimization
problem

!
i 1 BT gy —yi(wT @i +b)
rg{il?[w,b] ['w,b]—l—C;log (1+e ) 4)

The value of parameter C' is decided by users so that
the two terms in (4) are balanced.

2.3 Classification with a reject option

One possible implementation of nondeterministic classi-
fiers uses a threshold 7 in addition to posterior proba-
bilities. The idea is that when an individual represented
by x has, for both classes, posterior probabilities below
7, we assume that the individual has a doubtful clas-
sification. We then reject the classification of x, or we
express this fact by predicting both classes. In symbols,

{-1} if n(x) <7
hnp(z) = {1, +1} ifr<n(x)<(1-7) (5
{+1} if (1-71) <n(x),

where we are representing by 7(x) the posterior proba-
bility:
n(x)

Two approaches have been used in the literature to
look for an optimum classifier of this type. One of
these is presented in [6], [7], in which a loss function
is defined considering the classification task as a kind of
information retrieval. Although it is possible to handle
binary classification tasks, the natural application fields
for nondeterminism are multi-class classification tasks.

The straightforward approach related to the decision
rule given in (5) is the classification with a reject option.
Here, the core assumption is that the cost of making a
wrong decision is 1, while the cost of using the reject
option is given by some d, 0 < d < 1. In this context,
provided that posterior probabilities are exactly known,
the classifier defined in (5) is the optimum if 7 = d [8],
[9]. In fact, when the probability of error for both classes
is higher than 7, the decision is to reject the individual,
since 7 = d is the loss for predictions of two classes.
Notice that d must be smaller than 0.5.

= Pr(y = +1|x).

2.4 The selection of SNPs

Each SNP may have up to 3 different values codified
by the integers in {0, 1,2}. Given that these codes have
no strict numerical semantics, we must use a selection
algorithm devised for symbolic data.

Since the dimensionality of data is so high, we employ
a filter instead of other time-consuming procedures. We
chose the filter FCBF [11]. It is very fast and performed
very well in this case. In fact, this filter has been fre-
quently used for dealing with genetic data; see [15].

FCBF proceeds in two steps: relevance and redun-
dancy analysis, in this order. For both steps the filter uses
what is known as symmetrical uncertainty: a normalized
version of the mutual information.

Let us recall the formulation of this measure. It is
based on a nonlinear correlation, entropy, a measure of
the uncertainty that is defined for an input variable X7
(the columns of the data matrix) as follows

= fZPr

where m is the number of SNPs. Additionally, the en-
tropy of a variable, X/, after observing the values of
another variable, X*, is defined as

l
HXIXH = "Pr(x Z Pr(z

where Pr(zF) denotes the prior probabilities for all pos-
sible values of the variable X*, while Pr(z7|x*) denotes
the posterior probabilities.

The mutual information (M) of X7 given X* is defined
as the difference between the entropy prior and posterior
to the observed values of X7. In symbols,

) log, (Pr(x )),jzl,...,m, (6)

") logy (Pr(z|2)), (7)

MI(X7|X") = H(X) - H(X7|X") ®)

which can also be expressed as the Kullback-Leibler
divergence of the product Pr(X7) x Pr(X*) of the
marginal distributions of the two random variables, X’
and X*, and the random variables’ joint distribution:
Pr(X7, X*). In symbols,

MI(X|X*) = Dyer (Pr(X7.X%)|| Pr(X7) Pr(X*)). (9)

The mutual information is a symmetrical measure;
however, in order to normalize it, the symmetrical un-
certainty (SU) is defined by

MI(X9|X*)
H(X9)+ H(XF)

Using this measure, FCBF removes those variables
(SNPs) whose SU with respect to the class to be pre-
dicted is lower than or equal to a given ¢, then orders the
remaining attributes in descending order of SU and ap-
plies an iterative redundancy elimination process based
on approximate Markov blankets. In the experiments
reported below, we shall use § = 0. We are thus, in fact,
using only the redundancy analysis of FCBF to discard
input variables.

We applied FCBF separately for each chromosome,
thus obtaining a more efficient processing from the
computational point of view. The selected SNPs for
each chromosome, i.e. those not removed by the FCBF
filter, are then joined together in a single data set and
ordered according to their SU values. We then selected
the t% best. More sophisticated strategies could obtain
better results, but the computational effort would be
unaffordable in the classification tasks handled in this
paper.

