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Abstract

We study the generalization of the Ansatz of Galliet al. [1] for non-extremal black holes of
N = 2, d = 4 supergravities for a simple model ofN = 2, d = 5 supergravity with a vector
multiplet whose moduli space has two branches. We use the formalism of Ferrara, Gibbons and
Kallosh [2], which we generalize to any dimensiond. We find that the equations of motion of the
model studied can be completely integrated without the use of our Anstaz (which is, nevertheless,
recovered in the integration). The family of solutions found (common to both branches) is char-
acterized by five independent parameters: the massM , the electric chargesq0, q1, the asymptotic
value of the scalar at infinityφ∞ and the scalar chargeΣ. The solutions have a singular hori-
zon wheneverΣ differs from a specific expressionΣ0(M, q0, q1, φ∞) (i.e. when there is primary
scalar hairΣ− Σ0 6= 0). The family of regular black holes interpolates between its two extremal
limits. The supersymmetry properties of the extremal solutions depend on the choice of branch:
one is always supersymmetric and the other non-supersymmetric in one branch and the reverse in
the other one.
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Introduction

In a recent paper [1] Galliet al. proposed a general Ansatz to find non-extremal black-hole solutions
of N = 2, d = 4 supergravity theories coupled to vector multiplets, that makes crucial use of the
formalism developed by Ferrara, Gibbons and Kallosh (FGK) in ref. [2].3 The Ansatz consists of a
systematic deformation of the corresponding supersymmetric (extremal) solutions to the same model
which has to be plugged into the equations of motion derived by FGK to determine the values of the
integration constants, something that needs to be done for each particular model.

The Ansatz can be generalized to higher dimensions by using the corresponding generalization
of the FGK formalism, but it may only work forN = 2-type theories for which the metric functions
of supersymmetric solutions are homogenous of a certain degree in harmonic seed functions. In this
paper we want to study a generalization of ref. [1]’s Ansatz for theN = 2, d = 5 supergravity
case, and we will generalize the FGK formalism and the results obtained in refs. [12, 2] to arbitrary
dimensions. We will then construct the non-extremal black-hole solutions of a simple model ofN =
2, d = 5 supergravity with just one vector multiplet (and, therefore, one scalar field).

This paper is organized as follows: Section 1 is devoted to the generalization of the results of [2]
to d ≥ 4 dimensions. In Section 1.1 we adapt the results of the previous section to the particular case
of N = 2, d = 5 theories with vector multiplets. In Section 2 we construct the general black-hole
solutions of a simple model ofN = 2, d = 5 supergravity, studying first the supersymmetric ones,
which can be constructed using well-known recipes. Section3 contains our conclusions.

1 The FGK formalism in d ≥ 4

In order to generalize the results of ref. [2] tod ≥ 4 we first need to find a suitable generaliza-
tion of their radial coordinateτ , a goal that can be achieved relatively easily:4 consider thed-
dimensional non-extremal Reissner-Nordström (RN) family of solutions. If we normalize thed-
dimensional Einstein-Maxwell action as (seee.g.ref. [13])

I[gµν , Aµ] =
1

16πG
(d)
N

∫

ddx
√

|g|
[

R− 1
4F

2
]

, (1.1)

whereG(d)
N is thed-dimensional Newton constant. Then, the metric can be put inthe form

ds2 = H−2Wdt2 −H
2

d−3

[

W−1dr2 + r2dΩ2
(d−2)

]

, (1.2)

H = 1 +
h

rd−3
, W = 1− 2B

rd−3
, (1.3)

wheredΩ2
(d−2) is the metric of the unit(d − 2)-sphere and the constanth and the non-extremality

parameterB are given by5

B =
4πG

(d)
N

(d− 2)ω(d−2)

√

M2 − 2
(d− 2)

(d− 3)
q2 , h =

4πG
(d)
N

(d− 2)ω(d−2)
M − B . (1.4)

3 For previous work on near-extremal and non-extremal solutions seee.g.refs. [3, 4, 5, 6, 7, 8, 9, 10, 11].
4 Observe that the cased = 5 was treated in ref. [11].
5 In d = 4, B is usually calledr0 or c.
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In the above expressionsω(d−2) is the volume of the unit(d − 2)-sphere,M is the ADM mass andq
the canonically-normalized electric charge.