The choice of ¢ should be carefully decided, as it has a
major impact on final results. To illustrate this, Figure 1
shows the evolution of the estimated classification error

SU(X7, XF) =2 (10)
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Fig. 1. Evolution of the estimation of the 0/1 classification
error on the type 1 diabetes (T1D) disease varying the
percentage of SNPs selected from the ranking obtained
by FCBF

in a predictive model for the type 1 diabetes (T1D) dis-
ease in the WTCCC data set (see Section 2.1). The scores
are estimated using a 5-fold cross validation for different
values of t. Starting with just the top 1% of the SNPs
ranked by FCBF, we iteratively add subsequent SNPs in
steps of 1%. This experiment shows that adding more
input variables to the model decreases the error up to a
point at which it increases again. This effect, known as
the peaking phenomenon and recently revisited in [16],
is due to the addition of excessive (possibly irrelevant)
information that disturbs the learning process.

In the experiments described in the next section, we
shall use a grid search to search for good ¢ values.

3 RESULTS AND DISCUSSION
3.1

In this section we report the prediction performance of
our method in the 7 classification tasks. In order to
underscore the role played by the selection of SNPs,
we compared our scores with those achieved using the
SNPs reported recently by a collection of GWA studies
(including [12]). The dramatic differences in the scores
so-obtained highlight the contrast between the aims of
GWA and prediction studies.

Let us first describe the procedure to induce a predic-
tion model from training data, which is depicted in the
pseudocode included in Figure 2. Our proposed method
starts from a data set d with the controls and cases of
a given disease, described by all the SNPs provided in
the WTCCC data sets. Before training LibLinear (line 20),
input data is filtered by FCBF one chromosome at a time
(lines 2 — 7) for efficiency reasons and the SNPs not
removed are joined together, constructing a new data
set (d'). To estimate the best value for parameter ¢, the
percentage of top ranked SNPs, we used a standard
stratified hold-out approach; thus, the data set is split
(line 8) in two subsets: e, with 75% of cases and controls
of d’, and v with the remaining 25%. Then, by varying
the value of ¢, we construct e; and v; which will contain

Experimental setting

1: function GETRISKPREDICTOR(d)

2 d 0

3 for each chromosome ¢ do

4: s < GETCHROMOSOMESNPS(¢, d)
5: d' <+ d' UFCBF(s)

6 end for

7 d' < SORTBYSU(d')

8 [e,v] «+— RANDOMSPLIT(d’, 25%)

9: thest <= 0; lpest — 00

10: for ¢ = 10 to 100 in steps of 10 do

11: er < GETTOPRANKEDSNPS(t, €)
12: vy <~ GETTOPRANKEDSNPS(¢, v)
13: ht + TRAINLIBLINEAR(e;)

14: l; < TESTMODEL(hy, vy)

15: if [; < lpest then

16: Ibest <= Ut tpest < T

17: end if

18: end for

19: d" + GETTOPRANKEDSNPS(tpest, d’)
20: h <~ TRAINLIBLINEAR(d")

21: return h

22: end function

Fig. 2. Pseudo-code describing the proposed approach
to obtain a disease risk predictor based on filtering SNPs
and training LibLinear to obtain a probabilistic model

only the t% top ranked SNPs (according to their SU
value with respect to the disease status); for each value,
we train LibLinear on e; and validate the 0/1 error of
the obtained model h; on the corresponding v, finally
selecting the value for ¢ yielding the lowest estimation
error, i.e. tpest (lines 9 — 18). This procedure is used to
estimate the 0/1 classification error without overfitting.
Finally, we construct d” containing only the tpest top
ranked SNPs and we obtain the model i (line 20) that
will be returned by the algorithm. The regularization
parameter C of the logistic regression (4) was left to its
default value (C =1).

The predictive performance of our procedure was
estimated using a 5-fold stratified cross validation. Thus,
for each disease we randomly split the data available
in the 5 partitions while maintaining the distribution
of cases and controls (class +1 and —1) as in the full
data set. Each partition is then used as a test set for
a hypothesis induced using the algorithm depicted in
Figure 2 on a training set formed by the remaining 4
partitions.