The metric (1.2) describes the exterior of a RN black hole with the (outer) event horizon being
located atrd−3 = 2B ≥ 0. The (inner) Cauchy horizon would, in principle, be locatedat rd−3 =
−h ≤ 0: this corresponds to a real value ofr only for evend; for oddd, the Cauchy horizon is not
covered by these coordinates.

WhenB = 0 the functionW effectively disappears from the metric and we recover the extremal
RN black hole in isotropic coordinates. As is well-known, inthis limit there are many other solutions
of the same form withH replaced by an arbitrary function harmonic on EuclideanR

d−1. In this
sense, the above non-extremal metric can be understood as a deformation of the extremal one by
an additionalharmonicfunctionW (calledSchwarzschildor non-extremality factor) containing the
(non-)BPS parameterB. This kind of deformations have been used to find non-extremal solutions in
e.g.refs. [5, 11].6

If we perform the coordinate transformation

rd−3 =
2B

1− e−2Bρ , (1.5)

in the above metric we find that it takes the conformastatic form

ds2 = e2Udt2 − e−
2

d−3
Uγmndx

mdxm , (1.6)

where the functione2U is given by

e2U = Ĥ−2e−2Bρ with Ĥ =
h+ 2B
2B − h

2B e−2Bρ , (1.7)

and the spatial background metric,γ, is given by

γmndx
mdxm =

[ B
sinh (Bρ)

] 2
d−3

[

( B
sinh (Bρ)

)2 dρ2

(d− 3)2
+ dΩ2

(d−2)

]

. (1.8)

The coordinateρ is the higher-dimensional generalization of theτ of ref. [2] we were looking for.
In fact, in d = 4 their relation isρ = −τ . The main difference withτ is that the event horizon is
at ρ → +∞ instead of−∞; furthermore, the Cauchy horizon, which ind = 4 could be reached at
τ → +∞, is not covered byρ because, in general, it cannot take negative values due to the fractional
power inγ. In the extremal limit,i.e. whenB → 0, the background metric takes the form

γmndx
mdxm =

1

ρ
2

d−3

[

(

dρ

(d− 3)ρ

)2

+ dΩ2
(d−2)

]

, (1.9)

which is nothing but the Euclidean metric onRd−1 as can be seen by the coordinate changeρ = r3−d;
needless to say, in the limitB = 0 the functionĤ becomes a harmonic function onRd−1.

It is reasonable to expect that all static black-hole metrics ind ≥ 4 dimensions can be brought to
the conformastatic form eq. (1.6) with the background metric (1.8). In the next section we will also
assume that the metric functione−2U of the non-extremal black holes ofN = 2, d = 5 supergravity

6 As one can see from ref. [11] the solution for non-extreme black holes that we are going to construct, can, due to the
special properties of supersymmetric couplings, be coordinate-transformed to a solution with a Schwarzschild factor.
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can be obtained from that of the extremal ones by replacing the harmonic functionsHI by hatted
harmonic functions of the form̂HI = aI + bIe

−Bρ and adding an overall factor ofeBρ as in eq. (1.7).
Let us consider now thed-dimensional action

I[gµν , AΛ
µ, φ

i] =

∫

ddx
{

R+ Gij∂µφ
i∂µφj + 2IΛΣF

Λ
µνF

Σµν
}

, (1.10)

where theIΛΣ are given functions of the scalarsφi and are supposed to form an invertible, negative
definite matrix.

In d > 4 dimensions there could be higher-rank potentials in the action, but they should not couple
to black holes. Of course, their consistent truncation fromthe action could place additional constraints
on the remaining fields, but this analysis has to be made on a case by case basis and one could always
impose those constraints on the solutions to the above unconstrained action. In odd dimensions there
could also be Chern-Simons terms for the 1-formsAΛ

µ. However, those terms will only contribute to
the equations of motion when we consider objects magnetically charged with respect to the 1-forms,
i.e. electrically charged with respect to their dual(d − 3)-forms, but these would not be black holes
in d > 4. Therefore, we can conclude that the above action is generalenough to cover all or most
of the possible (necessarily electrically) charged black-hole solutions ind > 4. In d = 4 there is an
additional term involving only scalars and 1-forms relatedto the fact that only ind = 4 dimensions
black holes can have magnetic charges on top of the electric ones.

Plugging the assumptions of time-independence of all fieldsand a metric of the form eqs. (1.6,1.8)
into the equations of motion resulting from the action, and using the conservation of the electric
chargesqΛ, we are left with a reduced system of differential equationsin ρ that can be derived from
the so-calledgeodesic action

I[U, φi] =

∫

dρ
{

(U̇)2 + (d−3)
(d−2) Gij φ̇

iφ̇j − e2UVbh

}

, (1.11)

where the black-hole potential is given by

Vbh = α2 2(d−3)
(d−2) IΛΣqΛqΣ , (1.12)

α being a constant related to the normalization of the charge to be determined later; one also finds a re-
lation between the Hamiltonian corresponding to the action(1.11) and the non-extremality parameter
B, namely

(U̇ )2 + (d−3)
(d−2) Gijφ̇

iφ̇j + e2UVbh = B2 . (1.13)

Assuming regularity of the fields at the horizon, it is possible to derive generalizations of the
theorems proven in ref. [2]: for extremal black holes, in theρ → +∞ limit

eU ∼ 1

ρ

[

Ah

ω(d−2)

]− (d−3)
(d−2)

, (1.14)

whereAh is the area of the event horizon. Furthermore, this area is given by

Ah = ω(d−2)

[

−Vbh(φ
i
h)
]

(d−2)
2(d−3) , (1.15)

where the values of the scalars at the horizon,φi
h, extremize the black-hole potential

∂iVbh|φi

h
= 0 . (1.16)
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For general (extremal or non-extremal) black holes, defining the massM and the scalar charges
Σi by the asymptotic (i.e. ρ → 0) behavior of the metric function and scalars as

U ∼ −Mρ , φx ∼ φx
∞ − Σx ρ , (1.17)

we find from eq. (1.13)

M2 + (d−3)
(d−2) Gij(φ∞)ΣiΣj + Vbh(φ∞, q) = B2 . (1.18)

Finally, the entropyS = Ah/(4G
(d)
N ) and temperature,T , of the black-hole event horizon are

related to the non-extremality parameter by generalization of the Smarr formula [12]

B =
16πG

(d)
N

(d− 3)ω(d−2)
ST . (1.19)

Observe that the massM defined above is identically to the ADM mass if we set

8πG
(d)
N

(d− 2)ω(d−2)
= 1 , (1.20)

as we will do from now on,7 we have

S =
2π

(d− 2)ω(d−2)
Ah whence ST = (d−3)

2(d−2) B . (1.23)

1.1 The FGK formalism for N = 2, d = 5 theories

The relevant part of the bosonic action ofN = 2, d = 5 supergravity theories coupled ton vector
multiplets is, using the conventions of refs. [14, 15],

I[gµν , AI
µ, φ

x] =

∫

d5x
{

R+ 1
2gxy∂µφ

x∂µφy − 1
8aIJF

I
µνF

J µν
}

, (1.24)

whereI, J = 0, 1, · · · , n and x, y = 1, · · · , n. The scalar target spaces are determined by the
existence ofn+ 1 functionshI(φ) of then physical scalar subject to the constraint