The quality of each induced model is assessed using
both the classification error (0/1 loss), the area under the
ROC curve (AUC), and the Sensitivity and the Specificity.
The classification error of a model h on a test set S is
computed as

1 S|

Boju(hsS) = o7 > k() # il (11)
=1

where the output of h is given by (5), and [p] is evaluated
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TABLE 1
Prediction scores, estimated with a 5-fold cross validation and different rejection thresholds.

with our filtering method with previously published SNPs
#SNPs AUC  %error % Spec. % Sen.  %clas. T %clas. % Sen. % Spec.  %error AUC  #SNP

0.945 3.01 97,05 82.78 45.15 | 0.1 0.00 — — — —

Bipolar avg:224.8  0.923 6.54 94.68 77.81 63.02 | 0.2 0.15 0.00 100.00 0.02 —
Disorder min: 140.0  0.905 10.59 92.92 73.07 7738 | 0.3 7.06 0.00 100.00 1.91 — 6

(BD) max: 285.0  0.889 15.30 90.73 71.98 89.49 | 04 57.31 0.00 100.00 20.83 —

0.873 20.35 87.58 69.21 100.00 | 0.5 | 100.00 0.27 99.80 3826  0.541

Coronary 0.933 2.59 97.25 81.10 40.25 | 0.1 0.66 0.00 100.00 0.12 —

Artery avg: 186.0 0913 6.35 95.36 80.37 59.21 | 0.2 8.96 6.54 98.15 220 0.510
Disease min: 134.0  0.898 10.54 91.43 78.39 7452 | 0.3 30.52 11.06 95.82 9.07 0.576 85

(CAD) max: 264.0 0.883 15.08 86.85 74.00 87.72 | 0.4 62.88 19.41 89.84 2234  0.599

0.865 20.46 83.66 69.23  100.00 | 0.5 | 100.00 28.64 80.26 3990 0.592

0.933 2.22 98.64 76.39 33.15 | 0.1 3.19 36.36 100.00 0.30 0.689

Crohn’s avg: 1372 0.897 6.19 96.66 70.59 5194 | 0.2 19.95 24.50 99.03 3.41 0.680
disease min: 134.0  0.871 11.22 93.74 62.10 68.90 | 0.3 45.53 26.90 96.93 10.16  0.678 33

(CD) max: 140.0  0.849 16.91 90.86 57.93 84.79 | 04 71.74 32.67 92.48 19.65 0.702

0.825 23.73 86.39 57.66  100.00 | 0.5 | 100.00 38.04 85.09 32.14  0.690

0.964 2.00 97.94 86.79 36.70 | 0.1 0.00 — — — —

Hypertension avg: 162.8 0.934 5.42 95.57 80.23 5454 | 0.2 0.31 0.00 100.00 0.08 —
(HT) min: 133.0  0.907 10.19 92.48 75.21 70.19 | 0.3 10.52 0.00 100.00 3.21 — 6

max: 268.0  0.882 16.06 89.78 70.00 85.66 | 0.4 53.78 2.71 98.59 18.84 0.554

0.857 22.52 86.90 64.36  100.00 | 0.5 | 100.00 15.08 90.95 39.32  0.586

0.976 1.95 98.13 87.58 48.60 | 0.1 1.05 0.00 100.00 0.10 —

Rheumatoid  avg:161.8  0.958 4.76 94.54 81.41 64.96 | 0.2 15.03 14.93 99.83 241 0.638
arthritis min: 133.0  0.941 8.09 92.51 77.85 7741 | 03 37.26 25.66 96.67 8.03 0.671 9

(RA) max: 268.0  0.925 12.36 88.90 73.06 88.39 | 04 67.41 32.46 92.66 18.36  0.702

0.905 17.98 85.36 68.10 100.00 | 0.5 | 100.00 40.51 81.96 3397 0.694

0.982 2.55 98.93 93.90 66.92 | 0.1 9.55 34.21 99.77 053 0.751

Type 1 avg:240.8  0.973 4.84 96.69 91.23 78.35 | 0.2 24.65 45.09 97.87 294  0.802
diabetes min: 137.0  0.963 7.06 95.53 88.77 8749 | 0.3 47.02 53.14 92.85 8.78  0.807 17

(T1D) max: 274.0  0.956 9.37 91.43 86.70 94.06 | 0.4 72.20 56.99 85.29 18.02 0.791