CIJKhIhJhK = 1 , (1.25)

whereCIJK is a completely symmetric constant tensor that determines the model. Defining

hI ≡ CIJKhJhK (whencehIhI = 1) (1.26)

7 With this choice, to have canonically-normalized charges in the black-hole potentialα must take the value

α =
(d− 2)√
2(d− 3)

. (1.21)

This is not the most convenient normalization, though, because, with it, the relation between mass and charge of an extremal
RN black hole is

M
2 = 2(d−2)

(d−3)
q2 , (1.22)

and we will choose a different one in the next section.
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the matrixaIJ can be expressed as

aIJ = −2CIJKhK + 3hIhJ , (1.27)

and can be used to raise and lower the index of the functionshI . We also define

hIx ≡ −
√
3∂xh

I , hI x ≡ aIJh
J = +

√
3∂xhI , (1.28)

which are orthogonal to thehI with respect to the metricaIJ . Finally, the target-space metric is given
by

gxy ≡ aIJh
I
xh

J
y

which implies−−−−−−−−−−−→ aIJ = hIhJ + gxyhIxh
J
y . (1.29)

Adapting the results of the previous section to these conventions and definitions we get the effec-
tive action

I[U, φx] =

∫

dρ
{

(U̇)2 + 1
3gxyφ̇

xφ̇y − e2UVbh

}

, (1.30)

and Hamiltonian constraint (1.13) becomes

(U̇)2 + 1
3gxyφ̇

xφ̇y + e2UVbh = B2 , (1.31)

where the black-hole potential with the choice of normalization α2 = 3/32, is given by

− Vbh = aIJqIqJ = Z2 + 3gxy∂xZ∂yZ , (1.32)

where we defined thecentral chargeZ(φ, q) ≡ hIqI and used eq. (1.29) in order to obtain the last
expression. The supersymmetric black holes of these theories satisfy

∂xZ|φh
= 0

whence−−−−−−−−→ ∂xVbh|φh
= 0 , (1.33)

i.e. the values the physical scalar fields take at the horizon extremize the central charge and the black
hole potential; in fact, all extremal black-hole solutionsof the theory satisfy the latter equation but
only the supersymmetric ones satisfy also the former. Furthermore, the supersymmetric ones saturate
the BPS bound

M = Z(φ∞, q) . (1.34)

The supersymmetric, and therefore extremal, black-hole solutions [16, 17, 18] are completely deter-
mined byn+ 1 real harmonic functions on EuclideanR4

II = II ∞ + qIρ . (1.35)

The fields of the supersymmetric solutions are related to these function by

e−U hI(φ) = II . (1.36)

These equations must be solved forU = Ususy(I) and the physical scalarsφx = φx
susy(I) using the

constraints of real special geometry.
Galli et al.’s Ansatz [1] for the non-extremal black-holes solutions isa deformation of the super-

symmetric extremal solutionsUsusy(I), φ
x
susy(I), namely

U = Ususy(Î)− 2B ρ , φx = φx
susy(Î) , (1.37)

where the functionŝII have the form

ÎI = aI + bIe
−2Bρ . (1.38)
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2 A simple model of N = 2, d = 5 supergravity and its black holes

Let us consider a simple model with one vector multiplet determined byC011 = 1/3;8 in terms of the
physical, unconstrained, scalarφ we find that the model has two branches, labeled byσ = ±1:

h0(σ) = e

√

2
3
φ
, h1(σ) = σ e

− 1√
6
φ
,

h(σ) 0 = 1
3e

−
√

2
3
φ
, h(σ) 1 = 2

3σ e
1√
6
φ
.

(2.1)

The scalar metricgφφ and the vector field strengths metricaIJ take exactly the same values in both
branches:

gφφ = 1 , aIJ = 1
3





e
−2

√

2
3
φ

0

0 e

√

2
3
φ



 , (2.2)

and, therefore, the bosonic parts of both models and their classical solutions are identical. Since the
functionshI(σ)(φ) differ, the fermionic structure will be different. In particular, the central charge in
theσ-branch is

Z(σ) = q0e

√

2
3
φ
+ σq1e

− 1√
6
φ
. (2.3)

The black-hole potential, being a property of the bosonic part of the theory, is identical in both
branches:

− Vbh = 3
2

[

2q20e
2
√

2
3
φ
+ q21e

−
√

2
3
φ
]

. (2.4)

The black-hole potential is extremized for

φh = −
√

2
3 log

(

±σ
2q0
q1

)

. (2.5)

Since±σ2q0/q1 > 0, the upper sign (which corresponds to the supersymmetric case in theσ-
branch, as it extremizes the central charge) requires the following relation between the signssI(≡
qI/|qI | of the chargesqI

s0 = σs1 , (2.6)

while the lower one (non-supersymmetric in theσ-branch) requires

s0 = −σs1 . (2.7)

The same bosonic solution will be supersymmetric in theσ-branch and non-supersymmetric in
the (−σ)-branch. We are going to construct the supersymmetric solutions of theσ-branch next; the
non-supersymmetric solutions of the(−σ)-branch will be constructed at the same time.

2.1 Supersymmetric and non-supersymmetric extremal solutions

According to the general prescription, the extremal solutions are given by two real harmonic functions
of the form eq. (1.35), and are related toU andφ by eqs. (1.36), which in this case take the form

I0 = 1
3e

−Ususy e
−
√

2
3
φsusy , I1 = 2

3 σ e−Ususy e
1√
6
φsusy . (2.8)

8 This model can be obtained by dimensional reduction of minimal d = 6 N = (1, 0) supergravity.
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Solving forUsusy andφsusy we get

e−Ususy =
(

33

22 I0I
2
1

)1/3
, φsusy = −

√

2
3 log

(

σ
2I0
I1

)

. (2.9)

The regularity and well-definedness of these fields impose some restrictions on the harmonic func-
tions, to wit

i) They should not vanish at any finite value ofρ: this requirement relates the signs ofqI andII .

ii) sign(I0) = σ sign(I1) everywhere forφsusy to be well-defined in theσ-branch. This implies, in
particular, thats0 = σs1 which is the relation we found for the supersymmetric critical points.
There are therefore for each branch two supersymmetric cases which are disjoint in charge
space:s0 = +1, s1 = σ ands0 = −1, s1 = −σ.

iii) For Ususy to be well-defined (e−U > 0) only I0 > 0 seems to be allowed. However, if we take
into account that the spatial metric eq. (1.9) is odd inρ, we can compensate the wrong sign in
e−U with a change of sign inρ.

In principle we have to consider the two aforementioned cases separately, but in the end both can
be written in a unified way, with the harmonic functions givenby

I0 = 1
3e

−
√

2
3
φ∞ + |q0|ρ , I1 = σ

{

2
3e

1√
6
φ∞ + |q1|ρ

}

, (2.10)

and the mass and scalar charge are given by

M = |Z(σ)(φ∞, q)| , Σ = 3∂φZ(σ)(φ∞, q) . (2.11)

Studying the near-horizon,i.e. ρ → ∞, behavior we find that

φsusy|h = −
√

2
3 log

(

σ
2q0
q1

)

, (2.12)

Ah

2π2
=

√

33

22 |q0|q21 = [−Vbh(φh, q)]
3
4 = |Z(σ)(φh, q)|

3
2 . (2.13)

These field configurations solve the same equations of motionall values ofσ, but they are only
supersymmetric in theσ-branch of the theory.