0.948 12.24 89.96 82.97 100.00 | 0.5 | 100.00 56.01 78.08 30.76  0.755

0.935 2.80 97.00 86.14 35.19 | 0.1 0.02 — 100.00 0.00 —

Type 2 avg:244.6  0.903 6.94 94.01 75.00 52.77 | 0.2 1.17 8.33 100.00 023 0424
diabetes min: 135.0  0.870 12.90 91.54 71.43 69.13 | 0.3 16.96 3.60 98.84 455 0.541 15

(T2D) max: 275.0  0.838 18.96 88.53 69.21 85.06 | 0.4 57.18 7.20 97.21 19.10 0.581

0.814 25.51 83.80 65.54 100.00 | 0.5 | 100.00 19.58 89.07 38.35 0.601

to 1 if p is true, and 0 otherwise.

The Sensitivity is defined as the proportion of cases
classified as cases, i.e., true positive rate; in symbols

[h(z:) =1]

Sensitivity(h,S) = =1

{iry;=1}

(12)

On the other hand, the Specificity is the sensitivity of con-
trols and can be computed using the previous equation
with —1 instead of 1.

On the other hand, given that the AUC is equivalent
to the Wilcoxon-Mann-Whitney statistic [17], it can be
computed as

AAUC(h7 S) =
> ([ >h(@)]+(5) [P =h(z;)])

_ {i,5:y:>y5}
> lvi >yl

,J

, (13)

where the output of % is, in this case, the posterior

probability; in other words, we can rewrite (5) as

if 7<n(x)<(1-
otherwise,

rejected T)

n(x)

where n(x) = Pr(y = +1|z), as indicated previously.

Notice that these measures are computed considering
only the non-rejected individuals which, in some circum-
stances, can be of the same class (either cases or controls).
In such circumstances it is not possible to compute the
AUC, so there is a hyphen in Table 1. In some extreme
situations all the individuals could eventually be rejected
so it is also impossible to compute the classification
error. We only found these situations when using a small
amount of previously published SNPs.

hND(CB) = { (14)

3.2 Experimental results

To visualize the distribution of posterior probabilities
of the hypothesis learned from the classification task
of each disease, we divided the interval [0,1] into 10
subintervals of width 0.1. Figure 3 depicts the percentage
of cases (respectively, controls) that fall in each interval
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Fig. 3. Distribution of controls and cases of the seven diseases in the WTCCC data set. The acronyms of the diseases
are the folowing: bipolar disorder (BD), coronary artery disease (CAD), Crohn’s disease (CD), hypertension (HT),

rheumatoid arthritis (RA

), type 1 diabetes (T1D), and type 2 diabetes (T2D). The scores are drawn according to

the posterior probabilities of diseases (horizontal axes) learned by our approach in cross validation experiments. As
expected, most controls have low scores, and most cases reach high scores

for the seven diseases in a cross validation experiment.
To clarify the meaning of these graphs let us focus, for
example, on the bar chart for type 1 diabetes (T1D,
in the bottom left corner of Figure 3). If we consider
the extreme values of probability, we observe that the
posterior probability for T1D was lower than 0.1 for
69.84% of the 2938 controls and for 3.57% of the 1962
cases. However, the posterior probability was higher
than 0.9 for only the 1.87% of the controls and for the
56.17% of the cases.

Table 1 shows the scores of the classifiers with a reject
option in the learning tasks defined by the 7 diseases.
In the columns entitled with our filtering method we
show the scores achieved when our filtering approach,
described in Section 2.4, was used, while the results
below with previously published SNPs were obtained
using for each disease a set of published SNPs which
were found to have high association signals.

The scores reported for each disease and different val-
ues of the threshold 7 (5) are the following: the average
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percentage of classified (i.e. not rejected) individuals (%
clas.), the average classification error (%error), the AUC,
the sensitivity (Sen.) and the specificity (Spec.). Note that
when 7 = 0.5, the hypotheses behave like a classical
probabilistic classifier that labels an individual either as
a case, when the posterior probability is higher or equal
than 0.5, or as a control, otherwise. The percentage of
individuals classified is then 100%.