2.2 Non-extremal solutions

The most general solution can be obtained by observing that the geodesic Lagrangian is separable: by
defining

x ≡ U +
√

2
3 φ , y ≡ U − 1√

6
φ , (2.14)

the effective action eq. (1.30) takes the form

I[x, y] =

∫

dρ
[

1
3(ẋ)

2 + 2
3(ẏ)

2 + 3q20e
2x + 3

2q
2
1e

2y
]

, (2.15)
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and its equations of motion can be integrated immediately. We do not need to make any particular
Ansatz, but should rather be able to recover it from the general solution, which is9

e−3U =
33

22
|q0q21|

(

sinh (Bρ+D)

B

)2(sinh (Aρ+ C)

A

)

, (2.16)

φ = −
√

2
3 log

{∣

∣

∣

∣

2q0
q1

∣

∣

∣

∣

(

B

sinh (Bρ+D)

)(

sinh (Aρ+C)

A

)}

, (2.17)

whereA,B,C andD are (positive) integration constants. Their values are constrained by the re-
quirement of asymptotic flatness and related to the non-extremality parameterB by the Hamiltonian
constraint eq. (1.31)

2B2 + A2 = 3B2 . (2.18)

There are, then, three independent integration constants that must correspond to the three inde-
pendent physical parameters that are not the electric charges: the massM , the asymptotic value of
the scalarφ∞ and the scalar chargeΣ (according to eq. (1.18)B is a function of these three). As the
scalar charge is not an attribute of point-like objects, we do not expect the existence of regular black
holes withΣ 6= 0 (scalar hair). However, we know that regular black holes with Σ 6= 0 exist whenΣ
is a function of the other physical parametersΣ0(M, q, φ∞) (seee.g.the supersymmetric case studied
in the previous section). This kind of hair is known assecondary hair[19], while ∆Σ ≡ Σ − Σ0 is
calledprimary hair and its presence is generically associated to singularities.

In order to make contact with Galliet al.’s Ansatz, we rewrite eqs. (2.16) as

e−U = e−Ususy(Î) e(A+2B)ρ/3 , (2.19)

φ = φsusy(Î)−
√

2
3(B −A)ρ , (2.20)

wheree−Ususy(I) is given in eqs. (2.9) and

φsusy(I) = −
√

2
3 log

(

2I0
I1

)

, (2.21)

so there is no distinction between the branches. The hatted “harmonic” functions are given by

Î0 =
1
3e

−
√

2
3
φ∞(2A)−1

{(

A+M +
√

2
3 Σ

)

+

(

A−M −
√

2
3 Σ

)

e−2Aρ

}

, (2.22)

Î1 =
2
3e

1√
6
φ∞(2B)−1

{(

B +M − 1√
6
Σ
)

+
(

B −M + 1√
6
Σ
)

e−2Bρ
}

, (2.23)

and the constantsA andB are given by, taking the positive roots,

A =

√

(

M +
√

2
3 Σ

)2

− 32q20e
2
√

2
3
φ∞ , (2.24)

B =

√

(

M − 1√
6
Σ
)2

− 32

22 q
2
1e

−
√

2
3
φ∞ . (2.25)

9 Please observe that this solution could also have been obtained by using the results obtained by Mohaupt & Vaughan
in ref. [11].
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A necessary condition for the solutions to become a product spacetime in theρ → +∞ limit, thus
signaling the occurrence of a horizon, can be read off from eq. (2.19):A + 2B = B. This constraint
together with the Hamiltonian constraint (2.18) implies not only A = B = B ≡ B0, but alsoΣ = Σ0

with10

Σ0 = −
√
6

{

M −
√

M2 + 3q20e
2
√

2
3
φ − 3

4q
2
1e

−
√

2
3
φ

}

. (2.26)

In that case, the form of the non-extremal solution is the oneproposed by Galliet al. as a deforma-
tion of the supersymmetric one. In what follows we will only consider the regular solutions with no
primary scalar hairΣ = Σ0, B = B0. It is useful to express these constants in terms of the asymptotic
values of the central charges of the two branches of the supersymmetric theoryZ(+) andZ(−):