The errors for 7 = 0.5 are notably lower than those
reported in recent studies [18]. One reason that may
explain this discrepancy is that we carry out a thorough
selection of the SNPs that are going to be involved in
the learning process. The second reason is the learning
algorithm used, a logistic regression instead of a decision
tree.

Our results also outperform other risk assessment
algorithms that were recently published [19], [20], and
whose quality was estimated in terms of AUC. Worth
of mention is the discussion in [20] about the possible
bias of the estimations obtained by a cross-validation
experiment. To avoid an optimistic estimation of the
performance in risk assessment, the authors suggest
to use independent data sets obtained from different
sources to validate the induced models. Although we
agree with their claim, in the present work we did not
validate with independent data sets, so a comparison can
only be established on the cross-validation results.

However, despite the accuracy improvement consider-
ing the standard classification approach (when 7 = 0.5),
we would like to highlight that higher scores can be
obtained at the cost of rejecting to classify an acceptably
low percentage of cases. The goodness of our method
can be found when the threshold, 7, has lower values.
For instance, for 7 = 0.3, the percentage of individuals
classified across the 7 diseases is on average 75.00%, with
an average error of only 10%; the Specificity is over 90%
while the Sensitivity is over 70% with the exception of
CD where it only reaches 62%.

Furthermore, we detect notable differences between
diseases. Thus, in concordance with [18], T1D is more
predictable in our experiments than the other diseases:
using a 7 = 0.2, it is possible to return a classification for
78.35% of the individuals with an error of just 4.84%.

We also report in Table 1 the number of SNPs used in
each task, which is indicated as the average, minimum
and maximum values of the 5-fold cross-validation when
our filtering approach was used. We have observed
that all chromosomes have SNPs in these collections,
which emphasizes the importance of making genome-
wide explorations. More details can be found on the
website of supplementary data® to this paper.

3.3 Comparison with other SNPs

In Table 2, we list a number of references comprising a
collection of SNPs in which association signals with the
diseases were found. We considered only those SNPs

2. http:/ /www.aic.uniovi.es/disease_prediction

TABLE 2
Bibliographic references used to obtain a joint list of
relevant SNPs for each disease. The last two columns
report the number of SNPs from each paper, and of the
union of them, included in the WTCCC data set.

#SNPs
Disease Reference Paper WTCCC Union
BD Ferreira et al. (2008) [21] 2 1 6
Sklar et al. (2008) [22] 2 2
Baum et al. (2007) [23] 11 2
WTCCC (2007) [12] 1 1
CAD  Samani et al. (2007) [24] 30 30 85
Willer et al. (2008) [25] 59 36
Aulchenko et al. (2009) [26] 161 37
WTCCC (2007) [12] 1 1
CD Parkes et al. (2007) [27] 12 12 33
Barrett et al. (2008) [28] 30 17
WTCCC (2007) [12]

HT WTCCC (2007) [12] 6 6 6
RA Thomson et al. (2007) [29] 1 1 9
Barton et al. (2008) [30] 3 3
Plenge et al. (2007) [31] 9 1
WTCCC (2007) [12] 4 4
T1D Todd et al. (2007) [32] 15 14 17
Hakonarson ef al. (2007) [33] 14 0
WTCCC (2007) [12] 6 6
T2D Zeggini et al. (2007) [34] 11 9 15
Cornelis ef al. (2009) [3] 17 7
WTCCC (2007) [12] 3 3

included in the WTCCC data set, adding the SNPs
mentioned in [12] with high association measures, i.e.
those with p < 5-1077, except in HT, where we used the
6 SNPs with 5- 1077 < p < 2-107°. The union of SNPs
so-gathered is finally considered for each disease. The
last column in Table 2 shows the number of SNPs so-
obtained. Note that these SNPs are considerably fewer
than those selected by our method. The list of such SNPs
is available on the website of supplementary data.

The scores below the label with previously published
SNPs in Table 1 were obtained with the SNPs listed
in Table 2 in the experimental setting described at the
beginning of this section. The discriminatory power of
these SNPs can be seen to be very modest. The predic-
tion scores are similar to a baseline predictor that will
always return the most frequent class, thus labeling any
individual as a control; this baseline has errors of around
40%. This is the case, for instance in BD where the
Sensitivity is only 0.27% while the Specificity is 99.80%.
In general, when all individuals are classified (7 = 0.5),
the Sensitivity is below 50% with the exception of T1D
where the sensitivity is 56.01%.