Σ0 = −
√
6
{

M −
√
C
}

and B2
0 = 5M2 − 3Z(+)∞Z̃(−)∞ − 4M

√
C . (2.27)

where
C ≡ M2 + 3

16

(

3Z2
(+)∞ + 3Z2

(−)∞ + 10Z(+)∞Z(−)∞

)

. (2.28)

Further conditions for regularity of the bh’s are the reality and positivity ofB2
0, which is the case if

M2 ≥ Z2
(+)∞ and M2 ≥ Z2

(−)∞ . (2.29)

B0 vanishes only when one of the bounds is saturated, so there are in a givenσ-branch two extremal
limits: one is supersymmetric and the other non-supersymmetric.

At the horizon, the scalar goes to the finite, yetφ∞-dependent value

φh = φ∞ −
√

2
3 log

(

B0 −M + 2
√
C

B0 + 2M −
√
C

)

. (2.30)

The area of the horizon is easily found to be

Ah

2π2
=

√

(

B0 −M + 2
√
C
)(

B0 + 2M −
√
C
)2

, (2.31)

and the entropy can be computed from eq. (1.23)S = Ah/3π. Also, using eq. (1.23) the temperature
is justT = B0/(3S) and vanishes in the extremal limits.

Let us end this section with a quick word on the extremal solutions: as we found in the previous
section the general family of non-extremal solutions has two extremal limits, namely one given by
M = |Z(+)∞| and the other one byM = |Z(−)∞|; the supersymmetry properties of the limiting
solution will depend on the choice of branch. In order to study them we have to take into account that
when one of the extremality bounds eq. (2.29) is saturated, the other one still holds. In other words:
if (the absolute values of) the two supercharges are different, the first bound that becomes saturated
when we vary the mass, will correspond to that of the largest supercharge. Which supercharge is
largest depends on the signs of the charges:

s0 = s1 , ⇒ |Z(+)∞| ≥ |Z(−)∞| ,

s0 = −s1 , ⇒ |Z(−)∞| ≥ |Z(+)∞| .
(2.32)

As in the 4-dimensional examples studied in ref. [1], the values of the charges determine completely
the extremal limit. Taking this into account is easy to see that we recover the extremal solutions found
before, whose supersymmetry properties depend on our choice of branch.

10 Only one of the solutions of the second degree equation forΣ0 is valid, i.e. gives rise to regular black holes.
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3 Conclusions

In this paper we have studied the generalization of the formalism of Ferrara, Gibbons and Kallosh
[2] to higher dimensions and we have applied it to the construction of the non-extremal solutions
of a simple model ofN = 2, d = 5 supergravity with just one modulus to check a proposal for a
generalization of the Ansatz of [1] to higher dimensions.

Instead of using this Ansatz directly, we have been able to integrate directly the effective equations
of motion of the model and we have found a general solution with an independent scalar charge
parameterΣ. Only whenΣ is related to the mass, electric charges and asymptotic value of the scalar
by a given formulaΣ = Σ0(M, q0, q1, φ∞) the solutions are regular,i.e. black hole solutions and not
naked singularities. We can interpret these regular solutions as not havingprimary scalar hairin the
sense of ref. [19] and their form fits perfectly in [1]’s Ansatz.

Only a few examples of general families of solutions including singular solutions with and reg-
ular solutions without primary scalar hair are known [20]. Most of the solutions known have only
secondary hair: their scalar charges are related to the masses, charges, and asymptotic values of
the moduli by certain expressions. In the supersymmetric cases these expressions are related to the
asymptotic values of the derivatives of the central charges(or to the matter central charges11 but in
the general case it is not known how to determine them before finding the explicit solutions. This is
an important problem for which no solution has been proposed.

Here we have dealt with an extremely simple model. It is clearthat to confirm (or refute) the
validity of [1]’s Ansatz more examples need to be studied. Work in this direction is in progress.
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