These results confirm the conclusions regarding the
modest predictive power of a small collection of SNPs
presented in [2], [3].
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3.4 Discussion

Assessing the genetic risk of a patient to develop a
disease is a very important target from a medical point of
view. In this sense, the approach presented in this paper
aims at finding in this work useful prediction models
based on hundreds of SNPs instead of a few ones. This
method could be helpful to improve the assessments
of disease risk only based on the absence or presence
of alleles associated to a given disease status, which is
actually offered by some commercial personal genomic
services.

In addition, the performance of risk predictors can
be improved if we allow to reject the classification of
some individuals with an uncertain prediction. Rejec-
tion makes sense in this context since it is much more
adequate to tell patients that their genotype does not
convincingly predict their risk for a particular disease
than to venture an untrustworthy prognosis.

In the classification tasks studied, the main difficulty is
the extremely high dimensionality of the data. We used a
maximum margin learner preceded by a nonlinear corre-
lation based filter to overcome the curse of dimensionality.

Using posterior probabilities we identified an average
of 25.00% individuals with uncertain predictions in the
WTCCC data, while in the remaining individuals the
classification error was only around 10%. Our method
thus provides not only a prediction of disease status,
but also a risk ranking represented by probabilities.

In addition to the accuracy, the performance of the
classifications was measured using the Sensitivity, the
Specificity, and the AUC. In all diseases studied, specifi-
ties were quite high, over 83% in the worst case, whereas
sensitivity was 57% at least. The latter contrasts with
sensitivities obtained with the most associated SNPs,
which were much lower (Table 1).

Our approach considerably outperforms the predic-
tions that can be obtained using only loci found from
genome-wide association approaches. The classifiers
built with the SNPs reported in recent papers that
embrace the association approach, for 7 = 0.3, only
cover a small proportion of individuals, 27.84%; thus,
the reduced average error rate achieved, 6.53%, is not so
useful. To obtain classifications for an average of 63.21%
individuals, we need to fix 7 = 0.4, the average error
then increases to 19.59%.

One of the possible reasons why the approach pre-
sented here far outperforms classifiers using only the
most associated SNPs is that common diseases are likely
to be caused by numerous loci with small to modest
effects. These loci are usually discarded in GWA because
of the strict significance thresholds normally employed.
Our method, in contrast, implicitly employs all geno-
typic information. For all these reasons, together with
the careful tuning of the algorithm, we are able to ob-
tain larger AUCs than previously reported for complex
disease genetic prediction risk.

In [19], the authors have reported lower AUC than
ours using the same data set, ranging from 0.66 to 0.79.

The differences are due to the different approach used.
In fact, the approach of [19] is similar to the method
employed here to obtain the results with previously
published SNPs; a p-value thresholding selects a subset
of SNPs to be used in a logistic regression learner.
However, the codification of SNPs uses values {0, 1,2}
instead of the binarization proposed in this paper. In any
case, [19] results in a low discriminative power for all
diseases but Type 1 Diabetes (T1D). These results agree
with the AUC scores reported in the last column of our
Table 1, none of them is above 0.69.

Interestingly, the AUC reported here are close to the
maximum AUC predicted by Wray et al. [35] for the
diseases analyzed here. The ranking of their AUCs for
the different diseases is also, grossly, in agreement with
ours. For instance, they predict a higher AUCmax for
T1D than for T2D, as we do obtain. As Wray et al.
showed, maximum AUC depends on both incidence
and heritability in the underlying scale (they assumed a
threshold model). The fact of discarding samples difficult
to classify is, certainly, an indirect method to increase
heritability.

4 CONCLUSIONS

Prediction and association are related though still dis-
tinct objectives. From a purely computational point of
view, the reason is that associations are searched aiming
at the goodness of fit considering the available markers
one by one. The consequence is that there are interac-
tions that are unaccounted in GWA studies. Instead of
searching for individual markers, the method proposed
here searches for subsets of SNPs whose joint values are
useful for prediction, but which one by one may not
reflect association signals.

The reported results thus suggest that the genetic
causes of the diseases considered here are complex:
there are many SNPs (along all chromosomes) whose
individual effect cannot be detected, but which still add
up to make an overall impact on disease risk.
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